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§1. Introduction

Let D={xeR?: x, >0} where x=(x,,..., x,) and p>2. We shall say that
a set EcR? has a covering {r,, R,} if there exists a sequence of balls {B,} in R?
such that Ec\UX, B,, where r, is the radius of B,, and R, is the distance between
the origin and the centre of B,. On the other hand, we shall say that EcD has
a covering {t,, r,, R,} if there exists a sequence of balls {B,} with centres in D
such that Ec\U, B,, where r, and R, are defined as above and where ¢, is the
distance between the centre of B, and the Euclidean boundary of D, to be denoted
by aD.

The motivation of this work stems from two classical questions which are
concerned with the behaviour at co of a suitably restricted subharmonic function
u on D. If u is subharmonic on D and y € dD, we define u(y)=Ilim sup,_,, u(x),
where xeD. If u(y)<0 for all yedD, and if sup,., (u(x)/x,;)<oo, then it is
generally known that u can be uniquely decomposed as

u(x) = axy = Gu(x) — w(x),

where « is a real number, Gpu is the Green potential of a mass distribution u on D,
and w is a positive harmonic function on D which can be represented as

W) ={ K, 0dv)

where K is the Poisson kernel on 0D x D and v is a suitable mass distribution on
oD.

The first question, to be designated by (I), is concerned with an analysis of
u(x)/x, as x—o0, xe D. By introducing the idea of a minimally thin set at oo
with respect to D, J. Lelong-Ferrand ([12], pp. 134-143) presented a solution of
(I) by showing that for any &> 0, there exists a set E,c D, minimally thin at co in
D, such that

lu(x)/x; —a| <& xeD\E, |x|=>1.

She also proved that her results are best possible in the sense that if EcD is
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unbounded and minimally thin at co in D, then there exists a subharmonic func-
tion u on D, restricted as above, such that liminf,, |u(x)/x;—«|>0, x€E.
With the introduction of the fine topology of Naim (see Brelot [3], second part,
for details) onto the minimal Martin boundary of a Green space as well as later
generalizations, Lelong-Ferrand’s result is now interpreted as meaning that

(1.1) fine lim, , , u(x)/x; = a.

In analogy with a theorem of H. Cartan (cf.“‘Helms [10], p. 216) which states that
the limit of a function in the classical fine topology amounts to the ordinary limit
of that function on a suitably chosen fine neighbourhood, M. Brelot ([4], Lemma
9) has pointed out that (1.1) is equivalent to the existence of a minimally thin set
E at oo in D such that

lim,, . (u(x)/x; —a) =0, xe D\E.

This result is best possible and it only remains to give a deeper geometrical de-
scription of a minimally thin set at co in D than has been accomplished up to the
present time.

The second question, to be denoted by (II), is involved with the behaviour of
(u(x)—ax,)/|x| as x—>o00, xe D (cf. Azarin [1], Essén [7], p. 18 and Essén and
Lewis [9] for details). The main idea here is to characterize an exceptional set
S<D in some best possible sense, so that

(u(x) — axy)/|x| — 0,  x— 0, xeD\S.

Question (IT) was initiated by Ahlfors and Heins in the special case where p=2.
They showed that if K< D is any Stolz domain, then S n K has certain properties
in terms of radial and circular projections. Since (I) and (II) are equivalent
questions when one is restricted to a Stolz domain K, it follows that Sn K must
be minimally thin at oo in D for every such K. A significant result of Ahlfors
and Heins which is not subsumed by the work of Lelong-Ferrand, is the theorem
which states that if S nK is projected onto the positive real axis by circular pro-
jection, then the projected set has finite logarithmic length. Hayman strengthened
this result by showing that the circular projection of S itself onto the positive real
axis has finite logarithmic length and Azarin [1], in turn, strengthened and gener-
alized Hayman’s result by demonstrating that if p>2, then S can be covered by a
sequence of balls {r,, R,} such that X, (r,/R,)P"1<oco. If we know that there
exist a subharmonic function u in D which is restricted as above and an unbounded
set EcD such that liminf,_,  [u(x)—ax,|/|x|>0, x€E, it is obvious that E is
minimally thin at oo in D. The following example shows that the set E is not
characterized by this condition. The vertical strip {xeD: 0<x,<1} is mini-
mally thin at oo in D but does not satisfy Azarin’s condition if p> 2, or Hayman’s
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condition if p=2.

Our work started as an effort to relate Azarin’s condition to that of minimal
thinness. In our first work [8], we assumed that the exceptional set in question
was restricted to a Stolz domain, and found that if «>p—2, a minimally thin set
E at oo in D can always be covered by a sequence of balls {r,, R,} such that
> . (r/R)*<00. For an exceptional set restricted to a Stolz domain, our work
in [8] shows that the critical value of the exponent « is p—2 rather than p—1.
This strictly improves the result of Ahlfors and Heins and also shows that Azarin’s
condition does not characterize the exceptional set in (II). Our earlier results,
however, do not contain all of those of Azarin because we restricted ourselves to
a Stolz domain, whereas Azarin makes no such requirement.

In the present work, we wish to investigate the case when the exceptional
set is no longer restricted to a Stolz domain. Let us first discuss exceptional
sets of type (II). We wish to give a precise potential-theoretic characterization
of these sets as well as detailed covering theorems for them. We shall do this
by introducing a new type of exceptional set that we shall call a rarefied set (cf.
Definition 3.2), and will demonstrate that a rarefied set plays the same role in (II)
as a minimally thin set does in (I). We mention that Lelong-Ferrand ([12],
p. 134) has also introduced the term ‘‘rarefied set”. We shall define a set to be
semi-rarefied iff it is rarefied according to her definition. We introduce this
change of terminology because it appears to us that a rarefied set according to
Lelong-Ferrand resembles more closely a minimally semi-thin set than it does a
thin set. The introduction of a rarefied set will lead to strict improvements of
the results of Hayman and Azarin as well as those of Essén and Lewis (cf. [9],
also our Remark 4.8).

Let us state two of our covering results. By B=(t, r, R), we mean a ball of
radius r, centre P=(t, x,,..., X,,), where t>0 and R=|P|. We also introduce H
to be the collection of all sets of the form Bn D where 0<r<t/p. This means
that if F=D n D is a closed cube with sides parallel to the coordinate axis, then
the ball B whose centre is at the centre of F and whose diameter is that of F is
such that BnDeH. In both theorems below, we consider sequences {H,} in H
with H,=B, n D where B,=(t,, r,, R,).

THEOREM 1.1. Let p>3. Suppose that EcDcRP can be covered by a
sequence {H,} so that

(1.2) 20 (1/Ry) (ra/Rp)P™2 < 00.
Then E is rarefied at o in D.
The proof is given in Section 4. Conversely, we have

THEOREM 1.2. Let p>3 and suppose that EcD<RP? is rarefied at «© in
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D. For each a>p—2, there exists a covering of E by a sequence {H,} so that

(1.3) 25 (8a/R,) (ra/Rp)* < 0.
This result is not true if a<p—2.

Theorem 1.2 is a corollary of the more general Theorem 5.1. The analogues
of Theorems 1.1 and 1.2 for a minimally thin set are given by Theorem 4.3 and the
Corollary of Theorem 5.1. They are similar to the results stated above except
that (1.2) and (1.3) are replaced by

(r.2y 2 (ta/ Rp)*(ra/Rp)P™2 < 00,
and
(1.3) 2 (8] R)*(ra/R,)* < 0.

It follows from these results that the imposition of the dual conditions of Azarin
and minimal thinness simultaneously will not characterize a set which is rarefied
at oo in D.

An important tool used in our work is Lemma 5.2 which gives a connection
between two different types of capacities introduced in Section 2 and the covering
measure L, introduced in Definition 5.2. In the proof of Lemma 5.2, we need
Lemma 5.1 which generalizes a classical result of Frostman to the new situation
considered here.

In the present paper, we consider only the case p>3. The case p=2 will be
covered in a separate paper.

The authors wish to express their appreciation to Prof. M. Ohtsuka and Mr.
H. Aikawa for their many suggestions concerning the preparation of the final
version of this work.

§2. Outer charge, Green energy and Green mass

In the whole paper, we assume that the dimension p>3. We shall also intro-
duce the following notation.

(i) As in §1, D shall denote the half-space {xeRP: x;>0}, and H is
defined as in the end of the introduction.

(ii) Let s>1 be fixed and define I,={xeDUJD: s"<|x|<s"*1}. We call
I, the n'® intersphere with respect to s. In most cases, we can choose s=2.

(iii) Let ¢,_(Ix—y[)=|x—y|>? be the fundamental kernel on R?. We
shall abbreviate ¢,_, to ¢ if the dimension of the space is understood from the
context.

(ivy IfEcRP’, welet E,=EnI, Letc(E,) be the outer (ordinary) capacity
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of E,. We also let E,={x/s": x€E,}, or E,=s""E,.

(v) If x=(xy, X3,..., X,), then x’=(—Xxy, x,,..., X,) shall denote the reflec-
tion of x about the Euclidean boundary D of D.

(vi) Let G(x, y)=¢(x—y])—¢(]x—y'|]) be the Green kernel for D, and let

Gu(x)=gs(u) G(x, y)du(y) be the Green potential at x of the Radon measure y

whose support is S(u). The mutual Green energy of u and v shall be written

(u, v)=gs(v)Gy(x)dv(x), and the Green energy of u shall simply be (u, )= |ul?.
(vii)) We introduce a Martin type kernel on (DU dD U {c0}) x D as follows:

G(y, ©)[y, on DxD,

K(y, x) =¢ 2x,¢,|x — y|™? on dDxD,

ol
X, on {oo}xD.

Here c,=p—2. We note that if xe D, K(-, x) will be continuous on (D U dD)\
{x}.

(viii) If f and g are positive real-valued functions on a set X, we shall say
that f is comparable to g, and write f & g iff there exist constants A, B, 0<A<B,
such that Ag < f < Bg everywhere on X.

(ix) If v is a non-negative superharmonic function on D and if H is the
greatest harmonic minorant of v on D, then the F. Riesz decomposition theorem
indicates that v— H is the Green potential of a unique v on D which we shall call
the measure associated with v on D.

DerIniTION 2.1.  Given E < D, suppose there exists a Radon measure 1z on
D whose Green potential is GAy=RE,, where RE is the regularized reduced func-
tion (balayage) of x; on E with respect to the cone of positive superharmonic
functions on D. Following Lelong-Ferrand ([12], p. 129), we shall call Ag the
fundamental distribution on E and Ag(D) the outer charge of E. If RE is not
a Green potential, we shall define the outer charge of E to be infinite.

If E is understood from the context, we shall often abbreviate the fundamental
distribution Ag to simply A.

DEFINITION 2.2. In case RE = GAyg, the Green energy of Ay, namely (iz, Ag),
shall in the future be called the Green energy of E and denoted by y(E). Other-
wise, we set y(E)= co.

REMARK 2.1. Lelong-Ferrand referred to y(E) as the outer power of E.
We shall derive some properties of y which will be used later.

LEMMA 2.1. yis monotone, y(E,) 1 Y(E) if E, 1 E, y is countably subadditive
and
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2.1) y(E) = inf {y(0): O o E, O is open}.

PrOOF. Let E,cE, with y(E;)<oo. Since RE!<RE2 in D, y(E;)=(Ag,
Ae) <(Agy Ap)=(2g,» Ap,) <(Ag,, Ag)=7(E;). Let E,t E with y(E)<oo. Then
RE» 1 RE ; see (e) in p. 49 of [3]. For any a<y(E), there exists n, such that
a<(Zg,, Ag) for any n>n,. Next there exists m>n, such that a<(4,, 4, )
It follows that a <(4g,,, A, )=v(E,). This proves that y(E,) t (E) as n—oo0.

Before proving the countable subadditivity of y we establish (2.1). We may
assume that y(E) is finite. Let R,’f,=GiE. According to a topological lemma
due to Choquet (see [2], p. 3) there is a sequence {0,} of open subsets of D such
that 0,20,>---oF and if g is any lower semicontinuous function on D with
g<lim,_, R%», then g<inf,.zR2. Itis known that RE is equal to infy_ 5z RS,
g.e. in D; see p. 49, (f) of [3]. Take the regularization of lim,_, R%" as g. It
follows that lim, ., R%»=RE gq.e. so that lim,., Gio,=GAs q.. in D. Since
(Ag> Ag) is finite, Ag vanishes on any set of capacity zero. Hence, by Lebesgue’s
theorem

NE) = (Ag, Ap) = lim, ., (Lo, Ap) = lim,,_ o, (Ap, 2o,)-

Choose ny so that (Ag, 4o,) is close to y(E) if n>n,. Then choose m>n, so
that (4o, 4o,,) is close to y(E). It follows that (yo,, Yo,)=7(0,) is close to
y(E). This gives (2.1).

In order to prove that y is countably subadditive we note that

RE1VF2 < REs 4+ RE2
for any compact subsets F, and F, of D. We have
(Ap,uFp Ar,uF) < (Upps Ap,ur,) + (Apys Ap,ur,)
= (Ar,urp Ar) + (Ap,ur, Ar,)

= led)'Fl + led}'Fz

= (Ar,> Ar,) + (Ap, 4Ar,).

Thus y(F, U F,)<y(F,)+y(F,). For any open subsets O, and O, of D we choose
compact sets {F,} and {F,} so that F,t O, and F, 1 O,, and obtain y(0, U O0,)
<y(0,)+7(0,). For arbitrary sets E,, E,cD we apply (2.1) and derive
Y(E; U E))<y(E,)+y(E,). Finally take {E,} and set A,=Uk_,E,. As k-
(4 T (U %2, E,). Tt follows that

WA < Tha1 ¥(E,) < -1 W(E,)

and the countable subadditivity of y is easily established.
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DEFINITION 2.3. Let EcD and let A; be the Radon measure on D=D U 0D
which is such that

RE®) = | KO, 0d250) = Kig(x),

where RE is the regularized reduced function with respect to the cone of positive
superharmonic functions on D. The total mass A3(D) of the measure 1y, some-
times abbreviated to A'(E), will be called the Green mass of E.

REMARK 2.2. If R% has a representation

REG) = | KO, 90 + {60, )ua00),

we have

2B = m@D) + | yidi(y).

The Green mass of any bounded set is finite, and may or may not be finite
in the case of unbounded sets. If F=D is compact, we have A'(F)=Ap(F). If
Ec D is relatively compact in D, then the support of A is contained in D. Other-
wise, it is possible that Az(6D)>0.

We shall use

LeMMA 2.2. Let EcD. Let u, v be positive superharmonic functions in
D, and uE be the measure associated with RE in D. Then

pE({x € D: RE(x) < u(x)}) = 0.

Proor. Let By be the set of points x of D such that E is not thin at x.
If v is a Green potential on D, then u£(D\Bg)=0 by Lemma VIII, 2 in p. 61 of
[3]. If v is a positive harmonic function on D, then uE(D\Bg)=0 by Theorem
VIII, 11 in p. 65 of [3]. The relation holds for general v because of (c¢’) in p. 51
of [3].

Suppose there exists x € By such that RE(x) <u(x). Set

e={yeE: RE(y) < u(y)}.

This is a polar set (see p. 49 of [3]) and hence E\\e is not thin at any point of Bj.
We have

RE(X) < u(x) = hm infy—nc,yeE\e u(y) = hm infy-m:,yeE\e Rf(y) .

Therefore E\e is thin at x. This contradiction shows that RE=u on B;. Ac-
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cordingly the set {xeD: RE(x)<u(x)} is contained in D\Bg, and hence puf
vanishes on it. This proves our lemma.

DEFINITION 2.4. Following Brelot [2], p. 31, we let K*, defined so that
K*(x, y)=K(y, x), be the associated kernel of K. If A is a mass distribution on
D, we define

K*) = | K2, 90 = | Kx, 9)di00).

If x e D, then K*A(x)=GA(x)/x,;. Let us now prove that if x € dD, then
K*A(x) = liminf,,, ,.p K*A(z).

We want to use the classical Martin theory as presented in chapters XIV and XV
of Brelot [3]. For y,eD fixed, consider the Martin kernel K(x, y)=G(x, y)/
G(x, yo) (cf. [3], p. 111, where this kernel is referred to as K(x, y)). It is clear
that K(x, y)=K(x, yo)K(x, y). Furthermore every point of 4=38D U {0} is a
minimal point. A set EcD is defined to be minimally thin at X e 4 iff RE, %Ky
where K,(-)=R(X, ) (cf. [3], p. 122). Evidently D is not minimally thin at
any point of 4. It is known that Ec D is minimally thin at X € 4 if and only if
there exists a measure uy in D such that

(ROG 9)dua(y) < lim i ser (RO, 100,

where x—X is considered in the Martin topology (cf. Theorem XV, 6 in
p. 125 of [3]). We observe that this inequality is equivalent to K*uy(X)<
lim inf, _ x g K*ux(x). It follows that K*A(x)=liminf,,, ., K*A(z) for xe€dD.

Next we prove

LEmMA 2.3. Let END and suppose RE=GAg. Let By be the set of
points of 0D at which E is not minimally thin. Then K*Az=1 on Bg and
+(0D\Bg)=0, where RE=K1},.

Proor. Let e be the set of points on EN D at which Rfl(x)<x1. Itisa
polar set, and since it is thin at every x € dD in the ordinary sense, it must also be
minimally thin there (cf. [11], théoréme 1, also [3], p. 151). Now let xeB;.
Then E\ e is not minimally thin at x. Therefore

K*Ag(x) = liminf, . ., K*A5(y) = liminf,., . —};l—l—ﬁf,(y) =1.

Let u be the greatest harmonic minorant of RE=KA; on D. If u is the
restriction to 4D of A, then u=Kpu. Set v=RE¥—u. Then RE, =R% (see [3],
p- 49, d)), RE<u and RE<v. Hence u+v=RE ,<RE+RE<u+v. It follows
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that RE=u on D. By Theorem XV, 11 at the bottom of p. 129 of [3] therefore
H(OD\Bg)=5(0D\B)=0.

In the proof of the next lemma we let Q=Q(a) be a set of the form {x e R?;
|x|]<a} n D for some a>0 and let R2 =G,

LemMA 2.4. 1’ is monotone, A'(E,)1 A'(E) if E,1 E, A’ is countably sub-
additive and

2.2) M(E) = inf {1'(0); O o E, O is open}.
PrROOF. Let E,cE,. Then RE:<R%2 and hence KAy, <KA%, on D. Let
G, v)K=SK/1(x)dv(x). We have
25, (8) < (A, A5 )k = (Ag,s Aok < (AE,, 2a)k
= (Aa, A5,)ks < 45,(D).

The arbitrariness of Q yields A'(E,)<A'(E,).
Let E, 1 E. By (e) in p. 49 of [3] RE» 1t RE. We see that

(Aa, 28,)ks = (AE,» Adx T (AE, 2o)x = (Ao, A)ke-

It follows that lim,., Az (D)> Ag(D n Q). The arbitrariness of Q yields
lim, ., Az, (D)>Ag(D). Since the inverse inequality is also valid, the equality
follows.

Next we prove (2.2). By Brelot [3] (p. 49, (f)), there exists a decreasing
sequence {0,} of open sets such that 0,5 E for each n and R¢» | RE q.e. in
D. Evidently By, oB,  if m>n. By Lemma 2.3 K*1, =1 on B, . Since
40,(0D\B,, )=0 by the same lemma,

S K*10,d2, =
oD

Therefore, by Lemma 2.2

K*gdly + S K*iodhy, = A (D).

aD\Bom Bo,

* ’ — % ’ * ’ = ’ 2%
SDK Ao dily, = SDK ho.dh, + SMK ho.dh, = Ao (D).
Similarly SDK*lond,l’E=A}5(5). We have, if n is fixed,
lity,, o, A (D) = liMmyp. SDK*Aond%m =lim,.,, SDK%mdlon

- S Kipdio, = SDK*AOHdA'E = (D).
D
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This proves (2.2).
To prove the countable subadditivity we note that
ﬁfoFz < 1?’1:‘ + Rll'"z
tor any compact sets F, and F, in D. If Q> F U F,, then
(AFuras A2)x < (Ar,s Aok + (A, Aok -
Inverting the order of integration, we have
A(Fy U Fp) S V(Fy) + A(Fy).

The rest of the proof is carried out in exactly the same way as in the proof of
Lemma 2.1.

Now we prove

LEMMA 2.5. The outer charge and the Green mass coincide for any set
EcD.

Proor. First we consider the case when RE is equal to a potential Gig.
We observe that g d/lE=S REdj and S dz, =g RE(y)/y,dAs(y) by Lemma 2.2.
D D D D

Hence
25(D) =S R‘fdAE=S KA'EdaE=S K*,dA;
D D D

=S K*Apdi, +g K*Apdil,
D oD
and

33Dy = L RE()an0) + 240D) = | K*Asdiy + 23oD).
By Lemma 2.3
S K*Apd = S K*),dly = 2,(0D).
oD BE

Therefore Ag(D)=A%(D).

Next we consider the case when an is not expressed as a Green potential.
Then RE =x, by Theorem XII, 3 in p. 102 of [3]. Denote by B, the closed ball
with center at (n,0,...,0) and radius n—1/n. Let RE-"E=Glg . and RP~
=KAj,. By (e)in p.49 of [3] RB»"Et RE =x, as n—oo. For any m we have

* ’ -G)‘B,,nE ’ ’
gx Agndil, = g—xl—~d13m t Ay (By) as n—
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and
[K*i,05d2, = (K2, din,05 < 28,08D) = Zp,08(D).

Since A3, 0(D) < Ax(D) by Lemma 2.4, 2'(B,) =23, (B,) <Ax(D). If (B, )~mr,
then Ap(D)= oo follows. Since the outer charge of E is infinite when RE, is not
a Green potential (cf. Def. 2.1) therefore the outer charge always coincides with
the Green mass.

What remains is to show that A'(B,)~mP~!. Let w,, be the Green capacitary
distribution on B,, i.e. Gw, =R? and note that supp w,,<dB,,. We recall from
Jackson ([11], Lemme 1) that

(2.3) G(x, y) = x1y19(1x — y) |Ix" — yI™2.
The constants of comparison depend only on the dimension p. We have
1
Gonxn) = 1 | 19(% = Y0, (0)
OBm

AMB.m)
mrt

= E:Tf(wm9 A’Bm) =

Hence 1'(B,,)=A(B,,)~m?~1. Our proof is now completed.

ReMARK 2.3. The set functions y and A (resp. A’) can be extended from the
compact subsets of D (resp. D) to all the subsets of D (resp. D) in a standard way
using the theory of capacity. We take y as an example.

We regard 7 as a set function on the class of compact sets F in D. It satisfies
@) Y@ =0, y(F)<WF) if FycF,, (ii) p(FyUF;)+(F; N F)<y(Fy)+y(F3),
(>iii) y(F,) | y(F) if F, | F. In fact, (i) and (iii) are proved in our Lemma 2.1 and
(i) can be proved as in the proof of Lemma 2.1. Therefore y is a strong capacity
(cf. [2], p- 17) or Choquet capacity (cf. [10], Theorem 7.20). Then we extend y
to open sets O <D by

1%(0) = sup {y(F): F = 0, is compact}.

To show y4(0)=y(0), take a sequence of compact subsets {F,} of O such that the
interior of F, increases to 0. Then given F <O, there exists F,oF and hence
y(F)>y(F). Since lim,.,y(F,)=7(0) by Lemma 2.1, both y(0)<y,(0) and
7(0)=>74(0) follow. This gives y(0)=7y4(0). We extend y further to an arbi-
trary set EcD by

y*(E) = inf {y(0): O o E, O is open}.

We know that y*(E)=y(E) by (2.1).
Thus our 7 is a general capacity (cf. [3], p. 66) which is sometimes called
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a true capacity (cf. [2], pp. 6 and 18) or an outer capacity (cf. [10], pp. 145-146).
Accordingly any K-analytic set is y-capacitable. We shall not use this fact in this

paper.

§3. Some definitions and lemmas

We now observe how the different capacities that we have introduced trans-
form under a homothetic transformation on D of the form

T(x) = kx, where k> 0.

We will have
G(T(x), T(y)) = k*"?G(x, y)-

If E<D is bounded, it follows that
MT(E)) = A(T(E)) = kP~ 'X(E),
WT(E)) = kPy(E).

DEerFINITION 3.1.  Following Lelong-Ferrand, we shall define EcD to be
minimally thin at co in D provided that Y, y(E,)s "’ <oo for some s>1. If
E,=s""E,, then E is minimally thin at oo in D iff Y., y(E;) < co.

ReMARK 3.1. One normally defines EcD to be minimally thin at oo in
D iff Rflséxx, in which case Rf, is a Green potential on D. Brelot ([3], p. 152)
has pointed out that R,‘fl is a Green potential on D iff for any x,e D, we have
3. REn(xo)< oo for some s>1. The convergence of the series Z,,Rf;*(xo) is
independent of s, and it is easy to show (see §4) that Rfl?'(xo)zs‘"Py(E,,) which
gives the equivalence of the two definitions. Lelong-Ferrand also noticed that
the definition of minimal thinness at co in D is independent of the choice of s by
demonstrating that if y(r) is the Green energy of En{xeD: |x|<r}, then E is

o -]
minimally thin at co in D iff g r~P~1y(r)dr < oo, or equivalently, iff S r=?dy(r)
1 1
<oo. We are using Lelong-Ferrand’s definition of minimal thinness here rather

than the standard one because it is easier for us to adapt our covering theorems
to it.

DEFINITION 3.2. We shall define EcD to be rarefied at oo in D iff
SR A(E)s P D<o for some s>1. We recall that A'(E,) is the Green mass
of E,. This is equivalent to the condition that Y., A'(E,)<oo, where E,=s""E,.
LemMmaA 3.1. Let A'(r) be the Green mass of En{xeD: |x|<r}. ThenE is
rarefied at o in D iff S r~PA'(r)dr< oo, or equivalently, iffS ri=rd}/(r)< co.
1 1
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Proor. Since the Green mass is subadditive, we have A'(s"*1)—A'(s")<
M(E)<A'(s""!). We note that the Green mass and the outer charge of {xeD:
|x| <r} are equal and dominated by rP~1 (cf. Lelong-Ferrand [12], p. 130) up to
a constant factor. Hence A'(r) is also dominated by Const. r?~! and an integra-
tion by parts shows that the two integrals in the lemma are co-convergent.

If E is rarefied at oo in D, then 3, (A'(s**!)—A'(s"))s™*®~V < oo which im-

plies that Sw ri=2dA’(r) converges. Conversely, if gw r~PA'(r)dr < oo, we have
1 1

n+2
S E) e Drerz = oy < 3, (7 reridr < o,
sn+
and it follows that E is rarefied at oo in D.

REMARK 3.2. It is clear from Lemma 3.2 that the definition of a rarefied
set is independent of the choice of s>1. Later we shall show that a rarefied set
has other properties that are parallel to those of a minimally thin set. Since
Y(E,) <s"1AE,)=s"*1A'(E,), it is evident that a rarefied set at oo in D is neces-
sarily minimally thin there. In general the implication is strict, but if E is re-
stricted to a Stolz domain with vertex at the origin, then y(E,)~s"A'(E,) and we
conclude that E is rarefied at oo iff it is minimally thin there.

DEerFINITION 3.3. We define EcD to be semirarefied at oo in D iff
lim,_, , A'(E,)s~"»~V =0, or equivalently, iff lim,_, ., A'(E,)=0.

DEerFINITION 3.4. Following Lelong-Ferrand, we define EcD to be mini-
mally semithin at oo in D iff lim,_, ,, y(E,)s™"? =0.

REMARK 3.3. Our definition of a semirarefied set coincides with Lelong-
Ferrand’s definition of a rarefied set ([12], p. 134). She has demonstrated that
E <D is minimally semithin at co (resp. semirarefied at c0) in D iff lim,_, , r~Py(r)
=0 (resp. lim,,, r'"?A'(r)=0) which indicates that these definitions do not
depend on the choice of s>1. A semirarefied set is always minimally semithin,
and the two concepts coincide in a Stolz domain. On the other hand, a semi-
rarefied set is in general non-comparable with a minimally thin one.

LeEmMMA 3.2. Let H=Bn D eH where we recall that t is the first coordinate
of the centre of B, r is its radius, and 0<r<t/p. Then y(H)~t?*c(H)~ t*rr=2
where the constants of comparison depend only on the dimension p.

Proor. If t>r, then c(H)=c(B)=r?"2. If t<r, we consider the ball B’
concentric with B and with radius . We clearly have ¢(B')<c(H)<c(B). Since
~r, therefore ¢(B’)~ ¢(B) which implies that ¢(H)ar?~2 in all cases.
We first let BcD and define A to be the fundamental distribution on B.
If we choose x to be the centre of B, then
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Gix) =t~ | yillx = yDdAy)

by (2.3). We note that supp A= 0B because R2, is harmonic on D\0B. There-
fore 2~ ¢(r)y(B), or
Y(H) = y(B) ~ t*r*72.

If t<r, then t~r and we know that y(B')<y(H). We now embed H in a half
ball D’ of radius 2r with face on 4D and recall from Lelong-Ferrand ([12], p. 130)
that (D)~ rp. It follows that y(B")~y(D’) and hence y(H)~t?r?=2 in all cases.

LEMMA 3.3. If H is defined as in Lemma 3.2 then VN(H)=xtc(H)~trr=2,
where the constants of comparison depend only on the dimension p.

Proof. The case, where r<t so that H=B is relatively compact in D, is
treated as in the proof of Lemma 2.4.

If t<r, we construct B c Hc=D’ as in the proof of Lemma 3.2. In this case,
A(D"Y=A(D") which in turn is comparable to rP~! (cf. Lelong-Ferrand [12],
p. 130) so that A(D")~ A(B’) since t~r. The lemma follows.

§4. Some characterizations of exceptional sets in D

We shall start with two preliminary covering theorems.

THEOREM 4.1. Let E=U,H,=cDcRP, where H,=B,nD, H,eH, B,=
(t, s R,) and H,c1I, for some given s>1. Then E is rarefied or minimally
thin at oo in D iff

4.1) 20 (/R (1 RP2 < 0,

2, (6 R (| R)P2 < 0,

respectively.

Proor. Since H,cI,, we have R,~s",n=1,2,.... From Lemmas 3.2
and 3.3, we see that y(H,)~2r?~2 and A(H,)~t,#5~2. Theorem 4.1 follows from
Definitions 3.1 and 3.2 respectively.

Remark 4.1. If H,=s""H,, then E= U, H, is rarefied or minimally thin
at oo in D iff

2a (ta/Ry)e(H}) < 00, or X, (t/R,)*c(H}) < 0,

respectively, where c¢(H}) is the ordinary capacity of H,. Such a set is semirarefied
or semithin at oo in D iff
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lim, ., (t,/Ry)c(H,) = 0, or lim,_ (t,/R,)*c(H;) = 0,

respectively. Since t,> r,,/\/E, it is clear from (4.1) that we have X, (r,/R,)P!
< oo in the rarefied case, i.e., E satisfies Azarin’s condition when p>3. In the
case where t,~r, for all n, E is rarefied at oo in D iff E satisfies Azarin’s condition.
We point out here that the twin conditions of minimal thinness and Azarin’s
condition do not characterize a rarefied set at oo in D. In order to see this,
consider E= U, H, constructed so that (r,/R,)?"2~n~! and t,/R,~(logn)™1.

DEfFINITION 4.1. Let B be given, 0<fB<1. Let S; be the class of all
positive superharmonic functions 4 on D<R?, which are such that there exists
a nonnegative Radon measure yu on D such that

d
u(x) = SDK(y, x)du(y), where SD(I—_F% < 0.

REMARK 4.2. If 0<a<fB<I1, it is evident that S,=S,;. A positive super-
harmonic function u on D belongs to S, iff for any p>0, u(x) fails to dominate
px, everywhere on D. In other words, the canonical measure of u fails to charge
{o0}. IfveS,, and u is superharmonic on D such that 0<u <v on D, then it is
well-known (and follows from the statement above) that u € S, also.

We shall now develop some of the fundamental properties of rarefied sets.

LemMA 4.1. E is rarefied at co in D<RP? iff for any x,€D and s>1, we
have ¥, REn(xo)<co. (We recall that E,=En I, and r=|x|.)

PROOF. Since |x|=ras" in I,, it follows that REn(x,)~s"REn(x,). Let
REn— SDK(y, )dA(y) and note that

K(y, xo) = s™"?, yesupp i, c E,.
It follows that RE~(x,)~ s~ "?A'(E,) where J'(E,) is the Green mass of E, and that
REn(x5) = s~"P=D)Y(E,).
This proves Lemma 4.1 (cf. Definition 3.1).

REMARK 4.3. A set EcD is semirarefied at oo in D iff lim,_, , RE~(x,)=0
where E,=E N I, as before. One can modify the reasoning in the proof of Lemma
4.1 to show that Rfl"(xo)zs‘"l’y(E,,). A set Ec D is therefore minimally thin or
semithin at oo in D iff

3, REn(x,) < o0, or lim,,, RE(x,) =0,
n 1 1

respectively.
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LEMMA 4.2. Let {A,} be a sequence of sets in D such that RA~eS,, and
set S=Y 2, Rar. If S# oo, then SeS,.

ProoF. We note that Y'%_, RA~(x)eS,. We can write it as
{ GG, 0du+ | KC,xdu.
D oD
Set T,(x)=3 2.,+, R4n(x) and express it as
SDG(-, x)dv + SMK(-, X)dv, + v({0)x,.

Since S(x) is superharmonic in D, T;(x)—0 as k— o0 g.e. on D. Therefore v,({c0})
—0 as k—>00. We have

560 = { 60 0d0u + v + [ KC. )d0n + ) + m({eoh,

The uniqueness of the expression implies that v,({c0}) is a constant which is in
fact zero.

THEOREM 4.2. A set EcD is rarefied at  in D iff RE€S,.

ProoF. We assume that E is rarefied at oo in D, and that S=32, R,‘?".
Then S# oo so that S is necessarily superharmonic on D. Since S dominates r
ge. on E=U,E, we have S>RE. Since each REreS,, Lemma 4.2 shows
S €S, and therefore RE €S, follows.

For the converse, we modify the reasoning in Lelong-Ferrand [12] (p. 135)

as follows: Let RE= SDK( ¥, -)dw(y) and recall that (if ¢, = p—2)

G(y’ x)/yla (ya X)GDXD,

K(y9 x) = [
2x5cylx — y|7?, (y, x)edD x D.

We note that
K(y, x) =~ x4|y[7?, |yl = 2|x],

so thatgI I21|y|"’dv(y)=A<oo. Now choose s>2 and let J,=1I,_,UI,Ul,,,.
y
We see that if xeE,,

C_ISD\J,.K('V » X)) < g,y,SSn_xxll""’dV(Y) +f L sbirao)

ly|2sn*

with a constant C. If s is chosen so that 44C <sP, then CS _lxllxI‘Pdv(y)

lylssn



On the covering properties of certain exceptional sets in a half-space 249

<rf4. For large n, say for n>n,, we will have

[, K. 0dv) <72, xeE,

which implies that r < RE(x) < SJ K(y, x)dv(y)+r/2 qee. on E,n D. Hence
2§ K(y, x)dv(y)=r q.e. on E,. Therefore
J"

RE» < ZSJ K(y, x)dv(y) everywhere on D,

by the definition of RE» (cf. Brelot [3], p. 49(d)). If we now sum over n>n,,
we obtain

2 no RE» < 6RE.

1o
Applying Lemma 4.1, we obtain Theorem 4.2.

REMARK 4.4. The argument in the proof of Theorem 4.2 also leads to the
conclusion that REe€S, iff 3, REre€S,. We could define EcD to be rarefied at
o in D iff RE€S, or equivalently, iff there exists u €S, which dominates r=
|x] g.e. on E. If yo,€dD and p=|x—y,|, we can define EcDcR? to be rarefied
at y, in D iff R,‘,‘]_, is a positive superharmonic function on D whose canonical
measure does not charge {y,}. In other words, Rf:-, fails to dominate any
minimal harmonic function on D whose pole is at y,.

We shall now establish some elementary covering results for minimally thin
and rarefied sets, respectively.

THEOREM 4.3. Suppose that EcD<RP? can be covered by a sequence {H,},
H,eH, H,=B,n D where B,=(t,, r,, R,) such that

4.2) 2 (ta/Rp)*(ra/ Rp)P™2 < c0.
Then E is minimally thin at oo with respect to D.
Proor. If x,€ D, we have

REr(xo) = Y(H,)RE = (1,/R,)*(ra/R,)P2  (Lemma 3.2).

Therefore, (4.2) is equivalent to the condition that Y, REn(xo)<oco. Lemma
4.2 shows that 3, RH¥»eS;. Hence RE €S, also, since it is dominated by
3. RHE», so that RE #x,. But this implies that E is minimally thin at oo (see
Brelot [3], p. 103 and p. 152).
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The proof of Theorem 1.1 is similar.

ProoF oF THEOREM 1.1.
For any x, € D and n sufficiently large, it follows from Lemma 3.3 that

Rfn(xo) = AH)RE™ = (t,/R,) (r,/ R, .

Lemma 4.2 shows that 3, RE~eS, since we have 3 REn(xo)<oo. It follows
that REeS,. This completes the proof.

ReEMARK 4.5. We can obtain analogous covering results for minimally
semithin or semirarefied sets at co in D. We omit the details.

Let us now introduce some further properties of rarefied and minimally thin
sets in D.

LEMMA 4.3. If EcD, then E is rarefied at o in D iff ¥,REreS, for
any Be[0, 1].
PROOF. Let Rﬂ"ngK(y,-)du,,(y) and p=Y¥%,u. Then ¥,REeS,

iff SI | |¥|t=P~Bdpu(y) < oo or equivalently, iff
yl=1

(4.3) > u(I)sTrP A1) < oo,
If x, € D and n is sufficiently large, we have
pnL)s ™ & REp(xo) = s" RE~(x,) = s"P~PX(E,),
so that E is rarefied at oo in D iff
(4.4) Znt(I)s™n D < o0,
Elementary calculations show that the series (4.3) and (4.4) are co-convergent.

THEOREM 4.4. EcDcRP? is rarefied at oo in D iff for any Be[0, 1], we
have RE €S,

Proor. If E is rarefied at co in D, then it follows from Lemma 4.3 that
T, REreS,. If we let R59=SDK(y, Ydv(y)=Kv and Z"R5"=SDK(y, Ydu(y)
=Kpu, then Kv=<Kpu. For each f€e[0, 1] the function x,|x|'"P~F is a positive
superharmonic function on D, and min {x,, x,|x|*"?~#} is a Green potential on
D whose canonical measure shall be denoted by A. Since Kv<Kpyu, (v, )<
(4, M) and hence (4, v)g.<(4, p)gs. We recall that K*A(x)=GA(x)/x, for xeD
and therefore K*A(x)=|x|!"P~# if [x|=1 and xe D. Hence
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G| IyI7odwy).
Iyl=1

Since

G~ | 7 du0) < oo,
[y|=1

we obtain RE €S;.
For the converse, we assume thatg | y|*7PPdv(y)=A<oo. The argu-

ment in the second half of the proof of Theorem 4.2 can be used with minor
modifications. Let xeE,, s>2 and J, be defined as before. Then for n suffi-
ciently large, we have

cf , K, %d

o, K, x)dv(y)

<{ _mlsravoy+ (i)
[yl<sm—t |y|2sn*2

<taploeef o+l ey <o
|yl<ssn-t |ylzsn+2

with a constant C>0, if s is suitably chosen. Therefore, we have S K(y, x)dv(y)
JIn
>r#[2 q.e. on E, which implies that

23 K(y, x)dv(y) > REr everywhere on D.
JYI

We conclude that

tn (Ey) < 20(J,).

An elementary calculation leads to the convergence of the series Y., s™"(®*+f-1.
u(E,), and it follows that >, R,E;- €S;.  Applying Lemma 4.3, we obtain Theo-
rem 4.4,

REMARK 4.6. Using exactly the same arguments as in the proof of Theorem
4.4, we can prove an apparently more general version by replacing RE by any
u €S, which dominates R5.

For completeness, we state analogous results for minimally thin sets. The
proofs are analogous to those of Lemma 4.3 and Theorem 4.4. We do not
include the details.

LEMMA 4.4. If EcD, then E is minimally thin at o in D, iff 3, RE Ers
€Sy for any Be[0, 1].
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THeOREM 4.5. EcD is minimally thin at oo in D if RE, s-1€S, for any

Belo, 1].
REMARK 4.7. Naturally, ﬁf,,u-x is also a Green potential.

We shall now prove a theorem for rarefied sets that is similar to a theorem of
H. Cartan ([10], p. 216) for classically thin sets, and one of M. Brelot ([4],
Lemma 9) for minimally thin sets. Brelot indicates his result under very general
conditions.

THEOREM 4.6. If ueS, on D<RP, then there exists a set EcD such that
E is rarefied at oo in D where

lim u(x)/|x| = 0, x—> o, xeD\E.

Conversely, if EcD is rarefied at oo in D, there exists u€S, such that E is
contained in the exceptional set for u.

Proor. We start with the converse. If EcD is rarefied at co in D, then
there exists an open set O =D which contains E such that O is also rarefied at oo
in D. We now choose u=R? and recall from Theorem 4.2 that ueS,. Further-
more, u dominates r everywhere on O> E so that lim inf u(x)/|x| > 1, x— 00, x € 0.

For the direct part, we choose ¢>0 and define A,={xe€ D: u(x)/|x|>¢}.
Then RA: is dominated by u/eeS,. It follows from Theorem 4.2 that A, is
rarefied at co in D for each ¢>0. Choose x,€D and ¢,=1/n, n=1,2,.... We
also define W,,=\U%-, I; and the double sequence of sets E, ,,=A4,,, N W,,. Since
A,y is rarefied at oo in D for each n, it follows from Lemma 4.1 that

lim REnm(x,) = 0, m— oo, n fixed.

We now choose an increasing sequence {m,} so that REmmn(x,)<2". Let V,=
E,. and E=UZ, V,. We note that RE(x,)<Y,RV"(xo)<oo. Lemma 4.2
shows that 3" R¥~€8S,, and hence RE€S,, i.c. E is rarefied at co in D. What
happens if xe(D\E)n W, ? Then x¢ A, so that u(x)/|x|<1/n. Thus
u(x)/|x]—=0, x— 00, x e D\\E which terminates the proof.

THEOREM 4.7. Let B€[0, 1] be given and assume that DcRP. If ueS,,
there exists a set Ec D such that E is rarefied or minimally thin at o in D such
that

lim u(x)/|x|# = 0, x—> 0, xeD\E,
limu(x)/(x,r#~1) =0, x— 0, xeD\E,

respectively.
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Conversely, this result is best possible in the sense that if E is rarefied or
minimally thin at co in D, then there exists u€S; such that E is contained in
the exceptional set for u.

Proor. We use results from Theorems 4.4 and 4.5 to construct a proof
that is analogous to the proof of Theorem 4.6.

ReEMARK 4.8. The results of Theorem 4.7 are closely related to recent
results of Essén and Lewis (see [9]). An essential part of their work is a study
of superharmonic functions of the form ueS,. Their conclusion is that u(x)/
|x|#—>0, x—>00, xe D\E, where E is an exceptional set that satisfies Azarin’s
condition. One can conclude from this work along with Azarin’s, that a rarefied
set EcD<RP? can be covered by a sequence of balls {r,, R,} such that Y, (r,/
R)?"l<oo. This condition does not, of course, characterize a rarefied set.
In fact, it should only be viewed as a good approximation for that part of the
exceptional set that is near (or even on) the boundary. For that part of an
exceptional set that is restricted to a Stolz domain, for example, our earlier work
[8] indicates that the critical value for the convergence exponent is p—2 rather
than p—1. In the next section, we shall consider these questions further.

§5. The main covering theorems

In order to obtain covering results which are converse to Theorems 1.1 and
4.3, we shall require a result, to be named Lemma 5.1, that resembles Lemma 1
in [8]. ‘

DEerFINITION S.1. Let h: [0, 0)—[0, c0) be a non-decreasing continuous
function such that h(0)=0. If H=Bn DeH where B has radius r and the first
coordinate of the centre of B is t, then we define the premeasures (see Rogers [13],
p. 9) of the form

7,(H) = t'*eh(r), HeH,
for each of the numbers a=0, a=1.

DErINITION 5.2. For each a of some index set, let H,cH be a countable
cover of EcD. If H,={H,4}, and if {H,} is the set of all coverings of E de-
fined above, then we define

Lh(E) = inf(nu) {zn th(Ha(n))} fOl’ a= 0 or 1.

REMARK 5.1. For each a=0 or 1, the set function L, is an outer measure,
or a countably sub-additive (c.s.a.) weight (Brelot [3], p. 22), and is constructed
from the premeasure 7, by Method I in Rogers [13], p.9. By Theorem 13 in
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[13], p. 24, L, is an H_s;regular outer measure. Therefore, it is a continuous
weight on D ([3], pp. 22-25). The outer measure L, is constructed from the
pre-measure 7, in the same way as the outer measure M, in Carleson ([5], p. 6) is
constructed from the premeasure p,(B)=h(r). Dellacherie ([6], p. 92, Cor. 19)
has pointed out that M, is, in fact, a general capacity. This also follows from
Rogers ([13], p. 90, Theorem 47) and we suspect, but shall not prove, that L, is
also a capacity in the general sense. The plausibility of this assertion is indicated
by the fact that the metric outer measure constructed from 7, using method II
in Rogers [13] appears to be of ‘‘Hausdorff type” as developed by Davies
(cf. Dellacherie [6], pp. 100-101). Such a measure would relate to L, as the
Hausdorff measure A, relates to the capacity M, (cf. [5], p. 6).

REMARK 5.2. If h(r)=rP~2, we have 1,(H)~y(H) if a=1 (Lemma 3.2) and
T,(H)~A(H) if a=0 (Lemma 3.3). By using only the monotone and countably
subadditive properties of the Green energy y and the Green mass A’ (cf. Lemmas
2.1 and 2.3), respectively, we have y(E) < k(p)L,(E) if a=1, and V'(E)< k(p)L,(E)
if a=0, where k is a constant depending only on the dimension of the space.

REMARK 5.3. In order to analyze L, further, we shall also find it convenient
to cover E < D by dyadic cubes instead of balls or elements of H. Let us say that
a cube in Rr is half-open if it is of the form {xeRP?: g;<x;<a;+b, i=1, 2,
..., p}. Let G, be a net of half-open cubes in D similar to those constructed in
Carleson ([5], pp. 6-7) and let G=U,G,. We recall that all cubes have their
sides parallel to the coordinate axis and that the length of a side of each cube in
G, is 27". Furthermore, the cubes in G, are obtained by dividing each side of
every cube in G,_, into halves so that every cube in G,_, will be subdivided
into 2P equal subcubes. In addition, we arrange each net G, so that the first
coordinate of any vertex of each member of G, is either 0 or of the form m2~"
(meN, neN).

DEFINITION 5.3. Let weG, and let ¢t be the first coordinate of the centre
of w. We define the pre-measure 75 on G so that if a=0 or 1, we have

H(w) = t1*eh(27"), weG,.

DEerFINITION 5.4. Let {C,}=G be a countable cover of EcD. If C,=
{w,y} and if {C,} is the collection of all such coverings of E, we define for each
a=0,1,

#(E) = inf {C,} (2 T:(wa(i)))'

REMARK 5.4. The set function L} is an outer measure (or a c.s.a. weight)
on the subsets of D which is constructed from the pre-measure t} by Method I
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in Rogers [13; p. 9]. Furthermore, L} is G,;-regular. Since G is a net on D
(cf. [13], p. 101), L} satisfies the following monotone sequence property:

(5.1 L3(U ; Sy = sup; {Li(5))},

for any increasing sequence {S;} of subsets of D ([13], Theorem 52, p. 107) and is
therefore a precapacity in the sense of Dellacherie ([6], p. 19). The function
L} bears a relationship with L, which is analogous to the relationship between
the set functions m, (or m}) and M, that are constructed in Carleson ([5], pp.
6-11). An elementary argument shows that

(5.2) Ly(E) ~ L}(E),

where the constants of comparison depend only on the dimension of the space.
For similar discussions, we refer to Carleson ([5], pp. 6, 7, 11) or Rogers ([13],
p. 102).

In the proof of the relation

L,(E) < Const. L¥(E),

(which in fact is the only one used in this work), it is essential that we have used
the sets in H in the definition of L,.

We shall now prove a result which resembles the converse part of Theorem 1,
p. 7, in Carleson ([5]).

LEmMMA 5.1. Let F be a compact set contained in Dn {|x|<b}, and h:
[0, ©0)—[0, o0) be defined as in Definition 5.1. For each a=0, 1, there exist
a mass distribution (non-negaiive Radon measure) u supported by F, a constant
C, >0 depending only on the dimension p of the space and a constant C, de-
pending only on p and b such that if H e H, then

(5.3) L(F) < €y 1) = €1 | x:du,

(5:4) G i) = | x1dutx) < Comy(HD),

where A is the fundamental distribution on F.

Proor. We shall follow an argument initiated by Frostman, and similar to
the one outlined by Carleson ([5], p. 8). We will construct a sequence {u,} of
mass distributions on D that satisfy the following conditions:

(i) supp u,;=F, is the closure of the union of those cubes w € G, which are
such that we F# . We note that F,,,<F, and that N\, F,=F.

(ii)) If we\U%( Gy, then
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G tal ) < | i) < 3@
(iii) gr X, dpy(x) > LXF), n=1,2,....

Let n be a given natural number. We first define a preliminary sequence {u{™}
of mass distributions on D so that {u{"} has constant density on each w € G, and
is defined so that the total measure is

#h2"), if onF# g,

i (w) =[ )
0, if onF=g.

Therefore supp u{" =F, and
[ x1du00) = (@) < e2@),

if weG,. Equality holds if w<F,. It is clear that S x,dul”(x) > L¥(F) so

that the preliminary sequence {u{™} satisfies (i) and (iii). ~In order to obtain (ii)
as well, we follow an inductive argument of Frostman which progressively reduces
the density of each u{" where necessary, according to the following procedure:

if for some weG,_;, onF#, we have S x,dplM(x) > t1+ap(27 ") = o} (w),

we reduce the density of u{" on w (by multiplying it by a positive number <1)
to obtain a new measure whose corresponding integral over @ becomes equal to
t5(w). We continue this procedure for all such cubes in G,_; and obtain a new
measure, denoted by u{"~1, such that (ii) holds for any we G, UG,_, and such
that (i) and (iii) are still valid. After n such steps, we obtain a mass distribution
), denoted by u,, for which (ii) holds as well as (i) and (iii). It follows from

(ii) that the sequence {S xldp,,(x)} is bounded. Since the distance from F to

0D is positive, the sequence {u,(F,)} will also be bounded. It follows that there
exists a subsequence {u, } that converges in the weak* topology to a mass dis-
tribution u of support F. Therefore we have

(5.5) ) = | xidu(x) = lim, | xidin ()2 L.
Combining (5.5) and (5.2), we obtain (5.3).

Finally we shall show (5.4). Let H=BnD=B(t, r, R)nD. First we re-
strict r<1 and choose an integer n, so that 2~"o<r<2-"o%l  Since 5 dyadic
intervals, each of length 27", are sufficient to cover an interval of length 2r
=diam H, 5” dyadic cubes in G, are sufficient to cover H. If wy,..., ws» With
the first coordinates of centres t,,..., ts» cover H, then for any n>n,
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[ xdnm <z, S x1d i1 (x)

< X)) = X 13 h(27m0) < h(r) X th+e

by (ii), where the summation is taken for j=1,...,57. Since £, <2(t+r)<
21 +4/p),

Sﬂxldu,,(x) < 5021%a(1 + \[p)*ari+an(r) = Cyuy(H).

Since F is compact in D, we may assume that the supports of {u,} are contained
in a compact set F'> F in D for large n. Let xy be the characteristic function of
H, which is considered to be open. We have

O mli) = § x1ditx) = (uxido) < timinfyo| x4 (0

because yyx, is lower semicontinuous. Hence (4, u|g) < C,7,(H).

Next we assume 1<r. Let m, be the smallest integer such that my> b, and
denote by A the set {(xy,..., x,); 0<x; <myg, |x;| <mgy, k=2,..., p}, consisting of
m§ half open squares {w;}. Evidently A contains Dn {|x|<b}. For any H
=B(t, r, R) n D with r>1 and for n,>m,,

f im0 = § idim ) = § xidn0 = £, 510

< Zjm(w) = Z;65%°h(1) < h(r) X, 13

by (ii), where {t;} are the first coordinates of the centres of {w;}. Since t;<mg
and t>r/\/p >1/\/p, t;<mq\/p t so that

[, %) < 2mBOmoy /D) 4e114h() = o),

where C,=2m}(mqy/p)'** depends only on p and b. By letting k— oo we obtain
(A, u)g) L C,t4(H). This completes the proof of Lemma 5.1.

LemMMA 5.2. If FeDn {|x|<b}, where F is compact, and if h is defined
as in Definition 5.1 and such that S ¢(r)dh(r)=A(p)< oo, then there exists a
0

positive constant C(p) (which only depends on the dimension and b) such that

l Cpy(F), if a=1,
L(F)<
C(pMF), if a=0.

PrROOF. Let u be the measure depending on /1, F and a that was constructed
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in Lemma 5.1. We shall demonstrate that
Const. (4, A), if a=1,
(5.6) (A < .
Const. A(F), if a=0.
Elementary calculations ([11], Lemma 1) imply that
G(x, y) < 4p — 2)x1y,¢(x — yDIx — y'I7%, (x, y)eDxD.
Since |x—y’| > x, and |x—'|>|x—y|, it is clear that
(5.7 G(x, y) < 4(p — x7'¢(Ix — yDy1,
5.7y G(x, y) < Hp — Dxyp4lx — yI7P.

Now define @, (r)=(4, u|g), where B is a ball of centre x and radius r. For
x €D fixed, we can say that &, is a non-decreasing function of r and is well
defined for all »>0 since suppu=F<D. By (5.4) in Lemma 5.1, we have (if
a=0or 1)

(5.8) &(r) < City(B) = Cyxi**h(r), B n DeH, (e if r < x;/p).

From (5.7) and (5.7)" we see that

)

6ut) < 4(p = {577 9030, + %, (7 v )

Xy

=4p—-2)(J, +J5).

We first discuss J, and note that
£2-Ph(f) < S;sz‘l’dh(s) 0, t—0+,
t>"Ph(t) — 0, t—> o0.
The last relation holds since
127P(h(t) — h(ty)) < S;osz‘l’dh(s) —0, ty <t ty—> 0.
Integrating by parts (cf. Carleson [5], p. 29), we obtain from (5.8) that

(5.9 J; < Const. x¢{A(p) + sup,»o t* Ph(t)}, a=0or 1.

We now turn to J, and note that
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e o]
x| e, a=1,
x1VP

J2

IA

gw _APdd(r),  a=0.
x1/p

We choose s=2. If s"*!1>x,./p, we cover I,={yeD:2"<|x—y|<2"*'} by
finitely many sets from H, of the form B n D where the radius of B is 2". It is
clear that we can do this in such a way that the number of balls needed has an

upper bound only depending on the dimension p. Once more using (5.4), we
see that

&, (2"1) — @ (2") < Const. 2"(1ta)p(2m), (@a=0,1).
It is now easy to see that (if 3, denotes summation over those indices n which

are such that 2"*1>x,./p) we have, if a=0 or 1,

(5.10) J, < x‘fSw rlmepdd (r)
X1V p

1
an+t

<x1 X g d® (r)2r(1=a=p)
2n

< Const. x¢ 3, 2n(1+a)p(2m)2n(1-a=p)

< Const. x¢ | ri=rh(r)dr < Const. xt.

Combining (5.9) and (5.10), we see that Gu(x)<Const. x4, xe D. Integrating
with respect to A, we obtain (5.6) and therefore also our lemma by applying (5.3)
in Lemma 5.1.

LemMA 5.3. Let EcDn {|x|<b}, and let h be defined as in Lemma 5.2.
Then there exists a positive constant C(p) (which only depends on the dimension
and b) such that

I C(py(E), a=1,
L(E) <
C(p)ME), a=0.

Proor. We first consider the case when E=0 is an open subset of D.
Then O is g-compact and we can construct an increasing sequence {F,} of compact
subsets whose union is 0. Therefore,

Const. y(0), a=1,
lim, L,(F,) <
Const. 4(0), a=0,

by Lemma 5.2. We now apply the results of Remark 5.4. From (5.2) and the
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monotone sequence property of L} described in (5.1), we obtain
L,(0) =~ L}¥(0) = lim, L¥(F,) =~ lim, L,(F,).

Thus our lemma holds when E is an open subset of D. Since L, is monotone and
YWE)=inf {y(0): O>E, O open} (cf. (2.1)), Lemma 5.3 follows in the case a=1.
When a=0, the same argument works (cf. (2.2)), and the lemma is proved.

We are now able to prove our main covering theorems.

THEOREM 5.1. Let EcD<RP?, be minimally thin or rarefied at o in D.
If the function h: [0, c0)—[0, o) is non-decreasing, continuous and such that
h(0)=0, and if ¢ is defined as in (iii), § 2 and if

[T oman) = 4(p) < o,

then there exists a covering of E by a sequence {H,} in H, where H,=Bn D,
B,=(t,, 1y, R,) such that

2 (t/R)?h(r,/R,) < 00,
S (LIRYA(IR,) < o0,
respectively.

PrROOF. As in Section 3, we let E,=s""E,, and recall from Definition 3.1
or Definition 3.2 that E< D is minimally thin or rarefied at o in D iff

2. v(E,) < o,
2. ME;) < o0,
respectively. We apply Lemma 5.3 to obtain
(5.1D) >a.Ly(E) <o, a=1 or 0, respectively.

For each n, we can cover E, by a sequence {H,;}={B,;nD} in H, where B,;
=(t,;, rv;» R,;), such that

it eh(ry;) = L(E) + 6, 0<e<2™" a=1 or 0.

The convergence of the double series 3, ;(t,;)**h(r,;) in the two cases con-
sidered here follows from (5.11). Defining B,;=s"B,; so that B,;=(t,;, rsj» R,),
we see that the double sequence {B,; n D} is a covering of the required type. This
completes the proof of Theorem 5.1.

COROLLARY. Let EcDcR? be minimally thin or rarefied at o in D.
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For each B>p—2, E can be covered by a sequence {B, N D} in H such that
3. (/R a(r,/R,)P < 00, a =1 or 0, respectively.

Proor. In Theorem 5.1, we choose h(r)=rf for 0=r=<1 and h(r)=1 for
r>1. If r/R,>1, then R,<r,<./pt, and hence (t,/R,)'"%(r,/R,)f>p~1*o/2,
Therefore there exists ny>0 such that r,/R,<1 if n>n,. Hence h(r,/R,)=
(r,,/R,,)” if n>ny. Our Corollary now follows.

REMARK 5.5. One cannot choose f<p—2 in the corollary to Theorem
5.1. This is clear from our earlier work ([8] p. 338) when the exceptional set is
restricted to a Stolz domain. A direct proof that a set E which is rarefied at oo
in D satisfies Azarin’s condition starts from Theorem 4.2 which gives the result
that RE€S,. From this point, we can follow Azarin’s proof and study the
exceptional set for the positive superharmonic function RE.

REMARK 5.6. In Remark 4.8, we discussed certain results of Essén and
Lewis. It follows from Theorem 4.7 that their exceptional set E is rarefied at oo
in D. Therefore, the covering results in Theorem 5.1 hold also for this set E.
Strictly speaking, we have proved this only in a half-space and Essén and Lewis
work in circular cones. The generalization to this more general situation is
technical but causes no essential difficulties.
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