Dirichlet problem for a semi-linearly perturbed structure of a harmonic space

Fumi-Yuki MAEDA (Received August 31, 1981)

Introduction

In [3], the author considered a semi-linear perturbation of a harmonic space and discussed Dirichlet problems of Perron-Brelot type with respect to the perturbed structure. In the present note, we further investigate such Dirichlet problems. In §2, we are concerned with the problem whether a bounded boundary function, which is resolutive with respect to the original structure, remains resolutive with respect to the perturbed structure. Then, in §3, we give sufficient conditions for a boundary point to be regular with respect to the Dirichlet problem for the perturbed structure. The results in §3 are extensions of those in [2] where linear perturbations are treated.

As a simple but typical example to which our theory can be applied, consider a semi-linear equation

(*)
$$\Delta u = q(x)\psi(u)$$

on a domain $\Omega \subset \mathbb{R}^n$ $(n \ge 2; \Omega$: hyperbolic if n=2), where q is a non-negative function belonging to $L^r_{loc}(\Omega)$ with r > n/2 and ψ is a non-decreasing locally Lipschitz-continuous function on \mathbb{R} such that $\psi(t_0)=0$ for some $t_0 \in \mathbb{R}$. For a compactification Ω^* of Ω and a bounded function φ on $\Omega^* \setminus \Omega$ which is resolutive with respect to $\Delta u = 0$, our theorems in §2 imply the following results:

(i) Without any further assumptions on ψ , if $\varphi \ge t_0$ or $\varphi \le t_0$, then φ is resolutive with respect to (*);

(ii) If either ψ^+ or ψ^- is convex, then φ is always resolutive with respect to (*).

As to regularity, our results in § 3 show that $\xi \in \Omega^* \setminus \Omega$ is regular with respect to the Dirichlet problem for (*) if it is regular for $\Delta u = 0$ and if there exist an open neighborhood V of ξ in Ω^* and a potential p on $V \cap \Omega$ such that $p(x) \rightarrow 0$ as $x \rightarrow \xi$ and $\Delta p = -q$ on $V \cap \Omega$. Note that these conditions do not refer to the function ψ .

§1. Notation and basic assumptions

Let (X, \mathscr{U}) be a harmonic space in the sense of Constantinescu-Cornea [1]

and assume that X has a countable base. The sheaf of harmonic functions will be denoted by \mathscr{H} , and that of continuous superharmonic functions by \mathscr{U}_{C} .

An open set U is called a P-set if there is a potential on U which is positive everywhere. U is called a PC-set if it is relatively compact and $\overline{U} \subset U'$ for some P-set U'. For a P-set U, let $\mathscr{P}_{C}(U)$ (resp. $\mathscr{P}_{BC}(U)$) be the set of all continuous (resp. bounded continuous) potentials on U.

By \mathscr{R} we denote the sheaf of functions which are locally expressible as the difference of two continuous superharmonic functions. Let \mathscr{M} denote the sheaf of signed Radon measures on X. A measure representation σ on X is a sheaf homomorphism of \mathscr{R} into \mathscr{M} , with linear structures both in $\mathscr{R}(U)$ and $\mathscr{M}(U)$ for each open set U, such that $\sigma(f) \ge 0$ on U if and only if f is superharmonic on U. We assume the existence of a measure representation σ and fix it once for all.

Let \mathcal{M}_{σ} be the subsheaf of \mathcal{M} consisting of measures which are locally images of σ . For a P-set U, let

$$\mathscr{M}_{P}(U) = \{\sigma(p) \mid p \in \mathscr{P}_{C}(U)\} \text{ and } \mathscr{M}_{BP}(U) = \{\sigma(p) \mid p \in \mathscr{P}_{BC}(U)\}.$$

Note that $\mathscr{M}_{BP}(U) \subset \mathscr{M}_{P}(U) \subset \mathscr{M}_{\sigma}^{+}(U) = \{ \mu \in \mathscr{M}_{\sigma}(U) \mid \mu \geq 0 \}.$

As in [3], we consider a sheaf morphism $F: \mathscr{R} \to \mathscr{M}_{\sigma}$ which satisfies the following two conditions:

(F.1) F is monotone, i.e., if $f_1, f_2 \in \mathscr{R}(U)$ and $f_1 \leq f_2$ on U, then $F(f_1) \leq F(f_2)$ on U;

(F.2) F satisfies condition (L) on every PC-set in X, i.e., for each PC-set U in X and for each M > 0, there is $\pi_{U,M} \in \mathscr{M}_{BP}(U)$ such that

$$F(f_1) - F(f_2) \leq (f_1 - f_2) \pi_{U,M}$$
 on U

whenever $f_1, f_2 \in \mathcal{R}(U), f_1 \ge f_2$ on U and $|f_i| \le M$ on U, i = 1, 2.

We define sheaves \mathscr{H}^{F} , \mathscr{U}_{C}^{F} and \mathscr{V}_{C}^{F} by

$$\begin{aligned} \mathscr{H}^{F}(U) &= \left\{ u \in \mathscr{R}(U) \, | \, \sigma(u) + F(u) = 0 \quad \text{on } U \right\}, \\ \mathscr{U}^{F}_{C}(U) &= \left\{ u \in \mathscr{R}(U) \, | \, \sigma(u) + F(u) \ge 0 \quad \text{on } U \right\}, \\ \mathscr{V}^{F}_{C}(U) &= \left\{ u \in \mathscr{R}(U) \, | \, \sigma(u) + F(u) \le 0 \quad \text{on } U \right\}. \end{aligned}$$

§2. Resolutivity

In what follows, we assume that $1 \in \mathscr{R}(X)$, X is a P-set and $|\sigma(1)| \in \mathscr{M}_{BP}(X)$. Let X* be a compactification of X and let $\partial^* X = X^* \setminus X$. We know ([3; Proposition 4.1]) the following comparison principle:

PROPOSITION A. If $u \in \mathscr{U}_{C}^{F}(X)$, $v \in \mathscr{V}_{C}^{F}(X)$, $p \in \mathscr{P}_{C}(X)$ and $\liminf_{x \to \xi} \{u(x) - v(x) + p(x)\} \ge 0$ for all $\xi \in \partial^* X$, then $u \ge v$ on X.

For a bounded (real) function φ on $\partial^* X$, we define

$$\bar{\mathscr{F}}^{F,X*}_{\varphi} = \{ u \in \mathscr{U}^{F}_{C}(X) \mid \liminf_{x \to \xi} u(x) \ge \varphi(\xi) \text{ for all } \xi \in \partial^{*}X \}, \\ \mathscr{F}^{F,X*}_{\varphi} = \{ v \in \mathscr{V}^{F}_{C}(X) \mid \limsup_{x \to \xi} v(x) \le \varphi(\xi) \text{ for all } \xi \in \partial^{*}X \}.$$

If $\overline{\mathscr{F}}_{\varphi}^{F,X^*} \neq \phi$ (resp. $\underline{\mathscr{F}}_{\varphi}^{F,X^*} \neq \phi$), then we write $\overline{H}_{\varphi}^{F,X^*} = \inf \overline{\mathscr{F}}_{\varphi}^{F,X^*}$ (resp. $\underline{H}_{\varphi}^{F,X^*} = \sup \mathcal{F}_{\varphi}^{F,X^*}$). By Proposition A, $\underline{H}_{\varphi}^{F,X^*} \leq \overline{H}_{\varphi}^{F,X^*}$ if both exist. We say that φ is *F*-resolutive if $\overline{\mathscr{F}}_{\varphi}^{F,X^*}$ and $\mathcal{F}_{\varphi}^{F,X^*}$ are both non-empty, $\overline{H}_{\varphi}^{F,X^*} = \underline{H}_{\varphi}^{F,X^*}$ and it belongs to $\mathscr{H}^{F}(X)$. In this case, we denote the common function by H_{φ}^{F,X^*} .

In case F=0, the index F will be omitted in terminologies and notation. Note that constant functions on $\partial^* X$ are resolutive for any compactification X^* ; in fact, if we choose p_1 , $p_2 \in \mathscr{P}_{BC}(X)$ such that $\sigma(1) = \sigma(p_1) - \sigma(p_2)$, then $1 + p_2 \in \overline{\mathscr{F}}_1^{X^*}$ and $1 - p_1 \in \mathcal{F}_1^{X^*}$, which implies that 1 is resolutive and $H_1^{X^*} = 1 - p_1 + p_2$.

In the rest of this section, we fix a compactification X^* and omit the index X^* , i.e., $\bar{\mathscr{F}}_{\varphi}^F = \bar{\mathscr{F}}_{\varphi}^{F,X^*}, \bar{H}_{\varphi}^F = \bar{H}_{\varphi}^{F,X^*}$, etc.

The next lemma is an improvement of [3; Lemma 4.2]:

LEMMA 1. If there exists a bounded function $f \in \mathscr{R}(X)$ such that $F(f)^- \in \mathscr{M}_P(X)$ (resp. $F(f)^+ \in \mathscr{M}_P(X)$), then $\overline{\mathscr{F}}_{\varphi}^F \neq \phi$ (resp. $\mathcal{F}_{\varphi}^F \neq \phi$) for any bounded function φ on $\partial^* X$. If, moreover, $F(f)^- \in \mathscr{M}_{BP}(X)$ (resp. $F(f)^+ \in \mathscr{M}_{BP}(X)$), then $\overline{\mathscr{F}}_{\varphi}^F$ (resp. \mathcal{F}_{φ}^F) contains bounded functions.

PROOF. Choose $p \in \mathscr{P}_{C}(X)$ such that $\sigma(p) = F(f)^{-}$. Given φ , put $M_{\varphi} = \max(0, \sup_{X} f, \sup_{\partial^{*}X} \varphi)$. Choose a bounded function $s_0 \in \mathscr{U}_{C}(X)$ such that $s_0 \ge 1$ (see [3]) and consider the function $u = M_{\varphi}s_0 + p$. Then $u \ge M_{\varphi}$ on X and

$$\sigma(u) + F(u) = M_{\varphi}\sigma(s_0) + \sigma(p) + F(M_{\varphi}s_0 + p)$$

$$\geq F(f)^- + F(M_{\varphi}s_0 + p)$$

$$\geq -F(f) + F(M_{\varphi}s_0 + p) \geq 0.$$

Hence $u \in \overline{\mathscr{F}}_{\varphi}^{F}$. Furthermore, if $F(f)^{-} \in \mathscr{M}_{BP}(X)$, then p is bounded, and hence u is bounded.

Now we prove

THEOREM 1. Suppose there exist bounded functions $f_1, f_2 \in \mathscr{R}(X)$ such that $F(f_1)^- \in \mathscr{M}_P(X)$ and $F(f_2)^+ \in \mathscr{M}_P(X)$. If φ is a bounded resolutive function on $\partial^* X$ such that either $H_{\varphi} \ge f_1$ or $H_{\varphi} \le f_2$ and if $\overline{H}_{\varphi}^F, \underline{H}_{\varphi}^F \in \mathscr{H}^F(X)$, then φ is F-resolutive. Furthermore, in case $H_{\varphi} \ge f_1$ (resp. $H_{\varphi} \le f_2$),

$$H_{\varphi}^{F} \leq H_{\varphi} + p_{1} \quad (resp. \ H_{\varphi}^{F} \geq H_{\varphi} - p_{2})$$

with $p_1 \in \mathscr{P}_{\mathbb{C}}(X)$ such that $\sigma(p_1) = F(f_1)^-$ (resp. $p_2 \in \mathscr{P}_{\mathbb{C}}(X)$ such that $\sigma(p_2) = F(f_2)^+$).

PROOF. Let
$$u \in \overline{\mathscr{F}}_{\varphi}$$
. Since $u \ge H_{\varphi} \ge f_1$,
 $\sigma(u+p_1) + F(u+p_1) = \sigma(u) + \sigma(p_1) + F(u+p_1)$
 $\ge F(f_1)^- + F(u+p_1) \ge -F(f_1) + F(u+p_1) \ge 0$.

Hence, $u + p_1 \in \bar{\mathscr{F}}_{\varphi}^F$, so that $u + p_1 \ge \bar{H}_{\varphi}^F$. Taking the infimum in u, we obtain $H_{\varphi} + p_1 \ge \bar{H}_{\varphi}^F$.

We can take $s \in \mathscr{U}_{\mathcal{C}}^+(X)$ such that $H_{\varphi} - \varepsilon s \in \mathscr{F}_{\varphi}$ for all $\varepsilon > 0$ (cf. [1; Exercise 2.4.8]; note that we can choose $w_n \in \mathscr{F}_{\varphi}$ such that $w_n \uparrow H_{\varphi}$ locally uniformly on X). Let

$$v_{\varepsilon} = \overline{H}_{\varphi}^{F} - p_{1} - \varepsilon s \quad (\varepsilon > 0).$$

Then $v_{\varepsilon} \leq H_{\varphi} - \varepsilon s$ and

$$\sigma(v_{\varepsilon}) + F(v_{\varepsilon}) = \sigma(\overline{H}_{\varphi}^{F}) - \sigma(p_{1}) - \varepsilon\sigma(s) + F(\overline{H}_{\varphi}^{F} - p_{1} - \varepsilon s)$$
$$\leq -F(\overline{H}_{\varphi}^{F}) + F(\overline{H}_{\varphi}^{F} - p_{1} - \varepsilon s) \leq 0.$$

Hence $v_{\varepsilon} \in \mathcal{F}_{\varphi}^{F}$, so that $v_{\varepsilon} \leq \underline{H}_{\varphi}^{F}$ for all $\varepsilon > 0$. Therefore

$$\overline{H}^F_{\varphi} - p_1 \leq \underline{H}^F_{\varphi}.$$

By assumption $\underline{H}_{\varphi}^{F}, \overline{H}_{\varphi}^{F} \in \mathscr{H}^{F}(X)$. Hence, by Proposition A, $\overline{H}_{\varphi}^{F} \leq \underline{H}_{\varphi}^{F}$, so that $\overline{H}_{\varphi}^{F} = \underline{H}_{\varphi}^{F}$.

We shall say that F satisfies condition (P) (resp. (PB)) if there exist bounded functions $f_1, f_2 \in \mathcal{R}(X)$ such that $F(f_1)^- \in \mathcal{M}_P(X)$ (resp. $\mathcal{M}_{BP}(X)$) and $F(f_2)^+ \in \mathcal{M}_P(X)$ (resp. $\mathcal{M}_{BP}(X)$).

By the above theorem and [3; Proposition 4.2], we obtain the following improvement of [3; Theorem 4.1]:

COROLLARY. Suppose there is a covering of X by regular PC-sets and suppose F satisfies condition (P). If φ is a bounded resolutive function on $\partial^* X$ such that either $F(H_{\varphi})^- \in \mathscr{M}_P(X)$ or $F(H_{\varphi})^+ \in \mathscr{M}_P(X)$, then φ is F-resolutive. If, in particular, $|F(H_{\varphi})| \in \mathscr{M}_P(X)$, then $|H_{\varphi}^F - H_{\varphi}| \leq p$ with $p \in \mathscr{P}_C(X)$ such that $\sigma(p) = |F(H_{\varphi})|$.

It is an open question whether every bounded resolutive function on $\partial^* X$ is *F*-resolutive if *F* satisfies condition (P). In this connection, we have the following

THEOREM 2. Suppose there is a covering of X by regular PC-sets and F satisfies condition (PB) and the following condition (C)₊ or (C)₋:

 $(C)_+$ (resp. $(C)_-$) For each M > 0, there exists $v_M \in \mathscr{M}_P(X)$ such that

Dirichlet problem

$$F(f_2)^+ - F(f_1)^+ \leq F(f_2 + g) - F(f_1 + g) + v_M$$

(resp. $F(f_1)^- - F(f_2)^- \leq F(f_2 - g) - F(f_1 - g) + v_M$)

for any $f_1, f_2, g \in \mathcal{R}(X)$ satisfying $-M \leq f_1 \leq f_2 \leq M$ and $0 \leq g \leq M$. Then any bounded resolutive function on $\partial^* X$ is F-resolutive.

PROOF. We assume $(C)_+$. Let F^+ be the sheaf morphism $\mathscr{R} \to \mathscr{M}_{\sigma}$ defined by $F^+(f) = F(f)^+$. It is easy to see that F^+ satisfies conditions (F.1), (F.2) and (PB). Let φ be a given bounded resolutive function on $\partial^* X$. Since $F^+(H_{\varphi})^-$ =0, the above corollary implies that φ is F^+ -resolutive. Put $f_0 = H_{\varphi}^{F^+}$. By Lemma 1, f_0 is bounded. Obviously the sheaf morphism $\tilde{F}: \mathscr{R} \to \mathscr{M}_{\sigma}$ defined by

$$\tilde{F}(f) = F(f_0 + f) - F^+(f_0)$$

satisfies (F.1) and (F.2). Since $\tilde{F}(0) = F(f_0) - F^+(f_0) \leq 0$, $\tilde{F}(0)^+ = 0 \in \mathscr{M}_{PB}(X)$. Let $F(\lambda_1)^- \in \mathscr{M}_{PB}(X)$ and put $\lambda_2 = \max(0, \lambda_1 - \inf_X f_0)$. Then $\tilde{F}(\lambda_2) = F(f_0 + \lambda_2) - F^+(f_0) \geq F(f_0 + \lambda_2) - F^+(f_0 + \lambda_2) = -F(f_0 + \lambda_2)^- \geq -F(\lambda_1)^-$, so that $\tilde{F}(\lambda_2)^- \leq F(\lambda_1)^-$. Hence \tilde{F} satisfies condition (PB). Since $\tilde{F}(0) \leq 0$, 0 is \tilde{F} -resolutive by the above corollary and $H_0^{\mathfrak{F}} \geq 0$. By Lemma 1, we can choose $v_0 \in \overline{\mathscr{F}}_{\varphi}^{F^+}$, $w_0 \in \mathfrak{F}_{\varphi}^{F^+}$ and $g_0 \in \overline{\mathscr{F}}_0^{\mathfrak{F}}$ which are all bounded. Let $M = \max(\sup_X |v_0|, \sup_X |w_0|, \sup_X g_0)$, and choose $p \in \mathscr{P}_C(X)$ such that $\sigma(p) = v_M$.

If $v \in \bar{\mathscr{F}}_{\varphi}^{F^+}$, $v \leq v_0$ and $g \in \bar{\mathscr{F}}_{0}^{F}$, $g \leq g_0$, then $-M \leq f_0 \leq v \leq M$ and $0 \leq H_0^{F} \leq g \leq M$. Hence using condition (C)₊, we have

$$\begin{aligned} \sigma(v+g+p) + F(v+g+p) &\geq -F^+(v) - \tilde{F}(g) + v_M + F(v+g) \\ &= -F^+(v) + F^+(f_0) - F(f_0+g) + F(v+g) + v_M \geq 0. \end{aligned}$$

It follows that $v+g+p \in \overline{\mathscr{F}}_{\varphi}^{F}$, so that $v+g+p \ge \overline{H}_{\varphi}^{F}$. Taking the infimums in v and g (note that $\overline{\mathscr{F}}_{\varphi}^{F^{+}}, \overline{\mathscr{F}}_{0}^{F}$ are lower directed; cf. [3]), we obtain

(1)
$$H^{F^+}_{\omega} + H^{\tilde{F}}_0 + p \ge \overline{H}^F_{\omega}.$$

Next, let $w \in \mathscr{F}_{\varphi}^{F^+}$, $w \ge w_0$ and $\tilde{g} \in \mathscr{F}_0^{\tilde{F}}$, $\tilde{g} \ge 0$. Then $-M \le w \le f_0 \le M$ and $0 \le \tilde{g} \le H_0^{\tilde{F}} \le M$. Hence, again by $(C)_+$, we have $\sigma(w + \tilde{g} - p) + F(w + \tilde{g} - p) \le 0$, which implies

(2)
$$H^{F^+}_{\omega} + H^{F}_{0} - p \leq \underline{H}^{F}_{\omega}.$$

By (1) and (2),

$$0 \leq \overline{H}_{\varphi}^{F} - \underline{H}_{\varphi}^{F} \leq 2p.$$

Since $\overline{H}_{\varphi}^{F}$, $\underline{H}_{\varphi}^{F} \in \mathscr{H}^{F}(X)$ by [3; Proposition 4.2], Proposition A implies that $\overline{H}_{\varphi}^{F} = \underline{H}_{\varphi}^{F}$.

REMARK. In the above proof, $H_{\varphi}^{F^+} + H_0^{\overline{F}} \in \mathscr{H}^F(X)$, and hence

$$H^F_{\varphi} = H^{F^+}_{\varphi} + H^{\tilde{F}}_0.$$

Now we give a sufficient condition for $(C)_{\pm}$.

PROPOSITION 1. Let $\Psi: \mathscr{R} \to \mathscr{M}_{\sigma}$ be a sheaf morphism satisfying (F.1) and (F.2) and suppose $t \mapsto \Psi(t)$ is a convex mapping from **R** into $\mathscr{M}_{\sigma}(X)$. If for each M > 0 there exists $v'_{M} \in \mathscr{M}_{P}(X)$ such that

$$|F^+(f) - \Psi(f)| \leq v'_M \quad (resp. |F^-(f) - \Psi(-f)| \leq v'_M)$$

for any $f \in \mathcal{R}(X)$ with $|f| \leq M$, then F satisfies condition $(C)_+$ (resp. $(C)_-$).

PROOF. First, we show that

(3)
$$\Psi(f_2) - \Psi(f_1) \leq \Psi(f_2 + g) - \Psi(f_1 + g)$$

for any $f_1, f_2, g \in \mathscr{R}(X)$ such that $f_2 \ge f_1$ and $g \ge 0$. Let U be any PC-set in X and we show that (3) holds on U. This inequality is readily verified in case f_1, f_2, g are constant functions; in fact, $t \mapsto \int_U \varphi d\Psi(t)$ is a non-decreasing convex real function on **R** for any non-negative bounded Borel function φ on U. Let $M_1 = \sup_U |f_1| + \sup_U |f_2 + g| + 1$. By condition (F.2) for Ψ , there is $\tau \in \mathscr{M}_{BP}(U)$ such that

$$\Psi(u) - \Psi(v) \leq (u - v)\tau$$

for every $u, v \in \mathscr{R}(U)$ such that $u \ge v$ and $|u| \le M_1$, $|v| \le M_1$. Let $\varepsilon > 0$ ($\varepsilon < 1/2$) be arbitrarily given. For each $x_0 \in U$, we can find an open neighborhood U_{x_0} of x_0 such that $|f_i(x) - f_i(x_0)| < \varepsilon$ (i = 1, 2) and $|g(x) - g(x_0)| < \varepsilon$ for $x \in U_{x_0}$. Then, on U_{x_0} ,

$$\begin{split} \Psi(f_{2}+g) &- \Psi(f_{1}+g) - \Psi(f_{2}) + \Psi(f_{1}) \\ &\geq \Psi(f_{2}(x_{0})+g(x_{0})-2\varepsilon) - \Psi(f_{1}(x_{0})+g(x_{0})+2\varepsilon) - \Psi(f_{2}(x_{0})+\varepsilon) + \Psi(f_{1}(x_{0})-\varepsilon) \\ &\geq \Psi(f_{2}(x_{0})+g(x_{0})) - \Psi(f_{1}(x_{0})+g(x_{0})) - \Psi(f_{2}(x_{0})) + \Psi(f_{1}(x_{0})) - 6\varepsilon\tau \\ &\geq -6\varepsilon\tau. \end{split}$$

Since x_0 is arbitrary, it follows that

$$\Psi(f_2+g) - \Psi(f_1+g) - \Psi(f_2) + \Psi(f_1) \ge -6\varepsilon\tau$$

holds on U. Now, $\varepsilon > 0$ is also arbitrary, so that we obtain (3) on U. Now, if $f_1, f_2, g \in \mathcal{R}(X), -M \leq f_1 \leq f_2 \leq M$ and $0 \leq g \leq M$, then

108

Dirichlet problem

$$\begin{split} F(f_2)^+ - F(f_1)^+ &\leq \Psi(f_2) - \Psi(f_1) + 2v'_M \\ &\leq \Psi(f_2 + g) - \Psi(f_1 + g) + 2v'_M \\ &\leq F(f_2 + g)^+ - F(f_1 + g)^+ + 2(v'_M + v'_{2M}) \\ &\leq F(f_2 + g) - F(f_1 + g) + 2(v'_M + v'_{2M}) \,. \end{split}$$

Hence condition (C)₊ is satisfied with $v_M = 2(v'_M + v'_{2M})$.

EXAMPLE. Let ψ be a non-decreasing, locally Lipschitz-continuous function on **R** such that $[\psi - \psi(t_0)]^+$ is convex for some $t_0 \in \mathbf{R}$. Let $\mu \in \mathscr{M}_{\sigma}^+(X)$ and $v \in \mathscr{M}_{\sigma}(X)$ satisfy $\psi(t_0)\mu \leq v \leq \psi(t_1)\mu$ for some $t_1 \geq t_0$. Let $G: \mathscr{R} \to \mathscr{M}_{\sigma}$ be a sheaf morphism satisfying (F.1) and (F.2) and suppose $|G(\lambda)| \in \mathscr{M}_P(X)$ for all $\lambda \in \mathbf{R}$ and $|G(\lambda_0)| \in \mathscr{M}_{BP}(X)$ for some $\lambda_0 \in \mathbf{R}$. Then

$$F(f) = \psi(f)\mu - \nu + G(f)$$

satisfies conditions (F.1), (F.2), (PB) and $(C)_+$.

PROOF. Obviously, F satisfies (F.1) and (F.2). Let $\lambda_1 = \max(t_1, \lambda_0)$ and $\lambda_2 = \min(t_0, \lambda_0)$. Then we see that $F(\lambda_1) \ge G(\lambda_0) \ge F(\lambda_2)$. Since $|G(\lambda_0)| \in \mathcal{M}_{BP}(X)$, it follows that (PB) is satisfied. Next, let $\Psi(f) = (\psi(f)\mu - \nu)^+$. Then Ψ satisfies (F.1) and (F.2). Since $\nu - \psi(t_0)\mu \ge 0$,

$$\begin{split} \Psi(t) &= \sup \left\{ v - \psi(t_0) \mu, \left[\psi(t) - \psi(t_0) \right] \mu \right\} - v + \psi(t_0) \mu \\ &= \sup \left\{ v - \psi(t_0) \mu, \left[\psi(t) - \psi(t_0) \right]^+ \mu \right\} - v + \psi(t_0) \mu \\ &= \left\{ \left[\psi(t) - \psi(t_0) \right]^+ \mu - v + \psi(t_0) \mu \right\}^+. \end{split}$$

Since $[\psi(t) - \psi(t_0)]^+$ is convex, it follows that $t \mapsto \Psi(t)$ is a convex mapping. Furthermore, if $f \in \mathscr{R}(X)$ and $|f| \leq M$, then

$$|F^{+}(f) - \Psi(f)| = |(\psi(f)\mu - \nu + G(f))^{+} - (\psi(f)\mu - \nu)^{+}|$$

$$\leq |G(f)| \leq \sup \{|G(-M)|, |G(M)|\}.$$

Hence, by Proposition 1, condition $(C)_+$ is satisfied.

The above example includes as a special case the following $F: F(f) = \psi(f)\mu$ with $\mu \in \mathscr{M}_{\sigma}^{+}(X)$ and a non-decreasing locally Lipschitz-continuous function ψ on **R** such that $\psi(t_0) = 0$ for some $t_0 \in \mathbf{R}$ and ψ^+ is convex on **R**. Typical such ψ 's are

$$\psi(t) = |t|^{\alpha} \operatorname{sgn} t \quad (\alpha \ge 1), \qquad \psi(t) = e^t - 1.$$

§3. F-regularity of boundary points

Let $\xi \in \partial^* X$ be a regular point for the Dirichlet problem with respect to the original structure \mathcal{H} , i.e.,

$$\lim_{x \to \xi} H^{X^*}_{\varphi}(x) = \varphi(\xi)$$

whenever φ is a bounded resolutive function on $\partial^* X$ which is continuous at ξ . If φ is also *F*-resolutive, then can we assert that

$$\lim_{x \to \xi} H^{F,X^*}_{\varphi} = \varphi(\xi)?$$

In case F is linear, this problem was studied in [2]. In this section, we give an extension of results in [2].

First, we prepare two lemmas. For an open set U in X, let U^* denote the closure of U in X^* .

LEMMA 2. Let U be an open set in X. If φ is a bounded F-resolutive function on $\partial^* X$ and if H^{F,X^*}_{φ} is bounded on X, then

$$\psi = \begin{cases} \varphi & on \quad U^* \cap \partial^* X \\ H^{F,X^*}_{\varphi} & on \quad \partial U \end{cases}$$

is a bounded F-resolutive function on $\partial^* U$ with respect to the compactification U^* of U, and $H^{F,U^*}_{\psi} = H^{F,X^*}_{\varphi} | U$.

PROOF. If $u \in \overline{\mathscr{F}}_{\varphi}^{F,X^*}$, then $u \mid U \in \overline{\mathscr{F}}_{\psi}^{F,U^*}$; and if $v \in \mathscr{F}_{\varphi}^{F,X^*}$, then $v \mid U \in \mathscr{F}_{\psi}^{F,U^*}$. Hence

$$v \mid U \leq \underline{H}_{\psi}^{F,U^*} \leq \overline{H}_{\psi}^{F,U^*} \leq u \mid U.$$

Taking the infimum in u and the supremum in v, we obtain

$$H^{F,X^*}_{\varphi} | U \leq \underline{H}^{F,U^*}_{\psi} \leq \overline{H}^{F,U^*}_{\psi} \leq H^{F,X^*}_{\varphi} | U,$$

which means $\underline{H}_{\psi}^{F,U^*} = \overline{H}_{\psi}^{F,U^*} = H_{\varphi}^{F,X^*} \mid U \in \mathscr{H}^F(U).$

LEMMA 3. Let U be an open set in X. If φ is a bounded continuous function on ∂U , then

$$\varphi^* = \begin{cases} \varphi & on \ \partial U \\ 0 & on \ U^* \cap \partial^* X \end{cases}$$

is resolutive with respect to the compactification U^* of U.

This lemma is essentially a consequence of [1; Theorem 2.4.2 and Corollary

2.4.1], and we omit the proof.

THEOREM 3. Let $\xi \in \partial^* X$ and φ be a bounded resolutive function on $\partial^* X$ which is continuous at ξ . Suppose furthermore that φ is F-resolutive and there exists a neighborhood V of ξ in X* with the following properties:

- (a) H^{F,X^*}_{φ} is bounded on $U = V \cap X$;
- (b) ξ is regular with respect to $\mathcal{H} \mid U$ and the compactification U^* of U;
- (c) there exist $p_1, p_2 \in \mathscr{P}_{\mathcal{C}}(U)$ such that

$$\lim_{x \to \xi} p_i(x) = 0, \quad i = 1, 2,$$

 $\sigma(p_1) = F(H_{\varphi}^{X*} + M)^+ | U \text{ and } \sigma(p_2) = F(H_{\varphi}^{X*} - M)^- | U, \text{ where }$

$$M = (\sup_U H_1^{U^*})(\sup_U |H_{\varphi}^{F,X^*} - H_{\varphi}^{X^*}|).$$

Then

$$\lim_{x \to \xi} H^{F,X^*}_{\varphi}(x) = \varphi(\xi).$$

PROOF. Consider the function

$$\psi = \begin{cases} H^F_{\varphi} X^* & \text{ on } \partial U \\ \varphi & \text{ on } U^* \cap \partial^* X. \end{cases}$$

By Lemma 2, ψ is *F*-resolutive with respect to U^* and $H_{\psi}^{F,U^*} = H_{\varphi}^{F,X^*} | U$. Note that $\psi = \psi_1 + \psi_2$, where

$$\psi_1 = \begin{cases} H_{\varphi}^{X^*} & \text{ on } \partial U \\ \varphi & \text{ on } U^* \cap \partial^* X \end{cases} \quad \text{and} \quad \psi_2 = \begin{cases} H_{\varphi}^{F,X^*} - H_{\varphi}^{X^*} & \text{ on } \partial U \\ 0 & \text{ on } U^* \cap \partial^* X. \end{cases}$$

By Lemma 2 (with F=0), ψ_1 is resolutive with respect to U^* and by Lemma 3, ψ_2 is resolutive with respect to U^* , so that ψ is resolutive with respect to U^* . Since $H_{\psi_1}^{U^*} = H_{\varphi}^{X^*}|U$ by Lemma 2 and since $|H_{\psi_2}^{U^*}| \leq M$, we have

$$H^{X^*}_{\varphi}|U-M \leq H^{U^*}_{\psi} \leq H^{X^*}_{\varphi}|U+M.$$

Hence

$$-\sigma(p_2) \leq F(H_{\psi}^{U^*}) \leq \sigma(p_1),$$

so that

$$F(H^{U^*}_{\psi})^- \leq \sigma(p_2) \in \mathscr{M}_P(U) \text{ and } F(H^{U^*}_{\psi})^+ \leq \sigma(p_1) \in \mathscr{M}_P(U).$$

Therefore, by Theorem 1,

$$|H_{\psi}^{U^*} - H_{\psi}^{F,U^*}| \leq p_1 + p_2.$$

Since $\lim_{x\to\xi} p_i(x)=0$, i=1, 2, and $\lim_{x\to\xi} H_{\psi}^{U^*}(x)=\varphi(\xi)$ by condition (b), it follows that

$$\lim_{x\to\xi} H^{F,U^*}_{\psi}(x) = \varphi(\xi) \,,$$

which implies the desired result.

COROLLARY 1. Suppose $\xi \in \partial^* X$ is locally regular, i.e., regular with respect to $\mathscr{H} \mid V \cap X$ for any neighborhood V of ξ in X*. Suppose furthermore that for each $\alpha \in \mathbf{R}$ there exists a neighborhood V_{α} of ξ in X* such that $|F(\alpha)| \mid V_{\alpha}$ $\cap X \in \mathscr{M}_{\mathbf{P}}(V_{\alpha} \cap X)$ and

$$\lim_{x \to \xi} p_{\alpha}(x) = 0$$

for $p_{\alpha} \in \mathscr{P}_{\mathcal{C}}(V_{\alpha} \cap X)$ satisfying $\sigma(p_{\alpha}) = |F(\alpha)| |V_{\alpha} \cap X$.

Then, for any bounded resolutive function φ on $\partial^* X$ which is continuous at ξ , F-resolutive and for which H_{φ}^{F,X^*} is bounded in a neighborhood of ξ in X^* ,

$$\lim_{x\to\xi} H^{F,X*}_{\varphi}(x) = \varphi(\xi) \,.$$

PROOF. Let W be a neighborhood of ξ in X* such that $H_{\varphi}^{F,X*}$ is bounded on $W \cap X$. Choose $q \in \mathcal{P}_{BC}(X)$ such that $\sigma(q) = \sigma(1)^-$ and put $\beta = \sup_X (1+q)$. Then $\beta \ge H_1^{U*}$ for any open subset U of X. Let

$$M = \beta \sup_{W \cap X} |H_{\varphi}^{F,X^*} - H_{\varphi}^{X^*}|,$$

$$\mu_1 = \sup_{W \cap X} H_{\varphi}^{X^*} + M \quad \text{and} \quad \alpha_2 = \inf_{W \cap X} H_{\varphi}^{X^*} - M.$$

Consider $V = W \cap V_{\alpha_1} \cap V_{\alpha_2}$. Then

α

$$F(H_{\omega}^{X*}+M)^+ \leq F(\alpha_1)^+$$
 and $F(H_{\omega}^{X*}-M)^- \leq F(\alpha_2)^-$

on $V \cap X$. Hence, there exist $q_1, q_2 \in \mathscr{P}_C(V \cap X)$ such that $\sigma(q_1) = F(H_{\varphi}^{X^*} + M)^+$ and $\sigma(q_2) = F(H_{\varphi}^{X^*} - M)^-$, and $q_i \leq p_{\alpha_i}$, i = 1, 2. Hence, condition (c) of Theorem 3 is satisfied with this V. Conditions (a) and (b) of Theorem 3 are clearly satisfied by our assumptions. Hence, we obtain the assertion of the corollary.

COROLLARY 2 (cf. Example 4.1 in [3]). Suppose $F(f) = \psi(f)\mu$ with a locally Lipschitz-continuous non-decreasing function ψ on \mathbf{R} and $\mu \in \mathscr{M}^+_{\sigma}(X)$. If $\xi \in \partial^* X$ is locally regular and if there exists a neighborhood V of ξ in X^* such that $\mu | V \cap X \in \mathscr{M}_P(V \cap X)$ and $\lim_{x \to \xi} p(x) = 0$ for $p \in \mathscr{P}_C(V \cap X)$ satisfying $\sigma(p) = \mu | V \cap X$, then the same assertion as in Corollary 1 holds.

112

Dirichlet problem

References

- C. Constantinescu and A. Cornea, Potential theory on harmonic spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- [2] F-Y. Maeda, On regularity of boundary points for Dirichlet problems of the equation $\Delta u = qu \ (q \ge 0)$, Hiroshima Math. J. 1 (1971), 373-404.
- [3] F-Y. Maeda, Semi-linear perturbation of harmonic spaces, Hokkaido Math. J. 10 (1981), Special issue, 464-493.

Department of Mathematics, Faculty of Science, Hiroshima University