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§ 1. Introduction

Let D = {xeRp: x ^ O } where x=(x 1 , . . . , xp) and p>2. We shall say that

a set ECZRP has a covering {rn9 Rn} if there exists a sequence of balls {Bn} in R*

such that Ecz \j«=1 Bn, where rn is the radius of Bn9 and Rn is the distance between

the origin and the centre of Bn. On the other hand, we shall say that EczD has

a covering {tn, rn, Rn} if there exists a sequence of balls {Bn} with centres in D

such that £ c W j L i 5 n , where rn and Rn are defined as above and where tn is the

distance between the centre of Bn and the Euclidean boundary of D, to be denoted

bydD.
The motivation of this work stems from two classical questions which are

concerned with the behaviour at oo of a suitably restricted subharmonic function

u on D. If u is subharmonic on D and yedD, we define u(y) = \imsupx^yu(x),

where xeD. If u(y)<0 for all yedD, and if supJceD(ι/(x)/x1)<oo, then it is

generally known that u can be uniquely decomposed as

u(x) = ccx1 - G μ ( x ) - w(x),

where α is a real number, Gμ is the Green potential of a mass distribution μ on D,

and w is a positive harmonic function on D which can be represented as

w(x)=( K(y9x)dv(y)
JδD

where X is the Poisson kernel on dDxD and v is a suitable mass distribution on

S2X

The first question, to be designated by (I), is concerned with an analysis of

u(x)lx1 as x-»oo, x e D . By introducing the idea of a minimally thin set at oo

with respect to D, J. Lelong-Ferrand ([12], pp. 134-143) presented a solution of

(I) by showing that for any ε>0, there exists a set EεczD9 minimally thin at oo in

D, such that

- α| < β, x€D\Eε, | x | ^ l .

She also proved that her results are best possible in the sense that if EczD is
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unbounded and minimally thin at oo in D, then there exists a subharmonic func-

tion u on D, restricted as above, such that \iminfx^(X)\u(x)/x1 — oί\>O,xeE.

With the introduction of the fine topology of Nairn (see Brelot [3], second part,

for details) onto the minimal Martin boundary of a Green space as well as later

generalizations, Lelong-Ferrand's result is now interpreted as meaning that

(1.1) finelim^^ u{x)jx1 = α.

In analogy with a theorem of H. Cartan (cf.Ήelms [10], p. 216) which states that

the limit of a function in the classical fine topology amounts to the ordinary limit

of that function on a suitably chosen fine neighbourhood, M. Brelot ([4], Lemma

9) has pointed out that (1.1) is equivalent to the existence of a minimally thin set

E at oo in D such that

l i m ^ (u(x)/x1 - α) = 0, x e D\E.

This result is best possible and it only remains to give a deeper geometrical de-

scription of a minimally thin set at oo in D than has been accomplished up to the

present time.

The second question, to be denoted by (II), is involved with the behaviour of

(u(x) — oίx1)l\x\ as x-*oo, xeD (cf. Azarin [1], Essen [7], p. 18 and Essen and

Lewis [9] for details). The main idea here is to characterize an exceptional set

ScZ) in some best possible sense, so that

(u(x) - αxi)/|x| > 0, x > oo, x e D\S.

Question (II) was initiated by Ahlfors and Heins in the special case where p = 2.

They showed that if K c D is any Stolz domain, then S Π K has certain properties

in terms of radial and circular projections. Since (I) and (II) are equivalent

questions when one is restricted to a Stolz domain K, it follows that S Π K must

be minimally thin at oo in D for every such K. A significant result of Ahlfors

and Heins which is not subsumed by the work of Lelong-Ferrand, is the theorem

which states that if S n K is projected onto the positive real axis by circular pro-

jection, then the projected set has finite logarithmic length. Hayman strengthened

this result by showing that the circular projection of S itself onto the positive real

axis has finite logarithmic length and Azarin [1], in turn, strengthened and gener-

alized Hayman's result by demonstrating that if p > 2 , then S can be covered by a

sequence of balls {rn, Rn} such that Σ « ( Λ ) r l < ° 0 If we know that there

exist a subharmonic function u in D which is restricted as above and an unbounded

set EaD such that l iminf^^ \u(x)-<xx1\/\x\>0, xeE, it is obvious that E is

minimally thin at oo in D. The following example shows that the set E is not

characterized by this condition. The vertical strip { x e D : 0 < x 1 < l } is mini-

mally thin at oo in D but does not satisfy Azarin's condition if p>2, or Hayman's
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condition if p = 2.

Our work started as an effort to relate Azarin's condition to that of minimal

thinness. In our first work [8], we assumed that the exceptional set in question

was restricted to a Stolz domain, and found that if oc>p — 2, a minimally thin set

E at oo in D can always be covered by a sequence of balls {rn, Rn} such that

Σ n (rn/Rn)a < °° For a n exceptional set restricted to a Stolz domain, our work

in [8] shows that the critical value of the exponent α is p — 2 rather than p— 1.

This strictly improves the result of Ahlfors and Heins and also shows that Azarin's

condition does not characterize the exceptional set in (II). Our earlier results,

however, do not contain all of those of Azarin because we restricted ourselves to

a Stolz domain, whereas Azarin makes no such requirement.

In the present work, we wish to investigate the case when the exceptional

set is no longer restricted to a Stolz domain. Let us first discuss exceptional

sets of type (II). We wish to give a precise potential-theoretic characterization

of these sets as well as detailed covering theorems for them. We shall do this

by introducing a new type of exceptional set that we shall call a rarefied set (cf.

Definition 3.2), and will demonstrate that a rarefied set plays the same role in (II)

as a minimally thin set does in (I). We mention that Lelong-Ferrand ([12],

p. 134) has also introduced the term "rarefied set". We shall define a set to be

semi-rarefied iff it is rarefied according to her definition. We introduce this

change of terminology because it appears to us that a rarefied set according to

Lelong-Ferrand resembles more closely a minimally semi-thin set than it does a

thin set. The introduction of a rarefied set will lead to strict improvements of

the results of Hayman and Azarin as well as those of Essen and Lewis (cf. [9],

also our Remark 4.8).

Let us state two of our covering results. By B = (t9 r, R), we mean a ball of

radius r, centre P = (ί, x2,..., xp), where ί > 0 and Λ = |P | . We also introduce H

to be the collection of all sets of the form B Π D where 0<r<t^ff. This means

that if FdD Π dD is a closed cube with sides parallel to the coordinate axis, then

the ball B whose centre is at the centre of F and whose diameter is that of F is

such that BnDeH. In both theorems below, we consider sequences {Hn} in H

with Hn = BnOD where Bn = (tn, rn9 Rn).

THEOREM 1.1. Let p>3. Suppose that EaDc:Rp can be covered by a

sequence {Hn} so that

(1.2) Σn(tJRJ(rJRJ*-* < co.

Then E is rarefied at oo in D.

The proof is given in Section 4. Conversely, we have

THEOREM 1.2. Let p>3 and suppose that EcDaRp is rarefied at oo in



236 Matts ESSEN and Howard L. JACKSON

Z). For each a>p — 2, there exists a covering of E by a sequence {Hn} so that

(1.3) ΣnitnlRnHrjRn)* < 00.

This result is not true ifcc<p — 2.

Theorem 1.2 is a corollary of the more general Theorem 5.1. The analogues

of Theorems 1.1 and 1.2 for a minimally thin set are given by Theorem 4.3 and the

Corollary of Theorem 5.1. They are similar to the results stated above except

that (1.2) and (1.3) are replaced by

(1.2)' Σ f l 0 A ) 2

and

(1.3) Σn(tJRn)2(rJRny < oo.

It follows from these results that the imposition of the dual conditions of Azarin

and minimal thinness simultaneously will not characterize a set which is rarefied

at oo in D.

An important tool used in our work is Lemma 5.2 which gives a connection

between two different types of capacities introduced in Section 2 and the covering

measure Lh introduced in Definition 5.2. In the proof of Lemma 5.2, we need

Lemma 5.1 which generalizes a classical result of Frostman to the new situation

considered here.

In the present paper, we consider only the case p> 3. The case p = 2 will be

covered in a separate paper.

The authors wish to express their appreciation to Prof. M. Ohtsuka and Mr.

H. Aikawa for their many suggestions concerning the preparation of the final

version of this work.

§2. Outer charge, Green energy and Green mass

In the whole paper, we assume that the dimension p> 3. We shall also intro-

duce the following notation.

( i ) As in §1, D shall denote the half-space {xeRp: x1>0}, and H is

defined as in the end of the introduction.

(ii) Let s > l be fixed and define In = {xeD{)dD: sn<\x\<sn+1}. We call

In the n t h intersphere with respect to 5. In most cases, we can choose 5 = 2.

(iii) Let 0 p - 2 (l*-.y |) = \x-y\2~p be the fundamental kernel on R*. We

shall abbreviate φ p _ 2 to φ if the dimension of the space is understood from the

context.

(iv) If E cz RP, we let En=E n /„. Let c(En) be the outer (ordinary) capacity
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of En. We also let E'n = {x/sn: x e EJ, or E'n = s~nEn.

( v ) If x = (xl9 x2,>>>> Xp)> then x' = ( — xl9 x2> > *p) shall denote the reflec-
tion of x about the Euclidean boundary dD of D.

(vi) Let G(x, y) = <K\x-y\)-φ(\x-y'\) be the Green kernel for D9 and let

Gμ(x) = \ G(x, ;y)dμ(}>) be the Green potential at x of the Radon measure μ
JS(μ)

whose support is S(μ). The mutual Green energy of μ and v shall be written

(μ, v)= \ Gμ(x)dv(x), and the Green energy of μ shall simply be (μ, μ)= ||μ||2.

(vii) We introduce a Martin type kernel on (D U dD U {oo}) x D as follows:

. *) =

G(y,x)ly! on DxD9

2x1cp |x — y\~p on dD x D,

*! on {00} xD.

Here cp = p - 2 . We note that if x e D9 K{ , x) will be continuous on (D U dD)\

(viii) If/ and # are positive real-valued functions on a set X9 we shall say

that/is comparable to g9 and write f&g iff there exist constants A, B90<A<B9

such that Ag<f <Bg everywhere on X.

(ix) If υ is a non-negative superharmonic function on D and if i ί is the

greatest harmonic minorant of v on D9 then the F. Riesz decomposition theorem

indicates that v—H is the Green potential of a unique v on D which we shall call

the measure associated with v on D.

DEFINITION 2.1. Given E c D , suppose there exists a Radon measure λE on

D whose Green potential is GλE=Rξί9 where ϋft is the regularized reduced func-

tion (balayage) of Xj on £ with respect to the cone of positive superharmonic

functions on D. Following Lelong-Ferrand ([12], p. 129), we shall call λE the

fundamental distribution on E and λE(D) the outer charge of E. If kξt is not

a Green potential, we shall define the outer charge of E to be infinite.

If £ is understood from the context, we shall often abbreviate the fundamental
distribution λE to simply λ.

DEFINITION 2.2. In case Rξt = GλE9 the Green energy of λEi namely (λE9 λE)9

shall in the future be called the Green energy of E and denoted by y(E). Other-

wise, we set <y(JB)=00.

REMARK 2.1. Lelong-Ferrand referred to y(E) as the outer power of E.

We shall derive some properties of γ which will be used later.

LEMMA 2.1. γ is monotone, y(En) t y(E) ifEn ΐ E9y is countably subadditive

and
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(2.1) y(E) = inf {γ(O): 0 3 £, 0 is open} .

PROOF. Let E1aE2 with y(£ 2)<oo. Since Rξ}<Rξt

2 in D, y(Eι) = (λEι,

\Eί) < (f E2, λEί) = (λEl, *E2) < (λE29 λEl) = γ(E2). Let En ί E with y(£) < oo. Then

Rx" ΐ ^ see (e) in p. 49 of [3]. For any a<γ(E), there exists n0 such that

a<{λEn, λE) for any n>n0. Next there exists m>n0 such that a<(λEm, λEnQ).

It follows that a<(λEm, λEm) = y(Em). This proves that y(En) t y(£) as w->oo.

Before proving the countable subadditivity of y we establish (2.1). We may

assume that y(E) is finite. Let R^ = GXE. According to a topological lemma

due to Choquet (see [2], p. 3) there is a sequence {On} of open subsets of D such

that O1^>O2 => ZD£ and if g is any lower semicontinuous function on D with

g ^ l i m , , ^ ££», then g <inf0=D£ R£. It is known that ^ is equal to infθ 3 £ # £

q.e. in D; see p. 49, (f) of [3]. Take the regularization of lim,,^^ R°? as g. It

follows that lim^oo R°p = Rξι q.e. so that \imn^ ^ GλOn = GλE q.e. in D. Since

(Λ-£> λE) is finite, A£ vanishes on any set of capacity zero. Hence, by Lebesgue's

theorem

y(E) = (λE, λE) = l i m ^ ^ (λOn, λE) = l i m ^ ^ (λE, λOn).

Choose n0 so that (λE, λoj is close to y(E) if n > n o Then choose m>n0 so

that (λOm, λOn ) is close to y(E). It follows that (yOm, 7om) = );(^m) i s close to

y(E). This gives (2.1).

In order to prove that y is countably subadditive we note that

for any compact subsets F x and F2 of D. We have

Thus y(Fi U F2)<y(Fί) + y(F2). For any open subsets Oi and O2 of D we choose

compact sets {Fn} and IF;} SO that Fnt01 and F ; ΐ O2, and obtain y(Oί U O2)

ι) + y(O2)' For arbitrary sets E l 5 E2c=D we apply (2.1) and derive

E2)^y(Eί) + yiE2). Finally take {£„} and set Ak=U* = 1En. As /c-^oo

! ^ ) . It follows that

and the countable subadditivity of 7 is easily established.
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DEFINITION 2.3. Let EczD and let λ'E be the Radon measure on D=Dϋ dD

which is such that

Rf(x) = [K(y, x)dλ'E(y) = Kλ'E(x),

where Rf is the regularized reduced function with respect to the cone of positive

superharmonic functions on D. The total mass λ'E(D) of the measure λ'E, some-

times abbreviated to λ'(E), will be called the Green mass of E.

REMARK 2.2. If Rf has a representation

RE(x) = [ K(y, x)dμi(y) + [ G(y, x)dμ2(y),
JdD JD

we have

The Green mass of any bounded set is finite, and may or may not be finite

in the case of unbounded sets. If F c ΰ is compact, we have λ'(F) = λf

F(F). If

EczD is relatively compact in D, then the support of λ'E is contained in D. Other-

wise, it is possible that λ'E(dD)>0.

We shall use

LEMMA 2.2. Let EczD. Let u, v be positive superharmonic functions in

D, and μξ be the measure associated with Aξ in D. Then

μE

v({xeD:Rξ(x)<u(x)}) = 0.

PROOF. Let BE be the set of points x of D such that E is not thin at x.

If υ is a Green potential on D, then μξ(D\BE) = 0 by Lemma VIII, 2 in p. 61 of

[3]. If υ is a positive harmonic function on D, then μf(D\B £ ) = 0 by Theorem

VIII, 11 in p. 65 of [3]. The relation holds for general v because of (c') in p. 51

of [3].

Suppose there exists x e B £ such that Rξ(x) < u(x). Set

e = {yeE:RE

u(y)<u(y)}.

This is a polar set (see p. 49 of [3]) and hence E\e is not thin at any point of B£.

We have

Rξ(x) < u(x) = liminfy_>x>yeE\eu(y) = \immfy_>x>yeE\eR
E(y).

Therefore E\e is thin at x. This contradiction shows that Rξ=u on B£ . Ac-
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cordingly the set {xeD: Rξ(x)<u(x)} is contained in D\BE9 and hence μξ
vanishes on it. This proves our lemma.

DEFINITION 2.4. Following Brelot [2], p. 31, we let K*, defined so that
K*(x, y) = K(y, x), be the associated kernel of K. If λ is a mass distribution on
D, we define

K*λ(x) = ( K*(y, x)dλ(y) = \ K(x, y)dλ(y).
JD JD

If x e D, then K*λ(x) = Gλ(x)jxv Let us now prove that if x e δD, then

K*λ(x) = liminfz^jZeD

We want to use the classical Martin theory as presented in chapters XIV and XV
of Brelot [3]. For y0 ED fixed, consider the Martin kernel K(x9 y) = G(x, y)l
G(x9 yo) (cf. [3], p. I l l , where this kernel is referred to as K(x9 y)). It is clear
that K(x, y) = K(x, yo)K(x, y)- Furthermore every point of A=dD\) {oo} is a
minimal point. A set EaD is defined to be minimally thin at X e A iS R%x ̂  Kx

where RX(-) = K(X, •) (cf. [3], p. 122). Evidently D is not minimally thin at
any point of A. It is known that EczD is minimally thin at X e A if and only if
there exists a measure μx in D such that

ψ(X,y)dμx{y) < l iminf^^^Kίx, y)dμx(y),

where x-+X is considered in the Martin topology (cf. Theorem XV, 6 in
p. 125 of [3]). We observe that this inequality is equivalent to K*μx(X)<
lim i n f ^ ^ s K*μx(x). It follows that K*λ(x) = lim i n f ^ ^ i , K*λ(z) for x e dD.

Next we prove

LEMMA 2.3. Let EoD and suppose k^GλE. Let B£ be the set of
points of dD at which E is not minimally thin. Then K*λE=l on BE and
λ'E(dD\BE) = 09 where &E

x=Kλ'E.

PROOF. Let e be the set of points on Eί) D at which kξί(x)<x1. It is a
polar set, and since it is thin at every x e dD in the ordinary sense, it must also be
minimally thin there (cf. [11], thέoreme 1, also [3], p. 151). Now let xeB £ .
Then E\e is not minimally thin at x. Therefore

e K*λE(y) = lim i n f ^ w J ^ y ^ ^ O O = 1.

Let u be the greatest harmonic minorant of £f=Kλ E on D. If μ is the
restriction to dD of λ'E, then u=Kμ. Set v=Άf - u . Then kξ+v^kf (see [3],
p. 49, d)), kl<,u and kξ^v. Hence u + v=Ά*j+υ<&ξ+Άξ<u + v. It follows
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that Rξ = u on D. By Theorem XV, 11 at the bottom of p. 129 of [3] therefore

In the proof of the next lemma we let Ω = Ω(a) be a set of the form {xeR p ;

|x| < a} n D for some a > 0 and let £ £ = GλΩ.

LEMMA 2.4. λ' is monotone, λ'(En) t λf(E) if En ί E, λr is countably sub-

additive and

(2.2) λ'(E) = inf {λ'(O); O ZD E, O is open} .

PROOF. L e t ^ c J E ^ . Then £f*<Rf 2 and hence Kλ'Ei<Kλ'E2 on 15. Let

(λ, v)κ = {κλ(x)dv(x). We have

The arbitrariness of Ω yields A/(

Let £„ t E. By (e) in p. 49 of [3] £ f » t ^f. We see that

It follows that l i m ^ ^ λEn(D) > λE(D Π Π). The arbitrariness of Ω yields

limrt_ί>00 A£n(5)>A£(D). Since the inverse inequality is also valid, the equality

follows.

Next we prove (2.2). By Brelot [3] (p. 49, (f)), there exists a decreasing

sequence {On} of open sets such that Oπ=>£ for each n and R%n 4 βf q.e. in

D. Evidently BO n=)BO m if m>n. By Lemma 2.3 K*λOn=l on BO m. Since

Aόm(δD\BO m)=0 by the same lemma,

O n O m \ K*λOndλ'Om + \ K*λOndλ'Om = λ'Om(dD).
JdD JdD\Bom J β o m

Therefore, by Lemma 2.2

^K*λOndλ'Om = \DK*λOndλ'Om + ^DK*λOndλ'Om = λ'Omφ).

SimUarly( K*λOndλ'E=λ'Eφ). We have, if n is fixed,

Urn,,..., λ Omφ) = lim,,,^

= [ Kλ'EdλOn = [ K*λodλ'E = λ'Eφ).
JD JD
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This proves (2.2).

To prove the countable subadditivity we note that

for any compact sets Fx and F2 in D. If Ω^Ft U F 2 , then

Inverting the order of integration, we have

λ\Ft Ό F2)<λχF1) + λ\F2).

The rest of the proof is carried out in exactly the same way as in the proof of

Lemma 2.1.

Now we prove

LEMMA 2.5. The outer charge and the Green mass coincide for any set

PROOF. First we consider the case when Rξί is equal to a potential GλE.

We observe that [ dλE=[ £fdλ E and [ dλ'E = [ Rξλ{y)l y xdλ'E{y) by Lemma 2.2.
JD JD JD JD

Hence

λE(D) = [ RfdλE = [ Kλ'EdλE = [ K*λEdλ'E
JD JD JD

= [ κ*λEdλ'E + [ κ*λEdλ'E
JD JdD

and

λ'Eφ) = \Dj-Rl(y)ME(y) +

By Lemma 2.3

ί K*A£dAi = ί K*λEdλ'E = λ'E(dD).
JdD JBE

Therefore λE(D) = λ'E(D).

Next we consider the case when R^ is not expressed as a Green potential.

Then Rξt = xx by Theorem XII, 3 in p. 102 of [3]. Denote by Bn the closed ball

with center at (n, 0,...,0) and radius n — i/n. Let R%?(]E = GλBnnE and Rfn

= Kλ'Bn. By (e) in p. 49 of [3] Rξ^E t Ĵ ft =Xi as n->oo. For any m we have

[κ*λBn(]Edλ'Bm = Γ G A | > " n g d ^ m ΐ Aim(5m) as n . oo
J J Xι
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and

^ ^λ'BJλBn,E < λBn,E(D) = λBnΠE(D).

Since λ'BnJ}E{D)<λf

E{D) by Lemma 2.4, λ'(Bm) = λ'Bm{Bm)<λ'Eφ); If λ'(BJ*m?-\

then λE(D) = cQ follows. Since the outer charge of E is infinite when Rξx is not

a Green potential (cf. Def. 2.1) therefore the outer charge always coincides with

the Green mass.

What remains is to show that λ'(Bm)& m**'1. Let ωm be the Green capacitary

distribution on Bm, i.e. Gωm = Rfm and note that supp ωm <= 8Bm. We recall from

Jackson ([11], Lemme 1) that

(2.3) G(x, y) « x^φQx - y\) \xf - y\~2.

The constants of comparison depend only on the dimension p. We have

Gωm(xm) = 1 » i J ^

- 1 (a, λ ) -
-Έ^{ m9 Bj~Ίn^

Hence λ'(Bm) = λ(Bm)« mp~J. Our proof is now completed.

REMARK 2.3. The set functions y and λ (resp. A') can be extended from the

compact subsets of D (resp. 25) to all the subsets of D (resp. D) in a standard way

using the theory of capacity. We take γ as an example.

We regard y as a set function on the class of compact sets F in D. It satisfies

(i) 7(0) = O, y(F1)<y(F2) if FίczF2, (ii) y ^ U ̂ H ^ n F2)<y(F1) + y(F2),

(iii) y(Fπ) 4 y(F) if F π 4 F. In fact, (i) and (iii) are proved in our Lemma 2.1 and

(ii) can be proved as in the proof of Lemma 2.1. Therefore γ is a strong capacity

(cf. [2], p. 17) or Choquet capacity (cf. [10], Theorem 7.20). Then we extend γ

to open sets O c D by

7^(0) = sup {γ(F): F cz 0, is compact}.

To show y*(O) = y(0), take a sequence of compact subsets {Fn} of O such that the

interior of Fn increases to 0. Then given FczO, there exists Fn^>F and hence

y(Fn)>y(F). Since limn^o0y(Fn) = y(0) by Lemma 2.1, both y(O)<y*(O) and

y(O) > y*(O) follow. This gives y(O) = y*(O). We extend y further to an arbi-

trary set EczD by

γ*(E) = inf {y(O): 0 => E, O is open}.

We know that y*(E) = y(E) by (2.1).

Thus our y is a general capacity (cf. [3], p. 66) which is sometimes called
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a true capacity (cf. [2], pp. 6 and 18) or an outer capacity (cf. [10], pp. 145-146).

Accordingly any K-analytic set is y-capacitable. We shall not use this fact in this

paper.

§3. Some definitions and lemmas

We now observe how the different capacities that we have introduced trans-

form under a homothetic transformation on D of the form

T(x) = fcx, where k > 0.

We will have

G(T(x), T(y)) = k2-PG(x,y).

If EczD is bounded, it follows that

λ(T(E)) = λ'(X(£)) = fc'-U'CE),

DEFINITION 3.1. Following Lelong-Ferrand, we shall define EaD to be

minimally thin at oo in D provided that Σny(En)s~np <ao for some s > l . If

E'n = s~nEn, then E is minimally thin at oo in D iff Σ» ?(£!») <«>•

REMARK 3.1. One normally defines £ c D to be minimally thin at oo in

D iff Rξxφxu in which case Rft is a Green potential on D. Brelot ([3], p. 152)

has pointed out that Rξι is a Green potential on D iff for any x0 e D, we have

Σ n ^ f r ( x o ) < 0 0 f°Γ some s > l . The convergence of the series Σn^fr(xo) *s

independent of 5, and it is easy to show (see §4) that Rξp(xo)& s~npy(En) which

gives the equivalence of the two definitions. Lelong-Ferrand also noticed that

the definition of minimal thinness at oo in D is independent of the choice of s by

demonstrating that if γ(r) is the Green energy of E Π {xeD: | x |<r} , then E is
Λoo Γco

minimally thin at oo in D iff \ r~p~ίy(r)dr< oo, or equivalently, iff \ r~pdy(r)

<oo. We are using Lelong-Ferrand's definition of minimal thinness here rather

than the standard one because it is easier for us to adapt our covering theorems

to it.

DEFINITION 3.2. We shall define £<=D to be rarefied at oo in D iff

Σ n ^ ( £ Λ ) s ~ n ( p ~ 1 ) < o o for some s > l . We recall that λ'(En) is the Green mass

of En. This is equivalent to the condition that Σ«^/(^π)<°o> where E'n = s~nEn.

LEMMA 3.1. Let λ'(r) be the Green mass of Eft {xeD: | x | < r } . Then E is

rarefied at oo in D iff \ r~pλ'(r)dr<co, or equivalently, iff \ r1~pdλ\r)< oo.



On the covering properties of certain exceptional sets in a half-space 245

PROOF. Since the Green mass is subadditive, we have λ'(sn+ί) — λ'(sn)<

?>'(En)<λ'(sn+1). We note that the Green mass and the outer charge of {xeD:

| x |<r } are equal and dominated by rp~x (cf. Lelong-Ferrand [12], p. 130) up to

a constant factor. Hence λ'{r) is also dominated by Const. rp~ι and an integra-

tion by parts shows that the two integrals in the lemma are co-convergent.

If £ is rarefied at oo in D9 then Σn(λ'(sn+1)-λ'(sn))s-n(p-1) <oo which im-
Γoo roo

plies that \ r1~pdλ/(r) converges. Conversely, if \ r~pλ'{r)dr<oo, we have

r-n\r)dr < oo,

and it follows that E is rarefied at oo in D.

REMARK 3.2. It is clear from Lemma 3.2 that the definition of a rarefied

set is independent of the choice of s> 1. Later we shall show that a rarefied set

has other properties that are parallel to those of a minimally thin set. Since

y(En)<sn+1λ(En) = sn+1λ'(En\ it is evident that a rarefied set at oo in D is neces-

sarily minimally thin there. In general the implication is strict, but if E is re-

stricted to a Stolz domain with vertex at the origin, then y(En)&snλ'(En) and we

conclude that E is rarefied at oo iff it is minimally thin there.

DEFINITION 3.3. We define EaD to be semirarefied at oo in D iff

l i m ^ ^ λf(En)s-n^-1)=0, or equivalently, iff l i m ^ ^ λ'(E'n) = 0.

DEFINITION 3.4. Following Lelong-Ferrand, we define EaD to be mini-

mally semίthin at oo in D iff lim,,.^ y(En)s~np = 0.

REMARK 3.3. Our definition of a semirarefied set coincides with Lelong-

Ferrand's definition of a rarefied set ([12], p. 134). She has demonstrated that

EczD is minimally semithin at oo (resp. semirarefied at oo) in D iff lim,.^^ r~pγ(r)

= 0 (resp. l im,.^ r 1 " p Γ(r) = 0) which indicates that these definitions do not

depend on the choice of s > l . A semirarefied set is always minimally semithin,

and the two concepts coincide in a Stolz domain. On the other hand, a semi-

rarefied set is in general non-comparable with a minimally thin one.

LEMMA 3.2. Let H = B ί l D e H where we recall that t is the first coordinate

of the centre of B, r is its radius, and Q<r<tyfp. Then y(H)ttt2c(H)ttt2rp~2

where the constants of comparison depend only on the dimension p.

PROOF. If t>r, then c(H) = c{B) = rp~2. If t<r, we consider the ball B1

concentric with B and with radius ί. We clearly have c{B') < c(Ή) < c(B). Since

t « r , therefore c(B')&c(B) which implies that c(H)^rp~2 in all cases.

We first let BczD and define λ to be the fundamental distribution on B.

If we choose x to be the centre of B, then
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Gλ(x) = t » r 1 ί

by (2.3). We note that suppλ^dB because R^ is harmonic on D\dB. There-

fore t2πφ(r)y(B% or

y(H) = γ(B) » ί V " 2 .

If ί < r, then ί « r and we know that y(B') < y{H). We now embed if in a half

ball D' of radius 2r with face on 3D and recall from Lelong-Ferrand ([12], p. 130)

that y(D')πrP. It follows that y(B')&y(D') and hence y(H)^t2rp~2 in all cases.

LEMMA 3.3. If H is defined as in Lemma 3.2 then λ'(H)πtc(H)πtrP-2,

where the constants of comparison depend only on the dimension p.

PROOF. The case, where r<t so that H = B is relatively compact in D, is

treated as in the proof of Lemma 2.4.

If t<r, we construct B ' c H c D ' a s in the proof of Lemma 3.2. In this case,

λ'(D') = λ(Df) which in turn is comparable to rv~γ (cf. Lelong-Ferrand [12],

p. 130) so that λ(D')πλ(B') since t&r. The lemma follows.

§ 4. Some characterizations of exceptional sets in D

We shall start with two preliminary covering theorems.

THEOREM 4.1. Let E= U nHnaD<=:Rp, where Hn = BnnD, HneH9 Bn =

(tn, rπ, Rn) and Hn<=In for some given s>l. Then E is rarefied or minimally

thin at oo in D iff

(4.1) Σn(tJRn)(rJRny-2 < co,

Σn(tJRπ)
2(rJRπy-2 < oo,

respectively.

PROOF. Since Hnczln, we have Rn&sn, n = l, 2,.... From Lemmas 3.2

and 3.3, we see that y(Hn)πt2rp

n-
2 and λ(Hn)πtnrζ-2. Theorem 4.1 follows from

Definitions 3.1 and 3.2 respectively.

REMARK 4.1. If H'n = s~'Ήn, then E= U nHn is rarefied or minimally thin

at oo in D iff

Σn(tJRMH'n) < oo9 or Σn(tJRJ2c(H'H) < co,

respectively, where c(H'n) is the ordinary capacity of H'n. Such a set is semirarefied

or semithin at oo in D iff
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l i π w (tJRMH'n) = 0, or l i m ^ {tnjRn)
2c{H'n) = 0,

respectively. Since tn>rnj^Jp, it is clear from (4.1) that we have

<oo in the rarefied case, i.e., E satisfies Azarin's condition when p>3. In the

case where tn&rn for all n, E is rarefied at oo in D iff E satisfies Azarin's condition.

We point out here that the twin conditions of minimal thinness and Azarin's

condition do not characterize a rarefied set at oo in D. In order to see this,

consider E= U nHn constructed so that (rπ/JRM)^~2«n~1 and tjR

DEFINITION 4.1. Let β be given, 0 < / ? < l . Let S^ be the class of all

positive superharmonic functions u on D C R P , which are such that there exists

a nonnegative Radon measure μ on D such that

«(x) = \BK(y,x)dμ(y). where

REMARK 4.2. If 0 < α < β < l , it is evident that Sαc=S^. A positive super-

harmonic function u on D belongs to Si iff for any p > 0 , u(x) fails to dominate

pxί everywhere on D. In other words, the canonical measure of u fails to charge

{oo}. If ι?eS 1 } and u is superharmonic on D such that 0<u<υ on D, then it is

well-known (and follows from the statement above) that u eSί also.

We shall now develop some of the fundamental properties of rarefied sets.

LEMMA 4.1. E is rarefied at oo in DCZRP iff for any xoeD and s>l, we

have ΣnR?n(xo)<°°. (We recall that En = E n /„ and r = | x | . )

PROOF. Since |x| = rπsn in /„, it follows that R?»(xo)&snRf»(xo). Let

Rfn = \ K(y, )dλ'n{y) and note that

K(y, x0) « 3-**9 yemmλ'n<zEn.

It follows that Rf n{x0)πs-ni>λr(En) where λ'(En) is the Green mass of En and that

This proves Lemma 4.1 (cf. Definition 3.1).

REMARK 4.3. A set EczD is semirarefied at oo in D iff l im,,^ Rfn(xo) = 0

where En=E Π /„ as before. One can modify the reasoning in the proof of Lemma

4.1 to show that Rξ{ι(x0)&s~npy(En). A set EaD is therefore minimally thin or

semithin at oo in D iff

Σ w # f r 0 o ) < oo, or l i m ^ Rξp(x0) = 0,

respectively.
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LEMMA 4.2. Let {An} be a sequence of sets in D such that RfneSu and

PROOF. We note that Σ«= 1 &?n(*) e S±. We can write it as

\ G{.9x)dμk + \ K(.9x)dμk.

JD JdD

Set Tk(x) = Σ,^ssk+ίRfn(x) and express it as

\ G(.,x)dvk + \ X( , x)rfvfc 4- vk({co})Xί.
JD JdD

Since S(x) is superharmonic in D, Tk(x)-+0 as fc->oo q.e. on D. Therefore vΛ({oo})

->0 as fc-^oo. We have

S(x) = ί G( , x)d(μk + vk) + [ K( , xMμ Λ + vfc) + vk({oo})x1.
JD JdD

The uniqueness of the expression implies that vfc({oo}) is a constant which is in

fact zero.

THEOREM 4.2. A set EaD is rarefied at oo in D iff R?eSx.

PROOF. We assume that E is rarefied at oo in D, and that S = Σ £ = i £ f n .

Then Sφoo so that 5 is necessarily superharmonic on D. Since S dominates r

q.e. on E=ΌnEn9 we have S>R?. Since each ί ^ e S ^ Lemma 4.2 shows

S e S i and therefore jRf e S i follows.

For the converse, we modify the reasoning in Lelong-Ferrand [12] (p. 135)

as follows: Let R? = \ K(y, )dv(y) and recall that (if cp = p - 2)

[ (j ) / ^ ( y )

[ 2x l C p |x - y\~p, (y9 x)edDx D.

We note that

K(y9 x) n xW* \y\>2W,

so that \ \y\~pdv(y) = A<oo. Now choose s > 2 and let Jn = In^ί U /w U J π + 1 .\
J|y|

We see that if xeEn,

C-Λ K(y, x)dv(y) < \ x

with a constant C. If s is chosen so that 4AC<sp, then C\
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< r/4. For large n, say for n > nθ9 we will have

K(y, x)dv(y) < r/2, xeEn
JD\Jn

which implies that r < RE(x) < \ K(y, x)dv(y) + r/2 q.e. on En Π D. Hence

2\ K(y, x)dv(y)>r q.e. on En. Therefore
JJn

REn < 2\ K(y9 x)dv(y) everywhere on D9

by the definition of REn (cf. Brelot [3], p. 49 (d)). If we now sum over n>nθ9

we obtain

y°° REn < 6RE

Applying Lemma 4.1, we obtain Theorem 4.2.

REMARK 4.4. The argument in the proof of Theorem 4.2 also leads to the

conclusion that Rf eSi iff Σ» R?n e S x . We could define EczD to be rarefied at

oo in D iff kf eSx or equivalently, iff there exists ueS1 which dominates r =

|x| q.e. on E. If y0 e3D and p = |x — yo\, we can define E c D c R f to be rarefied

at }>0 in D iff REι-P is a positive superharmonic function on D whose canonical

measure does not charge {j0}. In other words, REi-P fails to dominate any

minimal harmonic function on D whose pole is at y0.

We shall now establish some elementary covering results for minimally thin

and rarefied sets, respectively.

THEOREM 4.3. Suppose that E<=.DczΈLp can be covered by a sequence {Hn}9

HneH,Hn=BnΠD where Bn = (tn, rn9 Rn) such that

(4.2) Σn(tnIRtt)
2(rnIRny-> < oo.

Then E is minimally thin at oo with respect to D.

PROOF. If x 0 e D9 we have

£ y(Hn)IRPn « (tJRn)
2(rnIRny-i (Lemma 3.2).

Therefore, (4.2) is equivalent to the condition that Σ n ^ ? Γ ( x o ) < o o Lemma

4.2 shows that ΣnRχιneSi- Hence RE

ιeS1 also, since it is dominated by

Σ Λ ^ Λ s o t n a t ^ f i # * i B u t this implies that E is minimally thin at oo (see

Brelot [3], p. 103 and p. 152).
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The proof of Theorem 1.1 is similar.

PROOF OF THEOREM 1.1.

For any xoeD and n sufficiently large, it follows from Lemma 3.3 that

Lemma 4.2 shows that ΣnRjfnGSί since we have Σ R?n(x0)<co. It follows

that Rf e S^ This completes the proof.

REMARK 4.5. We can obtain analogous covering results for minimally

semithin or semirarefied sets at oo in D. We omit the details.

Let us now introduce some further properties of rarefied and minimally thin

sets in D.

LEMMA 4.3. If EaD, then E is rarefied at oo in D iff ΣnR?βnεSβ for

any βe [0,11

PROOF. Let Rfr = ̂ K(y, )dμn(y) and μ = Σ?«i/V Then ΣnR?

iff \ \y\1~p~βdμ(y)<oo or equivalently, iff

(4.3) Σ M M / n > - w ( p + / ? - 1 } < o o .

If x 0

 e ^ a n c i n is sufficiently large, we have

so that £ is rarefied at oo in D iff

(4.4) Σ w μ π ( / Λ K

Elementary calculations show that the series (4.3) and (4.4) are co-convergent.

THEOREM 4.4. E C D C R P is rarefied at oo in D iff for any βe[O, 1], we

have Rfβ e S^.

PROOF. If E is rarefied at oo in D, then it follows from Lemma 4.3 that

Σ-ityeS,. If we let R*β = \ K(y, )dv(y) = Kv and Σn&fr = \ K(y, )dμ(y)
= Kμ, then Kv^Kμ. For each βe[O, 1] the function x^x^'P'^ is a positive

superharmonic function on D, and min {xl9 Xi\x\ι~p~β} is a Green potential on

D whose canonical measure shall be denoted by λ. Since Kv<Kμ9 (v, λ)κ<

(μ, λ)κ and hence (λ, v)κ*<(λ, μ)κ*. We recall that K*λ(x) = Gλ(x)jxί for xeD

and therefore K*λ(x) = |x|^^"^ if |χ| ^ 1 and x e D. Hence
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Since

(A, μ)κ* « \ \y\ι-p~βdμ(y) < oo,

we obtain Rfβ e Sβ.

For the converse, we assume that \ \y\1~p~βdv(y)=Λ<oo. The argu-
)\y\7>ί

ment in the second half of the proof of Theorem 4.2 can be used with minor

modifications. Let xeEn, s>2 and Jn be defined as before. Then for n suffi-

ciently large, we have

C\ K{y, x)dv(y)

with a constant C>0, if s is suitably chosen. Therefore, we have \ K(y, x)dv(y)
JJn

> rβ/2 q.e. on En which implies that

2\ K(y, x)dv(y) > Rfβ

n everywhere on D.

We conclude that

μn(En)<2v(Jn).

An elementary calculation leads to the convergence of the series ΣnS""^" 1"^" 1^

μn(En), and it follows that ΣnR?βnESβ- Applying Lemma 4.3, we obtain Theo-

rem 4.4.

REMARK 4.6. Using exactly the same arguments as in the proof of Theorem

4.4, we can prove an apparently more general version by replacing Rfβ by any

u eSβ which dominates Rfβ.

For completeness, we state analogous results for minimally thin sets. The

proofs are analogous to those of Lemma 4.3 and Theorem 4.4. We do not

include the details.

LEMMA 4.4. //£<=£), then E is minimally thin at oo in D, iff Σn^fiV-1

eSβforany βe[0, 1].
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THEOREM 4.5. EczD is minimally thin at oo in D if ίl%irβ-ι eSβ for any

0 e [0,1].

REMARK 4.7. Naturally, Άξίrβ-i is also a Green potential.

We shall now prove a theorem for rarefied sets that is similar to a theorem of

H. Cartan ([10], p. 216) for classically thin sets, and one of M. Brelot ([4],

Lemma 9) for minimally thin sets. Brelot indicates his result under very general

conditions.

THEOREM 4.6. // weS^ on DcR^, then there exists a set £ c D such that

E is rarefied at oo in D where

lim u(x)/|x| = 0, x > oo, xeD\E.

Conversely, if EczD is rarefied at oo in D, there exists ueSί such that E is

contained in the exceptional set for u.

PROOF. We start with the converse. If EczD is rarefied at oo in D, then

there exists an open set OczD which contains E such that 0 is also rarefied at oo

in D. We now choose u = Ά° and recall from Theorem 4.2 that u e S x. Further-

more, u dominates r everywhere on Oz> E so that lim inf u(x)/|x| ;> 1, x-+ oo, x e 0.

For the direct part, we choose ε>0 and define i f i = {xeD: w(x)/|x|>ε}.

Then ίt?ε is dominated by ulεeSί. It follows from Theorem 4.2 that Aε is

rarefied at oo in D for each ε>0. Choose xoeD and εM = l/n, n = l, 2,... . We

also define Wm = \JJ=m J, and the double sequence of sets Entm=Aί/n Π Wm. Since

Aγjn is rarefied at oo in D for each n, it follows from Lemma 4.1 that

lim Rf n'm(x0) = 0, m > oo, n fixed.

We now choose an increasing sequence {mn} so that ^ ? n m«(x0)^2~n. Let Vn =

Entmn and E = Ό™=ίVn. We note that jRf(x0)<Σn^Γn(^o)<°o Lemma 4.2

shows that Σ R^n^Sί9 and hence R? e S l 5 i.e. E is rarefied at oo in D. What

happens if xe(D\E) Π WmΊ Then xφAί/n so that w(x)/|x| < 1/n. Thus

w(x)/|x|-*0, x-+oo, xeD\E which terminates the proof.

THEOREM 4.7. Let βe[0, 1] be given and assume that DCRP. If ueSβ,

there exists a set EczD such that E is rarefied or minimally thin at oo in D such

that

limW(x)/|x|' = 0, x > oo, xeD\E,

limwCx)/(x1r^1) = 0, x > oo, xeD\E,

respectively.
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Conversely, this result is best possible in the sense that if E is rarefied or

minimally thin at oo in D, then there exists ueSβ such that E is contained in

the exceptional set for u.

PROOF. We use results from Theorems 4.4 and 4.5 to construct a proof

that is analogous to the proof of Theorem 4.6.

REMARK 4.8. The results of Theorem 4.7 are closely related to recent

results of Essen and Lewis (see [9]). An essential part of their work is a study

of superharmonic functions of the form u e Sβ. Their conclusion is that u(x)f

\x\β-+0, x->oo, xeD\E, where E is an exceptional set that satisfies Azarin's

condition. One can conclude from this work along with Azarin's, that a rarefied

set £ C Z D C R P can be covered by a sequence of balls {rrt, jRπ} such that Σ n ( r π /

Rn)
p~ί<co This condition does not, of course, characterize a rarefied set.

In fact, it should only be viewed as a good approximation for that part of the

exceptional set that is near (or even on) the boundary. For that part of an

exceptional set that is restricted to a Stolz domain, for example, our earlier work

[8] indicates that the critical value for the convergence exponent is p - 2 rather

than p — 1. In the next section, we shall consider these questions further.

§5. The main covering theorems

In order to obtain covering results which are converse to Theorems 1.1 and

4.3, we shall require a result, to be named Lemma 5.1, that resembles Lemma 1

in [8].

DEFINITION 5.1. Let h: [0, oo)->[0, oo) be a non-decreasing continuous

function such that /ι(0) = 0. If H=B(]DeH where B has radius r and the first

coordinate of the centre of B is t9 then we define the premeasures (see Rogers [13],

p. 9) of the form

τh(H) = ί1+*/ι(r), H e H ,

for each of the numbers a=0, a = 1.

DEFINITION 5.2. For each α of some index set, let HαczH be a countable

cover of EczD. If H α ={H α ( n ) }, and if {HJ is the set of all coverings of E de-

fined above, then we define

Lh(E) = inf{Hβ> {Σn τh(Ha(n))} for a = 0 or 1.

REMARK 5.1. For each α = 0 or 1, the set function Lh is an outer measure,

or a countably sub-additive (c.s.a.) weight (Brelot [3], p. 22), and is constructed

from the premeasure τh by Method I in Rogers [13], p. 9. By Theorem 13 in
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[13], p. 24, Lh is an H^-regular outer measure. Therefore, it is a continuous

weight on D ([3], pp. 22-25). The outer measure Lh is constructed from the

pre-measure τh in the same way as the outer measure Mh in Carleson ([5], p. 6) is

constructed from the premeasure ph(B) = h(r). Dellacherie ([6], p. 92, Cor. 19)

has pointed out that Mh is, in fact, a general capacity. This also follows from

Rogers ([13], p. 90, Theorem 47) and we suspect, but shall not prove, that Lh is

also a capacity in the general sense. The plausibility of this assertion is indicated

by the fact that the metric outer measure constructed from τh using method II

in Rogers [13] appears to be of "Hausdorff type" as developed by Davies

(cf. Dellacherie [6], pp. 100-101). Such a measure would relate to Lh as the

Hausdorff measure Λh relates to the capacity Mh (cf. [5], p. 6).

REMARK 5.2. If h(r) = rP~2, we have τh(H)πy(H) if a = \ (Lemma 3.2) and

τh(H)&λ(H) if α = 0 (Lemma 3.3). By using only the monotone and countably

subadditive properties of the Green energy y and the Green mass X (cf. Lemmas

2.1 and 2.3), respectively, we have y(E)<k(p)Lh(E) if α = l, and λ'(E) < k(p)Lh{E)

if α = 0, where k is a constant depending only on the dimension of the space.

REMARK 5.3. In order to analyze Lh further, we shall also find it convenient

to cover JECZD by dyadic cubes instead of balls or elements of H. Let us say that

a cube in Rp is half-open if it is of the form {xeR p : α ί<x i<α i-l-ί>, ι = l, 2,

..., p}. Let Gπ be a net of half-open cubes in D similar to those constructed in

Carleson ([5], pp. 6-7) and let G = U ΠGΠ. We recall that all cubes have their

sides parallel to the coordinate axis and that the length of a side of each cube in

Gn is 2"". Furthermore, the cubes in Gn are obtained by dividing each side of

every cube in Gn.ί into halves so that every cube in Gn-ί will be subdivided

into 2P equal subcubes. In addition, we arrange each net Gπ so that the first

coordinate of any vertex of each member of Gπ is either 0 or of the form ml~n

(meN, ne N).

DEFINITION 5.3. Let ωeGn and let t be the first coordinate of the centre

of ω. We define the pre-measure τ£ on G so that if α = 0 or 1, we have

τΛ*(ω) = ί1+*/ι(2-«), ωeG,,.

DEFINITION 5.4. Let { C J c G be a countable cover of EαD. If Cα =

{ωα(i)} and if {Cα} is the collection of all such coverings of £, we define for each

α = 0, 1,

REMARK 5.4. The set function L% is an outer measure (or a c.s.a. weight)

on the subsets of D which is constructed from the pre-measure τj by Method I



On the covering properties of certain exceptional sets in a half-space 255

in Rogers [13; p. 9]. Furthermore, LJ is Gσ<5-regular. Since G is a net on D

(cf. [13], p. 101), L% satisfies the following monotone sequence property:

(5.1) L*h(UjSj) = sup j{L*h(Sj)},

for any increasing sequence {Sj} of subsets of D ([13], Theorem 52, p. 107) and is

therefore a precapacity in the sense of Dellacherie ([6], p. 19). The function

L% bears a relationship with Lh which is analogous to the relationship between

the set functions mh (or m'h) and Mh that are constructed in Carleson ([5], pp.

6-11). An elementary argument shows that

(5.2) Lh(E)κL*h(E),

where the constants of comparison depend only on the dimension of the space.

For similar discussions, we refer to Carleson ([5], pp. 6, 7, 11) or Rogers ([13],

p. 102).

In the proof of the relation

Lh(E)< Const. L*h(E),

(which in fact is the only one used in this work), it is essential that we have used

the sets in H in the definition of Lh.

We shall now prove a result which resembles the converse part of Theorem 1,

p. 7, in Carleson ([5]).

LEMMA 5.1. Let F be a compact set contained in D (] {\x\<b}, and h:

[0, oo)-+[0, oo) be defined as in Definition 5.1. For each a = 0, 1, there exist

a mass distribution (non-negative Radon measure) μ supported by F, a constant

Cί>0 depending only on the dimension p of the space and a constant C2 de-

pending only on p and b such that if H e H , then

(5.3) Lh(F) < Cx(λ, μ) = cΛ xxdμ(x)9
JFF

(5.4) (λ, μ\H) = ^x.dμix) < C2τh(H),

where λ is the fundamental distribution on F.

PROOF. We shall follow an argument initiated by Frostman, and similar to

the one outlined by Carleson ([5], p. 8). We will construct a sequence {μn} of

mass distributions on D that satisfy the following conditions:

( i ) supp μn = Fn is the closure of the union of those cubes ω e Gn which are

such that ωeFΦ0. We note that Fn+ίςzFn and that Γ\J=1 Fn = F.

(ii) If ω e υ ? = 0 G { , then
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(in) ( Xidμn(x) > L*(F), n = 1, 2,... .

Let n be a given natural number. We first define a preliminary sequence {μ(

n

n)}
of mass distributions on D so that {μ(

n

n)} has constant density on each ωeGn and
is defined so that the total measure is

ί tah{2~n\ if ω n F Φ0,
μ(Λω)=\

I 0, if ω n F = 0 .

Therefore suppμ(

n

n)=Fn and

if ωeG r t. Equality holds if ωcFn. It is clear that ί x ^ ^ x ) > L*(F) so

that the preliminary sequence {μ\,n)} satisfies (i) and (iii). In order to obtain (ii)
as well, we follow an inductive argument of Frostman which progressively reduces
the density of each μ(

n

n) where necessary, according to the following procedure:

if for some ωeGn-u ωΠF^0, we have [ xίdμ(

n

n\x)>tί+ah(2"n+ι) = τt(ω)i

Jω

we reduce the density of μ(

n

n) on ω (by multiplying it by a positive number < 1)
to obtain a new measure whose corresponding integral over ω becomes equal to
τj(ω). We continue this procedure for all such cubes in Grt_x and obtain a new
measure, denoted by μi""1), such that (ii) holds for any ωeGn U Gn-U and such
that (i) and (iii) are still valid. After n such steps, we obtain a mass distribution
μ<0), denoted by μπ, for which (ii) holds as well as (i) and (iii). It follows from
(ii) that the sequence l\ X\dμn(x)\ is bounded. Since the distance from F to

dD is positive, the sequence {μn(Fn)} will also be bounded. It follows that there
exists a subsequence {μπj that converges in the weak* topology to a mass dis-
tribution μ of support F. Therefore we have

(5.5) (A, μ) = \ Xldμ(x) = limfc \ xxdμnic(x)>L*h(F).
JF JFnk

Combining (5.5) and (5.2), we obtain (5.3).
Finally we shall show (5.4). Let H=jBflZ)=B(ί, r, R)f)D. First we re-

strict r < l and choose an integer n0 so that 2~n°i£r<2~no+ί. Since 5 dyadic
intervals, each of length 2"Πo, are sufficient to cover an interval of length 2r
=diam if, 5P dyadic cubes in GΠo are sufficient to cover H. If ωl9...9 ω5p with
the first coordinates of centres tu...9 t$P cover H, then for any n>n0
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\ x^n(x)< Σj] *idμn(x)
JH J(ύj

< Σjτt(fi>j) = Σj ή+ah(2-«o) <: h(r) Σj ή+a

by (ii), where the summation is taken for j = ί,...,5p. Since ί ,<2(ί + r ) <

Xιdμn(x) < 5*21+"(1 + Jjy+'tl+-h(r) = C2τh(H).
H

Since F is compact in D, we may assume that the supports of {μj are contained

in a compact set F'^DF in D for large n. Let χH be the characteristic function of

H, which is considered to be open. We have

(A, μ\H) = \ xxdμ(x) = \
J H J

because xHxt is lower semicontinuous. Hence (λ, μ |jj)<C2τh(7ί).

Next we assume 1 < r. Let m0 be the smallest integer such that m0 > fc, and

denote by A the set {(x^..., xp); 0<xί<mo, {X^KWIQ, fc = 2,..., p}, consisting of

mg half open squares {coj}. Evidently A contains Dίl{|jc|<ί>}. For any H

= B(t, r, R)Γ\D with r> 1 and for nk>m0,

\ xxdμnk{x) = \ Xidμnk(x) = \ x^μ^x) = Σj \ Xidμnk(x)
JH JF JA Jωj

< ΣjτKωj) = Σj ή+aKl) < Λ(r) Σj ή+a

by (ii), where {tj} are the first coordinates of the centres of {co,}. Since tj<m0

and t>r/^Jp >l/>/jp, tj<m0ΛJp t so that

Λ ί 1 + ^ W = C2τh(H),

where C 2 = 2mg(m0N/p)1+f l depends only on p and b. By letting fc-»oo we obtain

(λ, μ\H)^ C2τh(H). This completes the proof of Lemma 5.1.

LEMMA 5.2. If FczDO { |x|<b}, where F is compact, and if h is defined
roo

as in Definition 5.1 and such that \ φ(r)dh(r) = A(p)<co, then there exists a
Jo

positive constant C(p) (which only depends on the dimension and b) such that

( C(p)y(F% if a = 1,

[ C(p)λ(F\ if a = 0.

PROOF. Let μ be the measure depending on h, F and a that was constructed



258 Matts ESSEN and Howard L. JACKSON

in Lemma 5.1. We shall demonstrate that

f Const, (λ, λ\ if a = 1,
(5.6) (μ, λ) <

[ Const. λ(F), if a = 0.

Elementary calculations ([11], Lemma 1) imply that

G(x9 y) < 4(p - 2)xiyιφ(\x - y\)\x - yf\~\ (*, y)eDxD.

Since \x-y'\>x1 and | x - / | > | x - . y | , it is clear that

(5.7) G(x, y) < 4(p - 2)*rV(l* " JΊ)3Ί,

(5.7)' G(x, j) < 4(p - 2)xiyi\x - y\~*.

Now define Φx(r) = (λ, μ\B)9 where 5 is a ball of centre x and radius r. For

xeD fixed, we can say that Φx is a non-decreasing function of r and is well

defined for all r>0 since suppμcFc D. By (5.4) in Lemma 5.1, we have (if

α = 0or 1)

(5.8) Φx(r) < C^B) = ClX\
+Λh(r)9 B ΓΊ D e H , ( i . e . iϊr£xl

From (5.7) and (5.7)' we see that

Gμ(x) < 4(p - 2)\χ-AXiy/P φ(r)dΦx(r) + χ
I Jo

= 4(p-2)(J1+J2).

We first discuss J x and note that

t2~Ph(t) < [ s2-Pdh(s) > 0, t > 0 + ,
Jo

ί2-*/z(ί) >0, t • oo.

The last relation holds since

t2~P(h(t) - h(t0)) < [' s2-Pdh(s) > 0, to< t, t0 > oo.
Jίo

Integrating by parts (cf. Carleson [5], p. 29), we obtain from (5.8) that

(5.9) J x < Const. xa

x{A{p) + sup f > 0 t2~Ph(t)}, a = 0 or 1.

We now turn to J2 and note that
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We choose s = 2. If sπ+1>x lλ/jcΓ, we cover In = {y eD: 2n<\x-y\<2n+1} by

finitely many sets from H, of the form B f)D where the radius of J5 is 2Π. It is

clear that we can do this in such a way that the number of balls needed has an

upper bound only depending on the dimension p. Once more using (5.4), we

see that

Φx(2n+1) - Φx(2n) < Const. 2w<1+β>/ι(2"), (a = 0, 1).

It is now easy to see that (if Σ denotes summation over those indices n which

are such that 2n+i>xly/f) we have, if α = 0 or 1,

(5.10)
2 <

< Const, xf

Γ00

< Const, xf \ r^Phiήdr < Const, xf.
Jo

Combining (5.9) and (5.10), we see that Gμ(x) < Const, xf, x e D . Integrating

with respect to λ, we obtain (5.6) and therefore also our lemma by applying (5.3)

in Lemma 5.1.

LEMMA 5.3. Let EczDn {|x|<2?}, and let h be defined as in Lemma 5.2.

Then there exists a positive constant C(p) (which only depends on the dimension

and b) such that

f C(p)y(E), a = 1,
Lh(E) <

{ C(p)λ(E\ a = 0.

PROOF. We first consider the case when E = O is an open subset of D.

Then 0 is σ-compact and we can construct an increasing sequence {Fn} of compact

subsets whose union is 0. Therefore,

ί Const. v(O), a = 1,
limn Lh(Fn)<\

[ Const. λ(O), a = 0,

by Lemma 5.2. We now apply the results of Remark 5.4. From (5.2) and the
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monotone sequence property of L\ described in (5.1), we obtain

Lh(O) « L*h(O) = lim, Lt(Fn) « limπLh(Fn).

Thus our lemma holds when E is an open subset of D. Since Lh is monotone and

y(£) = inf {y(O): 0=>E90 open} (cf. (2.1)), Lemma 5.3 follows in the case α = l.

When α = 0, the same argument works (cf. (2.2)), and the lemma is proved.

We are now able to prove our main covering theorems.

THEOREM 5.1. Let EczDaW, be minimally thin or rarefied at oo in D.

If the function h: [0, oo)->[0, oo) is non-decreasing, continuous and such that

/?(()) = 0, and if φ is defined as in (iii), §2 and if

\™φ{r)dh{r) = Λ(p) < oo,
Jo

then there exists a covering of E by a sequence {Hn} in H, where Hn = BΓ\D,

Bn = (tn, rn, Rn) such that

00,

respectively.

PROOF. AS in Section 3, we let E'n — s~nEn, and recall from Definition 3.1

or Definition 3.2 that £ c D is minimally thin or rarefied at oo in D iff

respectively. We apply Lemma 5.3 to obtain

(5.11) ΣnLΛ(£ίi) < oo, « = 1 or 0, respectively.

For each n, we can cover E'n by a sequence {H'nj} = {B'nj Π D} in H, where Br

nj

= (tnj9 r'Hj9 R'Hj), s u c h t h a t

ΣjXfnj)i+aKr'nJ) = Lh(E'n) + β n, 0 < ε π < 2 - , α = l o r 0 .

The convergence of the double series Σnj(
tnj)1+aKrnj) in the two cases con-

sidered here follows from (5.11). Defining Bnj = snB'nJ so that Bnj — {tnj, rnP Rnj\

we see that the double sequence {Bnj n D} is a covering of the required type. This

completes the proof of Theorem 5.1.

COROLLARY. Let EaDciRp be minimally thin or rarefied at oo in D.
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For each β>p — 29 E can be covered by a sequence {Bn Π D} in H such that

Σn(tjRn)1+a(rnlRn)β < °°> a = 1 or 0, respectively.

PROOF. In Theorem 5.1, we choose h(r) = rβ for O ^ r ^ l and ή(r) = l for

r > l . If rJRn>h then Rn<rn<jptn and hence (tJRJ1+*(rJRJ'2:p-<1+*v2.
Therefore there exists no>0 such that rn/Rn<l if n > n 0 . Hence h(rJRn) =

(rn/Rn)
β if n > n 0. Our Corollary now follows.

REMARK 5.5. One cannot choose β<p — 2 in the corollary to Theorem

5.1. This is clear from our earlier work ([8] p. 338) when the exceptional set is

restricted to a Stolz domain. A direct proof that a set E which is rarefied at oo

in D satisfies Azarin's condition starts from Theorem 4.2 which gives the result

that ΆfeS1. From this point, we can follow Azarin's proof and study the

exceptional set for the positive superharmonic function Rf.

REMARK 5.6. In Remark 4.8, we discussed certain results of Essen and

Lewis. It follows from Theorem 4.7 that their exceptional set E is rarefied at oo

in D. Therefore, the covering results in Theorem 5.1 hold also for this set E.

Strictly speaking, we have proved this only in a half-space and Essen and Lewis

work in circular cones. The generalization to this more general situation is

technical but causes no essential difficulties.
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