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1. Introduction

The holomorphic continuation of solutions of linear partial differential
equations across the multiple characteristic surfaces is the subject of this paper.
In the preceding note [4] we attack this problem with the aid of the Goursat
problem. Since the existence-domain of solutions of the Goursat problem is
determined not only by the principal parts of the equations but also by their
lower order terms, the results in [4] depend on the "weighted principal parts" of
the operators which are not contained in the principal parts.

The purpose of this paper is to improve the results in [4] so that the theorems
are also valid under the similar assumptions only on the principal parts of the
operators and the properties of the boundary surfaces.

Let P(z, dz) be a linear partial differential operator with holomorphic co-
efficients defined near a point p in Cπ and Ω be an open set with the C2 boundary
dΩ which contains p. Though the property of the holomorphic continuation is
free from the choice of the local coordinates, we here employ the weighted local
coordinates at p such that the normal direction zί of dΩ at p is assigned the
weight 2, while the tangential directions z29 .9zn are each assigned the weight 1.
The motivation of this employment is that the boundary dΩ can be approximated
by the quadratic hypersurfaces of the form

Re zx = Re Σ a^zfj + Σ

To make this paper self-contained, some properties related to the weighted co-
ordinates are restated in the next section which is the summary of the section 2
in [4]. In the third section the basic theorem is proved under some fixed local
coordinates. The idea of the proof is due to Hδrmander [1] and used also by
Treves and Zachmanoglou to show the uniqueness of the Cauchy problem (see
the references of [3]) and in [3] to obtain the holomorphic continuation theorem.
The key point of this idea is to construct the family of surfaces which are non-
characteristic with respect to P(z, dz) and cover a neighborhood of p. This
basic theorem is the generalization of the theorem of the simple characteristic
case. In the last section, § 4, we study the geometric conditions on P(z, 3Z) and
dΩ to insure the existence of the local coordinates in the third section. The
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assumptions on P(z, dz) and dΩ are made in relation to the localization of P(z, ΰz)

at (p, N), where N is the complex normal direction of dΩ at p9 and the bicharac-

teristic space of its localization. The localization of an operator is due to
Hormander [2] to research the location of the singularities of the distribution

solutions of P(D)u = 0. Our method in this paper is also applicable to show the
uniqueness of the Cauchy problem near the multiple characteristic surfaces.

The details in this area will be published elsewhere [5].

2. Weighted coordinates

Since we deal with the local problem, the local coordinates have always the
same origin. The local coordinates (z1?..., zπ) are the weighted coordinates with
the weight (2, 1,..., 1) if zί has the weight 2 and zy (y' = 2,..., n) has the weight 1.
The weight of a monomial zα is equal to 2α1+α2H ----- hαπ. A holomorphic
function /(z) at 0 has the weight / if / is the lowest weight among the monomials
in the Taylor expansion of /(z) at 0. We remark that if/=0 then the weight of
/is 4-00. For a differential monomial (δ/3z)α, its weight is defined by — 2ct1

— α2 ----- αΛ. Similarly the weight of a(z)(djdz)Λ is equal to weight (a(z))
+ weight ((<9/δz)α). The weight of a linear partial differential operator P(z, <3Z)
= Σ αα(z)(3/δz)α is determined by min. weight (<3α(z)(δ/<3z)α).

Let (zj,..., zπ) and (vv l 5...,wM) be local coordinates with the same origin.
We say that these coordinates are equivalent as the weighted coordinates if Wj
has the same weight as Zj as a holomorphic function of z, and the converse is
also true. Then the weights of functions or differential operators are invariant
under the equivalent weighted coordinates. We also remark that if the weights
of (ξ j,..., ξn) are each assigned by ( — 2, —1,..., — 1), then the weight of Pm(z, ς),
the principal part of P, is invariant.

3. The basic theorem

The differential operator studied in this section is the following one :

where aΛ(z) are holomorphic in some neighborhood U of O and the summation
is taken over the multi-indices α such that |α| gm. The domain Ω is given by

(3.2) Ω = {z e U I p(z) < 0}

where p is a real-valued C2 function such that

(Ω.l)
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We consider this local coordinates as the weighted coordinates with the
weights (2, 1,..., 1). Then we make the following conditions on the principal
part Pm(z, dz) of the operator (3.1).

(P.I) Every weight of αα(z)(d/dz)* in Pm(z, dz) is larger than or equal to I —2m
= the weight of(d/dzl)

m-l(d/dz2)
1.

(P.2) For the term in Pm with the weight / — 2m, its coefficient does not vanish
at O, that is

weight [(αα(z) - αα(0)) (δ/δz)"] ^ / - 2m + 1,

and especially αα(0) = 0 when α = (m — /, /, 0,..., 0) in the second terms of
the right hand side o/(3.1).

(P.3) There exists an integer μ(2^μ^n) such that the term in Pm with the
weight I —2m is generated only by δ/dz1?..., d/dzμ.

REMARK 3.1. If P is simple characteristic at (0, N) with JV = (1, 0,..., 0),
then it is possible to choose the local coordinates such that P is in the form (3.1)
with / = ! and al<m — 1 in the sum of the second terms. In this case all condi-
tions (P. 1~3) with μ = 2 are automatically fulfilled.

REMARK 3.2. In Pm the condition (P.I) is only restrictive on the terms of

the order larger than m — l with respect to d/dzl. In fact, by (P.I),
weight (αα(z)) ^ max {0, / - 2m -f 2oίl + α2 H h απ = / - m + α t} .

REMARK 3.3. The conditions (P.I) and (P.2) imply that the term of the
weight / — 2m in Pm is essentially of the form αα(0) (δ/<3z)α with o^ = m — /.

Concerning the boundary function p(z) of dΩ9 the following conditions are
imposed in addition to (Ω.l).

(β.2) _|!P_(0)<0, where x2 = Rez2.
0X2,

(Ω.3) ^_(0) = 0, if l^iorj^μ, 2^i,j^n.

(0.4) -(0) = 0, if l^iorj^μ, 2 ̂  i, j ^ n.

We remark that if μ=2 in (P.3), then (Ω.3) and (Ω.4) become empty. Such a

case is happened when P is simple characteristic at (0, N).

REMARK 3.4. It is easy to show that these conditions (Ω.2~4) are inde-

pendent of the choice of the defining function p(z).

Now the basic theorem is as follows :
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THEOREM 3.1. Let P(z, dz) be a differential operator of the form (3.1)

which satisfies the conditions (P.I ~3), and Ω be an open set given by (3.2) with

the conditions (Ω.l~4). Ifu(z) is a holomorphic solution of Pu=f, where f is
holomorphic near 0, thenu(z) can be holomorphically prolonged across dΩ at 0.

For the rest of this section we devote ourselves to prove this theorem.

LEMMA 3.1. The conditions (P.I ~3) are invariant under the transforma-
tion of the coordinates of the following form:

{ wt = zί + a holomorphic function of the weight ^ 3,
.

w j= Zj + a holomorphic function of the weight ^ 2, j = 2,..., n.

PROOF. By (3.3) we have

-~ — = -3 -- h terms of the weight > — 2,
oz1 ow±

-* — = -~ — + terms of the weight > - 1, j = 2,..., n.
OZ j UW j

Then the in variance of (P.I ~ 3) is trivial.

LEMMA 3.2. Let p(z) be a defining function of Ω with the condition (Ω.l).
Then by changing the defining function p(z) if necessarily we may assume that

(Ω.5)

PROOF. By (Ω.ϊ) p(z) can be expressed as follows:

p(z) = Z! + zί + Σ aijzpj + Σ WPj + (Σ3 = ι bj

0(\Z\2).

If we set H(z)=^si(bjZj + EjZj)9 then r(z) = p(z)exp \_-H(z)~] becomes also
the defining function of Ω. It now easy to see that this r(z) satisfies (Ω.5).

REMARK 3.5. (1) Since p is real-valued, (Ω.5) implies that

(2) By Remark 3.4 we may assume that p(z) satisfies (Ω.l~5) under the condi-
tions (Ω. 1~4).

LEMMA 3.3. Let ρ(z) be a defining function of Ω which satisfies the con-



Localization of differential operators and holomorphic continuation of the solutions 543

ditions (ΩΛ ~5). Then by the suitable transformation of the coordinates of the
form (3.3), we may assume that

(Ω.6)
dzβzj

j =

in addition to the conditions (Ω.l~5).

PROOF. By (ίλl~5), p(z) can be written as

p(z) = z, + z, + Σj-i (*Λ)zι + Σj-i %z;)zι

+ Σ* (βyziz, + aijzizj + bijZiZj) + o(|z|2),

where Σ* means that the summation is taken over the set {(i9j)\i9j^μ + ί or
ΐ = 2 andj^μ+1 or j = 2 and ί^μ + 1}. Here we introduce the new coordinates
as

w / = z / > 7=2,..., n.

Then it is easy to see that p satisfies the conditions (ΩΛ ~6) under the coordinates
(wl5..., ww). This proves the lemma.

LEMMA 3.4. If a real-valued C2 function p satisfies the conditions (Ω.l~
6), then there exist positive constants α and Msuch that for any ε>0 the following
inequality holds in a sufficiently small neighborhood VofQ.

(3.4) p(z) :g Zl + z, - αxi + φtf + |z3|
2

y2=lmz2.

PROOF. We expand p in the Taylor series up to the order 2. The first order
part is equal to zί + zi. For the terms of the second order we divide these into
three groups : (i) the terms containing only z2 and z2, (ii) the terms consisted by
the product of z2 or z2 and zμ+lv.., zπ or zμ+1,..., zπ, (iii) the quadratic terms of
zμ+1,...,zrt and their complex conjugates. For the sums of the terms in each
groups, we estimate these respectively by

-v'xl + βyi with α ' , j8>0 by (O.2)

φ2|
2 + (C/ε)(|zμ+1|

2+. .+ |zπ|
2), ε>0,
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Then the inequality (3.4) is easily derived.

REMARK 3.6. The function of the right hand side of (3.4) is pluri-subhar-

monic at 0 if and only if M^α.

Set ψ(z) as

(3.5) <Kz) = zx + z> - αxi + βdzji" + |z3|
2

where 5 is a parameter such that 0<<5<l/2. Then Lemma 3.4 shows that in
some neighborhood Fof 0, the open set {^(z)<0} is contained in Ω. We here
remark that Fcan be chosen independently on the parameter δ.

Nextly we construct the family of surfaces. Define φ(z) as

(3.6) φ(z) = Zl + Zi - (α/2)rx2 + 2β(|z1|
1+* + |z3|

2 + ••• + |z,P)

where r>0 is a parameter and determined later.

LEMMA 3.5. //s<Ξαr2, ί/iew the set {ψ(z)^Q} (].{φ(z)£s} is compact and
contained in U(r), where

U(r) = {z I \x,\ ^ 2αr2, |Zl|
1+ί ̂  3(α/ε)r2, |z2| ^ (2 + (3α/M)1/2)r,

\Zj\ £ (3α/εy/2r (j = 3,..., μ), \zk\ ^ (3a/M)!/2r (fc = μ + 1,..., n)} .

PROOF. SetΛ2 = |z1|
1^ + |z3|

2 + ... + |zμ |2and^ = |Zμ+ι|2 + ... + |zj2> For

any z e {^(z) ̂  0} n {φ(z) ̂  s} we have

2αxi - 4x1 ^ 2Myl + 2εR2 + 2MR* ^ s + (α/2)rx2 - 2xi ,

which implies the next two inequalities :

2xi ^ 2αx^ - (α/2)rx2 - s,

5 + (α/2)rx2 - 2xt ^ 0.

Then it is easily derived that |xx | g2αr2 and |x2| ̂ 2r provided that s^αr2. Using
these estimates we have

0 ^ 2Myl + 2α^2 + 2MR2

n ^ 6αr2.

Thus the lemma is proved.

Now we determine the parameters ε and r so that the surface φ(z) = s is
non-characteristic with respect to P(z, dz) in some neighborhood of O. Let
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be the sum of the terms in Pm with the weight exactly / — 2m. By Remark 3.3 and
the condition (P.3), Q(δz) is expressed as follows:

(3,)

where the summation is taken over the multi-indices such that α1 = m — /, α 2 H —
+ αμ = /, α2 < / and <xμ + 1 = = αn = 0. In (3.7), every αα is a constant.

Let V(r) be the set defined by

(3.8) V(r) = {z \ \z,\ ^ 6(α/ε)r*, \z2\ ^ (2 + (3α/M)'/>,

\zj\ ^ (3α/β)*/*r C/ = 3,...,jι),

\zk\ ^ (Sα/M)1/^ (fc = μ + l,...,n)}.

If we set ξj = dφ/dzp then we have the next estimates on V(r) for 0<ε<l/4 and

' 1/4 ^ 1^1 ^2 if 6αr2 ^ 1,

αr/4 ^ |£2| ^ C(α, M)r,
(3.9)

k \ξk\ ^ 2(3αM)1/2r (fc = μ + 1,..., n),

where C(a, M) is a constant depending on α and M.

LEMMA 3.6. //we take ε (0<ε<l/4) sufficiently small, then Q(ξ) does not
vanish on V(r).

PROOF. We use the notation C(α, M) which is a different constant in each
position depending on α and M. By (3.9),

Ifr-ΈH ^ C(α, M)r<

|ααξα| ^ C(α, M)ε(<X3"l""+α*t)/2H, if |α| = m and oq = m — /.

If we put these estimates into the corresponding terms in (3.7), we have that

^ {C(α, M) - C'(α,

Since α3 H ----- hα^ ̂ 0, Q(ξ) does not vanish for a sufficiently small ε. This proves

the lemma.

From now on, the constant ε is taken as in this lemma and always fixed.
For the determination of the parameter r, we have the next lemma.
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LEMMA 3.7. // we take r sufficiently small, then Pm(z, ξ) does not vanish

on V(r).

PROOF. If the weight of a holomorphic function α(z) is equal to k, then the

inequality

supκ(r) \a(z)\ ^ Const. rk

holds for a sufficiently small r. Thus for a term 0(z)(d/δz)α in Pm with the
weight larger than I —2m, the inequality

weight a(z) ^ / - 2m + 1 + 2αt + α2 + ••• + αw

= / - m + αx + 1

implies

\a(z)ξ"\ <: Const. rz~m+αι+1 Const. r*2+'"+«n = Const. rί+1.

While on V(r), |β(£)| ̂  Const, r1. Since Pm is the sum of Q and the terms of the
weight larger than I —2m, we can choose r so that Pm does not vanish on V(r).
This proves the lemma.

Lastly we determine the parameter δ such that U(r) in Lemma 3.5 is con-
tained in K(r). Here ε and r are already fixed numbers.

LEMMA 3.8. // we take δ(Q<δ<l/2) sufficiently small, then U(r) is
contained in V(r).

PROOF. It is sufficient to choose δ so that

3(α/ε)r2 ^ {6(α/β)r2}1+*.

This proves the lemma.

Under the preparation of Lemmas 3.1~8, we now make the proof of the
basic theorem. The key lemma of this proof is the following one:

LEMMA 3.9 ([3, Lemma 1]). Suppose that there exist a real-valued C1

function φ(z) and constants s0, Si such that
(i) Pm(z, gradz 0(z)) ̂  0, in some neighborhood VofO,

(ii) s0 < Φ(O) < si,
(iii) {z e V\φ(z) ^ sj Π Ωc is compact,
(iv) {z e V\φ(z) ^ 50} n Ωc is empty,
(v) {z e V\φ(z) ^ 50} is not empty,
(vi) {zeV\ φ(z) < s} is simply connected for s0 < s < s^.

Then every holomorphic solution u(z) in Ω of the equation Pu=f, where f is
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holomorphic in V9 can be prolonged holomorphically in the set {z e V\φ(z)<sί}.

The proof of this lemma is based on Zerner's theorem which states that the
holomorphic continuation theorem holds across the non-characteristic surface.
The detail is presented in [3].

PROOF OF THEOREM 3.1. By Lemma 3.4 we may take Ω as the set {ze V\
\l/(z)<0}. Now take V(r) in Lemma 3.7 as the neighborhood V of O in Lemma
3.9. Then the condition (i) is fulfilled by Lemma 3.7. Set s0=-αr2 and sx

= αr2. Then the condition (ii) becomes trivial and the condition (iii) is derived
from Lemmas 3.5 and 3.8. The other conditions (iv), (v) and (vi) are easily
proved from the expression (3.6) of φ(z), so we omit their proofs. This ends the
proof of Theorem 3.1.

4. Choice of the local coordinates in the basic theorem

The contents of this section is similar to that of section 4 in [4]. Let (zlv..,
zn) be the local coordinates such that the surface zx =0 is tangent to dΩ at z = 0.
We consider this coordinates as the weighted coordinates with the weights (2,
!,...,!). The other local coordinates with the same property become equivalent
to this coordinates as the weighted coordinates.

Let P(z, dz) be a linear differential operator of order m with holomorphic
coefficients which is characteristic at 0 in the cotangential direction JV — (1, 0,...,
0). We set / the multiplicity of P at (0, N). That is

(4.1) Pw(0, N + tζ) = L(ζ)tl + higher order terms of t

where Pw is the principal part of P and L(ζ) is a non-zero polynomial of ζ. This
polynomial L(ζ) is called the localization of Pm at (0, N), which is originally
introduced by Hδrmander [2] to analyze the location of the singularities of the
solution u of the equation Pw = 0. When N=(l, 0,..., 0), (4.1) means that in
Pm(0, dz) there is none of the terms of order larger than m — I with respect to d/dz^
and the sum of the coefficients of (3/δz1)

m~z is equal to L(δ/dz2,..., δ/3zπ).
Therefore L(ζ) is a homogeneous polynomial of degree / in the variables (C2,...,
Q. Since the weight of L(δ/3z2,..., d/dzn)(dldzi)

m~l is equal to /-2m, we make
the assumption :

(P.I) The weight of Pm(z9 ξ) is equal to / — 2m, if the weight of ξ are assigned

(-2, -!,...,-!).

Relating to the localization L(ζ) of Pm, we introduce some complex linear
spaces in the holomorphic tangent space T0 and the cotangent space Tξ of the

surface dΩ at 0. For the polynomial L(ζ), we set



548 Yoshimichi TSUNO

(4.2) Λ*(L) = {ηeT%\ L(ξ + tξ) = L(ξ) for all t and ξ} ,

which is a linear subspace, and we introduce the annihilator

(4.3) A(L) = {Ό e T0 \ <ι;, η) = 0 for any η e Λ*(L)} ,

where < , > denotes the contraction between cotangent vectors and tangent
vectors. Λ(L) is the smallest subspace along which L(d/dz) operates and is
called the bicharacteristic space of P at (0, N). These subspaces are introduced
by Hδrmander [2].

DEFINITION 4.1. A holomorphic function φ(z) with grad2 φ(0) = N is said
to be a weighted characteristic function of P(z, dz) if it satisfies the following
condition :

(4.4) weight Pm(z, t gradz φ(z)) ^ / - 2m + 1,

where the complex parameter t is assigned the weight —2.

We remark here that the above definition is weaker than that of [4]. To
find such a weighted characteristic function φ(z), it is sufficient that φ has the
form

Assume that
(P.II) there exists a weighted characteristic function φ(z).

By the suitable equivalent change of the weighted coordinates we can assume
that φ(z) = zί. Then the following proposition is easy to prove.

PROPOSITION 4.1. If φ(z) = zl9 then (4.4) is equivalent to that there is none
of the differential monomials of the weight I — 2m in Pm(z, dz) which is generated
only by

We now fix some weighted characteristic function φ(z) and consider the local
coordinates (zl9...,zn) as φ(z) = zi (mod weight 3) and each Zj (j = 2,..., n) has
the weight 1. This means that the coordinates transformation considered from
now on has the following form :

{
wι = zι + a holomorphic function of the weight ^ 3,

w/ = Σ?=2 cjkzk + a holomorphic function of the weight ^ 2.

Then we make the last assumption on Pm such that
(P.III) weight [Pm(z, ξ) - Pm(0, Q] ^ / - 2m + 1.

PROPOSITION 4.2. This assumption (P.III) is invariant under the change
of variables of the form (4.5).
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PROOF. If we remark that by (4.5),

"3 — = 7) -- *" terms °f the wsight larger than -2,
•

-s — = Σ2=2 ckj -5 -- H terms of the weight larger than — 1,
OZί vWfc

the invariance of (P.III) is easy to prove.

Assumption (P.III) means that the terms with the lowest weight in Pm do not
degenerate at O.

Now we proceed to examine the conditions on Ω under the assumptions
(P.I -III).

(Ω.T) There exists a holomorphic curve ζ(t) in the weighted characteristic
surface S = {z1=0} with the following conditions'.
(i) C(0) = 0, dζ(0)eΛ(L)9

(ii) there exists a covector ξ0 e Tg such that

L«o) * 0 and <dζ(0), £0> * 0,

(iii) f/iere exists 0 non-zero complex number ί0 SMC/I

for a real parameter τ.

The geometric meaning of these conditions is that the tangent vector dζ(O)
belongs to the bicharacteristic space of P and the normal curvature of dΩ at O in
some real direction of dζ(0) is negative and, at the same time, L(ξ) is non-
characteristic at ξ0.

REMARK 4.1. The covector ξ0 in the above condition (ii) does not belong
to Λ*(L). Indeed this follows from the relations L(ξ0) Φ 0 = L(ξ0 + ( - I)ξ0).

We introduce the linear spaces

Since ξ0^Λ*(L)9 Λ(ξ0) is not contained in Λ(L). If the dimension of Λ(L) is
μ— 1, where μ^2 because L^O, it follows that dim Λ0(L) = μ — 2.

Concerning the subspace Λ0(L) we assume that
(Ω.II) the Leυiform of dΩ is degenerate on Λ0(L),
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(Ω.III) dΩ is tangent to 5 = {z1=0} at 0 of the second order holomorphically
in Λ0(L).

These conditions are the same as in [4]. If Ω is given by {p(z)<0}, then the

complex Hessian form of p at 0 is defined by

(4-6)

for two holomorphic tangent vectors t and s in T0. Using (4.6), (Ω.II) means
that if 5 belongs to Λ0(L), the linear form HpW( , s) vanishes on T0. The
condition (Ω.III) means by definition (see [4]) that for all holomorphic vector
fields X and 7 which are tangent to S, pΓ7p)(0) = 0 if X(O) or 7(0) belongs to
Λ0(L).

Now we construct the local coordinates (zl5..., zπ) so that the operator
P(z, dz) is reduced to the form (3.1) and all assumptions in the basic theorem are
satisfied. The method of this construction is the same as that in [4].

First we fix the weighted characteristic function φ(z) in (P.II) and set φ(z)

= Zι
Secondly we choose the tangential coordinates (z2,..., zπ) so that

r (i)
(4-7)

[ (ii) Λ0(L) is generated by d/dz^...9d/dzμ.

PROPOSITION 4.3. In these coordinates, L is non-characteristic at the

covector dz2

PROOF. If we write ξ0 as

•ίo = c2dz2 +••••+ cndzn9

then by (4.7),

(ξ0,dldzjy =0, ; = 3,...,μ.

Thus ξo = c2dz2 + ξ' where ξ'eA*(L). Since Λ*(L) is generated by dzμ+ 19...,
dzn9 we have

L(c2dz2) = Ϊ4c2dz2 + ξ') = L(ξ0} * 0.

which proves the.proposition.

From this proposition, L(d/dz) is written as



Localization of differential operators and holomorphic continuation of the solutions 551

where the summation is taken over the multi-indices |α| = /, α t =0 and α 2</.
Thus the operator P(z, δz) is expressed in the form (3.1) under this coordinates.
Since the equivalences between (P.I) and (P.I), (P.2) and (P.III), (β.2) and (Ω.I),

(Ω.3) and (Ω.III), (Ω.4) and (Ω.Π) are trivial, and (P.3) follows from (4.7), (Ω.l)
follows from the form of the weighted characteristic function φ(z) of (P.Π), all
conditions in Theorem 3.1 are satisfied under this coordinates. Summing up
these results we have the final theorem:

THEOREM 4.1. Let P(z, dz) be a differential operator of order m with
holomorphic coefficients in a neighborhood of p and Ω be an open set with C2

boundary dΩBp. We suppose that P(z, dz) and Ω satisfy the conditions (P.I~
III) and (Q.I ~ III). Then ifu(z) is a holomorphic solution of Pu =/ in Ω, where
f is holomorphic near p9 then u(z) can be holomorphically prolonged across
δΩ at p.
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