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Introduction.

In the paper [6], the author discussed boundary value problems for the
linear equation du —qu=0 (g =0) with respect to an ideal boundary of a locally
euclidean space X. There we considered a resolutive compactification X* of X
and boundary conditions of the form

u=r1 on 0*X\4
M [ o

u has normal derivative fu + y on A

for a subset A of the ideal boundary 0*X =X*\ X and for given functions t on
0*X and f,yon A (f=0). The notion of normal derivatives on an ideal boundary
is defined by means of Green’s formula (cf. [5], [6]; also [2], [4]) and its defini-
tion relies on the notion of Dirichlet integrals. Thus, once the notion of Dirichlet
integrals is introduced on abstract harmonic spaces (see [7], [8]), we can define
normal derivatives of functions on harmonic spaces with respect to an ideal
boundary. In fact, Kori [4] and the author [8; §8] discussed Neumann prob-
lems on a self-adjoint (or, symmetric) harmonic space with respect to the Martin
boundary and the Royden boundary, respectively.

The purpose of the present paper is to discuss semi-linear boundary value
problems on a self-adjoint harmonic space (X, #°) with respect to the ideal bound-
ary 0*X of a resolutive compactification X* of X, with boundary conditions of
type (1), but with non-linear form. As in [6], we seek solutions of the form
u=H,+g with a function ¢ on 0*X and a function of potential type g on X,
where H, denotes the Dirichlet solution. We regard ¢ as the boundary values
(or the trace) of u.

In the special case where X is a Riemannian manifold and s# is given by
H(U)={ue€>U)| du=0}, where 4 is the Laplace-Beltrami operator, our
boundary value problem includes the problem of the type

Au(x) = F(x, u(x)) on X
o=t on 0*X\A
O = P&, 9(&)) on A
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Here, F (resp. B) is a function on X x R (resp. 4 X R) which is locally Lipschitz
continuous in the second variable, 7 is a given boundary function and d,u denotes
the normal derivative of u with respect to 0*X.

To the proof of our main existence theorem (Theorem 3), we apply the so
called monotone iteration method, which is used to prove similar results for
problems on euclidean domains with smooth boundary (see, e.g., [3] and [10]).
However, the final convergence arguments in our case are more potential theoretic.

§1. Preliminaries

Throughout this paper, let (X, &) be a self-adjoint P-harmonic space (see
[71, [8]). We assume that X is connected and has a countable base, and that
1es#(X). By definition there exists a symmetric Green function G(x, y) on X.
For a non-negative measure u on X, we denote

Gu(x) = _G(x, du(), xeX.

We know that Gu is a potential on X if Guz + 0. In this case Gu(x) is finite
g.e., i.e., except on a polar set. Thus, if v is a signed measure on X such that
G|v| # + o0, then Gv=Gv* —Gv~ is defined q.e. on X.

For an open set U in X, let .#{(U) be the set of non-negative measures x on

U such that for each compact set K in U, x+— S G(x, y)du(y) is continuous on X.
K
Let 4 (U)={v||v|e #U)}. Then the mappings

MEUb— AEU) and : U — #4(U)

are sheaves of measures. We further consider the following classes of measures
on X:

M= {u=0|Guis bounded on X}, Afc= 4% n AEX),
s={uz0l{Gu du< + oo, ic =t 0 aEX),
Mppc={peMpc|WX)<+ 0}, Mipc={neMic|WX)<+00}.
Note that A }pc<A#Fpc. For Z=B, BC, E, EC, BFC or EFC, let
My ={v|Ve A3},
P, ={Gulpe s}, 2;,=A{Gv|vedy} =P, — P,

It is easy to see that if ye .#% and |v|<p, then ve .#,.
As in [7] and [8], let £ be the sheaf of functions which are locally expressible
as the difference of two continuous superharmonic functions. There is a canonical
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measure representation o (see [8, p. 69]), i.e., a sheaf homomorphism #Z— .4 with
linear structures in 2(U) and .#(U) such that for fe 2(U), f -—S G(-, y)do(f)(y)
14

is harmonic on V for any relatively compact open set ¥ with V< U. In particular
a(h+Gv)=v for hes#(X) and ve Mg U M. We shall also write o(f)=v
if f=h+Gv with he #(X) and ve 45U ;.

For f, g e 2(U), their mutual gradient measure is defined by

Sir1 = 5 1f0(@)+90()—o(f9)}
and the gradient measure of fe 2(U) by

0 =0, =fo(f) — %U(fz)

(see [7], [8]). We know that 6,20 on U for any fe Z(U). The Dirichlet in-
tegral of fe 2(X) is given by D[ f]=0,(X). Let

Dec ={feR(X) |D[f]1<+ o},

#p = {fe#(X)|DLf]1< +o0}.
9. is a linear space and 5%, is a linear subspace of 2.. Forf, ge 2., D[f, g]=
Ors,g(X) is well-defined and it is a symmetric bilinear form on 2.. We know
that D[ f]1=0 implies f=const. ([8; Theorem 5.4]). For a continuous potential

pon X, D[p] < + oo if and only if p e P ([8; Theorem 4.3 and Proposition 6.5]).
Thus, #p+ 2gc< Zc.

LemMa 1.1. ([8; Proposition 2.16, Proposition 3.5 and Corollary 3.2])
(i) Iff, g € D, then max (f, g), min(f, g) € 2. and
D[max (f, 0), min (f, 0)] =0,
D[max (f, 9)] + D[min (f, g)] = D[f] + D[g].
(i) Iffe 2, then D[ f—min(f, n)] - 0 (n— ).
LemmA 1.2. Let u,, u, € #p and

h,=the least harmonic majorant of max (u,, u,),
h,=the greatest harmonic minorant of min (u, u,).

Then, hy, hy € #p, hy —max (U, u,) € Pgc and min (U, u,)—h, € Pg.
This lemma follows from [8; Lemma 6.1 and Theorem 6.2].

The space ), is complete with respect to the semi-norm D[ -]%/2 ([8; The-
orem 6.5]). 2 is a pre-Hilbert space with respect to the inner product D[ -, -].
Let 9, be the completion of 2;.. Then
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there is a sequence {g,} in 2gc such that
90 = { g }9

9,—9 q.e. on X and D[g,—4g,,]-0 (n, m— o0)

two functions which are equal qg.e. being identified ([7; Theorem 6.1]). D[g]
and D[g,, g,] are defined naturally for g, g,, g, € 2.

LemMma 1.3. (i) ([7; Proposition 6.1]) 2p<2,.
(i) If fes#p+2g and g € D,, then g is |o(f)|-summable and

(LD DLf, g1 = | g do(f).

In particular D[h, g]1=0 if he s, and g € D,.

ProoF of (ii). Equality (1.1) is shown for fe s+ 2gc and g € 2y in [8;
Theorem 5.2]. If q € 2, then we can choose g, € 25 such that g,—g g.e. and

Sx(q——q,,)da(q—q,,)—>0 (n—> o) ([7; Lemma 1.5]). Then D[qg—gq,]—0 and Sx

g do(q—q,)—0 for any g € 2;c. Hence (1.1) holds for fe 5/, + 2z and g € 2.
If g € 9,, then choose g, € 2 such that g,—g q.e. and D[g,—g,]—0 (n, m— ).
Then by Fatou’s Lemma

[ 19— gldio()] < tim inf.. | lg,—guldio(P)
= liminf, ., , D[1g,—gnl, Gla(f)I]
< liminf,, , D[g,—9gn]"/?D[Glo(f)[]'/?
-0 (n>ow).
Hence g is |o(f)|-summable and (1.1) holds for fe 5, + 25 and g € 9,.

Let 2=+ 2y, and for fi=h;+g; with h;es#, and g;€9,, i=1, 2,
define

D[ f1, f2]1 = D[hy, h,] + D[y, g,].

Then, 2 is complete with respect to the semi-norm D[-]'/2; D[ f]=0 implies
f=const. (g.e.) ([7; Theorem 7.3]).

§ 2. Normal derivatives and a comparison principle

Let X* be a resolutive compactification of X and let w=w, be the harmonic
measure on 0*X =X*\ X (at the point x € X) (cf. [1; §4]). Foreach ¢ € Z1(w),
let ’
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H(x) = ga*x ¢ do,, xeX.

Then H,e s#(X). We identify functions on 0*X which are equal w-a.e. on 9*X.
Lemma 2.1. ([1; Theorem 4.5]) For ¢, ¢, € LY w),

H
H

max(onpz) = the least harmonic majorant of H, and H,,,

min(oys) = Lhe greatest harmonic minorant of H, and H,,.

LemMA 2.2. For 9 e Yw), H,20 if and only if 920 w-a.e. on 0*X.

PrOOF. Obviously, ¢=0 w-a.e. on 0*X implies H,20. Suppose H,=0.
Then, by the above lemma H,,-=0, and hence ¢~ =0 w-a.e.

CoROLLARY. For ¢oe %Y w) and ge 23U 25, H,+g=0 implies ¢=0
w-a.e. on 0*X.

We consider the classes
o) = {‘Pegl(wﬂH(pe”D}, Ppp = PpN L%(w),
Hp(X*) ={H,|pe Pp}.

These are linear spaces and contain constant functions. By Lemmas 2.1 and
1.2, we see that @, and @y, are closed under max. and min. operations. Fur-
thermore, as in the proof of [7; Theorem 7.2], we can prove

LeMMA 2.3, #p(X*)+ 2gc is closed under max. and min. operations.
In fact, if f=H,+g with pe @, and g€ 2gc, then max(f, 0)=H,,x0,0)F 91
with g, € 2.

LemMMA 2.4. For each xe X, there is M, >0 such that
[ 020, < MDLH+1H )

for all p € &,

This lemma can be proved in the same way as [5; Lemma 3] (also cf. [2],
[8; Lemma 8.2]). As a consequence of this lemma, we have (cf. [5; Theorem 1])

PROPOSITION 2.1.  3#,(X*) is closed in £, so that @5 is complete with
respect to the semi-norm ||¢| ,=D[H,]'/2.

Let A be an w-measurable subset of 0*X. We write

Dpp(A) = {p e Ppp| =0 w-a.e. on F*X\A4}.
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We denote by 47(A) the set of all measures y=1/w on A such that  is w-measurable
and SA |ol d|y|= XA loYldo < + o for all p € Pgp(A). Given fe #p+ 2gpc and
y € #(A), we write
N(f)zy  (resp. =y, =y) on 4
if
D[H,, /] - SX H, do(f) + SA ody <0 (resp. 20, =0)

for all pe @F,(A)={p e Ppy(A)| p=0 w-a.e.}. In case N(f)=y, we say that f
has a normal derivative y on 4.

THEOREM 2.1 (Comparison principle). Let F: #—.#; be a sheaf morphism
satisfying
(F.1) f=<g on U implies F(f)<F(g) on U for any open set U in X.
Let A be an w~-measurable subset of 0*X and let B: & p— A (A) satisfy
(B.1) for any w-measurable subset X of A, ¢, <@, w-a.e. on X implies B(p,)<
B(@;) on Z.

Suppose u=H,+g, v=H,+q with ¢,y € @, and g, q€ 2gc satisfy the
following three conditions:

(a) o(u) + F(u) = a(v) + F(v) on X,

(b) o=y w-a.e. on 0*X\A4,

(© N@u-v) < f(o) — py)  on A.
Then

(i) u=von X, in case x(0*X\A4)>0;

(i) u=v on X or v=u+c with a constant ¢>0, in case w(0*X\A)=0;
the latter occurs only when F(u)=F(u+c) on X and B(¢)=PB(¢+c) on A.

PrOOF. Put f=(u—v)", fy=min(f, n), po=(¢p—¥)~ and ¢,=min (¢, n),
n=1, 2,.... By Lemma 2.3 and condition (b), ¢, € @}, ¢,€ Pi(A) for all n
and f=H, +4g¢, fu=H,,+9g, With go, g,€ 2gc (n=1, 2,...). By condition (c),
we have

@1 DlH,u-v] - | H,dlow—ow]+ | o.dIBe)-pW] 20

for each n. Let Z={feA|py(£)>0}. Since ¢<y on Z, B(e)<PW) on Z.
Hence

@2 [ oudtBo)-pw1 = { o, dih@)-pun] < 0.
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On the other hand, using Lemma 1.3, we have
D[H, , u—v] = D[f,, u—v] — D[g,, u—v]

= D[, u—v] — ngn dlo(u)—o(v)]

= DLy, u=0] + | (H,,~fd[ow)~0()].

Hence, in view of (2.1) and (2.2), we obtain

@3) DLfy u=0] 2 | f,dlow=o()].

Let A={xe X |f(x)>0}. Then A is an open set in X and u<v on A. Hence
F(u)<F(v) on A, and condition (a) implies o(u)=0(v) on A. Thus

[ fadtot) o1 = f.dow)-o@12 0.

Hence D[f,, u—v]=0 by (2.3). Since D[f,—f]—0 (n—>o0) by Lemma 1.1, (ii),
it follows that D[f, u—v]=0. Since u—v=(u—v)* —f, by Lemma 1.1, (i) we
conclude that D[(u—v)~]=0. Hence (u—v)~ =const.=c=0, and ¢¢=c w-a.e.
by Lemma 2.2. Thus, if w(d*X \ A)>0, then condition (b) implies that ¢=0, so
that u=v. Incase w(0*X \ A)=0, if c=0 then u=v; if ¢>0, then the connected-
ness of X and the continuity of u—uv imply that (u—v)* =0, so that v=u+c.
In this last -case, o(v)=0(u), and hence condition (a) implies F(v)=F(u+c)=
F(u) = F(v), namely F(u)=F(u+c). Furthermore, by (2.1) and (2.2), we see that
B(@)=B() on 4, i.e., f@)=P(p+c) on A.

§3. Linear boundary value problems
In this section, we consider linear boundary value problems which are gener-
alizations of those discussed in [6].
For Ae #E(X), 170, let
9* = {fe_@lg f2di<oo} = @ 0 L)
X
and

H#h = {ue PN L*A)|o(u)+ui=0}.

Note that any polar set is of A-measure zero, and any fe 2 is locally A-summable.
2* is a Hilbert space with respect to the inner product

DS, g1 = DUf g1 + { fgdi
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LemMa 3.1, If Ae 4}, then 9y D%; in fact
G.1) S g?d). < |GAlD[g]  forall ge 2
X

Proor. We know that (3.1) holds for g€ 2 ([7; Theorem 1.2] or [8;
Lemma 4.2]). If g € 9,, then choosing g, € 2g¢ such that g,—g q.e. on X and
D[g,—g]1—0 (n—o00), we obtain (3.1).

LemMA 3.2. ([7; Lemma 1.10]) If Ae.#%c and fe £*(1), then fie #g
and

DIGUM] S 16, | fds.
COROLLARY 1. IfAe M}, fe L*A) and fis locally bounded (in particular,
fis continuous) on X, then f1 € Mgc.

COROLLARY 2. If A€ M (resp. Mpc), then #h<#p+ 2gc (resp. #p+
2grc)- In fact, ue #} implies u+Gul)e #, and Gul)e 2 (resp. 2grc)-

LEMMA 3.3. Let Ae #}c. If ve 2* and D*[v, g1=0 for all g€ 2,, then
v+ G(vA) € 5, (modifying the values of v on a polar set, if necessary). If fur-
thermore v+ p=0 (q.p.) for some p € Py, then v20 (q.p.).

Proor. By Lemma 3.2, vie #;. Put h=v+G(vd). Then he 2 and for
any g € 9,,

Dlh, g] = D[v, g] + D[G(vA), g] = — SX vg dA +SX gvdi =0

by Lemma 1.3. It follows that h € s#;, (by modifying the values of v on a polar
set).
Next, suppose v+p=0 with pe ;. We can write

v~ = —min (v, 0) = —min(h+G@w~1), G(v*1)) + G(v*1).

g=min (h+G(v~A), G(v*1)) is superharmonic on X. Since h=—p—G(v~1),
h=0. Hence g is a potential dominated by G(v*1). Since v*1e #, it follows
that ge 2. Hence v~ € 25 On the other hand, o(v-)= —o0(g)+vTAZ0t A
Hence, by Lemma 1.3,

D[v-] = Sv‘da(v') < Sufu+d/1 =0

Thus, v~ =0, and hence v=0.

PROPOSITION 3.1. Let Ae A e, A#0. Then
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H}h = {ue 2*| D*u, g1=0 for all g € 2,},
so that #% is a closed linear subspace of 9* and 2*=#4® 2,.

Proor. First, let ues#$. By Corollary 2 to Lemma 3.2, ue€ s+ 2gc.
Hence by Lemma 1.3

D[, g1 = D[u, g + Sugd/l=ggda(u)+ggud/l=0

for any g € 9,.

Conversely, assume that u € 2* and D*[u, g]=0 for allge 9,. By Lemma
3.3, h=u+GuA) e #y. If u=0 on X, then G(ud)=0, so that 0<u<h. Since
h is continuous, u is locally bounded on X. Hence, by Corollary 1 to Lemma
3.2, G(ud)€ 2¢c, and hence ue 9.. Since o(u)= —ul, it follows that u e s#}.
In the general case, we consider u*. We know that u* € #,+ 2 (cf. [7; The-
orem 7.2]). Let @i be the orthogonal projection (with respect to D*[-, -]) of
u* to the space {ue 2*|D*[u, g]1=0 for all ge 2,}. By Lemmas 3.2 and
3.3, we see that #ies#p+2; Hence d—uteg,n(s#p+2)=2g Thus,
i = —p for some pe P, and hence #=0 by Lemma 3.3. Hence, by the above
result, we have @i e #%. Since D*[ii—u, g]=0 for all ge 2, and d—u=i—
u* € 95, by the same argument as above we see that i —u e #%. Hence u e #p.

LEMMA 3.4. Let A€ M}ipc. Then, given UE . Myc, there exists a unique
g € 2pc such that o(g)+gi=p on X. If pe Mypc, then g€ 2gpc and D*[g]<
D[G|ul].

Proor. The unique existence of g e 25, is given in [9; Proposition 1.4].
Since

* [0(9)+94] = £ p = |ul = o(Glul) = o(Glu)) + (GluDA,

a comparison theorem (see, e.g., [9; Proposition 2.1], or our Theorem 2.1 with
A=¢) implies that |g|<G|u|. Since g is bounded and [ dA< +c0, gi€ Mppc.
Hence, if ue.#gpc, then o(g) € Mgpc, and hence g€ 2. Furthermore,

Di(g] = Dl + | 922 = { gdotg) + { 422 = | g < [ Glubdlul = DGl

In what follows in this section, let A€ .#%pc, A#0 and A be an w-measurable
subset of 0*X. Set

h ={pe®p|H,e £%(A)},
dH(A) = {pe P}| =0 w-a.e. on *X \ 4}.

For each ¢ € ®}, let HZ be the orthogonal projection of H,, to s#} with respect to
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DA[-,-]. By Corollary 2 to Lemma 3.2,
H(P b Hé = G(Hél)E'QEFC'

Since s} is complete with respect to the norm D*[-]1/2 and s#,(X*) is closed
in ##p, we easily obtain (cf. [6; Lemma 5.2])

LeEmMMA 3.5. @} is a Hilbert space with respect to the inner product
@, ¥>p=D*[H}, H}]. ®H(A) is a closed subspace of D}.

The corresponding norm in @4 is denoted by |- |p,;, i.€.,
l@llp,a = <o, 9>} = D*[HZ]'/>.
LEMMA 3.6. For ¢ € &},

S H? dl§(1+|]GAl|w)ZS (HA)2d2.
X X

Proor. Since H,—H}=G(HiA) € 2ppc<=D,, using Lemmas 3.1 and 3.2
we have

g (H,— HA)? d,l=S G(HA2)dA
X X
< 1621, DIGHENT = 16213 | (Hpyd2.
X
Hence

Sx H2dA < (1+]GA.,)? Sx (HA)d2.

THEOREM 3.1. Let pedppe, 1€ ®h, B, yeN(A), B0, g df< + o and
A
assume thatS 12df < + o0,
A
[u]: there is a(u)>0 such that

I Hydu| < a@ivlos  forall yeoya),
[B-y]: there is b(B, y)>0 such that
| var|s b n{f veap+ 1wzl foratl yeoy) n £p).

Then there exists a unique u=H,+g with ¢ € ®}, and g € 2grc which satisfies
ou) +ul=yu on X
o=t w-a.e. on 0*X\A
Nu)=op +vy on A.
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Furthermore,

DAL S 20elos + 2+ IGLLIDLGIAIT + au) + (| 2B )2 + bip, ).

ProoF. The uniqueness follows from Theorem 2.1, since 1#0. By Lemma
3.4, there is g € 2gpc such that a(q)+gi=u on X. We define a linear form |/
on ®4(A4) n £*(p) by

) = = b o= | Hyqdi+ | Hydu = yedp = | yar

By Lemma 3.5, we see that @4(A4) N £2(P) is a Hilbert space with respect to the
inner product

(O ¥, = <0 D05+ o,
Let [@llp,.p=<0, @>43,5 We shall show that [ is continuous on @3(4) n L%(p)

with respect to this norm.
First, we have

A T>D,).| = “T”u,z“l/’”D,x = “T”D,;.”lpun,z,ﬁ-

By Lemmas 3.4, 3.5 and 3.6,

oz [ <(), moar) " (frar) ™

< (1+1621){| (Hpra)"” DIGI 2

< (1+11GA|| ,)DLGIKIT 1N p, 2, p-

By Schwarz inequality,

e [0, a8) ) 51, 0ar) i

Thus, in view of conditions [u] and [#-y], we see that I is continuous with the
operator norm

(32 I < Iellps + A+ 1G2IDIGIIT + ag) +({ <2dB)" + big, ).

Hence, there is ¢@o€ @4(A4)n L*(f) such that [@olpss=IIl and IY)=
{Pos ¥>p,1,4 for all y € DF(A) n L*(P), i.e.,
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DA[H, Hi1 + | govdp
(3.3)
— — D[H}, HY] — Sx Hyqdi + SX Hydp — SA Yrdp —SA Wdy

for all Y € @4(A) n L2(h). SinceS df< + 00, Pgp(A)cPh(A) N £3(B), so that
4

(3.3) holds for all y € Ppp(A). Now, let o=¢o+7and u=H%+q. Then g€ @}
and ¢ =7 w-a.e. on 0*X \ 4. Let

g=H.—-H,+q=u—H,
By Corollary 2 to Lemma 3.2, H, —H ,€ 25¢c, so that g€ 2gpc. Furthermore
o(u) + ul=o0(q) +ql=u on X.
For any y € ®&5,(A), by (3.3) we have

D[HA, Hi] + SX H,qdx —SX H,dy +§ VodB + SA wdy = 0,
A

Since

D*[H}, H}] = D*[H%, H,]

~ prj, B, + | HiH,d2

= D[H,, u] +S Hyudi — S H,qd),
X X
it follows that
D{Hy, u] = Hydow) + | wodp+{ yay =0

for any € @ 5p(A), i.e.,
N(u) = (pﬁ +7y on A.

Hence this u is the required solution.
Since u=H} +H?+q, (3.2) and Lemma 3.4 imply

D*[u]'? < ll@ollp,a + lltllp,s + D*[q]"/?

1/2
< 2tlo; + Q+1GAIDLGIT + a + ({ 72a8)" + biB, .

§4. Semi-linear boundary value problems

We now prove our main existence theorem for semi-linear problems.
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THEOREM 4.1. Let F: #— .4 be a sheaf morphism satisfying
(F.2) F(0)e Agpc and for each M >0 there is Ay € MEpc such that
IF(f)—-F(f)l £ (fa—fdiw  on X
whenever f1, f, € #A(X) and —MZ f,<f, <M on X.
Let A be an w-measurable subset of 0*X and let f: @ ,—A(A) satisfy
(B.2) SA d|B(0)] < 0o and for each M >0 there is oy € N +(A) such thatSA doy, <

oo and
1B(01) = B(@2)] < (93— 01)0ty on A

whenever @, 0, € Pp, —M=Z¢@, S0, <M on A.
Let 1€ ®p), and suppose there are ug=H, +g, and iio=Hz + §o with ¢,
Bo€Pyp and go §o € 2grc such that fig<u, on X,
o(uo) + F(ug) 2 0 2 o(ily) + F(dly)) on X,
(4.1) 9o 2T
N(uo) = B(@o) and N(iip) 2 f($o)  on A.

Then there exist u*=H ,+g* and i=H,+§ with ¢*, p € Py, and g*, § € Qppc
such that
(i) fipSASu*Su, on X;
(ii) u=u* and @=¢* (resp. u=1 and ¢ =) satisfy
o(u) + F(u) =0 on X,
4.2) =1 w-a.e. on 0*X\A,
N() =plo) on 4;

(iii) if u=H,+g with ¢ € gpp and g € 2ppc satisfies (4.2) and iy Su=u,,
then A Susu*.

v

Bo w-a.e. on 0*X\A,

ProoF. Since u,, i, are bounded, there is M >0 such that
—MZdygSugsM on X.

Put A=|F(0)|+ 4 if |F(0)|+Ap)#0. Then Ae Afpc. If |F(O)|+2,=0, then
take any Ae #}pc with A#£0. For any fe Z(X) with |f|SM, |F(f)|Z|F(0)|+
Ml (1 + M)A, so that fA—F(f) e Mgpc and

4.3) IfA—F(f) = 1+2M)A.

Next, put B=|p(0)|+ay. Then feA"*(A) and SAdﬂ<oo. If pe®, and
lol =M, then |B(@)| = |B(0)| + May = (1+ M)B, so that
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(4.4 1B(@)— Bl = (1+2M)B.

Now we define a sequence {u,} of functions on X by induction as follows.
Suppose uq, uy,..., 4,y (n21) have been so chosen that u;=H,, +g; with ;€ Dy,
and g; € 2gpc, j=0, 1,...,n—1,

dgSu,.1 < Su Sug on X
and
o(u;) + Fu)) 2 0 on X,
(4.5) ;21 w-a.e. on 0*X\ 4,

N(u;) £ fl¢;) on 4,
j=0,1,...,n—1. Note that by Lemma 2.2,
“~MZ2Go=SP-1 S SO SP=M w-a.e. on OJ*X.

Let ”n=un— IA—F(un— 1) and Ynzﬂ(qau—l)_(pn—lﬁ' Since 'un—ll éM and I(Pn—ll é
M w-a.e. on 0*X, |u,|=(1+2M)A and |y,| =(1+2M)B by (4.3) and (4.4). Hence
in view of Lemma 3.6, u, and y, satisfy conditions [¢] and [f-y] in Theorem 3.1,

respectively. Since t is bounded, g 12df< 0. Therefore, by Theorem 3.1,
there exist unique ¢, € 4 and g, € 2 EFAC such that u,=H, +g, satisfies
o(u,) + u,l =u,_ ;A — F(u,_,) on X
(4.6) Op=1 w-a.e. on 0*X\A
N(u,) = oo + B(@p-1) — @u-1f  on A
We shall show that if v=H,+q with € @5, and g € 2y satisfies
- M=sv=u,, on X
and
o)+ F(v) £0 on X
y=<r1 w-a.e. on 0*X\A
N@w)z py) on 4,

then v<u,<u,_,; in particular, #,<u,<u,_, by (4.1).

Since —M £v=u,_, <M and 1= 1,, condition (F.2) implies
{o(u,) +u,A} — {o(v)+0vA}
Z U, A—Fu,—) —vA+ F@v) 20 on X.
Obviously,
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o, =TV w-a.e. on 0*X\A.
Since —M Y =<¢,-,=<M and B=f,, condition (B.2) implies
N(u,—v) = @uf + B(@n-1) — Pu-1B — BOY) = (@,—¥)B  on A
Hence by Theorem 2.1 (with F(f)=fA and B(¢)=¢p), we conclude that v<u,

on X.
On the other hand, by (4.5) with j=n—1 and (4.6), we have

{o(u,) +u,d} — {o(u,-1)+u,-1A} =0  on X,
Oy — P01 =0 w-a.e. on 0*X\ A4,
N(un—un—l) g ((pn_(pn—l)ﬂ on A.

Hence, again by Theorem 2.1, u,<u,_, on X.
By (4.6), (F.2) and (B.2), we see that (4.5) holds for j=n. Therefore, by
induction, we obtain {u,} such that u,=H, +g, with ¢, € @5, and g, € 2gr, and

v Sy, Su, S -Su; S on X

for any v as above. In particular, we may take v=1l,, and hence {u,} is bounded
below. Let ¢*=lim,,, ¢, and u*=lim,_ , u,. Then H, exists and H, —H,.
by Lebesgue’s convergence theorem. Let g*=u*—H,. Then g,—g* (n—o0).
By Lebesgue’s convergence theorem, G(u,A) decreases to G(u*1). Since u* is
bounded, G(u*A) is continuous. Hence, by Dini’s theorem, G(u,1) converges
to G(u*2) locally uniformly on X. Since

gn = G(o(un)) = G(un—l'l) - G(una) - G(F(un—l)),

g*=—lim,_,  G(F(u,)). Furthermore, by (F.2), we see that {G(F(u,))} converges
locally uniformly on X.

Since F(u,)£(1+M)i, (1+M)GA—G(F(u,) € Pgc. It then follows that
(I+M)GA+g* € Pyc, which shows that g*e 25,=#(X). Hence u*e Z(X).
Furthermore, by (F.2), G(F(u,)) = G(F(u*)) (n—), so that g*= —G(F(u¥)).
Hence o(u*)=0a(g*)= —F(u*) on X. Since |[u¥|<M, F(u*)e #prc, and hence
g* € 2gpc. Obviously, p*=1 w-a.e. on 0*X \ 4.

Next, we show that p* € @5, and N(u*)=p(¢*) on A. If m>n=1, then by
(4.6)

o(Upy—up)+WUp—u )\ =Up_1—Uy—1)A—F(Uy_)+F(u,_;) on X
Ow—0,=0 w-a.e. on *X\4
N(ty—tp) = (@ — Q)P — (Om- 1= Pu-1)B+ P(@m-1)—B(Pp-1) On A.
Let ppn=(p—1—Up—1)A—F(Up_()+F(u,_,). Then
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0= Hm,n =z = 2(14,,_1—'“,,,_1)/1.

Hence in view of Lemma 3.6 u,, , satisfies condition [¢] in Theorem 3.1 with
1/2
) = 20+ 162 ) { |y =t 1202}

Similarly’ if we put ,))m,n =(<0n— 1~ Pm- l)ﬁ_ {,B((P,,_ 1) _ﬂ((pm— 1)}5 then Oé Ym,n é
2(@y—y —@m-1)B, so that y, , satisfies condition [B-y] in Theorem 3.1 with

1/2

b8, ) = 2 {((0u- 1~ -4}
Hence, by Theorem 3.1,

1/2
D[ty = 412 S @+ | G21.0) {DLG Uy -1 =t )12+ 2{ | -y = - 22} "}

+2{{ @01 =pu- a8},

which tends to 0 as m, n—o0, by Lebesgue’s dominated convergence theorem.
Here note that

DLG(ty- =thy-)2] = | {6(y-12) = G- 120} (- - 1)

Therefore
D[H, —-H, ]< Dlu,—u,] < D*u,~u,] —0  (n, m>0),

that is, {¢,} is a Cauchy sequence in &;. By Proposition 2.1 and Lemma 2.4,
we conclude that ¢*e &5, Since it is bounded, ¢* e @5,. Also, we see that
u*e 2 and D[u,—u*]—-0 (n— ).

The last equality in (4.6) means that

@D DlHy )~ | Hydow) + | 0(0,~0,-ap + | ¢dpg,-) =0

for all g€ @py(A4). As we have seen above, D[H,, u,]-D[H,, u*] (n—00).
Since a(un) - O'(M *) = (un— 17 ll,,)/l - F(un— 1) + F(u*),
lo(u,) —o(u*)| < 2(uy-y —u*)A

by (F.2), so that

Hx H,do(u,) — Sx H,do(u*) | <2 Sx \H, (4 —u®)dA —> 0 (n—>0).

By (B8.2), we have
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§, 0db@n-0 - | wdpion

gSAka«p.._l—fp*)dﬂ—»o (n—0).

Obviously, S o(@,—¢,-1)df—>0 (n—>o0). Hence, letting n—oo in (4.7), we
A
obtain

D[H,, u*] — SX H do(u®) + SA odB(¢*) = 0

for all ¢ € @ gp(A), which means that N(u*)=p(¢*) on A.

Thus, u=u* and ¢=¢* satisfy (4.2), and furthermore if u=H,+g with
@ € Opy, and g € 2 is another solution of (4.2) such that iy <u Zu,, then taking
v=u in the above argument we see that u <u*.

Starting with i, instead of u,, we similarly obtain fi=H;+ g satisfying (i),
(ii), (iii) of the theorem.

For a Radon measure v on X such that j d|v| < + o0, let w, denote the element
of #(0*X) defined by the linear form ¢ — \ H,dv for ¢e @ (0*X), ie.,

(pdw‘,:S H,dv for ¢ € €(0*X). Then the lgst equality holds for all g€
,ég(w). If v)fe Mgrc, then N(Gv)=w, on 0*X.

THEOREM 4.2. Suppose F: #— # satisfies (F.1) and (F.2) and B: &p—

N (A) satisfies (B.1) and (f.2). Suppose furthermore that there exist ty, i,€ R
and @q, o€ Ppy, such that

(4.8) N(H,) < @pqq + B(to) and N(Hz) = wpg, + B(To) on A.

Then, given t€ Py, there exists u=H,+g with o€ @y, and ge 2ppc which
satisfies (4.2). u is uniquely determined if w(0*X \ A)>0. In case w(0*X\A4)=0,
if i=H,+ g is another solution of (4.2), then i=u+c with a constant c such that
F(u+c)=F(u) on X and B(¢+c)=Pp(¢p) on A.

Proor. The last assertion follows from Theorem 2.1. To prove the exis-
tence, we may assume that 7,<t, by virture of (F.1) and (B.1). Furthermore,
by adding constants, we may assume

infoey Po Z max (to, SUPsx 7) + [ G(F(t0)*)l 0
SUPgrx Po < min (%o, infhuy 7) — |G(F(T0) )| -
Let uy=H,,— G(F(t,)) and iio=H ;,— G(F(#,)). Then
Uy = max (ty, supyt) and iy, < min (I, infey 7).
Hence iy Su,

o(uo) + F(ug) = — F(to) + F(ug) 2 0
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and
o(fio) + F(iio) = — F(tp) + F(ilp) £ 0

on X;

v

Po=T= Py w-a.e. on O0*X\A.

Furthermore, by (4.8), we have
N(uo) < B(to) = B(9o) and N(ilo) = B(¥o) = B(Po) on A.
Therefore, by Theorem 4.1, (4.2) has a solution u=H,+g with ¢ € @y, and ge

-@BFC'

ReMARKS. (i) In Theorem 4.2, condition (4.8) is also necessary for the
existence of a solution of (4.2). In fact, if u=H,+g is a solution of (4.2), then
N(H,)=wgq,+B(p) on A, so that (4.8) is valid with po=Fo=0¢, to=supyu
and #,=infy u.

(i) If F(f,)=0 for some bounded function f,e £(X), then (4.8) can be
replaced by

N(H,,) = B(to) and N(Hg,) = B(io)

for some @,, ¢, € Ppp and t,, 7y € R; in particular, if F(fy)=0 for some bounded
Jfoe Z(X) and B(Yo)=0 on A for some Y € Pgp, then (4.8) is satisfied (with

Po=(o=0).
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