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1. Introduction

In the half space D = {x = (x t,..., xπ); xn>0}, n^2, the Green potential of
order α, 0<α<o?, of a non-negative measurable function/on D is defined by

G{(x) = \ Gα(x, jO/CyX)7,
JD

where Gα(x, y) = \x-y\*-"-\x-y\*-n, x = (x l5..., x Λ _ t , -xn) for x = (x1,..., x w _ l 5

xπ). Our aim in this note is to study the existence of boundary limits of G{.
One of our results is as follows:

Let p>l , y<2p— 1 and f satisfy G{φoo

< oo /or any bounded open set G c D.

Then there exists a set EadD with Hn__ap+y(E) = Q such that to each ξedD — E,

there corresponds a set Eξ<^S+ ={xeD; |x| = ί} with the properties:

a) ββfp(E?) = 0; b) l im r l o G{(ξ + rζ) = 0 for every ζεS+-Eξ,

where H^ denotes the ^-dimensional Hausdorff measure and BΛp denotes the
Bessel capacity of index (α, p) (see [3]).

In case α = 2, according to Wu [8; Theorem 1], the exceptional set Eξ has
Hausdorff dimension at most n — 2p; this is a consequence of our result in view of
Fuglede [2].

Moreover, non-tangential limits, fine limits, mean continuous limits and
perpendicular limits will be considered.

2. Preliminaries

Let us begin with the following lemma, which can be proved by elementary
calculation.

LEMMA 1. There exist positive constants cλ and c2 such that

Cl\x-y\n-«\nχ-y\2 =G«(χ> y^ = c* \x-y\n-*\χ_y\2

for x = (x1,..., xn) and y = (yl,..., yn) in D.
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By Lemma 1, we can prove the next lemma.

LEMMA 2. Let f be a non-negative measurable function on D. Then

Gίφoo if and only if ( (l + \y\γ-n-2yj(y)dy«x>.
JD

For xeR" and r>0, denote by B(x, r) the open ball with center at x and
radius r, and set B+(x, r) = B(x, r) n D.

LEMMA 3. Let ξεdD,c>Q and f be a non-negative measurable function
on D such that G{ φ oo. Set

"(*) = f GJίx, y)f(y)dy.
J{yeD;\x-y\^c\x-ξ\}

Then limx^ξ}XeDu(x) = Q if and only if ξedD — A, where

A = \ξedD; limsup r i o r—
1 ( f(y)yndy>0\.

( JB + ( ξ , r ) )

PROOF. Let δ>0. Then by Lemma 1,

Gα(x, y)f(y)dy = 0
D~B(ξ,δ)

since G{φ oo. Set Q = sup< rα~n~1 \ f(y)yndy', 0<r^δ >. We have again
I jB+(ξ,δ) )

by Lemma 1 ,

Gα(x, y)f(y)dy
{yeB+(ξ,δ)',\x-y\Zc\x-ξ\}

f(y)yndy

where M l5 M2 and M3 are positive constants independent of x and δ. It follows
that Hmsupx_>ξtXeDu(x)^M3Cδ, which proves the "if" part. Lemma 1 also
gives

o,..., o, i)) ^ M4r*-«-ι ( f(y)yndy
J{yeD;(l + c)r<\y-ξ\<2(l + c)r}

for some positive constant M4 independent of r, from which the "only if" part

follows.
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REMARK. If α<2 and f(y) = y^Λ

9 then G{φoo by Lemma 2 but A = dD.
On the other hand, if α^2, then G{φoo implies Hn,Λ+ί(A) = Q (cf. [4; p. 165]),
so that A=£dD.

First we give the following result.

THEOREM 1. Let xp>n,y<2p—l and n — oφ + y<0. Let f be a non-

negative measurable function on D such that G{φoo, and let ξedD. If

\ f(y)pyϋιdy<oo for some p>0, then G{ has limit zero at ξ.
JB + (ξ,p)

PROOF. Let δ>0. First consider the case y^O. We have by Holder's
inequality and Lemma 1,

x(x, y)f(y)dy

lc2\x-y\«-"rdyY/P' \(
(ξ,δ) } ()B + (ξ,

^ const. \δ**-y-» ( f(yyyldyY'9 ,
I JB+(ξ,δ) )

where l/p + 1 /p' = 1 . In case 0 < y ̂  p, we have

1/P' (C 1 1/P

« _ f ] l/p' (Γ ) 1
\c2χnyn

 y/p\χ— v | α ~ w |χ— vl~2]p dy> <\ f(y)pyy

ndy>
B+(ξ,δ) J ()B + (ξ,δ) \

L,,v
{ Γ ) !/P

^«P-y-« \ /W^dy .
JB+(ξ,δ) )

Let y > p. Then,

^ ^ Gα(x, j)/(^)^

« a _ n _! i_ ' 1 X /

B + (£,<5) 2 W f

Letting J(j;)=|χ — y\Λ~n~lyn~ylp

9 we note

/(^'ί/j; ^ ί [l^-jh"11"1!^-^!1-

f JB(ξ,δ)

B(x,δ)

= const. δ
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I(yYdy <
{yeB+(ξ,δ);yn<xn/2}

= const. #»'(«p-y-»)/p,

where x = (x', xπ). In all cases,

\ Gα(x, j)/(j)dy ^ const. \δ *-v-» ( f(y)pyγ

ndyV/P .
JB+(ξ,δ) ( JB+(ξ,δ) }

Since G{φ oo, it follows that

lim supx^ξ>xeD G{(x) = lim sup^^ \ Gα(x, y}f(y}dy
JB + ( ξ , δ )

( C ) l/P
^ const. \δ*p-r-n\ f(y)pyl dy \ ,

I Jβ+(ξ,^) 3

which implies that limx_ξ>;ceD G{(x) = 0, and hence our theorem is established.

To study the case ap^n orn — oφ + y^O, it is important to note the following

lemma.

LEMMA 4. Let p^l and f be a non-negative measurable function on D
satisfying

(1) \ f(y)pyy

ndy < oo for any bounded open set G c D,
JG

and set

Ap>β = IζedDi ( \ξ-y\*p-β-"f(y)pyβ

ndy=π for any p>0\ .
( JB+(ξ,p) J

If β>7, then Hn.Λp+γ(Ap)β) = Oι in case n-αp + y^O, Ap)β is empty.

PROOF. If n - up + γ ̂  0, then

f \ξ-y\«'-'-*f(yy>yldy ^ ( f(y)pyldy < oo,
JB + (ξ,l) JB+(ξ,l)

which implies that Aptβ is empty. Let n-αp + y>0, and suppose Hn-Λp+7(Aptβ)
>0. Then by [1; Theorems 1 and 3 in §11], there exists a positive measure μ
with compact support in Ap>β such that

μ(B(x, r)) ̂  r

n~Λp+γ for every xe.R" and r > 0.

Note that

^ const, yl'β, yεD.

Taking ΛΓ>0 such that the support of μ is included in B(0, N), we obtain
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g const. \ f(yYyy

ndy < oo,
JB+(0,N+1)

which is a contradiction. Thus Hn_Λp+y(Apίβ) = Q9 and our lemma is proved.

LEMMAS. If p>l, y<2p—l and f is a non-negative measurable function
on D, then Ac:Aptβ, where A is the set given in Lemma 3.

COROLLARY. If p^.l,γ<2p— 1 and f is a non-negative measurable func-
tion on D satisfying (1), then /fw_α/,+y(^4) = 0.

REMARK. The function

satisfies (1) when p>l and y = 2p — 1, but A = dD for this function /, so that

PROOF OF LEMMA 5. By Holder's inequality, we have

r«-«-ι ( f(y)yndy
jB + (ξ,r)

(C
^ r«-«-ι J \ [|ξ-)Ί (»

l jβ + (ξ,r)

= const. \( \ξ-y\"p-β-nf(yYyβ

ndy\ί/P ,
(jB+(ξ,r) )

which implies that AdAptβ.

Let /?>!, /c(x, y) be a non-negative Borel measurable function on RnxRn

and G be an open set in Rn. Following Meyers [3], we define the capacity

C4fp(E;G) = inf||0||J, E c Λ»,

where the infimum is taken over all non-negative measurable functions g on Rn

such that # = 0 on Rn — G and

C7f(x) = ί fc(x, ̂ Cκ)d^ ^ 1 for every x e E.

In case /c(x, y) = |x — j|£~n, we write C£>p for Cfeιp; in case fc is the Bessel kernel of
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order £ (see [3]) and G = R", we write B^p for Cktp( , Rn). We note the follow-
ing properties (cf. [5; Lemma 1], [6; Sect. 2]).

( i ) Let G and G' be bounded open sets in Rn, and K be a compact subset
of G n G'. Then there exists M>0 such that

Af-^pCE; G) ^ Qίp(£; G') g MC£>p(£; G) whenever E a K.

(ii) For r>0, let Γrx = rx, xe£ w . Then

(iii) Let E* denote the projection of a set E to the hyperplane dD. Then

for ξeδί) and r>0.
(iv) Let E denote the radial projection of a set E to the surface S+9 i.e.,

E = {ζ e S+ rζ e E for some r > 0}. Then there exists M > 0 such that

Q,p(£; B(0, 3)) ^ MC£tp(JB; J3(O, 3))

, 2)-B(0, 1).
(v) If C£>p(£; G) = 0 for some bounded open set Gc R", then BΆ>p(E) = Q.
(vi) B£)P(£) = 0 if and only if C&tp(E n G; G) = 0 for any bounded open set

3. Non-tangential and fine limits

A function u on D is said to have non-tangential limit zero at ξ e dD if

fttox +ξ.xeΓu.a) "(*) = 0 for any α > 1,

where Γ(ξ, ά) = {x = (xl9...9xn); \x-ξ\<axn}.

THEOREM 2. Let f be a non-negative measurable function on D such that
G{φoo. // ξedD — (A\) Ap>β) for some numbers β and p with αp>n, then G{
has non-tangential limit zero at ξ.

REMARK. Let / satisfy the additional assumption (1), and define B = A\]
(Γ\β>γApfβ). Then the conclusion of Theorem 2 holds for ξedD except for the
set B. In general, JEfπ_α+1(JB) = 0, and if y<2p-l, then #n_αp+y(β) = 0 on ac-
count of Lemmas 4 and 5.

PROOF OF THEOREM 2. Write Gf

a = u + v, where
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G£x9 y)f(y)dy,
{yeD;\x-y\^xn/2}

Ga(x, y)f(y)dy.
{yeD;\x-y\<xn/2}

By Lemma 3, u has non-tangential limit zero at ξ. If xeΓ(£, α), then Holder's
inequality yields

\χ-y\*-nf(y)dy
{yeD;\x-y\<xn/2}

{yeD;\x-y\<xn/2} ) U {yeD;\x-y\<xn/2}

P' \\
U {yeD;\x-y\<xn

= const. \x*p~" \ f(yYdy\
( J{yeD;\x-y\<xn/2} )

t. K |ξ- y|α
Uβ + (ξ,2αx n)

^ const.

which implies that limje_>ί>JC6Γ(5>β)ι;(x) = 0 if ξedD — Aptβ. Thus the theorem is
proved.

Let kxj(x, y)= \x — y\Λ~n\yn\~β/p> Then we can easily prove the following
result.

LEMMA 6. (a) Qα>/ϊ,p(Γr£; ΓrG) = r»-α^Cfeα)/ϊ,p(£; G).

(b) For α>l , ί/iere exists a positive constant M (which depends on β) such
that

M-'C./E; B({, 3)) ^ Qα>/J>J,(£; B(ξ, 3)) g MCα>p(£; B(ξ, 3))

whenever E<=Γ(ξ, a) n B(ί, 2)-B(ξ, 1), ξeδD.

Following Meyers [4], we say that a set E<=R" is (α, p)-thin at ξedD if

[r"-"Ce>|I(£ Π B(ξ, r) - B(ξ, r/2); B(ξ, 2r))]1/<"-1) < oo.

Further we say that £ is (fcα „, p)-thin at (̂  if

"-'--̂ ,,.̂  n B(ξ, r) - B(ξ, r/2); B(ξ, 2r)))1/<P"1)-^l < oo.

By Lemma 6, we obtain the next result.

LEMMA 7. // E is (kΛtβ9 p)-thin at ξ, then E n Γ(ξ, a) is (α, p)-thin at ξ for
any a>\.

For a non-negative measurable function / on D, we set
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A'r,t = iζedD; (" (r"-β-J f(yYyfndy\ll(f~l) 4^ =(χ) forany

( JO \ JB + (ξ,r) / T

THEOREM 3. Let f be a non-negative measurable function on D such that
G{φoo. // ξedD — (A U A'ptβ) for some numbers p>l and β, then there exists
EξczD such that Eξ is (kΛιβ, p)-thin at ξ and

REMARK 1. If /satisfies (1), then BΛ,y/p)p(Apίβ) = Q for β>y on account of
[4; Theorem 2.1]. We do not know whether Hn_Λp+γ(Apfβ) = ΰ or not in case
β>y.

REMARK 2. By Lemma 7, Eξ n Γ(ξ, a) is (α, p)-thin at ξ for any a > 1 .

PROOF OF THEOREM 3. Write G{ = u + v, where

u(x) = \ Gα(x, y)f(y)dy,
}{yeD;\X-y\*\x-ξ\/2}

v(x) = \ Gα(x, y)f(y)dy.
J{yeD ,\x-y\<\x-ξ\/2}

If ξedD — A, then Lemma 3 shows that limx->ξ>xeD w(x) = 0.
Let ξedD — Aptβ9 and take a sequence {αj of positive numbers such that

lim^oo α/ = oo and

ΣS-y α^C-^) /ω^^ <oo fI Jβ+(ξ,2- ί + 2)

where 7 is a positive integer such that

Consider the sets

Et = {xeD'92-l£ \x-ξ\ <2~ ί+1, υ(x)^aτl/p}

for i=j,; + l,.... If xe^and \x-y\<\x-ξ\/2, then |j;-ζ|<2-/+2, so that

C .̂,.̂  B(ξ9 2-«)) ̂

Consequently,

which implies that E = \Jf=j Ev is (/cαj/?, p)-thin at ξ. Clearly, lim^^^^^.f φc)
and our theorem is proved.
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4. Mean continuous limits

A function u on D is said to have mean continuous limit zero of order q (or
simply mc^-limit zero) at ξ e dD if

lim r i o r~n \ \u(x)\qdx = 0 in case q < oo,
JB+(ξ,r)

Hmx-+ξfXeD w(x) = 0 in case q = oo.

THEOREM 4. Let f be a non-negative measurable function on D such that
G{φoo. // ξedD — (A U Aptβ) for some numbers p>l and β, then G{ has mcq-
limit zero at ξ, where q is given as follows:

i) i/q = ι/p - (a-β/p)/n if Q ̂  β < 2p - 1 and 0 < αp - β < n;

ii) 1 < g < oo if 0 ̂  β <2p - 1 and ap - β = n;

iii) g = oo if Q ̂  β < 2p - I and ap - β > n;

iv) 1/^f = 1/p — α/n i/ )5 < 0 and oψ < n;

v ) l < ^ f < o o if β<0 and up = n;

vi) g = oo if β<Q and ap > n.

PROOF. As in the proof of Theorem 3, write G{ = u + v. If ξedD -A, then
Lemma 3 shows that limJC->^,je6D w(x) = 0. For v, we note the following estimates:

φc) ̂  c2 ( \x- y\*-" f(y)dy in case β ^ 0,
J{yeD;\x-y\<\x-ξ\/2}

v(x) ^ c2 ( \x-y\*~β/p~nLf(y)yβn/p'\dy in case 0 < β ^ p,
J{yeD;μ-y|<μ-ξ|/2}

ΦO ̂  c2 ί ^-^^^-"^-^[/(y)^]^
J(yeD;\x-y\<\x-ξ\/2}

in case p < β <2p — 1 .

The remaining part of the proof can be carried out along the same lines as in the
proof of [7; Theorem 6].

We say that a function u on D has non-tangential mean continuous limit
zero of order q (or simply NT-mc^-limit zero) at ξ E 3D if

lim r lo r~n ( \u(x)\*dx = 0 for all a > 1,
JΓ(ξ,a,r)

where Γ(ζ, a, r) = Γ(ξ, a) n B(ξ, r):
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THEOREM 5. Let f be a non-negative measurable function on D such that
G{φoo. If ξedD-(AθApfβ)for some numbers p>\ and β, then G{ has NT-
mcq-limit zero at ξ, where q is given as follows:

i) 1/g = 1/p - α/n if up < n\

ii) \ < q < oo if α/? = n.

The case ocp>n was considered in Theorem 2.

PROOF OF THEOREM 5. We write G£ = U + V as in the proof of Theorem 2.
Then Lemma 3 shows that u has non-tangential limit zero at ξedD — A, so that
u has NT-mCg-limit zero at ξ e dD — A for all q ̂  1 .

Let ξedD — Aptβ. First we consider the case ap<n. For r>0, set Δ(a, r)
= {xeΓ(ξ, a); r/2<\x — ξ\<2r}. Then we have by Lemma 1 and Sobolev's
inequality (cf. [7; Lemma 9]),

v(xγ
Δ(a,r)

\c2(
a,r) ( J J(3α,r

-" \( f(yYdy
UJ(3α,r/2)Ud(3fl,2r)

dx

where M± and M2 are positive constants independent of r. Therefore v has
NT-mc€-limit zero at ξ. The case <xp = n can be proved similarly.

5. Radial limits

Our aim in this section is to establish the following theorem.

THEOREM 6. Let f be a non-negative measurable function on D such that
G{φoo. // ξedD — (A U Aptβ) for some numbers p>l and β, then there exists
a set EaS+ such that BΛfp(E) = Q and

limr ioG{(ς + rO = 0 for every ζeS+-E.

To prove this, we need the next lemmas.

LEMMA 8. Let

= ί
J

Gα(x, y)f(y)dy.
{yeD;\x-y\<\x-ξ\/2}
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If ξedD — Ap)βfor some numbers p>ί and β, then there exists a set EcD with

the properties:

(i) \imx->ξtXeD-Eυ(x) = 0;

(ii) Σf=ι 2'<»-«*+'>Ckei,fJ,(E<0; B(ξ, 2-< +2)) < oo,

where

PROOF. Let {at} be a sequence of positive numbers such that lim,-.* 00^=00

and ΣS=ioα^ί<00' wnere

bi = \ξ-y\*p-β-"f(yYyβ

ndy,

and i0 is a positive integer such that Σί°=;0 bt<co. Consider

Ei = {xeD;2-'^ \x-ξ\ < 2~ί+1, ι (x) ̂  aT1/p}

If x e EI and |x — y| < |x — ξ|/2, then 3̂  e βf, so that

Ckx^p(E^ Bt) £ cξαf ί f(yγyldy g const, α^-'ί"-
jj?i

Thus the set E = \Jfs=hEi has the required properties.

LEMMA 9. If E satisfies (ii) in Lemma 8, f f teπ

" in general denotes the set {ξ + ζ', ζeS+ and ξ + rζeF for some r>0}.

PROOF. Let F = Γ\J=ί(Vΐ=JEW)~. Then Lemma 6 together with (iv) in

Section 2 implies that CΛ>p(F n Γ(ξ, α); B(ξ, 3)) = 0 for α>l, from which Bα>p(F)

= 0 follows.

PROOF OF THEOREM 6. As in the proof of Theorem 3, write G{ = u + υ. If

ξedD — A, then \ιmx_>ξxeDu(x) — Q by Lemma 3. Further, if ξedD — Aptβ, then

there exists a set EaS+ such that £β>p(E) = 0 and

limr 4 o Kέ + Γ0 = 0 for every ζ e S + — £,

because of Lemmas 8 and 9. Thus the proof of Theorem 6 is complete.
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6. Perpendicular limits

Let e = (0,...,0, l)eS+.

THEOREM 7. Let 0^γ<2p — l , p > l and f be a non-negative measurable

function on D satisfying (1) swc/i f/iαί G^φoo. Then there exists a set

such that BΛ_y/p}p(E) = Q and

limr l o G{(ξ + re) = 0 /or ei ery ξεdD - E.

PROOF. As in the proof of Theorem 2, we write G{ = u + v. First note that

lim r io u(ξ + re) = Q for ξedD — A by Lemma 3. Since //n_αp+y(/l) = 0 by the

corollary to Lemma 5, BΛ_y/pp(A) — Q on account of [3; Theorem 21].

Let r>0, and consider the sets

E, = {x = (*„..., xπ); 2-' g XΛ < 2-'+1, φc) ̂  fl-^}

for i = l, 2,..., where {αr>ί} is a sequence of positive numbers such that lim^a, α r > /

= oo but

ΣΓ.ιβ,.ί( /(yyj'ϊdy < oo.
J{yeB+(0,2r);2- l-1<>'n<2- l + 2}

Since \x — y\ <yn if |x — y\ <xn/2, we see from Lemma 1 that

a~\ip ^ φc) ^ c2\ \
* J{yeD't\x-y\<xnl2}

for x e £t . Hence it follows from the definition of Cα_ y / P s p that

C.-^pίE, n

which gives

ΣΓ=t Q-y/p,p(^ Π B(0, r); B(0, 2r)) < oo.

Set £(r) = ΛjLι (\JfLjEi n B(O, r))*. Then by properties (ii) and (iii) in Section

2, we have Cα_y/p,p<Έ(r); β(O, 2r)) = 0, which implies that Bβ_y/1>fp(£(r)) = 0.
Moreover, limrl 0 r(ξ + re) = 0 for ξ e dD n £(0, r) - £(r). Thus E = VJ^= j £(r) has

the required properties.

REMARK 1. In case γ = 0, Theorem 7 is the best possible as to the size of the

exceptional set; in fact, for y^O and a set E^dD with BXtp(E) — Q we can find a

non-negative measurable function /on D satisfying (1) such that G{(ξ + i~1e)=co

for any ξ e E and any positive integer f .
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REMARK 2. In case α is an integer and Orgy <p — 1, Theorem 7 also follows
from Theorem 3 in [7].
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