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Valuations of a quasi-pythagorean field
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In[3], B. Jacob constructed valuations of a formally real pythagorean field and
used them to clarify the structure of such a field. We show in this paper that his
method is applicable to a quasi-pythagorean field.

All fields are assumed to be formally real.

§1. Valuations

Let F be a (formally real) field and T be a fan of F with [F: 7]=4. We denote
by T2 the set {x?; xe T} and by [«] the class of aeF in F/T.

Let R(T) be the subgroup {[BleF/T; T*—p>T? represents non trivial
elements of R/+ 7'}. Thenas shown in [3], R(T)={+ 1} or R(T)={+1, + [«]} for
some ae F, where we denote [1] by 1 and [ —a] by —[«]. For a subgroup R of F/T
containing R(T), we define:

O(T, R) = {xeF; [x]¢R and [1+x]=1}y{0},
O,(T, R)= {xeF: [x]eR and xO,(T, R) < O,(T, R)}, and
O(T, R)=0(T, R)YO,(T, R).

Then we have

THEOREM 1.1.  O(T, R) is a valuation ring of F which is fully compatible with T,
that is, 1 + M < T for the maximal ideal M of O(T, R). If R equals R(T), then for the
image T of TNO(T, R) in the residue field F, we have [F-: T-]1<4.

This theorem was proved in [3] with the assumption that Fis pythagorean. But
the assumption may be removed (compare [6], Theorem 3.3).
Now we generalize Theorem 1 of [3] as follows.

THEOREM 1.2.  O(T, R) is fully compatible with a preordering S of F if and only if
[1—1]eR for all teT\S.

PrROOF. Suppose that O(T, R) is fully compatible with S, but [1—t]¢R for
some t€ T\S. Then 1—¢ is not a unit, for every unit is an element of R. If we have
teO(T, R), then t=1—(1—1t)el+M<S which is a contradiction. So we have
1¢0(T, R) and ord(t)=ord (1—¢)<0. Hence t ' —1=¢"!(1—1¢) is a unit. But we
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have [t~'—1]=[¢t"'] [1—¢]¢R which is a contradiction.

Conversely suppose that [1 —t]e R for all teT\S. Then we have [t, —t,]eR
for all t,, t,e T with 1, S#1,S. Suppose that x=1+m¢S for some me M. It follows
from xS+#S that [m]=[x—1]eR. For any yeO, (T, R) we have [x+y/2]=[x]
=1, because x is a unit contained in T. Thus we have (x+ y/2)S = xS and similarly
(1—y/2)$=S. So we have [x+y/2— (1 —y/2)]eR, thatis, [m+y]eR. Since y¢R,
it follows that[m+y]=[m]. This means[1+m~1y]=1 whence m~'€0,(T,
R)= O(T, R), a contradiction. Q.E.D.

§2. The case of a quasi-pythagorean field

From now on we always assume that F is a quasi-pythagorean field. In other
words we assume that Kaplansky’s radical R(F):= {aeF; Dp<1, —a> =F}
coincides with Dy (2). Then we know R(F)|){0} is the weak preordering ¥ F* which
we denote by S in the rest of this paper. We denote by (Xz, F/S) the space of _
orderings of F. We refer to [S] for spaces of orderings, especially for the group
extension of a space and the direct sum of spaces.

THEOREM 2.1.  Let F be a quasi-pythagorean field and (X, E/S)= (X', G')x H
be a proper (i.e., H# 1) group extension of a space (X', G'), which itself is not a proper
group extension. Suppose that S is not a trivial fan. Then there is a valuationv on F
which satisfies the following conditions:

(i) vis fully compatible with S,

(i) (X7 F/S)~(X, G)and I'/T*=H,

where F and I are the residue field and the value group of v respectively and ~ denotes
an equivalence of spaces.

ProoF. If we replace af? for acF by as, then all the arguments in [3] are
valid. So we see that for a minimal fan T of (X’, G') which is (regarded as a fan of F)
different from S, we may set G’ = Rin Theorem 1.1. Thus we have the valuation ring
O(T,G'). We show that the valuation v which corresponds to O(T, G') satisfies the
conditions stated in the theorem. For e 7'\ S we see that (1 —a)SeG’, for otherwise
there would be an ordering of F in which a<0 and 1 —a<0. So O(T, G) is fully
compatible with S by Theorem 1.2. It is easily seen that F/S" is isomorphic to a
subgroup of G'. Since we suppose (X', G') is not a proper group extension and (X,
F/S)~ (X§F/8) x I/T? by Corollary 3.11 of [4], we have (X', G')~ (X7, F-/S")and
H=I/I?. Q.E.D.

COROLLARY 2.2. In the situation of Theorem 2.1, a 2-henselization F of F with
respect to v is a pythagorean field and we have (Xy, F/S)~ (X5, F'/F?).

ProOOF. By Theorem 2.1, (Xg, F/S)~ (X5, F'/F-?)x I'/T?. Since I'/T*~H#1,
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Fis pythagorean by [2], Proposition 1.3. So F'is also pythagorean by [4], Theorem
3.16. As F'is an immediate extension of F, we have (Xj, F/S)~ (X5, F'/F2).
Q.E.D.

Now we consider the case where (X, F/S) has a finite chain length so that it is a
direct sum of elementary indecomposable spaces. Thus (X F/S)=(X,,
G )® - ®(X,,G,), where (X, G;)is one element space or a proper group extension
of some space (X}, G}).

THEOREM 2.3. In the above situation, we have (X;, G;)~ (X Fp F,JF?) for some
pythagorean field F; contained in the maximal 2-extension F (2) of F.

Proor. Fix ifor which G;#1, so that (X}, G;) is a group extension of (X}, G).
Then (X,, G;) contains a fan which we denote by 7. If we replace aF? by S in the
proof of Theorem 4 of [3], we see that T'= T,®(® j»iG;) may be regarded as a fan of
Fand that R(T}) = G;®(®;,,G,). Thus for R=G;® (®;,,G,) we obtain a valuation
ring O(T;, R;) by Theorem 1.1. Let F; be a 2-henselization of F with respect to the
valuation v, corresponding to O(T;, R;). We show that F;/S;~ G; where S; denotes
the weak preordering of F;. Let ¢ be the homomorphism which makes the following
diagram commutative (where the maps other than ¢ are obvious ones):

FS - ®.G;

l fo

F/S;, —  F/§xI/r*

Then we see, by following the proof of Theorem 3 of [3], that @,;G;< Ker¢ and
that the restriction of ¢ to G; is injective. Thus F;/S;~G,. From this it follows that
(X5, Fy/S:) ~ (X, G)) and that F; is pythagorean as in the proof of Corollary 2.2. So
we have S;=F? and (X, Fp F/F?)~ (X,, G,). If G;=1, then we may take an euclidean
closure of F for F;. Q.E.D.

Now we apply above theorem to the problem treated in [1].

THEOREM 2.4 Let F be a quasi-pythagorean field for which the chain length of

X is finite. Then the canonical homomorphisms h,: k,F— H" (F,2) are injective for all
n.

ProOF. We may assume that (Xj, E/S)=(X,, G,)® @ (X, G,) in the
notation before Theorem 2.3 (cf. [5]). Now consider the following commutative
diagram:
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kF —0 g 2)

’| ¥

@k, F, —2mE) | o pm(F, 2)

where F; are pythagorean fields obtained in Theorem 2.3, and ¢, { are natural
homomorphisms. We showed in [1], Theorem 1.5 that k,F=I"F/I"*'F for n>2,
and I'F/I"* ' F~ @, I"F,/I"* ' F, by the structure of Xy. Thus ¢ is an isomorphism.
Since A, (F;) is an isomorphism by [ 3], Theorem 6, we see that A, (F) is injective (and
V¥ is surjective) for n=2. h,(F) is an isomorphism for any field F. Q.E.D.
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