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1. Introduction

In the half space D={x=(x,,..., x,); x,>0}, n=2, the Green potential of
order a, 0 <a<n, of a non-negative measurable function f on D is defined by

i) = Gi(x Sy,

where G (x, y)=|x—y|* "= |X—=y|*™", X=(X1,..0y Xy 1, —X,) fOr x=(x1,..., X,_1,
X,). Our aim in this note is to study the existence of boundary limits of G.
One of our results is as follows:

Let p>1,y<2p—1 and f satisfy G £ o and
S f)Pyldy < for any bounded open set G < D.
G

Then there exists a set EcdD with H,_,,, (E)=0 such that to each {€dD—E,
there corresponds a set E;=S, ={xeD; |x|=1} with the properties:

a) B, (E)=0; b) lim, oGi(E+r)=0 forevery [eS,—E,

where H, denotes the {-dimensional Hausdorff measure and B, , denotes the
Bessel capacity of index (a, p) (see [3]).

In case a=2, according to Wu [8; Theorem 1], the exceptional set E, has
Hausdorff dimension at most n—2p; this is a consequence of our result in view of
Fuglede [2].

Moreover, non-tangential limits, fine limits, mean continuous limits and
perpendicular limits will be considered.

2. Preliminaries

Let us begin with the following lemma, which can be proved by elementary
calculation.

LEMMA 1. There exist positive constants ¢, and c, such that

Xn)Vn

4 XnVn
Hx—ylrex —y?

["=e]x = p|?

é Ga(x’ .V) é Cs Ix—y

for x=(x,..., x,) and y=(y1,..., y,) in D.
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By Lemma 1, we can prove the next lemma.
LEmMMA 2. Let f be a non-negative measurable function on D. Then

Gl % oo if and only if Sb(l +IyDEm=2y, f())dy < 0.

For xe R" and r>0, denote by B(x, r) the open ball with center at x and
radius r, and set B.(x, r)=B(x, r) n D.

LemMa 3. Let £€0D, ¢c>0 and f be a non-negative measurable function
on D such that G £ 0. Set

u(x = | G.x, DF()Ay.
{yeD;|x—y|2c|x—¢&[}
Then lim, . ..p u(x)=0 if and only if E€ OD— A, where
A= {éeaD; lim sup, | o r*~"~1 S f(y)y,,dy>0}.
B+(&,r)
Proor. Let 6>0. Then by Lemma 1,
limyeguan | Gulx, 305 )y = 0
D~B(&,9)

since G{ £ 0. Set C,,=sup{ pen=1 g fO)y,dy; 0<r=<é } We have again
B+(%,9)
by Lemma 1,

S G(x, Y ()dy
{yeB+(&,0);|x—y|Zc|x—¢&]|}

gM,an (= &1+ 1y — D=2 ()y,dy
(&,9)

+

< My, ((x=el+0y2  fondy

+

# Pax=ctarr{(  Owdyhdr) s MyC,,

B+(&1)

where M, M, and M are positive constants independent of x and 6. It follows
that limsup,_. ..p u(x)SM;C,;, which proves the “if”’ part. Lemma 1 also
gives

UE+r0,..., 0, 1)) = Mra=n-1 S FO)yudy

{yeD;(1+c)r<|y—¢&|<2(1+c)r}

for some positive constant M, independent of r, from which the “only if”’ part
follows.
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REMARK. If a<2 and f(y)=y;% then G/ oo by Lemma 2 but A=0D.
On the other hand, if «>2, then G/ % oo implies H,_,, ;(4)=0 (cf. [4; p. 165]),
so that A#0D.

First we give the following result.

THEOREM 1. Let ap>n,y<2p—1 and n—ap+y<0. Let f be a non-
negative measurable function on D such that Gl %o, and let £€dD. If
S f(»)Pyrdy < oo for some p>0, then G% has limit zero at &.

B+(&,p)

Proor. Let 6>0. First consider the case y<0. We have by Hoélder’s
inequality and Lemma 1,

S G, VS ()dy
B+(¢&,9)

A

A

1/p
< const. {6“"”‘"8 f()’)"}’.y.d."} ,
3)

B+ (&,

where 1/p+1/p'=1. In case 0<y=<p, we have

g Gu(x, Y)F()dy
B+ (¢&,0)

= . 1/p’ 1/p
< {f, . Lexmimex—yprtz—ywa [ s}
B+(£,0) B+(¢,9)

A

{SB+(€,6) Lealx= yl“‘Y/P'"]P’dy}l/p’ {SB+(§.6)f(y)pyzdy}1/p

lIA

const. {5“’”‘"& f(y)PyZdy}llp

B+(8,9)

Let y>p. Then,

[, Gl sy
B+ (&,9)

a—n—1y,1-y/p]p’ 11p v g, 177
< [ealx—yl ynVPIPdy Sypyidye .
B+(&,0) B+(¢&,0)
Letting I(y)=|x—y|*""1yl=?/P, we note

S Iy dy < S [lx — yI=="=11x, — y| =771 dy
{yeB+(&,0);ynZxn/2} B(¢&,0)

< S [lx — y|*=m=tx, — y,|1=7/7]7" dy
B(x,6)

= const. 67’ (xp=y=m)/p,
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f oy OG0y dy
{yeB+(&,8);yn<xn/2} B+(¢,9)

= const. 67’ (@p=y=m/p,
where x=(x’, x,). In all cases,

[, ., Glo D)y S const. fsrrn | f(p)eviay)
B+(&,9) B+(¢,9)

Since G/ = o, it follows that

1/p

llm Supx-){,xeD Ga{(x) = hm Supx-vf,xeD SB
+

G,(x, ) f(y)dy
(&,9)

< const. {5“""'"S f(y)"yidy}llp,

B+(&,9)

which implies that lim__,; .., GJ(x)=0, and hence our theorem is established.

To study the case ap<n or n—ap+7y=0, it'is important to note the following
lemma.

LeEMMA 4. Let p=1 and f be a non-negative measurable function on D
satisfying
0 S f(y)Pyldy < 0 for any bounded open set G < D,
G

and set

App={eeoDs( j—ylrtnfpyldy=co for any p>0}.

B+ (¢,
If B>y, then H,_,,. (A,5)=0; in case n—ap+y=0, 4,z is empty.

Proor. If n—ap+y=0, then

|&— ylep=F=n f(y)yPyhdy < S
B+ (&

+

[ SOPyidy < o,
B+(&,1) »1)

which implies that 4,4 is empty. Let n—ap+7y>0, and suppose H,_,,.,(4,,)
>0. Then by [1; Theorems 1 and 3 in §II], there exists a positive measure u
with compact support in A4, ; such that

U(B(x, r)) < rr-apty forevery xeR"® and r>0.

Note that

S | — yleP=8-ndy(£) < const. yI 8, yeD.

Taking N >0 such that the support of u is included in B(O, N), we obtain
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w0 = [, K=yl yidyldu)

IIA

{{le=yter-rdu} sty

SB+(0,N+1)

lIA

const.S SO)pyrdy < oo,

B+(O,N+1)

which is a contradiction. Thus H,_,,,,(4,4)=0, and our lemma is proved.

LemMmA 5. If p>1,y<2p—1 and f is a non-negative measurable function
on D, then A=A, g, where A is the set given in Lemma 3.

COROLLARY. If p=1,y<2p—1 and f is a non-negative measurable func-
tion on D satisfying (1), then H,_,,,(4)=0.

REMARK. The function
f(y) = yr*(log (1 +yz ) ?

satisfies (1) when p>1 and y=2p—1, but A=4D for this function f, so that
H,_pi(A)=c0 if a22.

ProoF oF LEMMA 5. By Hoélder’s inequality, we have

ra-n-t S SOy.dy
B+(&,r)

IIA

pa—n—1 {S [1E=y] (n—a+ﬂ)/py'1,-ﬂ/p]p’dy}”p’
B+(&,r)
1/p
A 1e=sprenr Gty
B+(8,r)

1/p
= const. {S 14 —yl“"""”f(y)”yﬁdy} ,
B+(&,r)
which implies that A< A4, ,.

Let p>1, k(x, y) be a non-negative Borel measurable function on R" x R"
and G be an open set in R". Following Meyers [3], we define the capacity

Ci(E; G) =inf|g|f, E<R",

where the infimum is taken over all non-negative measurable functions g on R”
such that g=0 on R"—G and

Ui(x) = S k(x, y)g(y)dy = 1 for every xe€kE.

In case k(x, y)=|x—y|*"", we write C, , for C, ,; in case k is the Bessel kernel of
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order £ (see [3]) and G=R", we write B, , for C; (-, R"). We note the follow-
ing properties (cf. [5; Lemma 1], [6; Sect. 2]).

(i) Let G and G’ be bounded open sets in R*, and K be a compact subset
of GNnG'. Then there exists M >0 such that

M~C, (E; G) £ C, (E; G') = MC, (E; G) whenever E c K.
(ii) For r>0,let Tx=rx, xe R". Then
Co {T.E; T,G) = r"=4#C, (E; G).
(iii) Let E* denote the projection of a set E to the hyperplane 6D. Then
Cy(E*; B(S, 1) = Cy, (E; BE, 1)

for £ € 0D and r>0.
(iv) Let E denote the radial projection of a set E to the surface S,, i.e.,
E={(eS,; rleE for some r>0}. Then there exists M >0 such that

Co(E; B(O, 3)) < MC, (E; B(0, 3))

for EcB(0, 2)—B(0, 1).
(v) IfC,,(E; G)=0 for some bounded open set G=R", then B, ,(E)=0.
(vi) B, ,(E)=0 if and only if C; ,(E N G; G)=0 for any bounded open set
GcRn.

3. Non-tangential and fine limits

A function u on D is said to have non-tangential limit zero at £ € 6D if
lim, ¢ cere,q #(x) = 0 for any a > 1,

where TI'(¢, a)={x=(x4,..., X,)); |x—¢&| <ax,}.

THEOREM 2. Let f be a non-negative measurable function on D such that
Gl#o. If E€0D—(AU A, ;) for some numbers B and p with ap>n, then G}
has non-tangential limit zero at &.

REMARK. Let f satisfy the additional assumption (1), and define B=AU
(Np>y App)- Then the conclusion of Theorem 2 holds for { €D except for the
set B. In general, H,_,,;(B)=0, and if y<2p—1, then H,_,,.,(B)=0 on ac-
count of Lemmas 4 and 5.

PROOF OF THEOREM 2. Write G =u+v, where
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u(x) = | G.x, 1))y,

{yeD;|x—y|Zxn/2}

o) = | G.x, DS (Ay.

{(yeD;|x~y|<xn/2}

By Lemma 3, u has non-tangential limit zero at ¢£&. If x e I'(¢, a), then Holder’s
inequality yields

v(x) |x=yl*="f(y)dy

<c S
= L2
{yeD;|x—y|<xn/2}

S 1/p’ 1/p
Sc {S |x — y|P"(= ”’dy} {S f(y)"dy}
{yeD;|x—y|<xn/2} {yeD;|x—y|<xn/2}

= const. {x:"“" S f(y)"dy}”p

{yeD;|x—y| <xn/2}

< const. {{ &= ylronfopybant

B+(&,2axn)

which implies that lim,_, ccreq) 0(x)=0 if (€0D—A,, Thus the theorem is
proved.

Let k,4(x, y)=|x—yl* "|y,|7#/». Then we can easily prove the following
result.

LemMA 6. (a) G, , (T.E; T,G) = m==r*tC,  (E; G).

(b) For a>1, there exists a positive constant M (which depends on B) such
that

M_lca,p(E; B(é) 3)) é Cku,;;,p(E; B(és 3)) é Mca,p(E) B(&: 3))
whenever EcT'(¢, a) n B(&, 2)—B(&, 1), £ e dD.

Following Meyers [4], we say that a set EcR" is (a, p)-thin at £ e dD if
[ DerorCu (N BE 1) - B 112); BE 2] L < oo,
0

Further we say that E is (k, 4, p)-thin at & if

(-1 g

1
S0<rap—ﬂ—"cku_ﬂ‘p(E N B, r) — B, r/2); B, 2r))> Lapys
By Lemma 6, we obtain the next result.

LeMMA 7. If E is (k,p, p)-thin at &, then ENnT(&, a) is («, p)-thin at & for
any a>1.

For a non-negative measurable function f on D, we set



118 Yoshihiro Mizuta

1/(p-1) ,
2B = {5550; Sz <r“""""SB f(y)"yﬁdy) ’ iiri = oo for any p>0} .
+(&,r)

THEOREM 3. Let f be a non-negative measurable function on D such that
Glfo. Ifé€dD—(AU Ay p) for some numbers p>1 and B, then there exists
E,=D such that E; is (k, g, p)-thin at £ and

limx-»é,xeD—E; G{(x) = 0.

ReMARK 1. If f satisfies (1), then B,_,,, (A, 5)=0 for B>y on account of
[4; Theorem 2.1]. We do not know whether H,_,,.,(4, ;=0 or not in case

B>y.
REMARK 2. By Lemma 7, E,n I'(¢, a) is (a, p)-thin at £ for any a> 1.

PROOF OF THEOREM 3. Write G/ =u+v, where

u(x) = | G.(x )y,

{yeD;|x—y|2|x—&|/2}

ox) = G.(x, 9)f(1)dy.

{yeD;|x—y| <|x—4|/2}
If €D — A, then Lemma 3 shows that lim,_,, ..p u(x)=0.
Let {€dD— A, 4, and take a sequence {a;} of positive numbers such that
lim,;_, , a;=00 and

. 1/(p—1)
s, {aaiomern | soyhayt " < oo,
B+(g,274%2)
where j is a positive integer such that
2-J+2 1/(p-1
S (ruP_ﬁ—nS f(y)Pygdy> P )ir_ < 00.
0 B+(¢,r) r

Consider the sets

Ey= {xeD; 27 < |x—¢&| <2771, o(x) 2 a7'/p)

for i=j, j+1,.... IfxeE;and |[x—y|<|x—¢|/2, then |y—¢|<27*2, so that
Cra,p.n(Eis B, 272) < aig _ fpyhdy.
B+(f,2 i+2)
Consequently,
S {20merC,, , (E B(E 27 H)}VED < o,

which implies that E=\U{; E; is (k, 5, p)-thin at . Clearly, lim,,; ,.p— g 0(x)=0,
and our theorem is proved.
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4. Mean continuous limits

A function u on D is said to have mean continuous limit zero of order g (or
simply mc,-limit zero) at £ e dD if

lim, o r-"g
B+ (

+

|lu(x)|2dx =0 in case ¢q < o0,
)

lim, ¢ ep u(x) =0 in case ¢ = o0.

THEOREM 4. Let f be a non-negative measurable function on D such that
Gl%oo. IfE€dD—(AU A,y) for some numbers p>1 and B, then GJ has mc
limit zero at &, where q is given as follows:

b o

) lg=1/p—(x—B/pn if 0=B<2p—1 and O0<oap—f<n;

i) l<g<ow if 0B<2p—-1 and oap— B =n;
i) g =co if 0=f<2p—1 and ap— B> n;
iv) 1/g=1/p —a/n if B<0 and ap < n;
V) 1<g< if B<0 and ap = n;
vi) g= if B<O0 .and oap > n.

PrROOF. As in the proof of Theorem 3, write G/ =u+v. If £ €dD— A, then
Lemma 3 shows that lim,_,,.p u(x)=0. For v, we note the following estimates:

W) S 6 = 317" F(3)dy in case 50,

{yeD;|x—y|<|x—¢&|/2}

o) < czg |x— yl==8=n[ f()y47]dy incase O < < p,
{yeD;|x—-y|<|x—¢&|/2}

w0 S 6 | |x— yla 1=y LIp[ £(y)yBIr]dy
{yeD;|x—y|<|x—&|/2}
incase p<f<2p-—1.

The remaining part of the proof can be carried out along the same lines as in the
proof of [7; Theorem 6].

We say that a function u on D has non-tangential mean continuous limit
zero of order g (or simply NT-mc,-limit zero) at £ € 0D if

lim, r‘"g ) lu(x)|2dx = 0 forall a>1,

re,a,

where (¢, a, r)=I(&, a) N B, r).
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THEOREM 5. Let f be a non-negative measurable function on D such that

Gl£oo. If EcOD—(AU A, p) for some numbers p>1 and B, then G! has NT-
mc,-limit zero at £, where q is given as follows:

) lg=1/p—a/n if ap<n;
i) 1<g<ow if ap=n.

The case ap>n was considered in Theorem 2.

PROOF OF THEOREM 5. We write G/ =u+v as in the proof of Theorem 2.
Then Lemma 3 shows that u has non-tangential limit zero at £ € 0D — A4, so that
u has NT-mc-limit zero at e 0D—A for all g=1.

Let (edD—A,, First we consider the case ap<n.
={xel(, a); r[2<|x—E&|<2r}.
inequality (cf. [7; Lemma 97),

For r>0, set A(a, r)
Then we have by Lemma 1 and Sobolev’s

r"’S v(x)dx
A4(a,r)

sf, e vyl ay} dx
4(a,r) 4(3a,r/2)U4(3a,2r)
a/p
sm{l fGyray
A(3a,r/2)U4(3a,2r)

. ap—p-n ) a/p

< M, | je=ylerrrpryviay}””,
r(¢,3a,4r)

where M; and M, are positive constants independent of r. Therefore v has
NT-mc,-limit zero at {. The case ap=n can be proved similarly.

5. Radial limits
Our aim in this section is to establish the following theorem.

THEOREM 6. Let f be a non-negative measurable function on D such that

Gl%o. If{edD—(AU A,y) for some numbers p>1 and B, then there exists
a set Ec S, such that B, (E)=0 and

lim, o GI(E+1r) =0  for every (eS,—E.
To prove this, we need the next lemmas.

LEMMA 8. Let

o(x) = g Gu(x, S ()dy.

{yeD;|x=y|<|x-¢§|/2}
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If £edD— A, ; for some numbers p>1 and B, then there exists a set Ec D with
the properties:

(i) limg,g ep—gt(x) =0;

(ii) Z?:] 2i(n—ap+ﬁ)Cka’ﬁyp(E(i); B(é, 2—i+2)) < o,
where EW={xeE;27I<|x—¢ <271},

Proor. Let {a;} be a sequence of positive numbers such that lim;_, . a;=c0
and X 22, a;b;< oo, where

b=, le=yleroor s ytdy,
B; = {yeD; 27"t < |¢{—y| < 271*2},
and i, is a positive integer such that X {2, b;<c. Consider
E,={xeD; 27 < |x—¢& <27, v(x) = a7 1P}

If xe E; and |x —y|<|x—¢&|/2, then y € B;, so that
ChennEis B) = | f()2hdy < const. apa-tr=sre0),
. 5,

Thus the set E=\U{,;, E; has the required properties.
LEMMA 9. If E satisfies (ii) in Lemma 8, then
B, (NF=1 (Vi ED)) =0,
where F~ in general denotes the set {£+(; (e S, and ¢+r{eF for some r>0}.
PrOOF. Let F=N%; (UL, E®)". Then Lemma 6 together with (iv) in

Section 2 implies that C, ,(F nI'(¢, a); B(¢, 3))=0 for a>1, from which B, ,(F)
=0 follows.

PROOF OF THEOREM 6. As in the proof of Theorem 3, write G/ =u+v. If
{edD—A, then lim,_,; . .pu(x)=0 by Lemma 3. Further, if £€0D—A4,,, then
there exists a set Ec S, such that B, ,(E)=0 and

p.p

lim, g u(é+r{) =0 for every (eS,—E,

because of Lemmas 8 and 9. Thus the proof of Theorem 6.is complete.
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6. Perpendicular limits

Let e=(0,...,0, 1)e S,.

THEOREM 7. Let 0=y<2p—1, p>1 and f be a non-negative measurable
Sfunction on D satisfying (1) such that G{ £ oc. Then there exists a set EcdD
such that B,_,,, (E)=0 and

lim,,o G{(E+re) =0  for every ¢e€dD — E.

PROOF. As in the proof of Theorem 2, we write Gf =u+v. First note that
lim, ;o u(+re)=0 for (edD—-A by Lemma 3. Since H,_,,.,(4)=0 by the
corollary to Lemma 5, B,_,,, (4)=0 on account of [3; Theorem 21].

Let r>0, and consider the sets

E; = {x=(x1..., x); 27" S x, <271, 0(x) 2 a7 }/7}

for i=1, 2,..., where {a,;} is a sequence of positive numbers such that lim;_q a,;
=00 but

2an . ORIy < o0,

{(yeB+(0,2r);27 1" 1<y, <27 i+2}

Since [x—y| <y, if |x—y| <x,/2, we see from Lemma 1 that

arifr < o(x) S cp | |x = yle=re=nyiin f()dy
{yeD;|x—y|<x,/2}

for xe E;. Hence it follows from the definition of C,_,,, , that
Ca:—-y/p,p(Ei n B(O’ r)’ B(Os 2r))
< cfa | e e Sy,
{yeB+(0,2r);27i-1<y,<27i+2}

which gives

Z??:I Ca—y/p,p(Ei n B(O’ r); B(O’ 2")) < oo.
Set E(r)=N%; (\JZ; E;n B(0, r))*. Then by properties (ii) and (iii) in Section
2, we have C,_,,, (E(r); B(O, 2r))=0, which implies that B,_,, (E(r))=0.
Moreover, lim, o (¢ +re)=0 for £ D n B(O, r)— E(r). Thus E=\U% E(r) has
the required properties.

REMARK 1. In case y=0, Theorem 7 is the best possible as to the size of the

exceptional set; in fact, for y<0 and a set EcdD with B, (E)=0 we can find a

non-negative measurable function f on D satisfying (1) such that G{(¢+i~le)= o0
for any ¢ € E and any positive integer i.
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REMARK 2. In case a is an integer and 0<y<p—1, Theorem 7 also follows

from Theorem 3 in [7].
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