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0. Introduction

a) Functions represented by Laplace integrals:
A question of considerable interest in the theory of meromorphic differential

equations as well as in other fields of analysis is, given a function /(z) that has an
asymptotic expansion as z-*oo (in some sector), can /(z) be represented by
means of a (generalized) Laplace integral such that one can find a convergent
expansion of the integrand (in some neighborhood of zero) in terms of the asymp-
totic expansion of/(z)?

In 1918, F. Nevanlinna [17] has given an answer to this question, generaliz-
ing some earlier results of G. N. Watson [23]: Suppose that (for fixed reals
α>0 and d>0) the function/(z) is analytic in the sector

S={\z\>a, |argz|<π/(2d)}

(note that throughout this paper the variable z is on the Riemann surface of the
Logarithm, hence in case d<l/2 the function/(z) may be multi-valued). Fur-
thermore, assume the existence of a formal power series

such that for some positive constant K and every sufficiently large integer j

(O.i) l^(/(2)-ΣΓ7^" k)l < KJΓ(\ +jid) (zes).

Then it is easy to conclude

\fj\ < &Γ(l +j/d) for sufficiently large j ,

hence the power series

(0.2) Ψ(u)=Σΐfk

converges for \U\KK~1. Representing \j/(u) as a generalized inverse Laplace
integral over /(z), F. Nevanlinna proved that ψ(w) can be analytically continued
into an (explicitly given) region containing the positive real axis, and for every
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ε > 0 there exists a constant Cε such that in a slightly smaller region

(0.3) \ψ(u)\<CEexp{(a + ε)dReud}.

This estimate is then used to show

(0.4) /(z) = zd Γ ιKw1/d)exp {~uzd}du
Jo

for every z with Re zd > a, and the integral converges absolutely and uniformly if

Re zd > a 4- ε (for every ε > 0).

In order to obtain such a representation for/(z) with φ(u) as in (0.2), (0.3),

the assumptions on /(z) are not far from being necessary, since (0.4) can be seen

to satisfy (0.1) for Rezd>a + ε (with arbitrary ε > 0 and K depending upon ε),

and the boundary curve Rez d = α + ε has asymptotes parallel to the rays argz =

±π/(2d).

Obviously, it is no real restriction that the sector S was taken symmetric to

the positive real axis. Making a change of variable z*-±zeiφ one can treat other

sectors as well and obtain a representation (0.4) when integrating along an ap-

propriate ray rather than the positive real axis (cf. Theorem 2).

To see how these results compare to the situation in the theory of mero-

morphic differential equations, we consider a fixed, but arbitrary equation

(0.5) zx' = A(z)x9 A(z) = z'ΣS° Akz~\

with coefficients of size n x n , such that the series converges for \z\>a (with

suitable real a >0). It is well known that every such equation has a formal funda-

mental solution

(0.6) i/(z

with

(0.7) β(z)

being a diagonal matrix of polynomials in a root of z without constant terms

(note that ^(z), . . . , qn(z) need not be distinct), L being a constant matrix, and

F(z) being a. formal meromorphic transformation, i.e. a formal series

(0.8) F(z) = ΣkFkz-k, F_ f c = 0 for large k

having an inverse of the same kind (which means that det F{z) is not the zero

series). For the existence of formal solutions, see [9], [22]; for formal solutions

of this form, see [2], [3], or [13].

A basic theorem, the Asymptotic Existence Theorem ([22], p. I l l ) states

that to every sector
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5 = S(α, β) = {z; \z\ > a, α < argz < β}

with sufficiently small opening β — (x>0, there exists a fundamental solution of the

form

(0.9) Y(z S) = F(z S)zL exp {Q(z)}

such that

F(z; S) s F(z) in S

in the sense that for every integer j

(0.10) F(z; S) - Σ 7 " 1 F ^ " f e = O(z~0 in S

(note that throughout this paper, if nothing else is said, Landau's symbols 0 and

o are always to be interpreted for |z|-»oo, z in some sector S, such that the in-

constant and the convergence to zero are always uniform in every closed sub-

sector of 5; if the opening of S happens to be infinite, the phrase "closed sub-

sector" will mean a closed subsector of finite opening).

To the author's best knowledge, no direct estimates of the constant in (0.10)

(for a closed subsector of S) have been given so far which would make F. Nevan-

linna's result applicable. Nonetheless, in the so-called distinct eigenvalue case,

i.e. when Ao in (0.5) has n distinct eigenvalues, it is known ([22], [10], [11], [6],

[7]) that to every sector S of opening π/r a solution Y(z; S) as in (0.9) exists

where F(z; S) can be represented in terms of a Laplace integral, very similar to

(0.4). The proofs kind of invert F. Nevanlinna's arguments by showing the

convergence of a series analogous to (0.2) (with d = r) through a direct estimate

upon the coefficients Fk, and from an integral equation an estimate analogous to

(0.3) is obtained.

Trjitzinsky [20] and Turrittin [21] have obtained similar results in some-

what more general cases, however a direct analogy cannot hold in general: Con-

sider the different values of

(0.11) djk = deg (4/z) - qk(z)\ 1 < j, k < n,

i.e. the rational exponents of the leading term (as z-»oo) of the differences of any

two diagonal elements of β(z); if the difference is identically zero, then djk= — oo.

Ignoring — oo, let (if there are any others)

(0.12) d1 > d2 >•••> dt > 0

denote the different values in decreasing order (recall that every <?/z) has zero

constant term, hence dt>Q). If all the polynomials are identical (in which case

we define ί = 0), then z=oo is an almost regular singular point of (0.5) in the
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sense that a scalar-exponential transformation

x = exp {q(z)I}x9 q(z) = qx(z) = • = qn(z)

takes (0.5) into an equation having a regular singularity at oo (note that in such a

case q(z) can be seen to even be a polynomial in z, i.e. not to contain any fractional

powers of z). Hence in this case F(z) must converge. Therefore we may assume

that z=oo is an essentially irregular singularity of (0.5), i.e. t>\ in (0.12). In

this case, in [16], [5] one can find an estimate of the coefficients of F{z) in terms of

a constant to the k times Γ(l + fc/df), and there is every reason to believe that

generally dt is best-possible in the sense that such an estimate fails (with d in

place of dt) for d>dt. On the other hand, it can be concluded from a characteri-

zation of asymptotic sectors (see [5], [13]) that generally only for sectors 5 of

opening π/d1 there exists a solution Y(ί; S) satisfying (0.9), (0.10). Therefore, a

series analogous to (0.2) would only converge for d<dti whereas an integral like

(0.4) then would have an asymptotic in too large a sector to represent a solution

of (0.5), except for ί = l . (Note that the distinct eigenvalue case is such a case.)

In fact, the cases which Turrittin [21] was able to handle, are essentially those

where ί = l (for representing certain column vector solutions, one can do slightly

more general cases, however not for a fundamental solution).

b) Formal solutions with less rapidly growing coefficients:

Since n/dt is, generally, the least upper bound upon the opening of sectors S

such that a solution satisfying (0.9), (0.10) exists, the only way to generalize the

above results to cases t>\ is in allowing generalized formal solutions where the

coefficients of F(z) grow at a reduced rate: A formal solution of the usual type

is of the kind

H(z) = F(z)G(z)

where G(z) only involves elementary transcendental functions. If we allow more

general functions, then F(z) may have less rapidly growing coefficients: as a trivial

example, take F(z) = I, and let G(z) be some fundamental solution of (0.5); to

make this idea lead to a non-trivial result, we should, however, restrict ourselves

to functions G(z) which have a less complicated type of singularity at z = oo

than the solutions of (0.5).

In [1], [2] (see also Section 3 of this paper), the author has introduced

formal solutions of first level. The main purpose of this paper is to show that

the coefficients of first level formal solutions grow at the right order to allow a

representation of solutions in terms of Laplace integrals and higher transcendental

functions which are simpler (at oo) than the solutions of (0.5). In a sense being
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explained later, the degree of complexity of the functions considered is measured

by the parameter t, so that for t = 1 our results will coincide with the classical ones,

while for t > 1 one could iterate our result to finally obtain a representation of solu-

tions as a product of factors, each of which having a Laplace integral represen-

tation, times a final factor zL exp {Q(z)}.

When preparing this paper, the author became aware of an expository article

of J. P. Ramis [18], which outlines a general theory of those formal series which

can be "summed" by either Laplace integrals or generalized factorial series,

referring to a number of papers "en preparation" for most of the proofs. As

an application to meromorphic differential equations, he proves the possibility

of factoring a formal solution of an equation (0.5) into factors that may be indi-

vidually summed. However, he does not have any result upon the Stokes'

phenomenon of the solutions obtained by summing the formal one as described

above, nor can he guarantee that using the sum of the first one of the factors as

a transformation of the given equation would lead again to a meromorphic

equation. Our result can be thought of as one step of a program which by

iteration would give a factorization of formal solutions as the one obtained by

Ramis, but we do also control the Stokes' phenomenon, and the individual factors

obtained are "sectorial transformations", which transform a given meromorphic

equation into another one and have (in certain overlapping sectors) a clear

asymptotic behavior.

In detail, we proceed as follows: In Section 1 we study sectorial transfor-

mations and establish an integral representation for the error term in the

asymptotic expansion that is later used to estimate the constant in (0.10). As a

side-product, we prove the existence of a meromorphic function that interpolates

the coefficients Fk of a formal meromorphic transformation the integral represen-

tation of this meromorphic function may be made a starting point for a detailed

study of the behavior of Fk as k-+co (see Remark 2.3).

In Section 2 we explain how the formulas obtained so far may be used in the

so-called distinct eigenvalue case to reprove formulas representing solutions by

means of Laplace integrals. In Section 3 we recall the definition of formal solu-

tions of first level introduced in [1], [2], and in Section 4 we show that the cor-

responding normal solutions of first level can be represented by means of Laplace

integrals in a manner completely analogous to the distinct eigenvalue case.

Section 5 then is devoted to a representation using (generalized) factorial series.

1. Sectorial transformations

Throughout this section, we consider two fixed polynomial equations

(1.1) zx' = (zrA0 + + Ar)x = Λ(z)x
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and

(1.2) zx' = (zrA0 + + Άr)x = Ά(z)x

(where r is some integer >1), and we assume (1.1) to be formally meromorphi-

cally equivalent to (1.2) by means of a fixed formal meromorphic transformation

F(z) (cf. Introduction), i.e. F{z) satisfies formally

(1.3) zF'(z) = A(z)F(z) - F(z)Λ(z).

We will, throughout, refer to the above situation as our basic situation. Note

that we do not exclude cases where Ao or Λo (or both) are zero matrices, since

for notational convenience we prefer to have the same number r in both equations.

Replacing F(z) in (1.3) by the formal power series X Fkz~k and identifying

like coefficients, we find

(1.4) (A, + kl)Fk - FkΆr + Σrj=i (Ar-jFk+j - Fk+jΆr.j) = 0

which may be regarded as a difference equation and is used later.

For some natural JV, let reals α0,..., α N _ x be given such that

(1.5) 0 < α0 < ocί <•••< <%_! < 2π,

and define

(1.6) α_x = α N _! - 2π, α^ = α0 + 2π, ocN+1 = cc1 + 2π.

In our basic situation, every such choice of reals α0,..., α i V_1 will be called ad-

missible iff there are matrices Fv(z) (for v = 0,..., N— 1) which are analytic on the

Riemann surface of the Logarithm and satisfy

(1.7) zF'v(z) = A(z)Fv(z) - Fv(z)A(z),

(1.8) Fv(z)^F(z) in S(α v _ l 5 α v + 1 ) .

Defining FiV(z) = F 0 (ze- 2 π i ) (note that zeS(acN_u ocN+ί) iff ze~2πi e S ( α . l 5 αx)),

we find that (1.7) and (1.8) hold for v = N as well. Every such system

F0(z),..., Fv^iz); FN(z) = F0(ze'M)

will be called a system of sectorial transformations corresponding to α0,..., α#-i

REMARK 1.1. A choice of reals <xθ9...,aιN-ί (with implicit definition of

α_ l 5 αjy, αjy+1 as in (1.6)) is certainly admissible, if

δ = max {α v + ! - αv_ 1 0 < v < N}

is sufficiently small. To see this, let H(z) and H{z) be formal fundamental so-
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lutions of (1.1) and (1.2), resp., such that H(z) = F(z)H(z). Then for sufficiently

small δ there exist solutions Yv(z), Ϋv(z) being asymptotic to H(z), H(z) (resp.) in

S(α v_ 1 ? α v + 1 ) , and F£z) = Yy(z)Ϋ~\z) then satisfies (1.7), (1.8) ( 0 < v < N - 1 ) .

REMARK 1.2. Note that (1.7) is a system of homogeneous linear differential

equations for the components of Fv(z). This system has a singularity of the first

kind at z = 0, hence Fv(z) does not grow faster than some fixed power of z as

z->0.

Next we prove a formula for the error term

(1.9) RktV(z) = zk(Fv(z) -Σ*-1 Fjz-η

of sectorial transformations, that will later be used to estimate RkiV(z):

PROPOSITION 1. In our basic situation, let

F0(z),..., F^z); FN(z) = F0{ze~™)

be a system of sectorial transformations corresponding to reals α0,..., α i V _ 1 . 1 )

For an arbitrarily fixed fundamental solution G(z) of (1.2) and reals γμe

(αμ_i, ocμ), l<μ<N, yo = yN-2π, we have

(1.10) RKv(z) = - (z/2πOΣ?=i

for every sufficiently large integer k and

(1.11) 7v < argz < yv+1 (0 < v < N-l);

herein the matrices Wμ are defined by

(1.12) Fμ_ ^Giz) = Fμ(z)G(z)Wμ (l<μ<N).

PROOF. Since G(z) is a fundamental solution of (1.2) and Fv(z) satisfies (1.7),

it is easy to see that Fv(z)G(z) is a fundamental solution of (1.1), 0<v<JV; hence

there are unique constant, invertible matrices Wμ satisfying (1.12). From (1.12)

we further see

(1.13) Fμ(ζ)G(ζ) \Wμ-nG-\ζ) = Fμ_t(ζ) - Fμ(0, 1 < μ < N9

hence using (1.8) we obtain that the integrands in (1.10) are all asymptotically

zero as z->oo in S(α μ _ l 5 aμ) (l<μ<N). On the other hand, from Remark 1.2

we find that the integrals exist at ζ = 0 for sufficiently large k. To evaluate them,

we fix v and k (sufficiently large) and integrate from 0 to aμ = aμ(R), where

1) Whenever we consider some choice of reals αo, .., aN_u we implicitly assume (1.5) and (1.6).
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\aμ\=R,

Then we obtain from (1.13)

l(C*-V(C -z))F0(ζ)dζ - \'"'(ζk-1l(ζ-z))FN(ζ)dζ
Jo

note that FN(ζ) = F0(ζe~2πi) and make a change of variable. Using Cauchy's

Theorem, we may for μφv replace the difference of the integrals from 0 to aμ+ί9

resp. aμ by a single integral along |C|=,R from aμ to aμ+ί. For μ = v, since yv<

a r g z < y v + 1 , we gain a term — 2πizk~1Fv(z) when making the same change in the

path of integration (for JR> |z|) hence the resulting expression is

To evaluate the limit when JR-KX), we replace Fμ(ζ) by Σ ^ " 1 Fjζ~J+ O(ζ~k), and

since the O-constant is uniform for ζ e S(γμ, y μ + 1 ) , we see that the integral of the

error term vanishes as R—>oo9 whereas the main term's integral is independent of

R as long as R>\z\. Therefore we obtain for the right hand side of (1.10)

z*Fy(z) - (z/2πθί

Using (1.10), we next obtain a meromorphic function that interpolates the

coefficients Fk of F(z) and satisfies the same difference equation as the sequence

{Fk}

PROPOSITION 2. Under the same assumptions as in Proposition 1, the

integral

(1.14) T(μ) = (l/2πθ Σ ? - i

converges for Re u sufficiently large and defines a meromorphic function in the

u-plane with possible poles at points of the form

(1.15) u = μ-μ9 μ-μ-1, μ-μ-2,...
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where μ, μ can be any eigenvalue of An Άr9 resp. Moreover, for every u not

listed in (1.15)

(1.16) (Ar + ul)T(u) - T(u)Λr + Σ5=i (Ar-jT(u+j)-T(u+j)Άr_j) = 0,

and

(1.17) T(k) = Fk for sufficiently large integer k.

PROOF. The convergence of (1.14) for sufficiently large Reu follows from

the same arguments as the convergence of (1.10). By partial integration

uT(u) = -a/2πi)ΣN

μ=i\™iyμ\u(dldζ){Fμ(ζ)G&^

Since Fμ(ζ)G(ζ), resp. G(ζ) is a fundamental solution of (1.1), resp. (1.2), we

obtain

ζ(d/dζ) {Fμ(ζ)G(ζ) \Wβ-

and inserting this into the integral for uT(u) proves (1.16) for sufficiently large

Rew. Provided Ar + ul and Άr do not have an eigenvalue in common, (1.16)

provides a system of linear equations that can be uniquely solved for T(w), and

since the determinant of the coefficient matrix is a polynomial in u, we see that

T(u) can have at most poles at those points u listed in (1.15). To see (1.17),

observe for arbitrary v, 0<v<iV— 1, using (1.10), that

Fk = Λ k i V(z) - z~iRk+Ux(z)

ΣN

μ=i
Jo

= T{k).

REMARK 1.3. In case F(z) converges, one may take Fv(z) = F(z) as sectorial

transformations, hence WV = I ( l < v < N ) . In this case from (1.14), (1.17) we

conclude T(u) = 0, hence Fk = 0 for sufficiently large k. The latter also follows

directly, since a convergent F(z) satisfying (1.3) must have a regular singularity

at z = 0, hence can only be a polynomial times an integer power of z.

2. The case of distinct eigenvalues

To apply the formulas obtained in Section 1, we first prove, as a main tool,

an estimate upon integrals of the kind used in (1.10):

LEMMA 1. Let a complex number λΦO, reals α, β with β — α > 0 and a posi-
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tive real d be given, such that

(2.1) Re (λzd) < 0 for a < arg z < β.

Furthermore, let E(z) (for α < a r g z < β ) be an sxs analytic matrix (for some

fixed natural s) such that for every sufficiently small ε>0 there exist positive

real constants cl9 c2 with

(2.2) ||E(z)|| < |z|-<ic2 exp {|z|<"«} for α < arg z < β.

Then for every ye(α, β), the function

foθ(y)

(2.3) Rk(z) = - (z/(2πi)) (ζ^Kί - z))E(ζ) exp (λζ*)dζ
Jo

with integer k>c1 is analytic in the sector γ — 2π<argz<y and can be analyti-

cally continued (by altering y) into the sector

(2.4) α - 2π < arg z < β.

Furthermore, for every δ>0 there exists a constant K (which is independent of

k) such that for k>cx

(2.5)

in the sector oc + δ — 2π<a,τgz<β — δ.

PROOF. According to our assumptions, the integral in (2.3) converges

absolutely for k>cu y —2π<argz<y, hence the analyticity of Rk(z) is obvious,

and Rk(z) does not depend upon y in the sense that for different y's the integral has

the same value for z in the intersection of the corresponding sectors. Therefore

Rk(z) can be analytically extended (by altering y) to the sector (2.4). This only

leaves to prove (2.5).

Let δ>0 be given (without loss in generality, assume <5<min {β — oc, π}) and

let z with α + δ — 2π < arg z < β — δ be arbitrarily fixed. Then take y such that

and

y + δ/2-2π < argz < y-<5/2

(note that the second formula holds iff argz + (5/2<y<argz-<5/2 + 2π). Ac-

cording to (2.1) there exists a positive constant c3 (which is independent of y as

long as α + <5/2<y<β-(5/2) such that

for
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Furthermore, since <5/2<arg (ζ/z) <2π —<5/2 and (5/2<π/2, it follows from an easy

geometric argument, that

for

Hence, using (2.2) with 0 < ε < d fixed, we obtain

\\Rk(z)\\

where integration is along arg Λ; = 0 and the power of x is taken to be its principal

value. Since exp {( — c3 + x~ε)xά} exp {xdc3/2} is bounded for x > 0 , there exists

a positive constant c 4 such that

exp {(- c3 + x~ε)xd} < c 4 exp { - xdc2j2} for x > 0.

Using this estimate and making a change of variable ί = xdc3/2, we find

l l^ωi l < (c2cjd2π sin (δ/2))(2/c3)(Λ-^>/dΓ((/c-c1)/i) for k> c,.

Observing that Γ((k — c1)/d)IΓ(l + kld) does not grow faster than a power of k,

one now can obtain (2.5).

REMARK 2.1. Note that the integrand in (2.3) is a single-valued function of

z, hence Rk(z) might as well be considered in the sector

α < argz < β + 2π,

and clearly satisfies (2.5) for

u + δ < argz < β + 2π-δ

(with the same constant K = K(δ)). This will be of importance in the applications.

As a first application of Lemma 1, we consider throughout the remaining

part of this section a fixed equation (1.1) for which the coefficient Ao has n distinct

eigenvalues, say λί9...9λn. Then it is well known that (1.1) has a formal funda-

mental solution

(2.6) H(z) = ^(z)z^'exp{Q(z)},

where Q(z) is a diagonal matrix of polynomials in z without constant terms with

leading terms λ^'/r,..., λnz
r/r, resp.; A! is a diagonal matrix of entries λ'ί9...9 λ'n9

say, and Fα(z) is a formal power series in z" 1 beginning with an invertible matrix.

With

(2.7) Ά(z) = z(d/dz)Q(z) + A' = zrA0 + zr~iAί +•••+ zAr.x + A'
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(note that then Λ0 = diag[Λl5..., ΛJ), we see that F(z) = Fα(z) satisfies (1.3).

Hence with these choices of Ά and F we are in what we call our basic situation,

and it appears natural to take

(2.8) G(z) = z^'exp{ρ(z)}

as the fundamental solution in Proposition 1. In this case, for a system of

sectorial transformations corresponding to α0,..., α N _ l s if Wμ is defined by (1.12),

then

(2.9) exp {Q(z)} [W - J ] exp {-β(z)} ^ 0 in S(αμ_ l 5 αμ)

(l<μ<JV). However, (2.9) holds iff Wμ has ones along the diagonal and zeros

in all off-diagonal positions (j, k) except for those for which

(2.10) Re {(λj - λk)zrlr} < 0 for ocμ _ x < arg z < αμ.

Consequently, for every μ, l<μ<iV, the integral

is a finite sum of integrals, to each of which Lemma 1 (with 5 = 1 and d = r) ap-

plies. Hence each term in the sum in (1.10) may be estimated by KkΓ{l + kjr)

with a constant K = K(δ)>0i and the estimate for each term holds in

argz < aμ-δ

or in (cf. Remark 2.1)

ocμ-t+δ < argz < <xμ + 2π-δ.

Altogether, we obtain the following

COROLLARY 1. Under the assumptions made above, for every δ>0 there

exists a constant K = K(δ)>0 such that for every sufficiently large integer k and

0<v<N-l

(2.11) \\Rk,Xz)\\ < KkΓ(l + k/r), α v _ ! + δ < argz < av-δ.

In general, the opening of the sector 5(αv_1 ? αv) is too small to allow an

application of F. Nevanlinna's result described in the introduction. However,

for a certain choice of sectorial transformations, the estimate (2.11) will turn out

to hold in a large enough sector:

In the distinct eigenvalue case, a number τ is called a Stokes' direction for

the equation (1.1), if for any pair of natural numbers ( , fe), 1 < ; , k<n, and

sufficiently small δ>0 we have
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(2.12) Re {(λj-λk)zr} < 0, resp. > 0 for arg z = τ-δ, resp. τ + δ.

It is obvious that the set of all Stokes' rays is discrete, hence may be uniquely

indexed, using integer indices, such that

(2.13) τ_ί < 0 < τ 0 , τv < τ v + 1 for every integer v.

It follows immediately from (2.12) that τ is a Stokes' direction iff so is τ + 2π,

hence the number of Stokes' directions in any half-open interval of length 2π

is always the same, say m, and

(2.14) τ v + m = τv + 2π for every integer v.

Using purely algebraic arguments, one can show the existence of a unique

system of sectorial transformations F0(z),..., Fm_1(z); Fm(z) = F0(ze~2πi) (cor-

responding to Fa(z) and τ 0,..., τm^1) satisfying (1.7) (with Ά(z) as in (2.7)) and

(2.15) Fv(z)^Fa(z) in S(τ v -π/r, τ v + 1 ) , 0 < v < m

(cf. [5]; the matrices Xv(z)=Fv(z)zΛ' exp {Q(z)} are the normal solutions). We

will refer to this unique system as the normalized system of sectorial transfor-

mations corresponding to Fa(z) (and (1.1)).

For the normalized system of sectorial transformations we find for fixed μ,

l<μ<m=N

fM-I(Q " Fμ(ζ) = Fμ(ζ)G(ζ) ίWμ-I-\G-\ζ) s 0 in S(τμ-π/r, τμ),

which holds iff Wμ — I has zeros in all positions ( j , k) except for those for which

Re {(λj — λk)zr/r} < 0 for τμ — π/r < arg z < τμ. Consequently, the function defined

by the integral

-(z/2πί) ^(yμ) (ζ*-η(ζ-z))Fμ(ζ)G(ζ) [_Wμ-I-\G-\ζ)dζ

can be analytically extended (by altering yμ) to the sector (with v, 0 < v < m — 1,

fixed)

τμ-πlr-2π < argz < τμ (if μ>v),

resp.

τμ-π/r < zxgz < τμ + 2π (if μ<v),

and using Lemma 1 we see that for every δ > 0 there exists a constant Kμ=Kμ(δ)

> 0 such that the function can be estimated by K*F(l + k/r) for every sufficiently

large k and every z with

τ -π/r-lπ + δ < argz < τ-δ (if μ > v ) ,
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resp.

τμ-π/r + δ < argz < τμ + 2π-δ (if μ<v).

Consequently, the sum of these functions (for μ = l , . . . , m) may be estimated by

KkΓ(l + klr) (with K = Σ Kμ) for every sufficiently large k and z in the inter-

section of the regions described above, i.e. (cf. (2.14))

τ v - π / r + <5 < argz < τ v + 1 -<5.

Since (1.10) holds for the analytic continuation of the integrals on the right as

well, we therefore obtain

COROLLARY 2. Given an equation (1.1) where Ao has all distinct eigen-

values, then the normalized system of sectorial transformations corresponding

to a formal fundamental solution (2.6) has the following property: Given any

δ>0, there exists a positive constant K = K(δ) such that for every sufficiently

large integer k and 0 < v < m —1

(2.16) \\RktV(z)\\ < KkΓ(l + k/r) for τv-π/r + δ < argz < τ v + 1 -<5.

We see that for the normalized system of sectorial transformations the

estimate (2.16) holds in sectors of opening more than π/r (take δ sufficiently

small), hence F. Nevanlinna's result described in the introduction shows that

each JFV(Z) may be represented by means of Laplace integrals. Since in the fol-

lowing Section 4 we will generally represent systems of first-level sectorial trans-

formations as Laplace integrals, we need not go into details here.

REMARK 2.2. In this Section, we only gave different proofs for results that

are essentially known. In the following Sections we will show that the same

arguments used in the distinct eigenvalue case lead to analogous results in the

general situation.

REMARK 2.3. It is easy to conclude from either (2.11) or (2.16) that

(2.17) \\Fk\\ < KkΓ(l + k/r) for sufficiently large k.

Such an estimate can also be obtained from (1.14) by an estimate analogous to

the one used in the proof of Lemma 1. If r = 1, and Λo has distinct eigenvalues,

then (1.14) can be used to see that the elements of Fk are linear combinations of

sequences having an explicit asymptotic behavior as fc-»oo. If one of the se-

quences grows more rapidly than the others, then the corresponding element of

Fk has a clear asymptotic behavior that can be used to calculate one of the elements

of the matrices Wί9..., Wm. This happens if, for some fixed fc, there is precisely

one./ with \λk — λj\ minimal, and leads to a different proof of a formula obtained
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by R. Schafke [19]. (In case n = 2, r = l, one can, with very little effort, reprove

the formulas obtained in [14], [15] to calculate the nontrivial elements in Wl9 W2

(note that m — 2 in this case). We do not however want to go into details about

this applications at the moment.) The situation in the case r > 1 is similar, although

technically more complicated; for example, instead of the Gammafunction one

has to consider generalized Gammafunctions and their asymptotic behavior [8].

3. Formal solutions of first level

In [1], [2], formal solutions of first level have been introduced. In view of

([2], Proposition 2 and Remark 2.5) together with Remark 3.2 of this paper,

these formal solutions may be characterized as follows:

Given a meromorphic differential equation (0.5), then an expression of the

form

(3.1) Hx(z) = FtfG^z)

is called a first level formal fundamental solution of (0.5), iff the following two

conditions hold:

(i) The matrix Gλ(z) is analytic and invertible for \z\ sufficiently large (on the

Riemann surface of the Logarithm), and its logarithmic derivative

(3.2) z~iΆ(z) = G[(z)Gj\z)

is meromorphic at z = oo. Furthermore, there exists a matrix of the form

(3.3) Qt(z) = p(z)zW+ίI + d~HdΛV

where p(z) is a polynomial in z, d a positive rational and

(3.4) Λ

with l>2, natural numbers sί9...,sl9 Σsk = n, and distinct complex numbers

λl9...9 λh such that for every sufficiently small ε > 0

(3.5) | |[C 1(z)exp{-Q 1(z)}]± 1 | l = o(exp {|z|'-«}) in S(-oo, αo).

(ii) The matrix F(z) is a formal meromorphic transformation from (0.5) to

(3.6) zx' = Λ(z)x

(with Ά(z) as in (3.2)), i.e. F(z) formally satisfies (1.3). Furthermore, for a

suitable choice of reals α0,..., % _ ! there exist sectorial transformations F0(z),...,

1) By [d] we denote the largest integer not exceeding d.
2) By /s, for natural 5, we always denote the sxs unit matrix.
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FH-^Z); FN(z) = F0(ze~2πi) corresponding to F(z) and α0,..., oί;v-i3) s u c n t n a t

for every μ, \<μ<N, the constant ίnvertible matrices Wμ defined as in (1.12)

(with Gj(z) in place of G(z)) have 1-matrices along the block-diagonal, when

blocked according to the block structure of A.

REMARK 3.1. To later avoid minor notational problems, we slightly modified

the notation used in [2]: The matrix A used in [2] corresponds to d~γA here

(see also Remark 3.2 below).

REMARK 3.2. We are going to show that the rational d in the definition

above in fact coincides with the number dt defined in the introduction and that,

furthermore, the matrix Qt(z) can (up to the ordering of its diagonal elements)

be considered as consisting of those terms of Q(z) (as in (0.7)) that have exponents

>dί=d. To do so, let H(z) be a formal fundamental solution of (0.5) (in the

usual sense) of the form (0.6) (note, however, that F(z) in (3.1) is to be distinguished

from the formal meromorphic transformation in (0.6)). Then the matrix

H(z) = F~ι{z)H{z\ with F(z) as in (3.1)

is a formal fundamental solution of (3.6) of the form

with a formal meromorphic transformation F(z), i.e.

For every sufficiently small sector S there exists, according to the Asymptotic

Existence Theorem, a constant invertible matrix C = C(S) such that

β ^ l z - ^ i ^ z ) in S.

Using (3.5), we find for sufficiently small β>0

(3.7) exp {6,(z)}Cexp {-Q(z)} = o(exp {|z|'-«» in S.

Let qγ)(z) = p(z)zw+1-\-λjz
dld(\<j<l) and suppose that for some fixed k

(l<k<n) the degree of q(/\z) — qk(z), for at least one 7, would be larger than d.

Then obviously άeg(q(

j

ί)(z) — qk(z))>d for every j , l<j<l, and there would exist

a sector S (of sufficiently small opening) in which q{p(z) — qk{z) is of exponential

order larger than d (for every j , 1 <j<l). Consequently, (3.7) would hold only

if the kth column of C would be zero, which contradicts to the invertibility of C.

Therefore we obtain

3) Note that the definition of sectorial transformations immediately is generalized to cases where
Λ(z\ A(z) 3LTQ not polynomials!
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(3.8) β(z) = p(z)zW+1 + ά-χzdA + o(zd)

with a diagonal matrix A that may, at present, still have all equal diagonal entries,

and we conclude (cf. Introduction for the definition of dx)

ά>dx.

From [13], p. 87, we recall that the Asymptotic Existence Theorem is true for

every sector of opening π/dί (or smaller), hence as above we see that for every

such sector there exists a constant, invertible C satisfying (3.7), which is in view

of (3.3), (3.8) equivalent to

(3.9) exp {d-'Λz^C exp {- d^Xz*} = 0(1) in S.

To discuss (3.9), we may without loss in generality assume the diagonal elements

of A to be ordered in a way that equal ones come consecutively, i.e. we assume

Λ = diag[λ1Js1, >

with distinct Xi9...9Xj and natural sk, Σ f̂c = n, and we block

C = ίCjk], Cjk of type SjXsk, 1 < j < /, 1 < k < I.

We now consider a sector S of opening n\d<n\dx such that for every pair ( j , /c),

l < j < Z , l</c</, either

or there exists a ray arg z = y in S along which

(take any S = S(OL, oc + π/d) such that for argz = α we have R e ^ - ^ z ^ O , for

every pair ( , k) with λjΦλk). For such a sector S, (3.9) holds iff

either λj = Xk or Cjk = 0

for every pair ( , /c), l<j<l, 1 < k < 1. For every j , we realize that, due to the

invertibility of C, there exists a unique k with λj — Xk (hence 1 = 1) and sk<Sj (other-

wise, the columns of C would be linearly dependent). Since Σ sv = Σ ^ = w» w e

obtain sk

 = sj- Therefore, X and A coincide except for the ordering of their ele-

ments, and since A contains at least two distinct diagonal elements, we find by

definition of dx

REMARK 3.3. We have shown in [2] that every equation (0.5) having an
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essentially irregular singular point at oo admits a first level formal fundamental

solution, and given some fixed formal fundamental solution of first level, we will

refer to the block structure of A as the block structure of first level. It may be

seen using Remark 3.2 that this terminology coincides (up to the ordering of the

diagonal blocks) with the one used in [1], [4], [13], where the so-called Iterated

block structure has been investigated. If C = [Cjk] (1< j , k<ϊ) is a constant

matrix, blocked according to the first level block structure, we define

Using this terminology, we see that condition (ii) ensures the existence of sectorial

transformations corresponding to F{z) and (suitably chosen) <x0,..., ocN_1 such that

the matrices Wμ = Gj1(z)Fμ

1(z)Fμ_i(z)G1(z) satisfy

(3.10) άmg1Wμ = I ( l < μ < N ) .

Every such system of sectorial transformations will be called of first level, and the

matrices Wμ are called the corresponding connection matrices (of first level).

It may be recalled from [2] that, given a first level formal solution, there exists

a system of first level sectorial transformations corresponding to F(z) and arbi-

trarily chosen α0,..., ocN^1 provided that

δ = max{a v + 1 -a v _! ; 0 < v < N}

is sufficiently small (with α_ l 5 xN, ocN+ί defined as in (1.6)).

REMARK 3.4. Obviously, the factorization of a first level formal funda-

mental solution Hx(z) into its factors F(z) and G^z) is not unique: For any

(convergent) meromorphic transformation T(z), the matrices F(z)T~1(z) and

T(z)Gί(z) can be easily seen to satisfy (i), (ii) as well. Using this freedom, we

may, according to the Birkhoff-Turrittin Reduction Theorem (see [13], p. 15),

always assume that the differential equation (3.6) is a polynomial equation (1.2).

If equation (0.5) is such that Ao has n distinct eigenvalues, λί9...9λn9 then one can

see that every formal fundamental solution (2.6) satisfies (i), (ii), with

F(z) = Fa(z)9 G,{z) = zΛ' exp {Q(z)}, d = r, I = n,

Sί = . . . = Sι = 1, p(z)==09 A = diag[J, l5...,AJ = Aθ9

(note that in this case (3.10) is trivially satisfied, since from (2.9) we conclude that

the diagonal elements of Wμ are all one, l<μ<N). Therefore in the distinct

eigenvalue case the class of formal solutions of first level contains the formal

solutions (2.6), and similarly one can see that whenever the parameter t defined

in the introduction (which is the number of different levels in the iterated block

structure; see [1], [2], [13]) equals one, then first level formal solutions and
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formal solutions in the usual sense are almost synonymous.

Whenever t>\, the function G±{z) generally involves higher transcendental
functions; however, the following lemma explains that they are always of a sim-
pler kind than the solutions of (0.5):

LEMMA 2. Let (0.5) be an equation having an essentially irregular singular
point at z = oo, and let

Ht(z) = F(z)G1(z)

be a first level formal fundamental solution of (0.5). Then

(3.11) Gx(z) = Γ(z)diag[01(z),..., Gι(z)-],

where T(z) is a meromorphic transformation in the variable z = zίIp for a
suitable, natural number p9 andforj = l,..., I, Gj(z) is of size SjXSj and a funda-
mental solution of an equation

(3.12) zSΪ = Aj(z)x

with Aj(z) being meromorphic in z. Furthermore, equation (3.12) is simpler
than (0.5) in the sense that, if we define tj analogously to the definition oft in the
introduction, then

(3.13) tj<t-l (1 < ; < / ) .

PROOF. In [2] we have shown that every Ht(z) can be factored (cf. also
Remark 3.4) into a product of F(z) and Gt(z) such that

G1(z) = z£diag[Gi1>(z),...,Gί1)(z)]

where Gγ\z) is of size Sj xSj (l<j<l), and L is a constant matrix such that

with a constant, invertible, diagonally blocked D (in the first level block structure)
and a block-permutation matrix Rί; i.e. Rί is a permutation matrix, and if we
block Rt according to the first level block structure, then its non-zero blocks are
all identity matrices. For every integer μ we find e2μπiL=DμR1, where Dμ is again
diagonally blocked, and for suitable p we have R1 = I if p divides μ. Hence

e2PπiL j s diagonally blocked, and since every such invertible matrix has a diagonal-
ly blocked logarithm (cf. e.g., [22]), there exists a diagonally blocked £ =
diag [£ l 5 . . ., £/] such that
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Defining T(z) — zLz~L, we find

T(ze2Pπi)= T(z),

hence T(z) is a meromorphic transformation in z = z1/p. Obviously, T'ι{z)G1{z)
is diagonally blocked, hence (3.11) holds. Moreover,

A(z) = T-\z)Ά(z)T(z) - zT-\z)T{z)

is also diagonally blocked and (?/z) is a fundamental solution of (3.12), if Λj(z)
denotes the j t h diagonal block of Λ(z). Since T(z) is meromorphic in z, we con-
clude that so is Λ(z). Finally, to obtain (3.13), let (for 7 = 1,..., /)

be a formal fundamental solution of (3.12) with a formal logarithmic, invertible
matrix Ψj(z) (cf. [9]) and a diagonal matrix β/z) of polynomials in a root of z
with zero constant terms. Then

is a formal fundamental solution of (3.6) and can be written as (cf. [2])

with a formal meromorphic transformation F(z), a constant matrix L and β(z) =
diagl^Q^z),..., βj(z)]. According to the Main Asymptotic Existence Theorem,
for every sufficiently small sector S there exist constant, invertible matrices Cj
such that

GJCJ^HJ(Z) in 5, 1 < 7 < / ,

hence with C = diag [CΊ,..., C{\

G^C^Hiz) in S.

Using (3.5), one can now show in the same manner as in Remark 3.2 that (note

β(z) = βi(z) + o(zd0, with Q^z) as in (3.3),

i.e.

Qj(z) = p(z)z^+1 + λjz^/d, + o(z**)9 1 < j < I

Since β(z) is formally meromorphically invariant, we find that the parameter t
for the equations (0.5) and (3.6) is the same. Hence, using the above formulas,
it follows right from the definition of t and tj (1 <j < ϊ) that (3.13) is true.
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4. Representation of solutions as Laplace integrals

a) Normalized first level sectorial transformations:

Consider an arbitrarily fixed meromorphic differential equation (0.5) having

an essentially irregular singularity at z — oo, then (0.5) possesses a first level formal

fundamental solution (3.1) (cf. [2]).

Quite in the same fashion as in the distinct eigenvalue case (Section 2, in

particular (2.12) with d in place of r) we define Stokes' directions corresponding

to the numbers λγ,..., λt (occurring in (3.4)), and we call these directions Stokes"

directions of first level to distinguish from the notation used in the literature so

far ([4], [13]). Again, the set of Stokes' directions of first level is discrete and we

index them as τv (with integer v) such that (2.13) holds. Note that in case Λo

has n distinct eigenvalues, then l — n and λu..., λn are the eigenvalues of Ao, hence

the Stokes' directions of first level coincide with the Stokes' directions introduced

in Section 2. More generally, one may see that Stokes' directions of first level

are a subset of the set of all Stokes' directions considered in [4], [13], and the

inclusion is strict only if t (the number of different levels in the iterated block

structure) is larger than one.

Although in [2] we used a slightly different definition of the numbers λl9...,λι

(see Remark 3.1 of this paper), we wish to emphasize that this difference in the

notation does not influence the first level Stokes' directions. In particular, we

recall from [2] that for suitable m > 1

(4.1) τ v + m = τv + 2π for every v

(this is so, since one can show that A and Λe2κid coincide but for the ordering of

the diagonal elements).

In [2], Section 3 we proved a Theorem which we now state, slightly different-

ly formulated:

THEOREM 1. Let an equation (0.5) having an essentially irregular singu-

larity at z = oo be given, and consider a fixed but arbitrary first level formal

fundamental solution (3.1). Furthermore, let e2πiLl denote the unique con-

stant, invertible matrix satisfying

(4.2) G^ze2™) = Gx(z)e2πiLκ

Then there exists a unique system

X0(z),..., Xm^(z); Xm(z) = X 0 ( z e - ^ > 2 π ί L l

of solutions of (0.5) satisfying
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( 4 . 3 ) Xv(z)Gϊ\z)^F(z) in S ( τ v - π / d , τ v + 1 ) , 0 < v < m

and

(4.4) άiag.W^I, where Wv = X-\z)Xv_x{z\ 1 < v < m.

Unlike in the different eigenvalue case, the condition (4.3) alone is not

sufficient to characterize the solutions X0(z)9..., Xw_ 1(z) uniquely (see the ex-

amples in [2], Section 4). We will however see that the asymptotic behavior of

a single Xv(z) is sufficient to characterize it uniquely, if, in additionvto (4.3), we

restrict to solutions for which the error term in the asymptotic does not grow too

fast:

Defining

(4.5) Fv(z) = Xv{z)G-1\z\ 0 < v < m ,

we obtain a system of functions

F0(z),..., Fm^(z); FJz) = F0(ze~™),

the system of normalized first level sectorίal transformations corresponding to

Hί(z) = F(z)G1(z), which is (in view of Theorem 1) uniquely characterized by the

conditions

(4.6) Fv(z)^F(z) in S(τv-π/d9 τ v + 1), 0 < v < m,

(4.7) diagl Wv = I,WV = G-x\z)F-\z)F^x{z)Gx{z\ 1 < v < m

(it follows from (4.6), (4.7) that the matrix

z) + Fv(z)Λ(z)F-\z)

is independent of v and meromorphic at oo with an expansion to be found by

replacing Fv(z) by the formal transformation F(z), hence Λv(z) = A(z) and Fv(z)

satisfies (1.3) for v = 0,..., m).

Using Lemma 1, we next establish an estimate of the error term of the asymp-

totic expansion for the system of normalized first level sectorial transformations:

PROPOSITION 3. Let an equation (0.5) having an essentially irregular

singularity at z = oo be given, and consider a fixed, but arbitrary first level

formal fundamental solution (3.1) and the corresponding system of normalized

first level sectorial transformations. Then to every δ>0 there exists a positive

constant K = K(δ) such that for every sufficiently large integer k and 0 < v <

m - 1 (with d = d1)

(4.8) \\RkiXz)\\
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for \z\>c9 τv — π/d + <5<argz<τv+1 — δ, with fixed c>0 such that both A{z) and
A(z) (as in (3.6)) are analytic for \z\>c.

REMARK 4.1. We have pointed out in Remark 3.4 that a given Hx(z) can
always be factored in a way that Ά(z) is a polynomial equation, and in this case,
the constant c in Proposition 3 can be any number larger than a, the radius of
convergence of the expansion for A(z). Generally, if A(z) is an arbitrary equation,
then o m a x {a, a} (with a being the radius of convergence for A(z)).

PROOF OF PROPOSITION 3. We first restrict to cases where (0.5) and (3.6)
are both polynomial equations, i.e. of the form (1.1) and (1.2). Then, with
F(z) as in (3.1), we are in what we called our basic situation, and for fixed v,
0<v<m — l, the error term Rk>v(z) is, according to Proposition 1, the sum (for
μ= 1,..., m) of the integrals

(4.9) -(z/2πi)

for yv<arg z<yv+1 and every sufficiently large k. Consider some fixed μ, 1 < μ <
m, and use (1.13) with Gx(z) in place of G(z) together with (4.6) for v = μ and
v = μ — 1, then

^ O in % - ^

and according to (3.5) this implies

= o(exp

in S(τμ-π/d, τμ), for every sufficiently small ε>0. Since diagt Wμ = I, this holds
iff for every (j9 k), l<j, k<l, the (j, k) block of Wμ — I is zero, or

Re (λj - λk)zd < 0 in S(τμ - π/d9 τμ).

Therefore we see that each block of F^G^lWμ-QGj^ζ) is either identically
zero or a finite sum of expressions

where Re(2ζd)<0 in S(τμ — πjd,τμ), and E(ζ) may be estimated in the form
(2.2) (with a = τμ — π/d, β = τμ). Therefore, if μ>v + l, Lemma 1 can be applied
to show that the function defined by (4.9) can be analytically continued (by
altering yμ) into the sector

τμ-π/d-2π < argz < τμ9

and for every δ > 0 there exists a constant K = K(δ, μ) such that for every sufficient-
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ly large k the function is bounded by KkΓ{\+kjd) for τμ — πjd — 2π + <5<argz<

τμ — δ. If μ<v, according to Remark 2.1 the same statements are seen to hold for

τμ-π/d < argz < μ

resp.

τμ-π/d + δ < argz < τμ + 2π-δ.

The sum of these functions (for μ = l,..., m) is therefore analytic in the intersection

of the open sectors, i.e. for (cf. (4.1))

τ v -π/d < argz < τ v + 1 ,

and an estimate of the same kind holds for the sum in the sector

τv-π/d + δ < argz < τ v + 1-<5.

Since for argze(yv, y v + 1 )£(τ v — π/d9 τv+ίy\ the sum of the functions (4.9)

equals Rk,v(z)9 we obtain by means of the uniqueness of analytic functions that

RkfV(z) is the sum of the analytically extended functions as well. This proves

(4.8) in the special case of polynomial equations (where we may take c = 0).

In order to complete the proof, we recall that, according to the Birkhoff-

Turrittin Reduction Theorem, for an arbitrary equation (0.5) there exists a

(convergent) meromorphic transformation T{z) such that the equation

(4.10) zx' = Λ(z)x, A(z) = T~\z)A(z)T(z) - zT~\z)T{z)

is a polynomial equation. If H1(z) = F(z)G1(z) is an arbitrary first level formal

fundamental solution of (0.5), then ίϊ1(z) = T~~ί(z)H1(z) is a first level formal

fundamental solution of (4.10). Furthermore, according to Remark 3.4 there

exists another meromorphic transformation T(z) such that 5 t (z)= T(z)Gί(z)

is a fundamental solution of a polynomial equation. Hence factorizing ,β\(z) =

P(z)G1(z), Proposition3 is proved for the system F0(z),..., Pm^ί(z); Fm(z) =

P0(ze~2πi) of normalized first level sectorial transformations corresponding to

J?i(z)=P(z)G1(z). Checking (4.6), (4.7) for

Fv(z) = T(z)Pv(z)T(z) (0<v<m),

we find that F0(z),..., F w _!(z); Fm(z) = F0(ze~2πi) is the unique system of nor-

malized first level sectorial transformations corresponding to H1(z) = F(z)Gί(z).

Hence a two-fold application of Lemma 3 (below) completes the proof.

LEMMA 3. Let F{z\ S) be an nxn matrix of functions analytic in

S = {z; \z\ > a, α < argz < β}

1) Recall from the definition that τv — π/dis also a Stokes' direction, i.e. τv — π/d<τv_ι.
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(with reals a<β and α>0), and let Σ Fμ~j be a formal meromorphic series such
that to every δ>0 there exists a positive constant K = K(δ) with

\\zk(F(z; S) - Σ*" 1 Fjz-J)\\

for every sufficiently large integer k and

\z\ > a, ai + δ <argz < β-δ

(with some fixed real d>0, independent of k and δ). Furthermore, let T(z) =
Σ TjZ~j be a meromorphic transformation, converging for \z\>p (p>0), and
define

F(z; 5) = T(z)F(z; S), Fj = Σ v TvFj_v

(for every integer j). Then to every δ>0 there exists a constant K = K(δ) such
that

\\zk(F(z; S) - Σ'-'FjZ-ηW < K(δ)Γ(l + kld)

for every sufficiently large k and

\z\ > max(α, p), α + <5 < argz < β-δ.

PROOF. For technical convenience, first note that if the lemma is proved
for some F(z; S), then it holds for F(z; S) + P(z) as well, where P(z) may be any
matrix polynomial (if we replace Σ Fjz~J by Σ FjZ~j' +P(z)). This allows us to
assume without loss in generality

Fj = 0 if j < 0.

Furthermore, if T(z) — ze with some integer g, then

zk(F(z; S) - Σ*" 1 FjZ'J) = zk+°(F(z; S) - Σ * ^ " 1 FjZ'J)9

hence the lemma is correct in this case (note that Γ(l+(k + g)/d)/Γ(l + k/d) is not
growing faster than a suitable power of k). Hence we also may assume

Tj = 0 for < 0.

In this case,

zk(F(z; S) - ΣfcJ V " ' ) = zkT(z)(F(z; S) - Σ^hFjZ'J) + Rk(z),

Rk(z) = zk Σ7=k z~j Σϊ=i Tj.vFv.

Since T(z) stays analytic at z = oo, it is sufficient to estimate Rk(z). It follows
from our assumptions on F(z S) that

IIFjkll <KkΓ(l + kjd) for sufficiently large k,
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and (by possibly enlarging K) we may assume that (for every large k)

\\Fj\\ <KkΓ(l + k/d) f o r j<k-l.

For sufficiently small ε > 0

II7}|| <c(p-εy for every j .

Hence

\\Rk(z)\\ < KkΓ(l + k/d) Σ?=k \z\k~jc ΣU(PS)J-V <

for \z\ > p with suitable K = K(δ, ε)>0.

b) Normal solutions of first level:
While generally there are infinitely many functions having a given formal

power series as their asymptotic expansion in a given sector S, F. Nevanlinna
[17] proved that there is only one satisfying (0.1), if the sector S has opening at
least π/d. In view of this uniqueness result and Proposition 3, we may reformulate
Theorem 1 as follows:

THEOREM Γ. Under the same assumptions as in Theorem l,for every fixed
v, 0<v<m — 1, there exists a unique fundamental solution Xv(z) = Fv(z)G1(z),
such that for every δ>0 there exists a constant K = K(δ)>0 with

(4.11) \\z\Fv(z) - Σ * " 1 Fjz-J)\\ < KkΓ(l + kjd)

for every sufficiently large integer k and

\z\ > c, τv-π/d + δ < argz < τv+1-<5

(with c as in Proposition 3). The system

X0(z)9...9 Xm-^z); Xm(z) = X0(z£Γ2-)e2πίLl

then satisfies (4.3), (4.4).

REMARK 4.2. The system of solutions

X0(z),..., Xm^(z); Xm(z) = X0(ze-^)e^

will be called the system of first level normal solutions of (0.5) corresponding to
Ht(z). We wish to emphasize that, according to Theorem Γ, a single Xv(z) is
uniquely characterized by (4.11), while (4.3), (4.4) cannot directly be used to
identify a single fundamental solution as one of the normal solutions of first level.

For every integer μ Φ 0, define
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f v+μm(*) = FXze-2"**) (0 < v < m - 1 ) ,

then, since τv + A ί W-π/d + (5<argz<τ v + μ m + 1-(5 iff τ v-π/d + (5<argz-2μπ<
τ v + 1 — δ (cf. (4.1)), the functions Fv(z) satisfy (4.11) for every integer v. The
functions

Xv(z) = Fv(z)G1(z) for every integer v

then satisfy (cf. (4.2))

Xv+m(z) = Xv(ze~2πi)e2πiLί for every v

and we call Xx(z) the vth first level normal solution of (0.5) corresponding to
i/"i(z). Note that, unlike the matrix Fv(z), the function Xv(z) does not depend
upon a particular factorization of Hx(z) into F{z) and Gt(z).

Using F. Nevanlinna's result described in the introduction, we will now
represent the first level normal solutions in terms of Laplace integrals:

THEOREM 2. For an arbitrarily given equation (0.5) having an essentially
irregular singularity at oo, consider a first level formal fundamental solution
H1(z) = F(z)G1(z). Then the function Ψ(u), locally given by

(4.12) Ψ(u)=ΣΐFj

may be analytically continued (for every fixed integer v) into the sector

π/2d — τ v + γ < arg u < π/2d — τ v,

and for every γe(π/2 — dτv+1, π/2 — dτv) and every ε>0 there exists a constant
cεγ such that

(4.13) ||!P(tOII < cE>y exp {M d (p + ε)<*} for argw = d^y

(with p = max(a, a) where a, resp. a, is the radius of convergence of A(z), resp.
Λ(z)). Furthermore, for the vth first level normal solution Xv(z) = Fv(z)G1(z)
corresponding to Hx(z) we have (with γ as above)

(4.14) Fv(z) = Σyj£0F.-z-J + zά \ Ψ(ii^ Oexp {-uzΛ}du
JO

for every z e S(τv — π/d9 τ v + 1 ) with

(4.15) RezW > pd

(and the integral converges absolutely).

PROOF. Consider some fixed, but arbitrary integer v, and let y e (π/2 — dτv+u

π/2 — dτv) be arbitrarily fixed. Define
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(for every integer j), then for every δ>0 there exists a K(δ) = K>0 such that (cf.
(4.11))

(4.16) ||z W>(z) - Σ * " 1 Fγ>z-J)\\ < KkΓ(l + k/d)

for every sufficiently large k and

\z\ > ρ + ε/2, τv-πld + γ/d + δ < argz < τv+1+y/d-δ,

with arbitrarily fixed ε>0 (independent of δ).
If we take δ so small that

<π/2d-τv, γ/d-δ > π/2d-τv+ί,

then the region where (4.16) is valid contains the sector

\z\ > p + εβ, -π/2d < arg z < π/2d.

Therefore we conclude from F. Nevanlinna [17] (compare the introduction) that

= Σ f F(

k

y)uk/Γ(l + k/d)

converges for |M| ̂ K'1 and may be analytically continued along the positive real
axis up to oo, such that there exists a constant cε>y>0 with

II Ψiy)(u)\\ < cε>y exp {(p + ε)dud} for positive real w,

and

F<y)(z) = Σ/^oFΦz-s + zd Γ Ψ^(u^d)Qxp{-uzd}du
Jo

for every z with Rez d >p + ε/2 and — π/2d<argz<π/2d. Defining !F(u) =
<p(y)(we-iy/d)? We see that (4.12) is satisfied, due to the definition of F(/\ and Ψ(u)
can be analytically continued along the ray argκ = <y/rf. Since y has been taken
arbitrarily from the interval (π/2 — dτv+u π/2 — dτv), this proves the analyticity of
Ψ(u) in

π/2d — τv+1 < argu < πβd — τ v,

and (4.13) follows from the estimate for Ψ^y){u). Finally, (4.14) may be proved
using the corresponding formula for F[y)(z) and making a change of variable.

5. Representation of solutions as factorial series

A large number of papers (e.g. [6], [7], [10], [11], [12], [17], [18], [19],
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[20], [22]) are concerned with the "summation" of a formal solution in form of

a convergent (generalized) factorial series. All the papers listed above succeed

in summing the whole formal fundamental solution only in the different eigen-

value case or (which is almost the same) in cases where the number of different

levels in the iterated block structure is one. Using Theorem 2, we are now able

to treat the general case, considering first level formal fundamental solutions.

PROPOSITION 4. Under the assumptions made in Theorem 2, let p, q be

relatively prime naturals such that

d = dx= p/q9

and define

(5.1) Φj(u) = Σ?-i Fkp_jWk-ηΓ(qk), 0<j^p-l.

Then for every fixed v, the functions Φj(u) are analytic for

(5.2) π/2-dτ v + 1 < argw < π/2-dτv9

and for every ε > 0 and every ye(π/2 —dτ v + 1 , π/2 — dτv) there exists a constant

cεγ such that for j = 0,..., p—\ and p as in Theorem 2

(5.3) \\Φj(u)\\ < cε,y exp {(p + ε)d|w|} for arg u = γ.

Furthermore, for every zeS(τv — π/d, τ v + 1 ) with (4.15)

(5.4) Fv(z) = Σj*o Fjz-j + Σpo zj \o Φjiu) exp{-uzd}du.

PROOF. If H1(z) = F(z)G1(z) is a first level formal fundamental solution of

(0.5), then βί(z)=P(z)Gί(z), F(Z) = ZPF(Z) is a first level formal fundamental

solution of z$' = (A(z) — pl)$, and if we define (analogously to (4.12))

then (note that Fj = Fj+p for every j)

ψ{ui/d) = Σf+i

Since for α, β>0

if we integrate along a straight line and define the powers according to any fixed

selection of argu(=argί=arg(M —1))9 one proves by term wise integration of the

power series (for sufficiently small |M|)
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(5.5) Φj(u) - Fp_jU«

j = O,.. . ,p-l . (If q = \, then (5.5) should, for j = 0, be read Φ0(u)-F1 =

(1/p) Σ?=o Ψ((te2kπίyd). It follows from the definition of first level Stokes'

directions that, if μ denotes the number of Stokes' directions in [0, π/d), we have

(cf. [2])

τv+μ = τv-f π/d (for every integer v).

Hence for every fixed v and ye(π/2 — dτv+1, π/2 — dτv) we have argw = y iff

arg(ue2k"i) = γ + 2kπe(πl2-dτγ_2kμ+1,πl2-dτv_2kμ) (for fc = 0,..., p-1). The-

refore we conclude from Theorem 2 that to every ε > 0 (and y and v as above)

there exists a constant tE y such that

||Ψ((we2fc-))1/dll < cε>yexp {\u\(p + 8)d} for argu = y.

Using this estimate and (5.5), one can now easily obtain the analyticity of Φ/w)

for u as in (5.2) plus the estimate (5.3) (by directly estimating (5.5)).

To see (5.4), we prove (by term wise integration)

(5.6) (dlduy-«Ψ(uVd) = Σpj=h (VΓ((p-j)/d)) £ ( u - typ-JV'-i

(if the left hand side is interpreted as the (q — l)-fold iterated integral from 0 to

ύ). By means of (q — l)-fold partial integration we then obtain

Zd\

Jo

foo(y) Cu

= z* {Σpj=bQM(p-J)ld)) (u-typ-JVd-iφj(t)dt} exP{-uzd}du,
Jo J Jo

and interchanging the order of integration we obtain (5.4), using

foo(y)

0
u(p-j)ίd-i e x p { _ uzd}du = zj-PΓ((p -j)ld), arg zd e (y - π/2, y + π/2).

Since Φj(u) satisfies (5.3) and is regular in a strip containing the ray argw = γ

(with y as in Proposition 4), one can now show in a standard manner (cf. [22])

that the integrals in (5.4) can be expressed as convergent generalized factorial

series, completely analogous to the distinct eigenvalue case. This then shows:

THEOREM 3. Under the assumptions made in Theorem 2, let p, q be rela-

tively prime naturals such that
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Then for every fixed integer v, the vth first level normal solution Xy(z) correspond-

ing to H^z) can be represented as

(5.7) *,<*)

for every zeS(τv — π/d9 τ v + 1 ) with Rezdeiy>ρd (where p, y are as in Theorem

2) and ω=\ω\e(~γ~π)i with sufficiently large \ω\; the coefficients B{jk)(ω) are

polynomials in ω of degree at most j and can be found explicitly in terms of the

coefficients of F{z).

Since a proof of Theorem 3 can be given in just the same way as in [22],

pp. 323-332, we omit it here. We remark that an explicit bound upon the possible

values of |ω| can be given in terms of the values λί,..., λh but we do not want to

consider this question now.

As a final remark, we recall that first level formal solutions have been proved

to be the objects that naturally occur in connection with representations of so-

lutions by either Laplace integrals or factorial series. So far, the definition of

first level formal solutions is such that one hardly may hope to calculate them

explicitly (via recursion formulas for the coefficients of F(z)), since one does not

know how to find the matrix G±(z). However, the author hopes to prove in a

separate article that formal solutions of first level can also be characterized by

conditions (i) plus a restriction upon the growth of the coefficients of F(z). As-

suming this to be done, it might still be difficult but would at least theoretically

be possible to calculate first level formal solutions. For example, when d = dt

is an integer, one would have to find a formal meromorphic transformation

F(z) = ΣFjZ~J with \\Fj\\<KJΓ(l+Jld) for sufficiently large; such that A(z) =

F~1(z)Λ(z)F(z) — zF~1(z)Ff(z) would be a diagonally blocked meromorphic

function (in the block structure of first level) and each block has a highest order

term with just one eigenvalue; then zx'=Ά(z)x would have a fundamental solu-

tion Gt(z) satisfying (i). To find F(z) might still be hard, but could be considered

an algebraic problem.
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