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Introduction. In the previous paper [2], the author studied semilinear
boundary value problems with respect to an ideal boundary on a self-adjoint
harmonic space. When applied to the harmonic structure defined by a self-
adjoint elliptic operator L on a bounded domain Ω in Rn with smooth boundary
dΩ, our problem in [2] may be written as

' Lu(x) = F(x, u(x)) on Ω,

( 0 1 ) J u(ξ)=τ(ξ) on dΩ\Λ9

where F is a function on Ω x R, A is a part of dΩ, τ is a given function on dΩ and

β is a function on Λ. x R. The main existence theorem was proved by the so-

called monotone-iteration method.

Recently, S. Zheng [3] applied the same method to the following boundary

value problem with non-local boundary condition:

( Lu(x) = F(x, u(x)) on Ω,

•Q y, ) u(0 = const, (unknown) on dΩ,

du
= 0.

The purpose of the present paper is to formulate a boundary value problem
with respect to an ideal boundary on a self-adjoint harmonic space in such a way
that both problems of type (0.1) and of type (0.2) are included as special cases and
that the monotone-iteration method can be applied to obtain an existence theorem.
In order to describe boundary conditions, we introduce the notion of "boundary
behavior spaces". A choice of boundary behavior space gives a problem of the
following type, which is a generalization of (0.2):
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' Lu(x) = F(x9 u(x)) on Ω9

u(ζ)=τ(ξ) on Λ09

( ' I u(ξ) = cij (unknown constant) on Aj9 jeJ9

[ j±dσ = φJ), jeJ,
jAj on J J

where {Λj}jej is a countable (finite or infinite) family of mutually disjoint com-
ponents of dΩ9 Λ0 = dΩ\ \JjeJ Λj and ηj9 j e J9 are real functions on R.

§ 1. Preliminaries

As in [2], let (X, Jf) be a self-adjoint P-harmonic space such that X is con-
nected, has a countable base and 1 e Jf (X). Let G(x9 y) be a symmetric Green
function on X and σ: &-+JΪ be the canonical measure representation associated
with G (see [1]). The image sheaf of & by σ is denoted by Jίc.

We denote by Gv the G-potential of v e «^cP0 when it exists. Let

JίBF = {veΛc(X)\ G\v\ is bounded, | v |pθ < oo},

G\v\d\v\ < oo, |v|(X) < oo},

J Z F = {Gv|ve^Z F}, Z = B or £.

(^Z F and i?ZF are denoted by JΪZFC
 a n < i «̂ ZFC i n [2].) Note that

and ^ β F c ^ £ F . If/= ft + Gv with /i e «?T(Z) and v e ̂ £ F , then σ(/) = v.
For/, g e ̂ (X), the gradient measures δίf^ and ŷ are defined in [1]. We

write D[/] for δf{X) and /)[/, 5f] for 5[/fff](Λ:) when δf(X)<oo and ^(X)<oo.
Note that £>[/] < oo for any / e ̂ £ F (see [1]).

We consider a resolutive compactification X* of X. Let ω = ωx be the
harmonic measure on δ*X = Z*\X at xeX. For φeLί(ω), let Hφ{x) —

\ (̂ dω^ (x e X). Then i/^ e ̂ f (X), As in [2], we consider the linear spaces
J d*X

\ω) \ D [ ^ ] < oo}, ΦBD = ΦD n L°°(ω),

which are closed under max. and min. operations. Obviously, constant functions
belong to these spaces. We denote by Jί the space of all signed measures on
d*X which are absolutely continuous with respect to ω.

Given a space of functions or measures, the subset consisting of non-negative
elements in the space will be indicated by the upper index •+• e.g., ΦJD, ^ J F , etc.
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§ 2. Boundary behavior spaces

A subset Ψ of ΦD will be called a boundary behavior space if it satisfies the

following four conditions:

(^.1) Ψ is a linear subspace of Φ D ;

(Ψ.2) Ψ is closed under max. and min. operations;

(Ψ3) for each φe Ψ+, there is a sequence {φn} in Ψ$ = Ψ+ n L°°(ω) such that

φn^φ for each n, t/^-nA ω-a.e. on d*Jf and D[//^n — /2^]->0 (n->oo);

(<F.4) if i^e^F, n = l, 2,..., ψn->ψeΦD ω-a.e. on S X and £ [ f ^ n - ί ^ ] - » 0

(n->oo), then ψeΨ.

Note that (Ψ3) follows from (Ψ.2) if leΨ; we may take ψM = min(ιA, ή)

in this case.

EXAMPLE 2.1. Let A be an ω-measurable subset of 3*X and write

ΦD(Λ) = {φ e ΦDI φ = 0 ω-a.e. on

Then ΦD(yl) is a boundary behavior space. In particular, ΦD (the case

ω(d*X\Λ) = 0) and {0} (the case ω(Λ) = 0) are boundary behavior spaces. More

generally, let φQ e ΦBD and i^o^O ω-a.e. on δ*X\Λ. Then

(2.1) Ψ = ΦD{A) + ^Ψo = {φ + ciAo I Ψ e Φj,(Λ), c e /?}

is a boundary behavior space. In fact, (ΨΛ) is obvious and (ΨA) is easily verified.

To show (Ψ.2) let ψ = φ + cψ0 with φ e Φ ^ y l ) and ceR. If c^O then

φ+ e ΦD(Λ)c ψ and if c>0 then ^ + = max(<p, — c^0) + cφ0 and max(φ, — cψ0)e

ΦD(Λ). Thus (IF.2) holds. If ψ = φ + cψo^09 then for n>\c\\\ψl\\OD, ψn =

min(φ, ή) + c\l/0 e Ψ% and {φn} has the properties stated in (Ψ3).

EXAMPLE 2.2. Let {Λj}jeJ be a finite or countably infinite family of mutually

disjoint ω-measurable subsets of d*X such that ω(Λ;)>0 and the characteristic

function χy of Λj belongs to ΦD for every j e J. If J is a finite set, then let

jI ajeRJeJ}.

If J is an infinite set, then we define

= Cl { ΣjeJ> ajXj \ajeRJe J', J': finite c J},

where Cl means the closure with respect to the convergence given in (ΨΛ). Any

element of Φί>({Λ/}jεJ) is of the form ΣjejβjXp ajβR. It is easy to see that

&D({Aj}jej) is a boundary behavior space. (To verify (Ψ.3), we may use [2;

Lemma 2.3] and [1; Lemma 7.5] and show that ψ eΦc

D({Λj}jej)
+ implies

, n)eΦί({Λj}jeJy.)
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Let Λ' = \JjeJΛj and A0 = d*X\Ά. For ^o = Φo + Λo with

and aoeR such that φo^.0 on d*X9

(2.2) Ψ = ΦU{ΛJ}JJ) + Rψo

is a boundary behavior space. Note that in case χA> (the characteristic function

of Af) belongs to ΦD (in particular, in case J is finite), we may write φo = φo + QQXΛ'

Also, for an co-measurable set AcA0, Φ^({Λj}jeJ) + ΦD(Λ) is a boundary

behavior space.

§3. Problem setting

Given a subspace Σ of ΦD, let

We consider a mapping F : ζ%z(Σ)-±JίZ¥ and the equation

(3.1) σ(w) + F(w) = 0 on X.

Given a mapping /?: Γ->^Γ, a function t e Φ p and a boundary behavior space !F,

we consider the following boundary condition for u = Hφ + g e @Z(Σ):

f (B-l) φ-τeΨ
(B)

1 (B-2) D[M, HΛ - [ HΦ dσ(u) + ( φdβ(φ) = 0 for all ψ e ΨB,

where ΨB= Ψ Π ΦBD

The problem to find w = i ^ , + 0 e ^ z ( Γ ) satisfying (3.1) and (B) will be

denoted by PZ(Σ, F, β, τ, Ψ).

EXAMPLE 3.1. The problem discussed in [2] is PB(ΦBD, F, β, τ, ΦD(A)) with

τ G Φ f i D. More generally, if Ψ is given by (2.1), then condition (B) may be written

as

f φ = τ + cψ0 ω-a.e. on d*X\Λ for some ceR,

a normal derivative ofu = β(φ) on ̂ 1 (cf. [2]),

£O> ^ o ] ~ ί HΦndσ(u) + ί Φodβ(φ) = 0.

(3.2)

If φQ=χΛ, for some ω-measurable subset ^tr of d*X such that ω(yl'\yl)>0,

then the last condition in (3.2) may be written as

u = ί dβ(φ),
J A.
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where

Flux^' u = — DΓw, HχA,~\ -

In particular, if ω(Λ) = 0 and </̂ 0 = 1, then (3.2) is reduced to

( φ = τ + const, (unknown) ω-a.e. on d*X,

105

EXAMPLE 3.2. Let {Λ;}ieJ be as in Example 2.2. Let {ηj}jeJ be a family

of real functions on R such that

Σ,w sup, f |^M |f//ί)l < 4- oo for any M > 0.(3.3)

Let Σ = ΦBD(Λ0) + Φc

D({Λj}jej)nΦBD + R9 and for <p =
(0)e

with

(3.4) β(ψ) = ΣjeJ

Π ΦBD and 0 e /? let

: fixed).

By (3.3), β maps Σ into Jr. If IF is given by (2.2) with φ0 = <

(<p0eΦBI)(yl0), α o e Λ ) , and if τ = τ o + fo with τ 0 eΦ B D (Λ 0 ) and be/?, then con-

dition (B) is written as

ψ = τ 4- c(<po + αo) ω-a.e. on Λo for some ceR ,

φ = Λ} (const.) ω-a.e. on Λy for each j e J,

ju = tJjWj) f ° r e a c b J e «̂ J

[M, ί^^J — \ {Hφo-\-a^)dσ{u) + α 0 Σ./eJ^Xfl}) = ^

In particular, in case ιAo = 0, the above boundary condition is reduced to

r φ = τ ω-a.e. on Λ o,

φ = α} (const.) ω-a.e. on Λj9 j e J,

k Flux^^ u = ηjia'j), j e J.

Thus the problem PZ(Σ, F, β, τ, Φc

D({Λj}jej)) with above Σ9 β and τ is a problem of

type (0.3).
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§ 4. Comparison principle

By slightly modifying the proof of [2; Theorem 2.1], we obtain the following

comparison principle.

THEOREM 1. Let Σ be a subspace of ΦD, Ψ be a boundary behavior space

and suppose F: @z(Σ)-*Jίc(X) and β: Σ^JV satisfy the following monotonicity

conditions'.

(F.M) For any open set U in X, iffί9f2 e@Z{Σ) and ft £f2 on U, then

F(f2) on U;

(βM Ψ) For any ψ e Ψi, if φί,φ2eΣ and φ^ψ2 ω-a.e. on {ξed*X\ψ(ξ)>0},

then\jφdβ(φί)^\}φdβ(φ2).

Suppose u = Hφ + ge ^Z(Γ) and v = Hτ + qe &Z(Σ) satisfy

(a) σ(u) + F(u) ̂  σ(v) + F(v) on X,

(b) (φ-τ)-eΨ,

(c) Dlu, HΦ1 - ^ Hφ dσ{u) + J φdβ(φ)

^ D[υ, HΦ2 - J Hψ dσ(v) + J ψdβ(τ) for allψeΨΪ.

Then,

(i) in case 1 £ Ψ or 1 $Σ9 we have u^v on X;

(ii) in case leΨ and leΣ, we have either u^v on X or v = u + c with a

constant c > 0 ; the latter occurs only when F(u + c) = F(u) and \ψdβ(φ) =

\jψdβ(φ-^c)foranyιl/eΨB.

Outline of the proof: P u t / = ( w — v)~ and φo = (φ — τ)~. By [2; Lemma

2.3],f=Hφo + g v/ithge£E9 where

= {Gv I v G ΛC(X\ [ G\v\d\v\ < oo} .

By assumption φoeΨ+. Hence by (Ψ.3) there is a sequence {φn} in Ψ% such that

<pnύ<Po> Ψn-^Ψo ω-a.e. on d*X and D[Hφn-Hφ(^->0 (n^oo). Let fn = Hφn +

max(gf, —Hφn). We can easily see that #n = max(0, —Hφn) belongs to £E for

each n. Obviously, 0 ^ / π ^ / . Then, by the same arguments as in the proof of

[2; Theorem 2.1], we obtain our theorem.

REMARK 4.1. Condition (β.l) in [2] implies condition (β.M; ΦD(Λ)) for

Σ = ΦBD.
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REMARK 4.2. In case Ψ = Φc

D({Λj}Jej) or Ψ=Φc

D({Λj}jej) + R, if jS is given by

*//. R^R, j eJ, as in Example 3.2, then (β. M; ¥*) is equivalent to the condition

that every ηj is monotone non-decreasing.

COROLLARY. Let λeΛ£(X), cceJ^+ and Ψ be a boundary behavior space.

Ifu = Hφ + ge@E(ΦD Π Lι(μ)) satisfies

(a) σ(u) + uλ ^ 0 on X,

(b) φ-eΨ,

(c) D[u, i^] -\ Hφ dσ(u) +{ψφdoι^O for all ψeΨΪ,

then

(i) in case 1 φ Ψ or λ^O or α#0, we have u^O on X;

(ii) in case 1 e Ψ, λ — 0 and α = 0, we have either u^0onXoru = const. <0.

This corollary is obtained by applying the theorem with Σ = ΦD Π L\OL),

F(f) =fλ, β(φ) = φoc and Z = E.

REMARK 4.3. For Theorem 1 and its corollary, condition (^.4) for Ψ is

not necessary.

§ 5. Linear problems

As in [2], we first give an existence and uniqueness theorem for linear

problems. Let λ e Ji%¥ and α e J^+ be given. For each φeΦD with Hφ e L2(λ),

there exists a unique u e &(X) such that σ(μ) + uλ = 0 on X and u — Hφe £>EF ([2;

pp. 43-44]). This u is denoted by H^. As in [2], we consider the space

Φλ

D" = {φeΦD\HψeL\λ\ <peL2(α)}

and a semi-norm (a norm if either λΦO or α

on Φi> α. Note that ΦBD<= Φfya.

THEOREM 2 (cf. [2; Theorem 3.1]). Lei Ψ be a boundary behavior space

and write ψ*>a=ψ η Φj;a. Suppose μ e JίBΈ and γeJf satisfy

[μ] I J z ^ d μ | ^ a(μ)\\ψ\\DtλtΰC for all r̂ G

M K ^ 7 ^ ί>ωil</Ίlz>,A,« for all ψ e
I J d*X
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Then, given τeΦfc*, there exists a solution u = Hφ + g e^E{Φ^a) of the linear
problem

σ(u) + uλ = μ on X,

φ-τeΨ,

- { Hψ dσ(u) + {ψφd<x= U/dy for all ψeΨB.

The solution is unique if either 1 $ Ψ or λ^O or α^O; unique up to an additive
constant if 1 e Ψ, λ = 0 and α = 0. Furthermore,

^ 2||τ||D,λ>α + (2+ \\GλUDlG\μ\y'2 + a(μ) + b(γ).

On account of condition (ΨΛ) for Ψ, we see that Ψλa is a Hubert space with

respect to the norm || ||D>A>α, in case 1 £ Ψ or λ=£0 or α#0, and Ψλ>ΛIR = ΨjR

is a Hubert space with respect to ||*AIID = £ [ ^ ] 1 / 2 i n c a s e ι e ψ> λ = ® a n d α = 0

In the latter case, [μ] and [y] imply that \ dμ=\ dy = 0. Thus the above
Jx Jd*x

theorem can be proved in the same way as [2; Theorem 3.1].

§ 6. Existence theorem for semilinear problems I

Given Z, Σ, F, β, τ and Ψ as in §3, v — Hφ + ge^z{Σ) is called a supersolution
(resp. subsolution) of PZ(Σ, F, β, τ, Ψ) if

σ(v) + F(v) ^ 0 (resp. ^0) on X,

(φ-τ)-e !P(resp.(τ-φ)-e !P),

[̂ ? #*] - ( ^ ^σ(ι ) + { φdβ(φ) ^ 0 (resp. ^0) for all ψ e Ψ%.

Now, we introduce a notion of ^-admissible space for a boundary behavior
space Ψ.

A subset Γ of ΦD will be said to be Ψ-admissible if it satisfies the following
two conditions:
(A.I) Γ is a linear subspace of ΦD containing Ψ,
(A.2) φl9 φ2eΓ and φ\, φ^eΨ imply (<Pi + <p2)" e Ψ.
Obviously, Ψ itself is ίP-admissible.

EXAMPLE 6.1. For Ψ = ΦD(Λ) + Rψ0 with ψ0 eΦBD such that φo^0 ω-
a.e. on d*X\A,

Γ = {φeΦD\ φ = α^0 ω-a.e. on {£eδ*Jf\Λ | ^0({)>0} for some aeR}

is !P-admissible. In particular, ΦD is ΦD(/l)-admissible. (If ψ0 £ ΦD(Λ), then
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ΦD is not !F-admissible).

EXAMPLE 6.2. Let {Λj}jeJ be as in Example 2.2. Then ΦD(Λ0) + Φc

D({Λj}Jej)
is Φ£({Λ;}J6j)-admissible. If χΛ> e ΦD9 then ΦD(Λ0) + Φc

D({Λj}jeJ) + RχΛ is
(Φc

D({Λj}jeJ) + Λ^O-admissible.

As a generalization of [2; Theorem 4.1], we have the following

THEOREM 3. Let Ψ be a boundary behavior space, Γ be a Ψ-admissible
subset of ΦD, F: @B(rB)-+^BF

 and β- ΓB^>JV*, where ΓB = Γ Π ΦBD Suppose

(F.L) for each M>0, there is λMeJt%F such that

\F{h)-F{fi)\ύ{f2-h)λM on X

wheneverfuf2e@B{ΓB) and -M^fiύhί-
(β.L) for each M>0, there is ocMeJ^+ such that

I J ψ d{β(Ψι) - β(φ2)} I S \ Φ(φ2 -<Pi) daM

for all ψe Ψ^9 whenever φl9 φ2eΓB and —M^φί^φ2^M ω-a.e.

Let τeΓB and suppose there exist a supersolutίon u0 and a subsolution v0

of PB(ΓB, F, β, τ, Ψ) such that vo^uo on X. Then there exist solutions u* and
v*ofPB(ΓB,F,β,τ, Ψ) such that

(i) vo^v*Su*^uo;
(ii) if u is a solution of PB(ΓB9 F9 β, τ, Ψ) such that vo^u^uθ9 then v*^

Let us sketch the proof emphasizing the difference from that of [2; Theorem
4.1].

Let M = max (suρx u0, - infx v0). If 1 e Ψ9 F(f) = 0 for all fe @B(ΓB) with
I/I^M and β(φ) = 0 for all φeΓB with \φ\^M, then choose any λeJί\¥ with
λ Φ 0. Otherwise, let λ = λM + |F(0)|. Put α = αM +1j?(0)|. Then either 1 £ Ψ
or λφO or ocφO.

Starting with the given u0, we define a sequence {«„} by induction as follows:
Suppose uθ9ux,..., «„_! (n^ 1) are so chosen that each Uj = Hφj + gj,j = l,..., n — 1,
is a supersolution of PB(ΓB, F, β, τ, Ψ) and U ^ M ^ ^ - ^ M ^ M Q for any sub-
solution v such that — M^v^u0. As in the proof of [2; Theorem 4.1], we see
that μ ^ - F O ^ O + u ^ λ satisfies [μ] and yn = φn-^-β{φn-i) satisfies [7]
in Theorem 2. Also, τeΦBZ)c:Φ£'α. Hence, by Theorem 2, there is un = Hφn +
gn e ^£(Φέ'α) satisfying
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σ(un) + unλ= - Fiu^J + un_xλ on X,

φn-τe ψ,

Lun, HΦ ] - ^ Hψ dσ(un) + J tfrφ, dα = } φφn.γ da -

for all ψeΨB.

By virtue of (A.2) for Γ, we see that (φn^ί — φn)~ =(φn-ι— τ + τ — φn)~ e Ψ.

Hence, applying the corollary to Theorem 1 to un-ί—un9 we see that u^u^^

Similarly, if v = Hη + qe@B(ΓB) is a subsolution of PB(ΓB, F, β, τ, Ψ) such that

— M^v^uθ9 then (φn — η)~ =(φn — τ + τ — η)~ e Ψ, and hence using (F.L), (jβ.L)

and applying the corollary to Theorem 1 to un — v, we see that v^un; in particular

-M^un. It follows that φneΦBD. Since φn-τeΨ, φneΓ by (A.I) for Γ.

Therefore φneΓB. On the other hand, since un is bounded, (6.1) implies that

σ(un)eΛBF, so that une@B(ΓB). Then, by (6.1), (F.L) and (j8.L), we see that

un is a supersolution of PB(ΓB, F, β9 τ, Ψ).

Thus, we obtain a sequence {un} of supersolutions of PB(ΓB, F, β, τ, Ψ) such

that — M^Un^Un-^UQ for all n and t^M π for any subsolution v such that

Let M* = limπ^ ̂  un and <p* = lim,,.,^ φπ. As in the proof of [2 Theorem 4.1],

we see that u* = Hφ* + g* with

Also, with the help of the estimate of D\_u] in Theorem 2, we see that D[Hφn-

HφJ-+0 (n, m->oo). Since φn-τeΨ9 it follows from (ίF.4) for Ψ that φ * -

τ e ' P . Hence φ*eΓB and u*e@B(ΓB). Then, again as in the proof of [2;

Theorem 4.1], we see that g*= -G(F(u*)), so that σ(u*) + F(u*) = 0, and

HΦ dσ(u*) + J ιA # ( φ * ) = 0

holds for any φe ΨB, which shows that w* is a solution of PB(ΓB, F, β, τ, Ψ).

Obviously, u*^u0 and t ^w* for any subsolution t; with — M^v^u0.

Similarly, starting with v0, we obtain a solution v* of PB(Γβ, F, β, τ, Ψ) such

that vo^v* and I ;*^M for any supersolution u with ι ; 0 ^w^M. Thus, these

u*, v* are the required solutions.

REMARK 6.1. In case Ψ = ΦD(Λ) and Γ = ΦD, only the values of β on /I are

relevent in the boundary condition (B-2), so that condition (β.L) in this case may

be replaced by

(β.L; A) for any M > 0 , there is &M e JV+ such that

\β(ψi) ~ fi(<Pi)\ ^ (<P2-<PI)<*M on A
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whenever φl9 φ2 e ΦBD and —M^φ1^φ2^M. (Cf. [2; Theorem 4.1].)

REMARK 6.2. In case Ψ = Φc

ΣH{ΛJ}JeJ) and Γ=ΦD(Λ0) + Φc

D({Λj}Jej)9 or in

case χΛ.eΦD, Ψ = Φc

D({Λj}jeJ) + RχΛ, and Γ = ΦD(Λ0)+Ψ, if β is given by (3.4)

then condition (β.L) means that each ηs is Lipschitz continuous with Lipschitz

constant AMj^0 on the interval \_ — M,M~\ such that Σie j^Mj<°° f° r e a c h

M > 0 .

§7. Existence theorem for semilinear problems II

In this section we give some sufficient conditions for the existence of super-

and subsolutions.

THEOREM 4. Let Ψ be a boundary behavior space and Γ be a Ψ-admίssible

set containing constant functions. For F: &B(rB)->,JiBF and β: ΓB->^Γ, suppose

there exist toeR9 μ 0 G^ B F , QCOGJ^ and ψoeΨB satisfying the following con-

ditions:

( i ) F(f)^μ0 (resp. <,μQ)for allfe@B(ΓB) withf^t0 (resp./gί0),

(ii) ( φdβ(φ)^{ ψd(x0 (resp. ί φdβ(φ)^{ ψdoc0) for all ψeΨ$ and for all

φeΓB with φ^t0 (resp. φ<;ί0),

(iii) DlHφo, Hφ-]+ [ Hψdμ0+ [ φdoco^0 (resp. ^0)for allφeΨi.

Then, for any τeΓB, there exists a supersolution u0 (resp. a subsolutίon v0)

ofPB(rB> F, β, τ, Ψ) such that uo^to (resp. vo^to).

PROOF (cf. the proof of [2; Theorem 4.2]). Given τ e ΓB, let

a = max (ί0, sup τ) + sup ψo + sup GμJ

and put

u0 = a + Hφo - Gμ0.

By assumption, a + ψoe ΓB, so that u0 e @B(ΓB). Since

u0 ^ a - Hφ- - Gμ% ^ t0 and a + φ0 ^ t0,

F(uo)^μo and β(a + φo)^(xo by (i) and (ii). Hence

σ(u0) + F(u0) ^ - μ0 + μ0 = 0 on I , (fl + ̂ 0 - τ ) - = Oe Ψ

and

+ ^H+dμo +
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for all ψ e Ψ^, by (iii). Hence u0 is a supersolution of PB(ΓB, F > β> τ, Ψ).

Similar arguments hold for the existence of a subsolution vo^to.

REMARK 7.1. In case 1 e Ψ, condition (iii) in Theorem 4 implies

(7.1) k dμ0 + J </α0 ̂  0 (resp. g 0).

REMARK 7.2. If we can find μ0 e ̂ fβF and oc0eJf satisfying (i) and (ii) such

that μo = 0 and α o ^ 0 (resp. μo = 0 a n d αo=^)> ^ e n (iϋ) *s always satisfied with

REMARK 7.3. In case Ψ = Φc

D({Λj}j=1) (i.e., the case where J is a finite set

in Example 2.2), if we write iAo = Σy=i 0;X/> then condition (iii) is equivalent to

(7.2) ΣU ajDlhj, ΛJ + ί Λmrfμ0 + ( d«o ^ 0 (resp. ^
J X J Λm

for all m = 1,..., fe,

where hj = Hχj 0 = 1,..., k). If 1 £ Ψ, then the matrix {D\hj9 fcm]}y,m=i is positive

definite, and hence we can find al9...,ak satisfying (7.2) for given.μ0 and α0.

Therefore, (iii) in Theorem 4 is always satisfied in this case. If 1 e Ψ, then there

exist al9...,ak satisfying (7.2) if and only if (7.1) holds, so that condition (iii) is

reduced to (7.1) in this case (cf. [3; Theorem 3]).

Combining Theorem 4 with Theorem 3, we obtain

COROLLARY 1 (cf. [2; Theorem 4.2]). Let Ψ, Γ be as in Theorem 4. Sup-

pose F: @B(ΓB)^>JΐBF and β: ΓB-*Jf satisfy (F.L) and (β.L) in Theorem 3,

and (F.M) and (β.M; Ψ) in Theorem 1 with Z = B and Σ = ΓB. If there are

to; tίeR and φθ9 ψx e ΨB such that

(7.3)

DlHψ09 H^\ + \χH*dF{t0) + ^φdβ(t0) ^ 0

for all

Hφ dF(tί) + J φdβ(tϊ) ^ 0

then PB(ΓB, F9 β, τ, Ψ) has a solution for any τeΓB; the solution is unique if

1£Ψ; the solution is unique up to an additive constant if 1 e Ψ.

In view of Remark 7.3, in case Ψ = Φc

D{{Λj})=λ)9 condition (7.3) is always

satisfied if 1 <£ Ψ, and is reduced to

(7.4) Jχ dF(t0) + J dβ(t0) g 0 ̂  ^ dF{tx) + j dβ(tι)
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in case 1 e Ψ. Thus, in this special case, we can state

COROLLARY 2. Let Γ=ΦD(Λ0) + Φc

D({Λj})=1) (Λ0 = d*X\\j*;=1Λj) and

suppose F: @B(ΓB)->ΛBF satisfies (F.L) and (F.M) with Z = B and Σ = ΓB.

Suppose ηy. R->R,j = l,..., k, are monotone non-decreasing and locally Lipschitz

continuous, and β: TB-*J/° is given by (3.4). Let τeΓB.

(i) //ω(Λ o )>0, then PB(ΓB, F, β, τ, Φc

D({Λj})=1)) has a unique solution;

(ii) Ifω(Λo) = 0, then PB(ΓB, F, β, τ, Φc

D{{^j))=i)) has a solution if and only

if

(7.4)' ^dFito) + Σkj=

for some t0, tίeR ( f o ^ ^ ) ; in this case the solution is unique up to an additive

constant.

REMARK 7.4. By the continuity of the mapping t ^ \dF(t) + Σkj=ι *?/0>

condition (7.4)' is equivalent to

(7.4)" ( dF(ϊ) + Σ*=i 1j(ϊ) = 0 for some 1 e R
j x

(cf. [3; Corollary to Theorem 3]).

References

[ 1 ] F-Y. Maeda, Dirichlet integrals on harmonic spaces, Lecture Notes in Math. 803,

Springer-Verlag, Berlin-Heidelberg-New York, 1980.

[ 2 ] F-Y. Maeda, Semi-linear boundary value problems with respect to an ideal boundary

on a self-adjoint harmonic space, Hiroshima Math. J. 14 (1984), 35-53.

[ 3 ] S. Zheng, Nonlinear boundary problems with nonlocal boundary conditions, Chin.

Ann. Math. 4B (1983), 177-186.

Department of Mathematics,

Faculty of Science,

Hiroshima University






