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Introduction. In the previous paper [2], the author studied semilinear
boundary value problems with respect to an ideal boundary on a self-adjoint
harmonic space. When applied to the harmonic structure defined by a self-
adjoint elliptic operator L on a bounded domain Q in R" with smooth boundary
0Q, our problem in [2] may be written as

Lu(x) = F(x,u(x)) on
0.1) u(€) = (%) on 4Q\4,

2@ =pEu@) o 4,

where F is a function on 2 x R, A is a part of 0Q, 7 is a given function on 02 and
B is a function on A x R. The main existence theorem was proved by the so-
called monotone-iteration method.

Recently, S. Zheng [3] applied the same method to the following boundary
value problem with non-local boundary condition:

Lu(x) = F(x, u(x)) on Q,
0.2) u(¢) = const. (unknown) on 09,
ou
SBQ Wda =0.

The purpose of the present paper is to formulate a boundary value problem
with respect to an ideal boundary on a self-adjoint harmonic space in such a way
that both problems of type (0.1) and of type (0.2) are included as special cases and
that the monotone-iteration method can be applied to obtain an existence theorem.
In order to describe boundary conditions, we introduce the notion of ‘“‘boundary
behavior spaces’’. A choice of boundary behavior space gives a problem of the
following type, which is a generalization of (0.2):
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Lu(x) = F(x, u(x)) on 0
u(é) = (%) on A,

(0.3) u(§) = a; (unknown constant) on A4;, jelJ,

ou _ .
gAdea =nia;), jeJ,
where {4,},; is a countable (finite or infinite) family of mutually disjoint com-
ponents of 0Q, A,=02\\U,; 4; and n;, j € J, are real functions on R.

§1. Preliminaries

Asin [2], let (X, o) be a self-adjoint P-harmonic space such that X is con-
nected, has a countable base and 1€ s#(X). Let G(x, y) be a symmetric Green
function on X and o: #—.# be the canonical measure representation associated
with G (see [1]). The image sheaf of # by ¢ is denoted by .#.

We denote by Gv the G-potential of v e .#(X) when it exists. Let

Mpr = {ve #(X)| G|v| is bounded, |v|(X) < 0},
s = {ve X1 |GIdv] < 0, V() < o0},
9,r = {Gv|ve 4y}, Z=BorE.

(M and 2, are denoted by Azpc and 2, in [2].) Note that #ppc Ay
and 2gr< 2gp. If f=h+ Gv with he s#(X) and v € Ay, then o( f)=.

For f, g € 2(X), the gradient measures J;, ., and d, are defined in [1]. We
write D[ f] for 6,(X) and D[f, g] for J;, ,,(X) when 6,(X)<oo and §,(X)<oco.

Note that D[ f]< oo for any fe 2 (see [1]).
We consider a resolutive compactification X* of X. Let w=w, be the

harmonic measure on 0*X=X*\X at xeX. For peLl(w), let H,(x)=
Sa pdw, (xe X). Then H,e s#(X). As in [2], we consider the linear spaces
0'¢

®p = {pe LY (w)|D[H,] < w0}, Pgp =Pp N L¥(w),

which are closed under max. and min. operations. Obviously, constant functions
belong to these spaces. We denote by .4 the space of all signed measures on
0*X which are absolutely continuous with respect to .

Given a space of functions or measures, the subset consisting of non-negative
elements in the space will be indicated by the upper index + ; e.g., Pfp, A} 5, €tc.
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§2. Boundary behavior spaces

A subset ¥ of &, will be called a boundary behavior space if it satisfies the
following four conditions:
(P.1) VYis a linear subspace of &;
(¥.2) VYis closed under max. and min. operations;
(?.3) for each Yy e W™, there is a sequence {y,} in Y3=¥* n L®(w) such that

2=y for each n, y,—y w-a.e. on 0*X and D[H, —H,]->0 (n—> 0);
(P4) if y,e¥, n=1,2,.., y,~yed, wae. on ¢*X and D[H, —H,]-0
(n—0), then Y e V.

Note that (¥.3) follows from (¥.2) if 1€ ¥; we may take Y,=min (Y, n)
in this case.

EXAMPLE 2.1. Let A be an w-measurable subset of 0*X and write
Dp(A) ={peP,|p =0 w-a.e. on 0*X\A}.

Then &,(A) is a boundary behavior space. In particular, &, (the case
w(0*X \ A)=0) and {0} (the case w(A)=0) are boundary behavior spaces. More
generally, let Y, € 5, and Y20 w-a.e. on 0*X\A. Then

2.1) Y =&A)+ RYy = {p+cyo| ¢ € Pp(A), ce R}

is a boundary behavior space. In fact, (¥.1) is obvious and (¥.4) is easily verified.
To show (¥.2) let y=¢p+cy, with pedy(4) and ceR. If ¢<0 then
Yt edp(A)c ¥ and if ¢>0 then Y+ =max (¢, —cyo)+c¥, and max (o, —cy,) €
®,(A). Thus (¥.2) holds. If Yy=¢+cyy20, then for n>|c|||Vollws Va=
min (@, n)+cy, € ¥ and {,} has the properties stated in (¥.3).

EXAMPLE 2.2. Let {4,};., be a finite or countably infinite family of mutually
disjoint w-measurable subsets of 0*X such that w(4;)>0 and the characteristic
function x; of A; belongs to @, for every jeJ. If Jis a finite set, then let

¢f)({/1j}jej) = {Zje.l anjlajER’jEJ}'

If J is an infinite set, then we define
¢l.c)({/lj}je.l) =Cl {Zje.l’ anjl aje R,jEJ’, J': finite = J} s

where Cl means the closure with respect to the convergence given in (¥.4). Any
element of ®§({4;},c;) is of the form X ;;a;x;, a;e R. It is easy to see that
®5({4;}e) is a boundary behavior space. (To verify (¥.3), we may use [2;
Lemma 2.3] and [1; Lemma 7.5] and show that y e ®5({A4;};,)* implies
min (, n) € D5({4;};e))*.)
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Let A'=\U;;A4; and Ay=0*X\A". For Yo=¢,+a, with @€ Pgp(4,)
and g, € R such that Y20 on 0*X,
2.2 Y = 05({4;} ;) + RYo

is a boundary behavior space. Note that in case y,. (the characteristic function

of A") belongs to @, (in particular, in case J is finite), we may write Yo =@o+aox4'-
Also, for an w-measurable set A=Ay, P5({4;}e;)+Pp(A4) is a boundary

behavior space. '

§3. Problem setting

Given a subspace X of &, let
Z/2)={H, +gloeZ, ge2;}, Z=EorB.
We consider a mapping F: %#,(X)— .#,; and the equation
3.1 o(u)+ Fu)=0 on X.

Given a mapping f: X— ", a function 7€ ¥, and a boundary behavior space ¥,
we consider the following boundary condition for u=H ,+g € Z,(2):

B-1) ¢ —1e¥
(B) {
(B-2) D[u, H,] — Sx H, do(u) + SM wdB(p) = 0 for all ¥ e ¥y,

where V=¥ N Pp)p.

The problem to find u=H,+ g e #,(Z) satisfying (3.1) and (B) will be
denoted by P,(Z, F, B, 7, V).

ExaMPLE 3.1. The problem discussed in [2] is Pp(®Ppp, F, B, T, Pp(A)) with
1€ ®p,. More generally, if ¥ is given by (2.1), then condition (B) may be written
as

¢ =1+cyY, w-ae. on 0*X\A forsomeceR,
(3.2) a normal derivative of u = (@) on A (cf. 2D,
DL, Hyod = Hygdotw) + | | vodsio) = 0.

If Y=y, for some w-measurable subset A’ of 6*X such that w(A4'\A4)>0,
then the last condition in (3.2) may be written as

Flux,u = | dfco),
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where
Flux, u = — D[u, H,,,] + gx Hy,do(u).

In particular, if w(4)=0 and y,=1, then (3.2) is reduced to

{ ¢ = 1 + const. (unknown) w-a.e. on 0*X,
Flux eyt = S dB(@).
*X

EXAMPLE 3.2. Let {A4;};; be as in Example 2.2. Let {n;};; be a family
of real functions on R such that

3.3) 2 jes SUPsm (Ol < + © forany M > 0.
Let Z=®5n(A40)+P5({4;}je) N Ppp+ R, and for =@ +3; ;a;x;+a with
0O e Ppp(Ag), X jesax; € PH({A4;}je) N Ppp and a € R let

(3.4 B0) = £ WUED a0, (xpe X fixed).

By (3.3), p maps 2 into 4. If ¥ is given by (2.2) with Yy =¢y+a,=0
(9o € Pgp(Ap), ap€ R), and if 1=1o+b with 1ye dpy(4,) and be R, then con-
dition (B) is written as

o0 =1+ c(po+a,) w-ae. on A, forsomeceR,

¢ = a; (const.) w-a.e. on A; foreachjel,

2 (@j—b—cao)y; € P5({A4;}jes) s

Flux,u = nya}) foreach jeJ,

DL, Hyol = | (Ho,+a0)dou) + ao X e 1@)) = 0.

In particular, in case Y, =0, the above boundary condition is reduced to
¢ =1 w-ae on A,
¢ = aj (const.) w-a.e. on A;, jeJ,
2 (@j=b)x; € D5({4;}5es)
Flux,, u = n4a}), jelJ.

Thus the problem P,(Z, F, B, t, P5({4;} ;.;)) with above X, f and 7 is a problem of
type (0.3).
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§4. Comparison principle
By slightly modifying the proof of [2; Theorem 2.1], we obtain the following

comparison principle.

THEOREM 1. Let X be a subspace of ®p, ¥ be a boundary behavior space
and suppose F: #,2)— #(X) and B: Z— A satisfy the following monotonicity
conditions:

(F.M) For any open set U in X, if f,, f, € /%) and f, < f, on U, then F(f})<
F(fz) on U;
(BM; ¥) Foranyye¥;, if ¢;, p,€2 and ¢, <¢, w-a.e. on {{ed*X|yY(5)>0},

then | wdpe,) < | vah(oy)
Suppose u=H ,+g € Z,(2) and v=H_ +q € #,(2) satisfy
(@) o)+ Flu)=o(@) + F(v) on X,
® (p—v) €Y,
© Dlu, H,1 - | Hydow) + {ydp(o)
> D[v, H,] — SX H, do(v) + S WdB(z) for all e ¥y,

Then,
(i) incasel¢ W orl1¢ZX, we haveu=von X;
(ii) in case 1e ¥ and 1€X, we have either u=v on X or v=u+c with a

constant ¢>0; the latter occurs only when F(u+c)=F(u) and gllldﬂ(q0)=
Slﬁdﬂ((p+c)for any Y e ¥g.

Outline of the proof: Put f=(u—v)~ and @o=(¢p—7)~. By [2; Lemma
2.3], f=H,,+g with g € 2, where

2; = {Gv|ve 4(X), SX Glvld]v| < o}

By assumption ¢, € ¥*. Hence by (¥.3) there is a sequence {¢,} in ¥} such that
Pu=Po, Q=@ w-a.e. on 0*X and D[H, —H, ]-0 (n—>00). Let f,=H, +
max (g, —H, ). We can easily see that g,=max(g, —H, ) belongs to 2y for
each n. Obviously, 0= f,<f. Then, by the same arguments as in the proof of
[2; Theorem 2.1], we obtain our theorem.

ReMARK 4.1. Condition (8.1) in [2] implies condition (.M; @,(A4)) for
E=¢BD‘
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REMARK 4.2. In case ¥ =®5({A4;};) or ¥=25{4,} )+ R, if B is given by
n;: R—>R, jeJ, as in Example 3.2, then (8. M; ¥) is equivalent to the condition
that every #5; is monotone non-decreasing.

COROLLARY. Let le 4 E(X), ae A"* and ¥ be a boundary behavior space.
If u=H,+g € Z(®p N LY (a)) satisfies

(@) o(u)+uri=0on X,

(b) ¢ €e?,

(©) D[u, H,] - Sx H, do(u) + Sl//qo da=0 forall yeWs,
then

(i) incase1¢ ¥ or A#0 or a#0, we have u=0 on X ;
(ii) incasele¥,A=0and a=0, we have either u=0 on X or u=const. <0.

This corollary is obtained by applying the theorem with X = &, n LY(a),
F(f)=f2, B(¢)=¢o and Z=E.

REMARK 4.3. For Theorem 1 and its corollary, condition (¥.4) for ¥ is
not necessary.

§5. Linear problems

As in [2], we first give an existence and uniqueness theorem for linear
problems. Let Ae .#%r and ae 4™ be given. For each ¢ € &), with H, € L?(4),
there exists a unique u € 2(X) such that o(u)+uA=0 on X and u—H, € 2. ([2;
pp. 43-44]). This u is denoted by H%. As in [2], we consider the space

Ok = {pe @y| H, e LX), ¢ € L))
and a semi-norm (a norm if either A#0 or «#0)
910,10 = (DLHE] + { (H2dA + { p2amprre
on @4%. Note that @5, =P}

THEOREM 2 (cf. [2; Theorem 3.1]). Let ¥ be a boundary behavior space
and write Y**=¥ n ®}*. Suppose yue Mgp and ye N satisfy

k] ISX H"’dﬂl = a(l‘)"'/’”p,;.,a for all e Whe,

] [, vt < bOWlpse  forall yewss
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Then, given te ®%*, there exists a solution u=H,+g € Z(P}p*) of the linear
problem

ou) +ul=p on X,
o—1€Y,

D[u, H,] — Sx H,do(u) + gl//(p do = gwdy forall YyeWg.

The solution is unique if either 1¢ W or A#0 or a#£0; unique up to an additive
constant if 1e ¥, A=0 and a=0. Furthermore,

D[u]'/? £ 2|tllp 2, + 2+ GAllo)DLGIL]"/? + au) + b(y).

On account of condition (¥.4) for ¥, we see that ¥4+ is a Hilbert space with
respect to the norm |- ||p ;,, in case 1¢ ¥ or A#0 or a#0, and ¥Y**/R=¥/R
is a Hilbert space with respect to ||{/||,=D[H,]'/? in case 1€ ¥, A=0 and a=0.

In the latter case, [1] and [y] imply that g d;t=S dy=0. Thus the above
X o*X

theorem can be proved in the same way as [2; Theorem 3.1].

§6. Existence theorem for semilinear problems I
Given Z, 2, F, B,rand ¥ asin §3, v=H, +g € Z,(2) is called a supersolution
(resp. subsolution) of P,(Z, F, B, 7, ¥) if
o(v) + F(v) = 0 (resp. £0) on X,
(p—1)" € ¥ (resp.(r—9)" € ¥),

D[v,H,] — Sx H,do(v) + S YdB(p) =2 0 (resp. <0) for all Y e ¥P;.

Now, we introduce a notion of ¥-admissible space for a boundary behavior

space V.

A subset I' of @, will be said to be W-admissible if it satisfies the following
two conditions:
(A.1) T is a linear subspace of @, containing ¥,

(A2) ¢y, p,€I’ and @7, ¢z€ ¥ imply (¢, +¢,) €Y.
Obviously, ¥ itself is ¥-admissible.

ExaMPLE 6.1. For ¥Y=&,(A)+ Ry, with Y, €, such that Y,20 w-
a.e. on 0*X\ 4,

I'={pe®,| @ = ay, w-a.e. on {£€*X\ A | Y(£)>0} for some ae R}

is ¥Y-admissible. In particular, @, is ®p(A)-admissible. (If Y, ¢ Dp(A), then
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@, is not W-admissible).

EXAMPLE 6.2. Let {4}, be as in Example 2.2. Then ®,(A4,)+ PH({4;} jer)
is @5({A4;}.)-admissible. If y, € @p, then Dp(Ao)+PH({4)}je) + Ryy is
(25({4,} jes) + Ry 4-)-admissible.

As a generalization of [2; Theorem 4.1], we have the following

THEOREM 3. Let ¥ be a boundary behavior space, I' be a ¥Y-admissible
subset of &, F: Zg(I'g)—> Mgr and B: [ g—.A", where T'g=T n ®g,. Suppose

F.L) for each M >0, there is Ay € #%¢ such that
(F.L) f

IF(f)) — F(f)l £ (= f)Ay on X

whenever f,, f, € Zy(I') and —M < fi S f,<M;
(B.L) for each M >0, there is ay € ¥t such that

|Jwatbeon - Bo}| = (w0201 dun

for all y € ¥§, whenever ¢y, p,€l'gand —M=Z¢,Z¢,<M w-a.e.

Let teI'y and suppose there exist a supersolution u, and a subsolution v,
of Pg(I'g, F, B, 7, ¥) such that vo<uy, on X. Then there exist solutions u* and
v* of Pg(l'y, F, B, ©, V) such that

(1) vo<v*Su*<uq;

(ii) if u is a solution of Py(I'g, F, B, 1, ¥) such that vo<u=Zuy, then v*<
usu*.

Let us sketch the proof emphasizing the difference from that of [2; Theorem
4.1].

Let M =max (supy ugy, —infyvy). If 1€ ¥, F(f)=0 for all fe Z5(I'g) with
|fI€M and B()=0 for all ¢ e I'y with |¢| <M, then choose any A€ .#}; with
A#0. Otherwise, let A=21,+|F(0). Put a=a,+|B(0)]. Then either 1¢ ¥
or A#0 or a#0.

Starting with the given u,, we define a sequence {u,} by induction as follows:
Suppose ug, ..., 4,_; (n21) are so chosen that each u;=H, ,+g;, j=1,...,n—1,
is a supersolution of Pg(I'y, F, B, 7, ¥) and v<u,_;<---<u,=<u, for any sub-
solution v such that —M <v=<u,. As in the proof of [2; Theorem 4.1], we see
that p,=—F(u,_,)+u,_,A satisfies [u] and y,=¢,_,a—p(p,_,) satisfies [y]
in Theorem 2. Also, 7€ @5, P}*. Hence, by Theorem 2, there is u,=H, +
gn € Z(PH ) satisfying
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a(un) + unl = - F(un—l) + un—l)“ on X’

$n—TE T,
6.1)
DLy, Hy] = | Hydouy) + | v,z = (e, da = | dflo,-)

forall Yy e¥g.

By virtue of (A.2) for I', we see that (¢,_;—@,) =(@,-;—t+7—0,) €?.
Hence, applying the corollary to Theorem 1 to u,_, —u,, we see that u,<u, ;.
Similarly, if v=H,+q € Z5(I'p) is a subsolution of Py(I'p, F, B, 7, ¥) such that
—M=v=u,, then (9,—n)~ =(¢,—7+7t—n)" € ¥, and hence using (F.L), (f.L)
and applying the corollary to Theorem 1 to u,—v, we see that v<u,; in particular
—MZu, 1t follows that ¢,e ®gp. Since ¢,—t€ V¥, ¢,eI’ by (A.1) for I.
Therefore ¢,eI's. On the other hand, since u, is bounded, (6.1) implies that
o(u,) € Mgp, so that u,e Zg(I'y). Then, by (6.1), (F.L) and (B8.L), we see that
u, is a supersolution of Py(I'y, F, B, 7, V).

Thus, we obtain a sequence {u,} of supersolutions of Pg(I'g, F, B, t, ¥) such
that —M<Zu,<u, ;Suy for all n and v<u, for any subsolution » such that
—M=v=u,.

Let u*=lim,_, ,, u, and p*=1lim,_, , ¢,. As in the proof of [2; Theorem 4.1],
we see that u*=H,.+g* with

g* = —lim,, , G(F(u,)) € 2.

Also, with the help of the estimate of D[u] in Theorem 2, we see that D[H, —
H, 1-0 (n, m—>o). Since ¢,—7€ ¥, it follows from (¥.4) for ¥ that ¢*—
te¥. Hence p*el'y and u*e #Zy(I'y). Then, again as in the proof of [2;
Theorem 4.1], we see that g* = — G(F(u*)), so that a(u*)+ F(u*)=0, and

DL, Hyl - | Hydow?) + v dpie*) = 0

holds for any y € ¥, which shows that u* is a solution of Pg(I'g, F, B, 7, ¥).
Obviously, u*<u, and v<u* for any subsolution v with — M Zv=<u,,

Similarly, starting with vy, we obtain a solution v* of Py(I'y, F, B, 7, ¥) such
that v,<v* and v*=<u for any supersolution u with vo<u<M. Thus, these
u*, v* are the required solutions.

REMARK 6.1. In case ¥ =&,(A) and I'=P,, only the values of § on A are
relevent in the boundary condition (B-2), so that condition (8.L) in this case may

be replaced by
(B.L; A) for any M >0, there is &, € #°* such that

1B(@1) — B(@)] = (@2—@ay on A
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whenever ¢4, @, € ®5p and —MZ¢, <@,<M. (Cf.[2; Theorem 4.1].)

REMARK 6.2. In case ¥=®%({4,};,,) and I'=Pp(Ao)+P5({4;},,), or in
case x4 € Pp, ¥=05({4;}je)+ Rys and I'=dp(Ao)+ ¥, if B is given by (3.4)
then condition (f.L) means that each #; is Lipschitz continuous with Lipschitz
constant Ay ;=0 on the interval [—M, M] such that 3 ;; Ay ;< oo for each
M>0.

§7. Existence theorem for semilinear problems 11

In this section we give some sufficient conditions for the existence of super-
and subsolutions.

THEOREM 4. Let ¥ be a boundary behavior space and I' be a ¥-admissible
set containing constant functions. For F: R g(I'g)— Mgr and B: T'g— N, suppose

there exist tye R, o€ Mgp, dg€ N and Y, € ¥y satisfying the following con-
ditions:

(1) F(f)2uo (resp. Spo) for all fe Ry(I'p) with f 21, (resp. f <to),

(ii) Swdﬁ((p)gg Wday (resp. S.pdﬁ(q,)gg Wday) for all ¥ e W% and for all
@ el'g with 21, (resp. 9 < to),

(iii) D[H,,, Hy]+ Sx H,dp,+ S Vdog =0 (resp. =<0) for all y € ¥3.

Then, for any T €I, there exists a supersolution u, (resp. a subsolution v)
of Py(I's, F, B, 7, ¥) such that uy=t, (resp. vo=<t,).

PrOOF (cf. the proof of [2; Theorem 4.2]). Given te ', let

a = max (¢, sup 7) + sup Y5 + sup Guj
and put
uo=a+ H,, — Gu,.

By assumption, a+¥, € I'g, so that u, e #g(I'g). Since
up2a—Hy: —Gu§ 2ty and a+yo2t,,
F(ug) = po and f(a+yo)=a, by (i) and (ii). Hence

o(uo) + F(ug) 2 — po + o =0 on X, (a+yo—1)~ =0e¥

and

Dluo, Hy] = | _H, dotuo) + § v dpa+wo)

> D[H,,, H,] + Sx Hydpo + Sn//doco >0
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for all Y € Y3, by (iii). Hence u, is a supersolution of Pg(I's, F, B, 7, ¥).
Similar arguments hold for the existence of a subsolution v, <t,.

REMARK 7.1. In case 1 € %, condition (iii) in Theorem 4 implies
7.1) Sx d + gdao >0 (resp. < 0).

REMARK 7.2. If we can find y, € #p and ay € 4" satisfying (i) and (ii) such
that uo=0 and oy =0 (resp. uo <0 and «,=<0), then (iii) is always satisfied with

¥o=0.

REMARK 7.3. In case ¥=®5({4;}%_,) (i.e., the case where J is a finite set
in Example 2.2), if we write yo=3*%_, a;x;, then condition (iii) is equivalent to

(7.2) k_, a,D[h,, hy] + Sx h,dpg + XA dag 20 (resp. <0)
forall m=1,...,k,

where hj=H,, (j=1,..., k). If 1¢ ¥, then the matrix {D[h;, h,]}* ,.-, is positive
definite, and hence we can find ay,..., g, satisfying (7.2) for given u, and «,.
Therefore, (iii) in Theorem 4 is always satisfied in this case. If 1€ ¥, then there
exist ay,..., a; satisfying (7.2) if and only if (7.1) holds, so that condition (iii) is
reduced to (7.1) in this case (cf. [3; Theorem 3]).

Combining Theorem 4 with Theorem 3, we obtain

COROLLARY 1 (cf. [2; Theorem 4.2]). Let ¥, I be as in Theorem 4. Sup-
pose F: Zg(I'g)—> Mgr and B: I'g— A satisfy (F.L) and (B.L) in Theorem 3,
and (F.M) and (B.M; ¥) in Theorem 1 with Z=B and X=Ig. If there are
to, t; € R and Yo, Y, € ¥y such that

DLHy, Hyl + | Hy dF(to) + | wdp(to) 2 0
(7.3) for all Yy e¥s,

DLHy, Hy] + | HydF() + | wdp) s 0

then Pg(I'y, F, B, t, ¥) has a solution for any teIg; the solution is unique if
1¢ ¥, the solution is unique up to an additive constant if 1€ V.

In view of Remark 7.3, in case ¥ =®5({4,}%-,), condition (7.3) is always
satisfied if 1 ¢ ¥, and is reduced to

(1.4) [ aFao + (ape =0 | arc) + {apa)
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in case 1€ . Thus, in this special case, we can state

COROLLARY 2. Let I'=®p(A0)+P5({4,}k=;) (Ado=0*X\\Uk_14;) and
suppose F: Rg([g)— Mpr satisfies (F.L) and (F.M) with Z=B and X=TI}.
Supposen;: R—R, j=1,..., k, are monotone non-decreasing and locally Lipschitz
continuous, and B: I'g— A" is given by (3.4). Let tel.

(i) If wo(Ap)>0, then Py(I'y, F, B, T, P5({A;}%_,)) has a unique solution;

(i) If o(Ap)=0, then Pg(I'p, F, B, 7, ®5({A4,}%-,)) has a solution if and only
if

a4y | R + Shant) 505 [ dFe) + Shein)

for some ty, t; € R (t;<t,); in this case the solution is unique up to an additive
constant.

REMARK 7.4. By the continuity of the mapping ¢ — SdF(t)+ ki niO,
condition (7.4)’ is equivalent to

7.4y’ Sx dF(H) + Tk_ n (=0 for some TeR

(cf. [3; Corollary to Theorem 3]).
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