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Introduction

In [3], the author considered a semi-linear perturbation of a harmonic space
and discussed Dirichlet problems of Perron-Brelot type with respect to the per-
turbed structure. In the present note, we further investigate such Dirichlet
problems. In §2, we are concerned with the problem whether a bounded bounda-
ry function, which is resolutive with respect to the original structure, remains
resolutive with respect to the perturbed structure. Then, in § 3, we give sufficient
conditions for a boundary point to be regular with respect to the Dirichlet problem
for the perturbed structure. The results in §3 are extensions of those in [2]
where linear perturbations are treated.

As a simple but typical example to which our theory can be applied, consider
a semi-linear equation

) Au = g(x)y(u)

on a domain Q<R" (n=2; Q: hyperbolic if n=2), where g is a non-negative
function belonging to Lf (Q) with r>n/2 and ¥ is a non-decreasing locally
Lipschitz-continuous function on R such that y(t,)=0 for some t,eR. For a
compactification Q* of Q and a bounded function ¢ on Q*~Q which is resolutive
with respect to 4u=0, our theorems in § 2 imply the following results:

(i) Without any further assumptions on ¥, if ¢=t, or ¢=t,, then ¢ is
resolutive with respect to (x);

(i) If either y* or Y~ is convex, then ¢ is always resolutive with respect to

As to regularity, our results in § 3 show that £ € Q*~ Q is regular with respect
to the Dirichlet problem for () if it is regular for 4u =0 and if there exist an open
neighborhood V of & in Q* and a potential p on ¥ n Q such that p(x)—0 as x—¢
and dp=—q on V' n Q. Note that these conditions do not refer to the function

v.

§1. Notation and basic assumptions

Let (X, %) be a harmonic space in the sense of Constantinescu-Cornea [1]
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and assume that X has a countable base. The sheaf of harmonic functions will
be denoted by s, and that of continuous superharmonic functions by .

An open set U is called a P-set if there is a potential on U which is positive
everywhere. U is called a PC-set if it is relatively compact and U< U’ for some
P-set U’'. For a P-set U, let 2-(U) (resp. 25-(U)) be the set of all continuous
(resp. bounded continuous) potentials on U.

By # we denote the sheaf of functions which are locally expressible as the
difference of two continuous superharmonic functions. Let .# denote the sheaf
of signed Radon measures on X. A measure representation o on X is a sheaf
homomorphism of £ into .#, with linear structures both in 2(U) and .#(U) for
each open set U, such that ¢(f)=0 on U if and only if f is superharmonic on U.
We assume the existence of a measure representation ¢ and fix it once for all.

Let .#, be the subsheaf of .# consisting of measures which are locally images
of . For a P-set U, let

Ap(U) = {a(p)|pe Z(U)} and .4pp(U) = {o(p)| p€ Zpc(U)}.

Note that App(U) = Ap(U)c 4 (U)={ue #,(U)|n=0}.
As in [3], we consider a sheaf morphism F: #—.#, which satisfies the
following two conditions:

(F.1) F is monotone, i.e., if f1, f,€ Z2(U) and f,<f, on U, then F(f})=
F(f;) on U;
(F.2) F satisfies condition (L) on every PC-set in X, i.e., for each PC-set U
in X and for each M >0, there is ny 5 € App(U) such that
F(f) = F(f) = (fi—fImyy on U
whenever fi, f, € Z(U), fi=f, on U and |fySM on U, i=1, 2.
We define sheaves s#F, #E and v"E by
HFU) ={ue2(U)|o(u) + F(u)=0 on U},
&) = {ue 2(U)|o(u) + Fu) 20 on U},
v EU)={ue2(U)|o(u) + Fu) <0 on U}.

§2. Resolutivity

In what follows, we assume that 1 € #(X), X is a P-set and |o(1)| € #5p(X).
Let X* be a compactification of X and let 0*X=X*~X. We know ([3; Propo-
sition 4.1]) the following comparison principle:

PROPOSITION A. If ue #E(X), ve v &(X), pe Z(X) and
lim inf, ., {u(x) — v(x) + p(x)} = 0
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for all E€0*X, then u=v on X.

For a bounded (real) function ¢ on 0*X, we define

FEX = {lueuf(X)|liminf,;u(x) = (&) for all £€d*X},
FEX = {vev{(X)|limsup,.,.v(x) £ @(&) for all £ed*X}.

If #EX*#¢ (resp. 5% #¢), then we write H-X*=inf #5.X* (resp. HE- X" =
sup #£:X"). By Proposition A, HE-X* <HF.X* if both exist. We say that ¢ is
F-resolutive if #5:X* and #F.X* are both non-empty, HE-X*=HZE-X* and it be-
longs to #F(X). In this case, we denote the common function by HE-X*.

In case F=0, the index F will be omitted in terminologies and notation.
Note that constant functions on 0*X are resolutive for any compactification X*;
in fact, if we choose pl, P2 € 2 pc(X) such that o(1)=0(p,)—0o(p,), then 1+p, €
F{* and 1—-p, e #¥*, which implies that 1 is resolutive and H¥*=1—p;+p,.

In the rest of this section, we fix a compactification X* and omit the index
X* ie., FE=F0X HE=HE.X, etc.

The next lemma is an improvement of [3; Lemma 4.2]:

LemMMA 1. If there exists a bounded function fe #(X) such that F(f) €
Mp(X) (resp. F(f)* € #p(X)), then ZE+# ¢ (resp. Z5# ¢) for any bounded func-
tion @ on 0*X. If, moreover, F(f)~ € Mpp(X) (resp. F(f)* € Mpp(X)), then FF
(resp. ) contains bounded functions.

Proor. Choose pe Z(X) such that o(p)=F(f)". Given ¢, put M,=
max (0, supy f, supsx @). Choose a bounded function sye#(X) such that
so=1 (see [3]) and consider the function u=M,s,+p. Then u=M, on X and

o(u) + F(u) = M,0(so) + o(p) + F(M,s, + p)
2 F(f)™ + F(M,s, + p)
2 —F(f) + F(M,s0 +p) 20.

Hence ue #;,. Furthermore, if F(f)™ € #3p(X), then p is bounded, and hence
u is bounded.

Now we prove

THEOREM 1. Suppose there exist bounded functions f,, f, € #(X) such that
F(f,)” e #x(X) and F(f,)* € #p(X). If @ is a bounded resolutive function on
0*X such that either H,2 f, or H,Z f, and if HS, HE € #°F(X), then ¢ is F-
resolutive. Furthermore, in case H,2 f, (resp. H,< f5),

Hp = H, + p; (resp. Hp 2 H, — py)
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with p, € P(X) such that o(p)=F(f,)~ (resp. p,€ P(X) such that o(p,)=
F(f2)").

ProOOF. Letue %, SinceuzH,2f,

o(u+py) + Flu+p,) = o(u) + o(p,) + F(u+p,)
2 F(fi)~ + Flu+py) 2 - F(f) + F(u+py) = 0.

Hence, u+p, e #f, so that u+p,2HE. Taking the infimum in u, we obtain
H¢+ pl g H-z
We can take se #¢(X) such that H,—ese &, for all £>0 (cf. [1; Exercise
2.4.8]; note that we can choose w,e #, such that w, t H, locally uniformly on
X). Let "
v,=HE —p, —es (¢>0).
Then v,£H,~e&s and

o(v) + F(v,) = o(HE) — a(py) — ea(s) + F(HS — p, — &s)
< — F(HE) + F(HE — p; —es) < 0.

Hence v, € #§, so that v, < HY for all ¢>0. Therefore
175 - p: S HY.

By assumption HE, HE e s#F(X). Hence, by Proposition A, HE < HE, so that
HE= HE.

We shall say that F satisfies condition (P) (resp. (PB)) if there exist bounded
functions f;, f, € Z(X) such that F(f,)” € #p(X) (resp. #pp(X)) and F(f,)* €
Mp(X) (resp. Mpp(X)).

By the above theorem and [3; Proposition 4.2], we obtain the following im-
provement of [3; Theorem 4.1]:

COROLLARY. Suppose there is a covering of X by regular PC-sets and
suppose F satisfies condition (P). If ¢ is a bounded resolutive function on 0*X
such that either F(H,)” € #p(X) or F(H,)* € #p(X), then ¢ is F-resolutive.
If, in particular, |F(H,)| € #p(X), then |HE—H |<p with pe 2(X) such that
o(p)=|F(H,)!.

It is an open question whether every bounded resolutive function on d*X
is F-resolutive if F satisfies condition (P). In this connection, we have the follow-
ing

THEOREM 2. Suppose there is a covering of X by regular PC-sets and F
satisfies condition (PB) and the following condition (C), or (C)_:

(C), (resp. (C)_) For each M >0, there exists vy, € #p(X) such that
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F(f2)" = F(f)* = F(f2+9) — F(fi+9) + vu
(resp. F(f))~ — F(f2)” £ F(f,—9) — F(fi—9) + vu)

for any fi, f>, g € A(X) satisfying —M < fi<f, <M and 0Sg=<M.
Then any bounded resolutive function on 0*X is F-resolutive.

Proor. We assume (C),. Let F* be the sheaf morphism #—.#, defined
by F*(f)=F(f)*. It is easy to see that F* satisfies conditions (F.1), (F.2) and
(PB). Let ¢ be a given bounded resolutive function on 0*X. Since F*(H,)"
=0, the above corollary implies that ¢ is F*-resolutive. Put fo=HE*. By
Lemma 1, f, is bounded. Obviously the sheaf morphism F: 2 —.#, defined by

F(f) = F(fo+f) — F*(fo)

satisfies (F.1) and (F.2). Since F(0)=F(f,)—F*(f,)<0, F(0)*=0e #pg(X).
Let F(1,)~ € #pp(X) and put i,=max (0, A, —infy f,). Then F(1,)=F(fo+21,)
—FH(fo) S F(fo+2A)—F*(fo+A)=—F(fo+ )" = —F(A)~, so that F(1,) =<
F(2;)~. Hence F satisfies condition (PB). Since F(0)<0, 0 is F-resolutive by
the above corollary and Hf=0. By Lemma 1, we can choose v, € FE  wye
FI* and goe #§ which are all bounded. Let M =max (supy |vol, supx |wol,
Supx go), and choose p € Z,(X) such that a(p)=v,,.

If ve #E*, v<v, and ge #§, g<g,, then —M=f,<v<M and 0<HE<
g <M. Hence using condition (C),, we have

o(v+g+p) + Fo+g+p) = — Ft(v) — F(g) + vy + F(v+9g)
— F*(v) + F*(fo) — F(fo+9g) + F(v+g) + vy, = 0.

I

It follows that v+g+pe F5, so that v+g+p=HE. Taking the infimums in v
and g (note that #£*, #§ are lower directed; cf. [3]), we obtain

(€)) HE* + Hf + p 2 HE.

Next, let we #5*, w=wyand je #§, §20. Then —~MSw<f,<M and
0<§j<HEF<M. Hence, again by (C),, we have a(w+g—p)+F(w+ §—p)<0,
which implies

©) H{" + Hf — p < H},.
By (1) and (2),
0 < Hf — HF < 2p.

Since HE, HE e s#F(X) by [3; Proposition 4.2], Proposition A implies that
HE=HE.
ey
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REMARK. In the above proof, HE" + Hf € #F(X), and hence
HE = HF" + HE.
Now we give a sufficient condition for (C)...

PROPOSITION 1. Let ¥: #—.#, be a sheaf morphism satisfying (F.1) and
(F.2) and suppose t— ¥(t) is a convex mapping from R into A (X). If for each
M >0 there exists vy, € Mp(X) such that

[F*(f) = YOl S vy (resp. |F7(f) — Y(=)I = vin)
for any fe #(X) with |f|<M, then F satisfies condition (C), (resp. (C)-).
ProoF. First, we show that
3 Y(f) — Y(f) = Y(fa+9) — Y(fi+9)

for any f, f>, g € #2(X) such that f,= f; and g=0. Let U be any PC-set in X

and we show that (3) holds on U. This inequality is readily verified in case

f1, f2, g are constant functions; in fact, tHS @ d¥(1) is a non-decreasing convex
U

real function on R for any non-negative bounded Borel function ¢ on U. Let
M, =supy |fi|+supy |f>+g|+1. By condition (F.2) for ¥, there is 7€ #p(U)
such that

Y(u)—¥(v) = (u—v)

for every u, ve Z(U) such that u=v and |u|<M, [v|SM,. Let ¢>0(<1/2)
be arbitrarily given. For each x,€ U, we can find an open neighborhood U,
of x4 such that | f(x)—fi(x,)l <& (i=1, 2) and |g(x) —g(x,)| <& for xe U,,. Then,
on U

x0°

Y(fa+9) — P(fi+9) — P(f2) + P(f)
2 Y(fa(x0)+9(x0) —28) — P(f1(x0)+9(x0)+2¢€) — Y(falxo)+8) + P(fi(x0)—¢)
2 P(f2(x0) +9(x0)) — P(f1(x0) +9(x0)) — P(f2(x0)) + P(fi(x0)) — ber

= —6ert.
Since x, is arbitrary, it follows that
Y(f2+9) — Y(fi+9) — Y(f2) + ¥(fy) 2 —6er

holds on U. Now, ¢>0 is also arbitrary, so that we obtain (3) on U.
Now, if f{, f5, 9 € Z(X), —M =S fi<f,=M and 0Sg=<M, then
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F(f)" —F(f)* = Y(f) - Y(f)+2vy
S ¥(f2+9) — Y(f1+9) + 2vy
S F(f+9)" — F(fi+9)" + 2(vi +Van)
S F(fy+9) — F(fi+9) + 2(vi +Van) -
Hence condition (C) ., is satisfied with vy, =2(vy, + Vopm)-

ExaMpPLE. Let Y be a non-decreasing, locally Lipschitz-continuous function
on R such that [y —y(t,)]* is convex for some toeR. Let pe#}(X) and
ve M, (X) satisfy Y(to)u<v=y(t)u for some t,=t,. Let G: Z—.#, be a sheaf
morphism satisfying (F.1) and (F.2) and suppose |G(1)| € #p(X) for all AeR
and |G(Ap)| € Ap(X) for some A,eR. Then

F(f) = W(Dr = v + G(f)

satisfies conditions (F.1), (F.2), (PB) and (C),.

Proor. Obviously, F satisfies (F.1) and (F.2). Let A, =max(¢,;, 4,) and
A,=min (ty, ). Then we see that F(4,)=G(l,)=F(4,). Since |G(A)l e
AMpp(X), it follows that (PB) is satisfied. Next, let Y(f)=W(f)u—v)*. Then
Y satisfies (F.1) and (F.2). Since v—y/(t,)u=0,

¥(1) = sup {v—y(to)u, Y1) —¥(to)Iu} — v + Y(to)n
= sup {v—y(to)u, [Y(1) —¥(to)] 1} — v + Y(to)u
= {[Y@O—v(o)] u — v + Y(to)u}™.

Since [y(t)—y(t,)]t is convex, it follows that t—¥(f) is a convex mapping.
Furthermore, if fe 2(X) and |f|<M, then

[F*(f) =¥l = [((Hp—v+ G — W(Hn—v)*|
= 1G(H] = sup {|G(—M)I, |GIM)]}.
Hence, by Proposition 1, condition (C), is satisfied.

The above example includes as a special case the following F: F(f)=y(f)u
with pe . #%(X) and a non-decreasing locally Lipschitz-continuous function
on R such that y(t,)=0 for some t, € R and y* is convex on R. Typical such
Y’s are

Y@ = |t*sgnt (x21), Y@ =¢e -1
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§3. F-regularity of boundary points

Let £ e 0*X be a regular point for the Dirichlet problem with respect to the
original structure #, i.e.,

lim,.,. HZ*(x) = ¢(¢)

whenever ¢ is a bounded resolutive function on 6*X which is continuous at ¢.
If ¢ is also F-resolutive, then can we assert that

lim,_,, HE:X* = ¢(&)?

In case F is linear, this problem was studied in [2]. In this section, we give an

extension of results in [2].
First, we prepare two lemmas. For an open set U in X, let U* denote the

closure of U in X*.

LEMMA 2. Let U be an open set in X. If ¢ is a bounded F-resolutive
function on 0*X and if HE-X* is bounded on X, then

7] on U*no*X

lﬁ =
HE-X* on oU

is a bounded F-resolutive function on 0*U with respect to the compactification
U* of U, and Hj:V*=HE-X*| U.

PrOOF. If ue #L.X*, then u|Ue £§:U"; and if ve #5:X°, then v|Ue
FFU  Hence
Z Y

v|U < HEV' < HEV S ulU.
Taking the infimum in 4 and the supremum in v, we obtain
HEX|U < BpY < ALV < HEX|U,
which means Hf-U*=HE.U*=HE.X*| U e s#°F(U).

LeMMA 3. Let U be an open set in X. If ¢ is a bounded continuous func-
tion on dU, then

1) on 0U

o* =
0 on U*no*X

is resolutive with respect to the compactification U* of U.

This lemma is essentially a consequence of [1; Theorem 2.4.2 and Corollary
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2.4.1], and we omit the proof.

THEOREM 3. Let £€0*X and ¢ be a bounded resolutive function on 0*X
which is continuous at £&. Suppose furthermore that ¢ is F-resolutive and there
exists a neighborhood V of & in X* with the following properties:

(a) HE-X*is bounded on U=V n X;

(b) & is regular with respect to s# | U and the compactification U* of U;

(c) there exist py, p, € Z(U) such that

lim,,:p(x) =0, i=1,2,
o(p))=F(HE +M)* | U and o(p,)=F(HE — M)~ | U, where
M = (supy HY*) (supy | H{-X* — HE')).
Then
lim,., HpX'(x) = ¢(¢).
ProoF. Consider the function

y = { HE.x* on 00U

17 on U*no*X.

By Lemma 2, y is F-resolutive with respect to U* and HJ-U"=HE-X*|U. Note
that Y=y, +y,, where

HX* on oU HE.X*_ X+ on oU
l// [ w — [ (4
o on U* N 0*X z on U* N 6*X.

By Lemma 2 (with F=0), {, is resolutive with respect to U* and by Lemma 3,
¥, is resolutive with respect to U*, so that Y is resolutive with respect to U*.
Since HY;=HZX'|U by Lemma 2 and since |H};| <M, we have

HX'|U-M £ HY" < HX'|U + M.
Hence
—a(py) = F(HY) = o(py),
so that
F(HY")™ 2 o(p;) e #4p(U) and F(HY)* < o(p,) € 4p(U).
Therefore, by Theorem 1,

|Hy* — HpV*| < py + p2-
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Since lim,,.pi(x)=0, i=1,2, and lim,,,H}*(x)=¢(f) by condition (b), it
follows that

lim, ., Hj»"*(x) = ¢(&),
which implies the desired result.

COROLLARY 1. Suppose £e€0*X is locally regular, i.e., regular with
respect to # |V N X for any neighborhood V of ¢ in X*. Suppose furthermore
that for each a €R there exists a neighborhood V, of & in X* such that |F(x)| |V,
NnXeds(V,nX) and

limx-vt pa(x) = 0

for p,€ 2V, N X) satisfying o(p,)=|F(o)|| V, n X.
Then, for any bounded resolutive function ¢ on 0*X which is continuous at
&, F-resolutive and for which HE:X* is bounded in a neighborhood of ¢ in X*,

lim,; HS:X(x) = ().

PrROOF. Let W be a neighborhood of ¢ in X* such that H-** is bounded on
WnX. Choose qe Pg(X) such that o(q)=0(1)- and put B=supy(1+g).
Then B= HY* for any open subset U of X. Let

M = Bsupyax [HG* — HF'|,
oy = Supyax H' + M and a, = infyx HE* — M.
Consider V=W nV, nV,,. Then
F(HX*+M)* < F(a,)* and F(HX —M)~ < F(a,)"

on V' nX. Hence, there exist q;, g, € Z(V N X) such that o(q,)=F(HY" +M)*
and o(q,)=F(HY*—M)~, and ¢;<p,, i=1, 2. Hence, condition (c) of Theorem
3 is satisfied with this V. Conditions (a) and (b) of Theorem 3 are clearly satisfied
by our assumptions. Hence, we obtain the assertion of the corollary.

COROLLARY 2 (cf. Example 4.1 in [3]). Suppose F(f)=y(f)u with a
locally Lipschitz-continuous non-decreasing function Y on R and pe #%(X).
If £€0*X is locally regular and if there exists a neighborhood V of £ in X*
such that p| VN X € 4p(V N X) and lim_,, p(x)=0 for pe Z: (V n X) satisfying
a(p)=ulV n X, then the same assertion as in Corollary 1 holds.
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