Valuations of a quasi-pythagorean field

Tatsuo IWAKAMI (Received January 7, 1988)

In [3], B. Jacob constructed valuations of a formally real pythagorean field and used them to clarify the structure of such a field. We show in this paper that his method is applicable to a quasi-pythagorean field.

All fields are assumed to be formally real.

§1. Valuations

Let F be a (formally real) field and T be a fan of F with $[\dot{F}: \dot{T}] \ge 4$. We denote by T^2 the set $\{x^2; x \in T\}$ and by $[\alpha]$ the class of $\alpha \in \dot{F}$ in \dot{F}/\dot{T} .

Let R(T) be the subgroup $\{ [\beta] \in \dot{F}/\dot{T}; T^2 - \beta^2 T^2 \text{ represents non trivial elements of } \dot{R}/\pm \dot{T} \}$. Then as shown in [3], $R(T) = \{\pm 1\}$ or $R(T) = \{\pm 1, \pm [\alpha]\}$ for some $\alpha \in \dot{F}$, where we denote [1] by 1 and $[-\alpha]$ by $-[\alpha]$. For a subgroup \hat{R} of \dot{F}/\dot{T} containing R(T), we define:

$$\begin{split} O_1(T,\,\hat{R}) &= \big\{x \in \dot{F}; \,\, \big[x\big] \notin \hat{R} \,\, \text{and} \,\, \big[1+x\big] = 1\big\} \bigcup \big\{0\big\}, \\ O_2(T,\,\hat{R}) &= \big\{x \in \dot{F}; \,\, \big[x\big] \in \hat{R} \,\, \text{and} \,\, x O_1(T,\,\hat{R}) \subseteq O_1(T,\,\hat{R})\big\}, \,\, \text{and} \\ O(T,\,\hat{R}) &= O_1(T,\,\hat{R}) \bigcup O_2(T,\,\hat{R}). \end{split}$$

Then we have

THEOREM 1.1. $O(T, \hat{R})$ is a valuation ring of F which is fully compatible with T, that is, $1 + M \subseteq T$ for the maximal ideal M of $O(T, \hat{R})$. If \hat{R} equals R(T), then for the image \bar{T} of $T \cap O(T, \hat{R})$ in the residue field \bar{F} , we have $[\bar{F}: \bar{T}] \leq 4$.

This theorem was proved in [3] with the assumption that F is pythagorean. But the assumption may be removed (compare $\lceil 6 \rceil$, Theorem 3.3).

Now we generalize Theorem 1 of $\lceil 3 \rceil$ as follows.

THEOREM 1.2. $O(T, \hat{R})$ is fully compatible with a preordering S of F if and only if $[1-t] \in \hat{R}$ for all $t \in \dot{T} \setminus \dot{S}$.

PROOF. Suppose that $O(T, \hat{R})$ is fully compatible with S, but $[1-t] \notin \hat{R}$ for some $t \in \dot{T} \setminus \dot{S}$. Then 1-t is not a unit, for every unit is an element of \hat{R} . If we have $t \in O(T, \hat{R})$, then $t = 1 - (1-t) \in 1 + M \subseteq S$ which is a contradiction. So we have $l \notin O(T, \hat{R})$ and ord(t) = ord(1-t) < 0. Hence $t^{-1} - 1 = t^{-1}(1-t)$ is a unit. But we

have $[t^{-1}-1]=[t^{-1}][1-t]\notin \hat{R}$ which is a contradiction.

Conversely suppose that $[1-t] \in \hat{R}$ for all $t \in \dot{T} \setminus \dot{S}$. Then we have $[t_1-t_2] \in \hat{R}$ for all $t_1, t_2 \in \dot{T}$ with $t_1 \dot{S} \neq t_2 \dot{S}$. Suppose that $x = 1 + m \notin \dot{S}$ for some $m \in M$. It follows from $x \dot{S} \neq \dot{S}$ that $[m] = [x-1] \in \hat{R}$. For any $y \in O_1(T, \hat{R})$ we have [x+y/2] = [x] = 1, because x is a unit contained in T. Thus we have $(x+y/2)\dot{S} = x\dot{S}$ and similarly $(1-y/2)\dot{S} = \dot{S}$. So we have $[x+y/2-(1-y/2)] \in \hat{R}$, that is, $[m+y] \in \hat{R}$. Since $y \notin \hat{R}$, it follows that [m+y] = [m]. This means $[1+m^{-1}y] = 1$ whence $m^{-1} \in O_2(T, \hat{R}) \subseteq O(T, \hat{R})$, a contradiction. Q.E.D.

§2. The case of a quasi-pythagorean field

From now on we always assume that F is a quasi-pythagorean field. In other words we assume that Kaplansky's radical $R(F) := \{a \in \dot{F}; D_F < 1, -a > = \dot{F}\}$ coincides with $D_F(2)$. Then we know $R(F) \cup \{0\}$ is the weak preordering $\sum F^2$ which we denote by S in the rest of this paper. We denote by $(X_F, \dot{F}/\dot{S})$ the space of orderings of F. We refer to [5] for spaces of orderings, especially for the group extension of a space and the direct sum of spaces.

THEOREM 2.1. Let F be a quasi-pythagorean field and $(X_F, \dot{F}/\dot{S}) = (X', G') \times H$ be a proper (i.e., $H \neq 1$) group extension of a space (X', G'), which itself is not a proper group extension. Suppose that S is not a trivial fan. Then there is a valuation v on F which satisfies the following conditions:

- (i) v is fully compatible with S,
- (ii) $(X_{\overline{F}}, \overline{F} \cdot / \overline{S} \cdot) \sim (X', G')$ and $\Gamma / \Gamma^2 \cong H$,

where \overline{F} and Γ are the residue field and the value group of v respectively and \sim denotes an equivalence of spaces.

PROOF. If we replace $\alpha \dot{F}^2$ for $\alpha \in \dot{F}$ by $\alpha \dot{S}$, then all the arguments in [3] are valid. So we see that for a minimal fan T of (X', G') which is (regarded as a fan of F) different from \dot{S} , we may set $G' = \hat{R}$ in Theorem 1.1. Thus we have the valuation ring O(T, G'). We show that the valuation v which corresponds to O(T, G') satisfies the conditions stated in the theorem. For $t \in \dot{T} \setminus \dot{S}$ we see that $(1 - \alpha) \dot{S} \in G'$, for otherwise there would be an ordering of F in which $\alpha < 0$ and $1 - \alpha < 0$. So O(T, G') is fully compatible with S by Theorem 1.2. It is easily seen that $F \setminus S$ is isomorphic to a subgroup of G'. Since we suppose (X', G') is not a proper group extension and $(X_F, \dot{F} / \dot{S}) \sim (X_F, F / S) \times \Gamma/\Gamma^2$ by Corollary 3.11 of [4], we have $(X', G') \sim (X_F, F / S)$ and $H \cong \Gamma/\Gamma^2$.

COROLLARY 2.2. In the situation of Theorem 2.1, a 2-henselization \tilde{F} of F with respect to v is a pythagorean field and we have $(X_F, \dot{F}/\dot{S}) \sim (X_{\tilde{F}}, \tilde{F}^{\cdot}/\tilde{F}^{\cdot 2})$.

PROOF. By Theorem 2.1, $(X_{\bar{F}}, \dot{F}/\dot{S}) \sim (X_{\bar{F}}, \bar{F}^{-1}/\bar{F}^{-2}) \times \Gamma/\Gamma^2$. Since $\Gamma/\Gamma^2 \cong H \neq 1$,

 \overline{F} is pythagorean by [2], Proposition 1.3. So \widetilde{F} is also pythagorean by [4], Theorem 3.16. As \widetilde{F} is an immediate extension of F, we have $(X_F, \dot{F}/\dot{S}) \sim (X_{\widetilde{F}}, \widetilde{F} \cdot / \widetilde{F}^{\cdot 2})$.

Q.E.D

Now we consider the case where $(X_F, \dot{F}/\dot{S})$ has a finite chain length so that it is a direct sum of elementary indecomposable spaces. Thus $(X_F, \dot{F}/\dot{S}) = (X_1, G_1) \oplus \cdots \oplus (X_m, G_m)$, where (X_i, G_i) is one element space or a proper group extension of some space (X_i, G_i') .

Theorem 2.3. In the above situation, we have $(X_i, G_i) \sim (X_{F_i}, \dot{F}_i/\dot{F}_i^2)$ for some pythagorean field F_i contained in the maximal 2-extension F(2) of F.

PROOF. Fix i for which $G_i \neq 1$, so that (X_i, G_i) is a group extension of (X_i, G_i) . Then (X_i, G_i) contains a fan which we denote by T_i . If we replace $\alpha \dot{F}^2$ by $\alpha \dot{S}$ in the proof of Theorem 4 of [3], we see that $\hat{T} = T_i \oplus (\bigoplus_{j \neq i} G_j)$ may be regarded as a fan of F and that $R(\hat{T}_i) \subseteq G'_i \oplus (\bigoplus_{j \neq i} G_j)$. Thus for $\hat{R} = G_i \oplus (\bigoplus_{j \neq i} G_j)$ we obtain a valuation ring $O(\hat{T}_i, \hat{R}_i)$ by Theorem 1.1. Let F_i be a 2-henselization of F with respect to the valuation v_i corresponding to $O(\hat{T}_i, \hat{R}_i)$. We show that $\dot{F}_i/\dot{S}_i \cong G_i$ where S_i denotes the weak preordering of F_i . Let φ be the homomorphism which makes the following diagram commutative (where the maps other than φ are obvious ones):

$$\begin{array}{cccc} \dot{F}/\dot{S} & \longrightarrow & \bigoplus_{i} G_{i} \\ \downarrow & & \downarrow \varphi \\ \dot{F}_{i}/\dot{S}_{i} & \longrightarrow & \overline{F}\cdot/\overline{S}^{*} \times \varGamma/\varGamma^{2} \end{array}.$$

Then we see, by following the proof of Theorem 3 of [3], that $\bigoplus_{j\neq i} G_j \subseteq \operatorname{Ker} \varphi$ and that the restriction of φ to G_i is injective. Thus $\dot{F}_i/\dot{S}_i \cong G_i$. From this it follows that $(X_{\overline{F}_i}, \overline{F}_i/\overline{S}_i) \sim (X_i, G_i)$ and that F_i is pythagorean as in the proof of Corollary 2.2. So we have $\dot{S}_i = \dot{F}_i^2$ and $(X_{F_i}, \dot{F}_i/\dot{F}_i^2) \sim (X_i, G_i)$. If $G_i = 1$, then we may take an euclidean closure of F for F_i .

Q.E.D.

Now we apply above theorem to the problem treated in [1].

THEOREM 2.4 Let F be a quasi-pythagorean field for which the chain length of X_F is finite. Then the canonical homomorphisms $h_n: k_n F \to H^n$ (F,2) are injective for all n.

PROOF. We may assume that $(X_F, \dot{F}/\dot{S}) = (X_1, G_1) \oplus \cdots \oplus (X_m, G_m)$ in the notation before Theorem 2.3 (cf. [5]). Now consider the following commutative diagram:

$$k_{n}F \xrightarrow{h_{n}(F)} H^{n}(F, 2)$$

$$\varphi \downarrow \qquad \qquad \downarrow \psi$$

$$\bigoplus_{i}k_{n}F_{i} \xrightarrow{\bigoplus h_{n}(F_{i})} \bigoplus_{i}H^{n}(F_{i}, 2)$$

where F_i are pythagorean fields obtained in Theorem 2.3, and φ , ψ are natural homomorphisms. We showed in [1], Theorem 1.5 that $k_n F \cong I^n F / I^{m+1} F$ for $n \ge 2$, and $I^n F / I^{m+1} F \cong \bigoplus_i I^m F_i / I^{m+1} F_i$ by the structure of X_F . Thus φ is an isomorphism. Since $h_n(F_i)$ is an isomorphism by [3], Theorem 6, we see that $h_n(F)$ is injective (and ψ is surjective) for $n \ge 2$. $h_1(F)$ is an isomorphism for any field F. Q.E.D.

References

- [1] T. Iwakami, The graded Witt ring of a quasi-pythagorean field, Hiroshima Math. J. 17 (1987) 651-657.
- [2] T. Iwakami and D. Kijima, Spaces of orderings and quadratic extensions of fields, Hiroshima Math. J. 16 (1986) 21-31.
- [3] B. Jacob, On the structure of Pythagorean fields, J. Algebra 68 (1981) 247-267.
- [4] T. Y. Lam, Orderings, valuations and quadratic forms, Regional conference series in math., number 52, Amer. Math. Soc. 1983.
- [5] M. Marshall, Spaces of orderings IV, Can. J. Math. 32 (1980) 603-627.
- [6] R. Ware, Valuation rings and rigid elements in fields, Can. J. Math. 23 (1981) 1338-1355.

Faculty of Integrated Arts and Sciences, Hiroshima University