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1. Introduction

This paper is concerned with the diffusion approximations of certain stochastic
difference equations expressed in the following manner

o e, — Xt =¢F(n, X:, w) + €2G(n, X3, w), (n=0,1,2,..)
X& = XoeRd,

where {F(n, x, w)} (E(F(n, x, ))=0) and {G(n, x, w)} are certain random fields
on a probability space (22, #, P). This paper is a continuation of the author’s
previous paper H. Watanabe [12] which deals with the case in which random
fields are derived from some Markov chains. In this paper, we deal with the
case in which given random fields are not necessarily Markovian, but mixing and
stationary. The methods of the proof base on a paper of Kesten and Papanicolaou
[6]. Here, we need more stringent conditions than in the continuous parameter
case, about boundedness and differentiability of random fields. Iizuka and
Matsuda [5] have considered the special case of (1). Here, we will show that
their results can be derived as the discrete versions of [2], [6], [7], [9]. In the
course of the preparations of this paper, a paper of Kushner and Huang [8] has
appeared. They have considered the same problem as ours under ¢-mixing
conditions, while in our paper we assume strong mixing conditions.

2. Assumptions and main results

Let (R, #, P) be a probability space. We introduce the following conditions.

I) F(n,x,w) and G(n, x, w): R*xQ—->R¥xeR?; weQ) are jointly
measurable with respect to & x #(R4) foreachne N={0, 1, 2,...}, where #(R%) =
g-algebra of Borel sets in R4.

II) For P almost all o, the random field F(n, x, w)=(F,(n, x, ®), F,(n,
X, 0),..., F4y(n, x, w)) (respectively, G(n, x, w)) are six (one) times continuously
differentiable with respect to x=(x4,..., x,).

) {F(n, x, ), ne N} and {G(n, x, w), ne N} are strictly stationary for
each fixed x.
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1IV) For each fixed M < oo, there exist constants C=C(M) and C,, inde-
pendent of n such that

a) E(supy< <um |IDPF(n, x, w)|®) = C, 018l =6,
b) E(supjxsm ID'G(n, x, @)l3*1") < C, 0=yl =1,
©) P(max, <p [Fi(n, x, )l < Cy) =1,

and

d) P(max < |Gy(n, x, 0)] £ Cy) £ 1.

V) {_Fon x, 0)P@o) = EEF, x, o) = 0.
ReMARK. Under the conditions IV) and V)
E(DfF(n, x, w)) =0, O0Z|B <6.
VI) Let
MAT(M) = 6{F(n, x, w), G(n, x, ), | < n < m, |x| £ M},
and
B(n, M) = sup; <o SUP ac.ehmyBe.eis iy |P(A N B) — P(A)P(B)| .
Then,
>y (B(n, M) < o0 for p=6+2d.
VII) The following limits exist uniformly on compact sets and are continuous
functions of x.1)
ay(x) = Xi.” T2, E(F(0, x, w)F((n, x, w)) + E(F(0, x, ®)F(0, x, w)),
bu(x) = X%y E(F(0, x, w)OF,[0x(n, x, w)),

and
ck(x) = E(Gk(n, X5 w))

We put for fe C%(R?)
ZLf(x) =12 24 1=1 a(x)0%f]0x,0%, + Ty (Zi=1 bu(x) + c(x))2f]0x,.

The martingale problem associated with the generator .# and starting at X e R4
has a unique solution R on (C([0, o), R?), #(C)) such that R(X(0)=X)=1,
where #(C) is the topological Borel field of C([0, c0), RY).

Define X¢(t) for {X%} given by (1) as follows

1) Under the conditions I)-VI), we can show these facts.
2) 24 04,:=0,,,40,,,
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@ Xi(t) = X5 + (1—jed))e(X5 — X9) if je2 St <(+De?, (j=0,1,2,..),
X¢(0) = X,.

Let R® be the measure on C([0, o0), R¥) generated by the stochasitc process
{X=(n)}.

THEOREM1. We assume that the above stated conditions on {F} and {G}

are satisfied. Then R® converges weakly to the probability measure R on
C([0, o), R4) when ¢~0.

3. Proof of Theorem 1
Let ¢4,(x) be a C*(R4— R) function such that 0< ¢, =1,

1 if |x| £ M]J2,
Pu(x) = _ M=z1)
0 if |x| =M,

and such that the grandient ¢,,(x) is bounded uniformly in x. Define the truncated
fields FM(n, x, 0)=¢p(x)F(n, x, ®) and GM(n, x, @)=, (x)G(n, x, w). Also
define stochastic processes X2 M(w) successively,

XoM(w) = XeM(w) + eFM(n, XeM(w), 0) + e2GM(n, XyM(0), w),
X5M(w) = X, (IXol = M).

We define X=M(f) as in (2). From the definitions, we know that there hold

|Xa2M(w)| <2M  forall n=1,2,..., and for sufficiently small ¢ > 0,
and

| X=M@)| = 2M for all ¢ > 0 and for sufficiently small ¢ > 0.

Let Q%M be the measure induced by X% M(t) on D([0, ), R%). At first, we show
that for each fixed M >0, the family of measures {Q*»M},., is tight on
D([0, o0), R9).

We list the following lemmas from Kesten and Papanicolaou [6] which we
will use frequently. Their proofs will be omitted, because they are similar to [6].

LemMA 1. Let U(n, x, w) be .#®”-measurable for each fixed x(|x| <2M)
and such that E{U(n, x, ®)}=0. Let V(m, w), m<n, be an .#™-measurable
random variable. Then, for 0<y<1, there eixsts a constant C,=C(y, d) such
that for all 0SI<Sm=n

|[E{U(n, XeM)V(m)}| < C{E{X 5,51 SUP}x|s2m |DPU(n, x)|*}1/*
x E((V(m)[4)1/4{B(n—m)}»/@+r+rd),

3) In the following, in .# : (M), we will omit M and simply denote by # :, also for (-, M).
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LEMMA 2. Let Y(m, w) be .#%-measurable, and for x(|x| <2M) let U(n, x)
(respectively V(l, x)) be #"(#"}) measurable. Assume that E(V(I, x))=0.
Put

W(n, 1, x) = E(U(n, x)V(l, x)).

Then, for each 0<y<1, there exists a constant C,=C,(y, d) such that for all
0<m=<n<l.

|E(Y(m) [U(n, X5V (I, X5M) — W(n, 1, X5*)DI
= G LE{|Y(m)|*}]V/BLE{ X p; <1 SUP|x  s2m IDPU(n, X)[5}178
X (E{Z\pi=15UPx s 2m [IDPV (L, X)BPVE{B(n—m, M)B(1—n, M)}r/@+21+27D),
Let &(s, t)=E(|X>M(t)— X=M(s)|"), 0<s<t, 0<r<2. If we can show that
E(X*¥(u) — X*M()2®) < const. [u — 1|E(®[$)!/3,

then, by the argument in [6, p. 108], we can obtain the tightness of the family of
measures {Q=M} _, for each fixed M>0 on D([0, «0); R4). Since |X&M(u)—
XpHn2 S Coplu—[ufe?| SCylu—1] and | Xgioys — XoMORS Cou—1], it is
enough to show that E(| X}z — X§; M, |>@) Sconst. |u—t|E(|P|®)1/8.

Put [u/e?]=u(e), [u/e*]—1=u’(e) and [u/e?]+1=u"(¢) for an arbitrary real
number u. We have, for 0<t=<u, by Taylor’s expansion theorem,

|XgY — X5l |2
= 2u (f)(e) _ LM — xel)i — (XoM — xal)?]

= 2 252 ZLISOF?’(], X5, @) (X% + u(X5H = X5¥) = X i) du

+26% Byl Xie S; G (> Xj» @) (XM +u (X7H— X50) — X34 1du
=4, + 4,.
By the boundedness of X%™ and condition &) in IV), we have
|E{4,®}| < |lu—t| const. E(|D|8)1/8,
Also, we have, by Taylor’s theorem again,

E{4,9}
= &2 X4 ) T ELFY(J, X5M, 0)(FY(j, XM, 0)+eGY(j, X5M, 0))P]

J=t"(¢e)

+ 2¢2 ?;(f)(a) >z} ey Zh=1 E(LFY(k, x, w) + eGM(k, x, w))
X (0/0x,(FY(j, x, @) (x — X&M)) 1 ] s=xt™ D)
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+ & TR Tizh o) 2t 1a,=1 E(TT3=; (FY (K, x, ) + &G} (k, x, w))
x (0%/0x,,0x,,) (F}(J, x, @) (x — Xi¥y) 1) Ja=xpn®)
+ et XU Tz o) 2= ET T2 (FH (K, X3, 0)
+eGM(k, XyM, w))
x | (1= )2(@0,,031,03) (PG, %, ©) (5= Xy soxtsucxti-xt %, du®)
=L+ L+ L+1,
By Assumption 1V), we can see easily that
|I;] £ const. |u—t|E(|®|[®)/8 (i=1,4).
By means of Lemma 1, we have
|| < 262 2'}':(:8'?(5) Zi;rl"(s) 2?1,12=1 IE([(F%(/C, X, ®) + EG%(k, X, ®))
X (0/0x,)(FM(j, x, o) (x—X3H))), + FH(, x, ®)0,,,1,]x=x;%P)|
<482 XUl Thh oy Zhn=1 €1 B — K)VCHD2ME [ 51<2 SUD)x1<2m
|DPF,(j, x, @)]4]'/*
X E[sup |y <2m (IFY (K, x, @)| + &|GY(k, x, w)|)B]'/BE(|D|®)!/8
< const |u — {|E(|®|8)1/3.
By the same way, we have
|I] = const. Ju—t|E(|®|8)/8.

Since the family {Q>M},. , is tight, we can extract a sequence {¢,} of positive
numbers tending to zero such that Q*~M converges weakly to QM. Generally,
there may exist many such sequences and their corresponding limit measures, say,
oY, leA. Now, we show that for any Q¥, A1e 4,

t
ORI O
is a martingale with respect to F§ (=a(X(s), s=t) on C([0, o0), R%)), where f is
any C* function f: R¢—> R with compact support and .#¥ is a generator which

will be determined later. For this purpose, we prove that for any integer n>0
and a bounded continuous function @: (RY)">R and 0<s; <s,<:-<s,Ss<t

EZ{(f(X®) = f(X(©NP(X(s1),..., X(s,))}

— gor {g' LM (X W)BX ()., X(5,))du }
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For the mean time, we omit the super-suffix ¢, M in X{™ and X>™(f). By
using Taylor’s theorem repeatedly, we have for 0<s=<t,

FX) = S Xio)
= & 558l Ttur |, @10x) (Xj+u(Xj1 = X)) du(FE(, X, @)

+ aGllw(js Xj; w))

. 1 .
= 558 Set || (FUG, X, @) @10%)F (X+u(X;0— X))
- FY(j X;, o) (8/0x))f (X;))du
+é 27:(;2:;) Zi;g(s) D (FM(>, Xirr, ©) (0/0x)f (Xis1)
- FM(j, Xy, 0)(8/0x))f (X3))
+ & 2 tj'-—nga) 2'1’=1F11"(J', Xs(e)a (D) (a/axl)f (Xs(s))
’ 1 .
+ 0 T8 Tt | @I0x)S (X +u(Xj01= X)) duGH U, X, @)
=Ji+Jy +J3+ Jy
Let @,(0) = P(X,(e)» Xsy(epo- s Xsneey) and || SCp<00. Then we have
|E(J39P,)| = |E(e thl=(§ze) = FY(J, Xi(e)s w) (8/0x))f (Xs(a))‘pa)l
S e T CLE(T 1551 Sup .y sam| DEFY(j, x, w)|*)1/*
X (E(|9.(8/0x)) f (X)) V4B(j — s(8))1/B*D
< econst T2, B)VEHD — 0 (e 0).
3) Ji+J,
= (82/2) Z_ri’=(gze) ‘lil,lz=1 Fﬁ(.h Xj9 60) (Flbg(.la Xja (D)
+ eGM(j, X;, 0))(0%/0x,,0x,) f (X;)
+ (£2/2) Zfi,=(§{e) Z‘l‘l,lz,lg=l Fz‘,l(j, X;, ) [T3-; ((Fﬁ(fs Xj, )
+ GG%(.L Xj9 60))
x S; du So (4 — 1) (0%/9x,,0%1,0%1) f(Xi+0(Xesr — X)) do
+ 82 X508 X izl Xh 1,21 (0/0x,) (FH(J 5 x, 0)(0/0%,)1(X))x=x,
x (F¥(k, X, 0) + eGM(k, X;, o))
+ (83/2) 5 8 Thzley T 10, 15=1 (0%/0x1,0x,,)
(F¥(, x, @) (8]/0%,)f (X)) x=x,
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x [Ti=2 (F¥ (k, X;, o) + eGY(k, X;, w))
+ (4312588 ko) T tatas10=1 [T2(FY ) X ©) + eGY(J, Xy, )
X (0*/0x,,0x,,0x,) (FI(j, x, @) (0/0x1,)f (%))x=x,
+ (e%/31) T5Leky Thzley Zhhntaita1s=1 [Ti=2 (FY (K, X, 0)
+ eG¥ (k, X, w))
x X:, (1= u)3(84/0x,,0%,,0%1,0%,) (FY(J, x, w)
(a/axu)f(x))x=xk+u(xk+1—xk)d“
=JiatNo+ o+t 5+ Do
Gathering the terms involving &2 in (3), we put
= Q7 58l T s FYU, Xy @)FA(, X, 0) @2/0%,0%)1 (X;)
+ Z4Leh) Thzkey Zhm=1 (0/0x) (FY(j, x, @) (8/0x))f (X))x=x,,
x FM(k, X}, w))
= g2 Z;cl=(:)(c) 't’.m=1 Z;';(EH FM(j, Xy, 0)F¥(k, Xy, ©)(0?/0x,0x,)f (X))
+ 82 Tl T et X530 FY (K, Xi, 0) ((9]0x,) FY(J, X, @)
(0/0x )f (X)) x=x.
+ (e2/2) ey Zhome1 FY (s X 0)FY (G, X, 0)(02/0x,0x)) 1 (X;).
Then we have
E(K,® ()
= &2 T4l Tf.m=1 E{(0%/0x,0x)) F(X,) P (@) (X542, E(FY(, X, @)
X F{(k, x, ®))x=x,)}
+ 82 2Ly Tizhe) Xhme1 E[0%/0x,0x))f (X) @ (@)

x {FM(j, x, o) FY(k, x, @)
- E(Ffw(]’ X, (D) FM(k X, w))}x=xk]

+ 82 Thie) T met E{(0/0x)f(Xi) Do (0) T54%4, [E(FY (K, x, )
X (0/0xy) FY (j, x, @))]x=x,}
+ &2 258 Tizhe Zhm=1 E[(0/0x))f (X)), ()
x {FM(k, x, ©)(0/0x,,)F}(j, x, ®)
— E(Fy(k, x, ) (0/0x,)F¥ (j, %, ©))}=x,]
+ (2/2) T48ehy Tt me1 E[(02/0x00%)) f (X;) Do (0)) E(FY(j, X, 0)
X F¥(j, %, ©))sex,]
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+ (6%/2) Z588ke) T me1 EL(0%/0x,0%))f (X;)Po(w)
X {FY(j, x, ®)F}{(j, x, ®)
— E(FY(J, x, ©)F}{(j, x, ®))},=x,]
=K1 +K;,+K;3+K,4+ K5+ K.

From the mixing property VI (see Theorem 17. 2.2 of [4]), it follows that

lm 2SR B(FY(, x, w)FY(k, x, »))
+ E(FY(j, x, ®)F;{(J, x, 0)) = alj(x) + O(1)
and
580 E{FY (K, x, 0)(9)0x,)FY(j, X, @)} = bl(x) + OL(1),

where ajf(x)= ¢3(X)a1n(x), bln(x)=P3(x)bin(x)+(0/0x)Pu(x) T =1 E(Fy (0, x,
w) x F(j, x, w)) and 0,(1)—0 uniformly on R4 as ¢—0.
Therefore, we have, applying Lemma 3.4 in [10],
Kii+ Kis+Kys
= 8 TR Thes B27@/0x,05)f (X) P, (0) (ah (X +0,,(1))

+ (0/0x)f (Xi) D, (@) (B}(X,) + O,,(1))]
s Sey Thes | B[ (@2103,00) 7 (X)) B(0)al, (X (W)
+ (0/0x)f (X(u)) ®(w)b} (X (w))]du, (¢, —> 0),
where QinM=Q¥ (g,-0). Put H,,(j, k, x, ®)=F}(j, x, o)FM(k, x, w)—
E(FM(j, x, ®)FM(k, x, w)). Then, K, , can be written in the following way,
Ky, = &> T58) Tizkey T, =1 E{(0%/0x1,0x,,) f (Xye)
X @ (0)Hy,,1,(j, k> Xsyr @)}
+ &3 X458ty Thzke) Thileo Zhnis=1 E{P(@)(FH (R, X), ®)
+ eGY(h, X, w))
x (0/0x,,) (0%/0x,,0x,))f (x) Hy,,1,(J, k, X, ©))y=x,}
+ (64/21) 58 Szl Thikey Thinis, 1021 E{P (@) [Ti=3 (FY (A, X, 0)
+ &Gl (A, X, ))(0%/0x,,0%,,((0*/0x1,0x,,) f (¥) Hyy,1,(J, K, %, ©)))x=x,}
+ (e%/31) T58eley Thzdo ko) Zhon1s=1 E{Di(@) [Tis (F (B, X,y ©)
+ eGY(h, X}, ®)) (03/0x,,0x,,0x,,) ((0%/0x,0x,)f (x)H,, 1,(J, ks X, ©)))x=x,}
+ (e°/41) 5880 Thzde) Thako) Zhotate=1 E{9(0) [T83 (F Y (h, X}, )
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+ 8Gll‘{(h9 Xh& w))(64/axlsaxlsaxl4axlg)((az/axlzaxh)f(x)Hll,lz(j9 k9 X, w))x=X;.}
+ (87/4') Z§'=(§)(e) Zi;;(s) 2’}:'_—‘.%(5) Z‘Iil,lz ..... 17=1 E{¢s(w) HZ=3 (F%(hs Xln (l))
+ sGlbl(h: Xh’ (D))

x 3; (1= u)*(0%[0x,,0%,,0%,,0%,,0%1,)

((52/axlzaxll)f(x)Hll,lz(j’ ka X, w)))x=Xn+u(Xh+l—Xn)du}
=K1+ Ki22+ "+ Ky 6

By applying Lemma 2, we have

|K1,2,1] < €2 X428, Tizley T =1 1E{®(0)
X (0%10x1,0x1,) f (Xse)) Hiy,1,(F5 K5 Xieys @)}
< const. £2 3548 Sizle) T, =1 E{|2,(@) (0%/0x,,0%),) f (Xy(r)) 1B} 1/
X E 3151 <1 5P| s2m| DPF Y (j, x, )|8}1/8
X E{Z\p1515UPx s2m| DPF I (K, x, @)[P}H/®
X (B(j —k)B(k — s(w))/E*2D

< const. &2 X520 B(J )V E2D T 50 () EH2D — 0 (e >.0).
Again applying Lemma 2, we have

|K,.5.5] < const. &3 L&) Tzl Tl T
X [E(|® ()| sup, . <2ml(83/0x,,0x1,0x,) f (x)FY(h, x, »)])8)!/8
+ eE((|P.(w)| sup,,; <am(83/0x,,0x,,0x, ) f (x)GH(h, x, w)|)?)1/8]
X E{Z |51 5UP|x| s2m| DPFY[(J, X, @)|*}VBE{Z 1) <1 SUD|x  s2m
x | DEFM(k, x, w)|3}1/8
x (B(j —k)B(k—h))1/(6+2d)
+ const. g3 X419, Tzl Shol Sd
x {E((|9 ()] sup| saml(0%/0x1,0x,)) f (x)FY(h, x, w)|)8)1/8
+ eE((|P ()| sup|x) <am(0?/0x1,0%,) f (x)GH(h, x, ©)])®)1/8}
X E(Z g 525D s2m| DPF I (J, X, @)|%)VBE(Z 151 <2 5UP}x  s2m
x |DEF¥ (k,- x, @)|8)1/8
x (B(j—k)B(k—h))1/(6+2d)
< const. &3 T448,) Yzl Skile) (B(j— k) B(k —R))1/(6+2D
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< const. &3(t(e) — s(e)) (X2 B(v)t/(6+24))2
< const. gt—s| — 0, (e—0).

If we recall that E(D*F(n, x, w))=0, |¢|<6, we can prove that |K, ,,|—0
(e—0) for i=3, 4, 5.
Since

E{® (o) [TI=3 (F¥(h, X}, ®) + eGM(h, X;, w))
x (%] 6x,76x,63x,56x,46x,3) ((52/axlzaxl,)f (x)H l;,lz(j9 k, x, ©))),=x, +u(X;,+1—-X;,)}

is bounded, we have
|Ky, 2,6l = const. e(e%(t(e) — s(¢)))* < const. g|t—s|> — 0, (e—-0).

By the same method as for K, , we can see that K, ,—0, (¢-0). For K, ¢, we
make the following transformation.
K6 = 2716 T4, T =1 E(0%/0x,0%)f (Xy0) Po( @) (Hy (s ]y Xjy @)
+ 2713 T izl 28 1 15=1 E[(03)0x,,0x,,0%,) f (X)) @ ()
x (Fl(k, Xy, 0) + eGY(k, X, 0))H,,1,(j, ], X;, ®)]
+ 471 TV Tzl T s 10=1 E[(0%/0x,,0%,,0%1,0%,,) [ (X;) D, ()
x [T43 (FY(k, X}, ) +eGY(k, X, w)H,, 1,(j, J, X}, w)]

. 1
+ 4—185 2"];(:)(5) Zj;g(e) Z‘Iil,lz, l3,1l4,15=1 E|:S (l - u)z(as/axl5axl4axl;;axlzaxh)f

X (X + u(Xps1 — X)) du®@s(0) [Ti=3 (FY (%, X), )
+ 6GH (K, Xy @) Hiy 1 Js X )|
=K;61+ K62+ Ki63+ Kiga
By applying Lemma 1 to K, ¢ ;, we have
K61 < const. 2 3488 B(j—s(e))/3+) — 0,  (2-0).
Also, we can show that K, ¢ ;,—0, (¢-0), i=2, 3, 4.
We put

Jia+ I

= Ky + 8 T80 Stnms FEGL X, )GHU, X, @) (8%/0x,0%,)f (X))

+ & Z' (i(e) 2’_sm Zl;,l;-l (3/¢9x,2) (FM (.1, X, w) (0/0x1,)f (%)) x=xx
xGlz(k, Xka (D)
= Kl + Kz + K3.
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Since E{FM(j, X;, o)GM(j, X, 0)(0?/0x,,0x,)f(X)®(w)} is bounded, we
have E{K,®,} -0, (¢—~0).

Furthermore, we have
|E{K3®.}|
<é Z§/=(§)(e) {:-:-g(e) Z'i’l,12=1 E{(|d5e(w)|sup|x|§2MI(32/6x,25x,1)f (x)
x GY (k,x, w)|)*}1/4
X E{3 |5 <15UPx s2m| DPFY (j, x, 0)|*}1/4B(j —k)/C+D
+ 83 D588 Tzl X, 1=1 E{(19,(®)| sup|y; s2|(9/0x,,) ()
x G (k, x, o|)*}1/4
X E{X|p225UP|xs2m| DPF Y (J, X, @)[*}4B(j—k)1/G+D
< const. € 2.2, f(HVG — 0, (—-0).
For J;,,, we have
E(J1,20.(0))
=g Zt,=(§za) Z‘lil,lz,l:):l E{F}(j, X, 0) [T (FY(J, X;, w)
+ eGM(j, X, 0))P ()

x S: du So (4 = 0)2(%]0x1,0%1,0%,) f(Xie + 0(Xps1 — X))o}

Since E{ } is bounded by assumptions, we have
|E{J, ,P(®)}| < const.e — 0, (e—0).

In the same way, we have E{J, ,® (w)}—0 (e—0).
Concerning J, ,, since E(D*F(j, x, ®))=0, we can apply Lemma 1 to this
situation and we have
|E{J2,2®P.(@)}|
< (e3)2) 2#225) i—_'—slx(c) >4 =1 E{® (@)
x ((02/0x1,0%,) (FI (j, %, @) (0/0%1,).f (%)))s=x«
x [T=2 (F¥{(k, X, ©) +&GY(k, X, )}
< e 34, Tk, const. B(j—k)1/G+D
=0(g) — 0, (e—0).

In the same way we have E{J, ;P (w)}—0 (e—0).
Let us consider J,. J, can be transformed in the following form
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Jy =2 XK T (0/0x)f (X;)GY (), X;, o)

, 1
46 T8 Tor || @03+ (X500~ X))
— Qox) K uGH (], X, )
=2 2 (AR + o+ TV ) (010x)A(X)DGH (G, Xy @)
1 u

48 T8l Tl || du(] @2102,00,) 0 + 000 = X)) do

X GII‘{(J’ Xj’ w)(FIle(], Xj9 (D) + EG%(.]’ Xj, Cl)))
=Ja1 +Ja

where we put n=[(t(¢)—s(¢))/T] for large integer T>0. From Condition IX),
we can easily deduce that

E(J4,9(w)) — 0, as e—0.
Let us consider J, ;. We have
E(Jy,19,(0)) = 2 Xfy (Zp=] THRT-1 + PO E(0)0%)) f (Xir+s())

x GM(j+s(e), Xir+see)s )P (w))
+ 23 (T Rz + et Tzl
X E([(a/axl)f(Xh+1+s(s))Gllu(j+s(s)’ Xyt 145(e)> w)
- (a/axl)f(Xhﬁs(s))G?l(j+s(8)’ Xh+s(£)9 (D)] ¢e(w))

= Y (Zizd TR + T 3@=1) E{(3/0x)) f (Xir+5()) Pe(@)
X E(Glbl(j_ks(w)’ x’ w))S=XkT+s(g)}
+ 2 T (T TEERT + T @) E {(9/0x) [(Xir450)) Do @)
x (GH(j+5(e), x, ) — E(GY(j+5(8), Xy ®)))x=Xirsser)
+ 8 Thoy Ty (T TR Bk + T T2k

1

x E| 0,() (| @/0x) (@10x,)1 () (G¥G+5(), x, @)
- E(G?l(j-'_s(a)’ xi w)))x=X;.+s(5)+u(X;.+1+s(€)—X;.+s(,;))))du
X (FM(h+5(8), Xpryep ©) + 6GY(h+ 5, Xproior w))]

= Ll + Lz + L3.

Now choose T such that eT—0 (e—0), but T— oo (for example, take as T=[e~1/2]).
Since the integrand in L is bounded by Condition IV), we can see that L;—0
(e—0).
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Since E(GM(j+s(g), x, 0))=dp(x)cx)=cM(x) by definition,

Ly =¢eT ¥ [(Zi=d E(a/axl)f(XkT+s(a,.))Qen(w)ciw(XkT+s(en)))
+ T (t(e,) — s(e,) — nT)E0/0x)f (Xurss(z) Pe, (@)} (Xoar+sen))]
— 2ty || E20/0x)f (¢l (x(u) D (@)

Let K(n, x, w)=GM(n, x, ®)—c¥(x), then E(K(n, x, w))=0 and K(n, x, w) is
A P-measurable. Therefore, we can apply Lemma 1 to L,. Hence, we have

Lyl Se? Ty (Thzd THERT-1 + Zieze@z))
x const. E{Y 5 <15UPx <2m | DPK(j+5(e), x, w)[*}1/*
X E(|(010x)) f (Xkr+50)) Pe(@) V4 (B(j —kT)) 1/ C+D
< const. g2.¢72T1 Y2, B(v)V/B+) = const. T-1 — 0, (e—0).

Thus, we have, for any bounded % §-measurable &(w),

E2¥((f (x(1)) —f (x(5)) @ (w)) = E¥ {S Lt =1 271(0%/0x,0%) f (x(u))ami(x(u))

+ Zf m=1(0/0x) f(x(u))bl7, (x(w)) + ¢} (x(u))}<15(w)]du}

from which we can deduce that any Q¥, Ae M, are solutions of the martingale
problem such that

fxte) — ] 2Mf(xup)du

is a martingale on (C([0, o), R?), ), where M =2-1%"¢ _. (aM(x)(0?/0x,0x,,)
+ 24 m=1 (b1(x) + ¢} (x)) (9/0x,)

We have uniformly on each compact set

limy,, o, afi(x) = a(x), limy_, ,, BY¥(x) = by(x) and limy,, , c}(x) = ¢(x),

which are continuous.

By Assumption VII), applying Theorem 11.4 in Stroock and Varadhan
([111, p. 264) to Q¥, Q¥ weakly converges to R as M — 0.

If we repeat the argument in Kesten and Papanicolaou [6] we can show that
R# weakly converges to R on C([0, o), R¥).

4. Special cases

If the random fields {F(n, x, w)} and {G(n, x, @)} take the special forms,

4) As in [6], we can show that each Q% is concentrated on C,
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assumptions can be much simplified.
In this section, we consider stochastic difference equations defined by

Xi = X+ eFO(n, X&, w)+e2FP(n, X3, w)
+ &3FC®)(n, X%, &, w), Xj= X,.

We introduce the following conditions.
I'’) The random fields F()(n, x, w)=(F{)(n, x, ®),..., F{’(n, x, )} (i=1,2)
are expressed in the form
Fl(ci)(n’ X, ) = Z =1 gg{’l)(x)égi)(n9 w), (k=1,2,., d),

where {&9(n, w), I=1,...,d;}, n=0, 1, 2,... are real #-measurable functions and
g{P(x) are real #(R%)-measurable functions. F®)(n, x, &, 0)=(F{¥(n, x, ¢, ®),
., F¥(n, x, &, w)) is real #-measurable for n=0, 1, 2,..., x € R4,
IT') {g;cll)(x)}k=1,2,...d,l=1,...,d1: R4>R (respectively gi3(x)) are six (one)
times continuously differentiable with respect to x=(x,, x3,..., X3).
ar) {&¥9n, w), j=1,...,d} (i=1,2) and {F®X(n,-,& w)} are bounded
strictly stationary vector processes and E(¢{"(n, w))=0.
IV) Let a7p=0{¥(n, w), FP(n,x,6 ), (j=1,2,..,d), (i=1,2), I<
n<m} and

(1) = SUpP;3 0 SUP 4c.¢7, B2, |P(A N B) — P(A)P(B)].
Then
> a(n)i/?2 < oo.
V) Let
a(xX) =i 1 2% E(FV(0, x, 0)F{V(n, x, »))) + E(FP(0, x, ©) F{V(0, x, ®))
= Yi Xiat Tzt ECEP(0, )&V (n, 0))gih (x)g1d(x)
+ D=t BP0, 0)EP(0, 0)gi(x)gi (x)
= i1 Z=1 RV ()91 (x) + Tt =y E(ELP(0, 0)E0(0, ))gid) (x) g (x),
where we put R(D =Y E(E(0) é(V(n)). Also, we put
bi(x) = 32, E(F{V(0, x, w)(8/0x,)Fi{(n, x, w))
= T i=1 RIGI(x)(0/0x0)g18 (x)
and
a(x) = E(FP(n, x, w)) = T iz, E(P(n)gi(x)
= Tz, cgid(x),
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where ¢,=E({?(n)). We put, for fe C%(R?),
Lf(x) =271 3 11 au(x) (0?/0x,0x))
+ 21 (Xh=1 bu(x) + cfx))(9/0x) f

Then, the solution of the martingale problem associated with generator % has a
unique solution R on (C[0, o), R4), £(C)).

We define X4(¢) as in §2. Let R? be the measure on C([0, o), R?) generated
by the stochastic process {X%(f)}. Then, we have the following theorem.

THEOREM 2. We assume that conditions 1')-V') are satisfied. Then R®
converges weakly to the probability measure R on C([0, o), R%) such that
R(X(0)=Xy)=1, X,€R4.

The proof of Theorem 2 is analogous to the one of Theorem 1. It is neces-
sary to replace Lemmas 1 and 2 by the following Lemmas 3 and 4.

LEMMA 3. If ¢ is measurable with respect to #% with E({)=0and n is
measurable with respect to M2, (n>0) and if || C,, |n| S C, with probability
one, then we have

|E¢n)| < 4C,C,a(n).
ProoOF. This is Theorem 17.2.1 in Ibragimov and Linnik [4, p. 306].

LEMMA 4. Let &; be .#} measurable and n; (respectively (,) be #i(#¥)-
measurable. Assume that E({;)=0 and

P(¢| = Cy, |’1j| SCLIULI£C) =1.
Then, for all i< j<k, we have
|E{fi('7jCk“E('1jCk))}| < 8C,C,Cs(a(j — i)k —j))' /2.

PROOF.  wj =n;{;,—E(n;{;) is bounded and .#¥-measurable and E(w;)=0.
Therefore by Lemma 3, we have

|E{€i(’7jCk—E(njék))}‘ S 8C,CCau(j—1).
On the other hand, &, is .#}-measurable and {, is .#-measurable. Hence

|E{&in;8i}| = 4C,CoCaa(k—)).

Also, we have
IE{ﬂjCkH < 4C,Crau(k—j).

Therefore, we have
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|E{&i(n;{—E(m;{)}? < 64C3C5C5((j — ik —J)),
from which we obtain the conclusion of Lemma 3.

We will omit the proof of Theorem 2.

If d=1, gM(x)=1 and F®(n, x, ®)=0 (i=2, 3), then Theorem 2 gives
Theorem 4.1 in Davydov [3]. If {&,,} are orthogonal random variables with unit
variance and F()(n, x, ®)=0 (i=2, 3), then

Lf(x) = Th 121 Zi=1 910 () g1 (x)(02/0x,0x)) £,
which is the generator of the solution process of the stochastic differential equation

ka(t) = g=l gsc%l)(x(t))dBu(t) ’ (k = la 2’“" d) .

5. Generalizations

In this section, we will try some extension of the results of the preceeding
sections. In this section, we assume that all random fields depend on &. We
introduce the following conditions.

VI") Let A7(e, M)=0{F(n, x, ¢, w), G(n, x, &, w), ISn<m |x|£M} and

B(n, &, M) = sup SUD gc.vh (e,M), Bet 5 n(e; M) |P(A n B) — P(A)P(B)|.

There exists a positive non-decreasing function L(¢) such that L(g)— oo (¢—0) and
£2L(g)—0, (¢-0), and such that

lim,-o (5/ L)/ E 1250~ B(n, &, M)C+20 = 0
and the following limits exist uniformly on any compact sets of x, independent of ¢
@ lim 1/L() Th, SEO T B, x, &, @)F (n, %, 8, 0) = afi(x),
and
(5)  lim,q 1/L(e) XLt 2L& T E(F(O, x, &, ) (8]/0x,)F(n, X, &, w)) = b¥(x).

V") Let A7(e)=0{({(n, &, ®), FP(n, x, 8 @), (j=1,2,...,dyp, (i=1,2),
I£mZ<n} and

(X(n, g = SUP;>0 SUP 4e.0) (¢),Bet vn(e) IP(A n B) - P(A)P(B)I .

There exists a positive non-decreasing function L(¢) such that L(e)— oo, (¢—0),
and &2L(¢)—0, (¢—0), and such that

lim, .o (¢/L()/2 THe40 T a(n, /12 = 0

and the following limit which is independent of ¢ exists,
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©6) lim,_, o L(e)~! ke 2L 1 E(EWD(0, g)E{(n, g)) = R*¥(D,
Define X4(t), as follows,
X5(t) = X5 + (t—je2L(e))/e*L(e), if je?L(e) <t < (j+1)e2L(e).

Let R% be the measure on C([0, o), R%) induced by the stochastic process
{X5(0}.

If we consider f(X§Map()-1)) —f(X§M2p()) in place of f(XiM)—f(XyM
in the proof of Theorem 1 and make use of the assumptions introduced in the

above, we can prove the following theorems in analogous ways as in Theorem 1.

THEOREM 3. We assume that I)-V) in §2 and VI"), where in Assumption
IV), constants C=C(M) and C,, are independent of n and ¢. We put fe C3R?)

L¥f(x) = 271 X =1 afi(x) (52/5xkax15f + Xk =1 b(x) (0/0x) f,

where a}(x) and b} (x) are defined in VI"). Furthermore, we assume that the
solution of the martingale problem associated with generator ¥* and starting
at X € R4 has a unique solution R, on (C([0, o), R%), #(C)) such that R (X(0)=
X)=1, Xe R4. Then, R% weakly converges to R,.

THEOREM 4. We assume that I')-III') in §4 and 1V"), where in III')
{é(j"’(n, ¢), j=1,...,d} (i=1, 2) are bounded also with respect to €. Let
aty = Ti,1 Xio=1 REV LD (x)gih (x)
and
h(x) = Tit=s REV(X) (0/0x)g9 10 (x), gi)(x).

We define £*f(x) as in Theorem 3 for fe C3(R?). Also, we assume that the
solution of the martingale problem associated with generator £* starting at
X € R? has a unique solution R, on (C([0, o), R%), #(C)) such that R (X(0)=X)
=1. Then, R% weakly converges to R*.

In Theorem 4, we take a d x d symmetric, non-negative definite matrix o%,
(u, k=1,..., d) such that

R}, = iy ohak.
Now put
Vu() = i1 08 Br(D),

where B(t)=(B,(t),..., By(?)) is a d-dimensional Brownian motion. Then, the
corresponding stochastic differential equation to the diffusion process associated
with the generator #* is written as follows;
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dxi(t) = 5=1 ggllt)(t)odyu(t)a

where o means the stochastic integral in the sense of Stratonovich.
Now consider the case d=1. Let §(¢)>0 and d(¢)—0 (¢—>0). Assume that
E(EMW(0, e)¢MW)(n, g)) ~exp (—d(e)n)(n—o0). Then the limit

lim,., o 8(e) X571 E(EM(0, )¢)(n, £)) = R*

exists. Therefore, we can take L(e)=1/d(¢). Assume that a(n, &) ~exp (—d(e)n)
Then, also we have

Zr=1n, &)1/ ~ 1/6(e),  (e—0).
Therefore
lim,..o (65(6)!/2 T o(n, £)!/2 = 0

if and only if lim,_, 4 £/d(g) =0.
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Supplement

We propose another version of Theorems 1 and 2. At first, we remark that
if {Xz} defined by (1) is known to be bounded, then Assumptions (c) and (d) of
IV) of Theorem 1 in Section 2 can be dropped. Many examples in population
genetics are the case.

More precisely, we introduce the following conditions.

0) {X%M(w)} (which is defined in section 3) is bounded for each fixed
M >0, with respect to ¢, n and w.

VI) For each M <o, there exists a constant C=C(M) independent of n
such that

a) E(SuplxlgM |DﬂFl(ns X, w)IB) é C’ 0 é lﬂl é 69
b) E(Sup|x|§M IDyGl(n’ X, w)‘8—4|'¥|) é Cs Oélﬂ = L

It is clear that if {X2} is bounded, condition 0) is satisfied.

THEOREM 1’.  We assume that conditions 0), I), II), III), VI), V) and VI)

are satisfied with respect to {F} and {G}. Then, the conclusion of Theorem 1
holds.

Proor. In section 3 (Proof of Theorem 1), we used conditions c) and d)
in two places. The first one is to say about boundedness of {X%™} which is
equivalent to condition 0). The second one is to say that the inequality

| XeM(u) — XgMay| < Cylu—1]
and etc. hold.
In this situation, we proceed as follows.
E(1X>M(u) — XpMn|2®) < |t — ul2[E{|F([u/e?], X§May, @)|4}14
+ e2E{|G([u/e’], X}y, w)[*}V41E[| D8]V
We can deal with | X§;%;,; — X*M(¢)| by the same way.

Next, we consider some modification of Theorem 2. Let us introduce the
following conditions.

) {9, w), j=1,...,d;} (i=1,2) are stationary vector processes and
E{&P(n, w)}=0.
There is a constant C independent of ¢, n, for a 6>0

E(iEP(n, 0)|#*2) < C,  i=0,1,j=1,.,4,

and
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E(|F®)(n, -, &, )|**P) < C.
IV’) For a(n) defined in condition IV’), it holds

>, a(n)d/¢+29) < oo fora 6 >0.

THEOREM 2. Under Conditions 0), I'), II'), 1II') IV') and V'), the con-
clusion of Theorem 2 holds.

The proof of Theorem 2’ is analogous to the one of Theorem 1’. We have
to replace Lemmas 1 and 2 by discrete versions of Lemmas 3 and 4 in [13].

[13] H. Watanabe, A note on the weak convergence of solutions of certain stochastic ordinary
differential equations, Proceedings of Fourth Japan-USSR Symposium on Probability and
Mathematical statistics.





