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1. Introduction

We consider linear neutral functional differential equations of the form

(A) % [x(t) — h(t)x(z(1))] + op()x(g(®) =0, t=to,
where n =2, 0 = +1 or —1 and the following conditions are assumed to hold
without further mention:
(B) (a) h:[ty, 0)— (0, c0) is continuous;
(b) 7:[ty, 00) = R is continuous and strictly increasing, and
lim,_, , 7(t) = oo;

(c) p:[to, ©0)—(0, c0) is continuous;

(d) g:[ty, ©)— R is continuous and lim,_,, g(t) = co.

Our aim is to establish new oscillation criteria for equation (A), ie.,
sufficient conditions under which all proper solutions of (A) are oscillatory. By
a proper solution of (A) we here mean a continuous function x:[t,, ©0) > R
such that x(t) — h(t)x(z(t)) is n-times continuously differentiable, x(t) satisfies (A)
for all sufficiently large t = ¢, and sup {|x(f)|:¢ = T} > 0 for any T = ¢t,. Such
a solution is called oscillatory if it has arbitrarily large zeros in [t,, o) and it is
called nonoscillatory otherwise.

The problem of oscillation of neutral functional differential equations has
received considerable attention in the last few years (see, for example, the papers
[1-14, 17-20] and the references cited therein). However, most of the works
on the subject has been focused on first and second order equations with
constant parameters and very little has been published on higher order neutral
equations. For some particular results we refer to [7], [13—14] and [18].

The present paper is an attempt to make a systematic study of oscillatory
properties of higher order equations of the form (A) with general arguments h(t)
and 7(¢f). Our technique here is based on deriving two infinite sequences
{(Ig, 0)}i%0 and {(I,,, 0)}s-, of “non-neutral” functional differential inequalities
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with the properties that each inequality (I}, 0), k =0, 1, ..., possesses a non-
oscillatory solution if equation (A) has a nonoscillatory solution x(t) such that

(r.1) x(t) [x(t) — h(t)x(z(t))] > O

for all large ¢, and each (I,,,0), m =1, 2, ..., possesses a nonoscillatory solution
if (A) has a nonoscillatory solution x(t) such that

(1.2) x(t) [x(t) — h()x(z(£))] < 0

for all large t. Since (1.1) and (1.2) are the only possibilities for a non-
oscillatory solution x(¢) of (A), the problem is thus reduced to finding conditions
guaranteeing the nonexistence of nonoscillatory solutions for some (I}, o) and
(I,., o), and such desired conditions will be obtained as a suitable combination
of known results on “non-neutral” functional differential inequalities.

It should be emphasized that in contrast to the results contained in the
above-mentioned papers, no “a priori” restriction upon h and t (such as h(t) < 1
or h(t) > 1 and/or 7(t) < t or 7(t) > t) is made. Thus the results presented here
extend and unify the previous ones. Furthermore, even when specialized to the
situation where one of the possibilities {h(t) < 1, 7(t) < t}, {h(t) <1, t(t) > t},
{h(t) > 1, (¢) < t} and {h(t) > 1, =(t) > t} occurs, our results are new or improve
the known oscillation criteria available for such equations in the literature.

2. Classification of nonoscillatory solutions

Let x(t) be a nonoscillatory solution of the equation (A). From (A) and
the hypothesis (B-¢) it follows that the function

@10 y(t) = x(t) — h(t)x(z())

has to be eventually of constant sign, so that either

(2.2) x(t)y(t) > 0
or
(2.3) x(®)y(t) <0

for all sufficiently large t. Assume first that (2.2) holds. Then the function y(t)
satisfies ay(t)y™(t) < O eventually and from the well-known Kiguradze’s lemma
(see, for example, [15]) it follows that there is an integer [€ {0, 1,...,n} and a
t; = to such that (—1)"""'¢ = 1 and

y@&)y?t)>0 for O0=<i<l and t=t,,
(2.4) . .
L (=Y >0  for I<i<n and t2t,.
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A function y(t) satisfying (2.4), is said to be a nonoscillatory function of degree I.
In what follows, the set of all solutions x(¢) of (A) satisfying (2.2) and (2.4), will
be denoted by 4.

Now assume that (2.3) holds. Then y(t) satisfies (—a)y(t)y™(t) < 0 for all
large t and so it is a function of degree I for some le{0,1,...,n} with
(=1)"'¢ = 1. The totality of nonoscillatory solutions of (A) which satisfy (2.3)
and (2.4), will be denoted by A;".

Consequently, if we denote by A4 the set of all possible nonoscillatory
solutions of (A), then

N =N ON O UM Ny VAN U U N,
for 0 =1 and n even,
N =N ON U UM AN UN U U N,
foro =1and nodd,
(2.5)
N =N UM U UM UNTUN U U N,
| for o = —1 and n even,
N =N ON U UM UNg VAN VU N,
for 6 = —1 and n odd.

It is now clear that the oscillation of all proper solutions of (A) is equiv-
alent to the situation in which all the nonoscillatory solution classes appearing
in the above classification scheme are empty. Sufficient conditions for this
situation to hold will be given in the next section.

3. Oscillation of all proper solutions

We begin with an elementary but useful lemma which will be needed in
deriving our main results.
The following notation is employed:

20 =t, M) =tc"10), tTO=1'C"""P0), i=12...,

where t71(t) denotes the inverse function of (),

Hot)=1, H,-(t)=ﬁh(1:f(t)), i=1,2,....
j=1

LemMMA 3.1. (i) Let x(t) be a nonoscillatory solution of (A) satisfying (2.2)
for all large t. Then for any integer k = O there is a T, = t, such that
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@3.1) ()] 2 z HOlyE)

for t = Ty, where y(t) is defined by (2.1).
(ii) Let x(t) be a nonoscillatory solution of (A) satisfying (2.3) for all large t.
Then for any integer m = 1 there is a T,, = t, such that

y(E(®)

(32) X0 2 3 250 2T

fort=T,.

PrOOF. Assume that a nonoscillatory solution x(tf) of (A) satisfies
x()[x() — h(@t)x(z(t))] >0 for t = T = t,. From the assumption lim,_, t(t) =
oo it follows that for every integer k = 0 there exists a T, = T such that
@)= Tfort=T,andi=0,1,..., k+ 1. Now using the relation

x(t) = y(t) + h(t)x(z(t))

repeatedly, we find

[x(@®) = =Zo HOly(' ®))] + Hyry (01x(* ()]

2 3, H@ly@' o)l

for t = T,, which proves our claim in the case (i).

Similarly, if x(¢) is a nonoscillatory solution of (A) satisfying x(t)[x(t) —
h(t)x(z())] <O for t = T, then, for any integer m = 1 there is a T,, = T such
that t(t)= Tfort = T,,and j = 1, ..., m, and the repeated use of

x(r71 () — y( ()

X0 =410
yields
L xEmO) . m Iy 0)
X0l = g o) T A HE0)
m |y )
2 X H0)

fort = T,,. The proof of the lemma is complete.

Let x(t) be a nonoscillatory solution of (A). Lemma 3.1 then implies that
if (2.2) hold, then for any integer k = O the function y(¢) defined by (2.1) satisfies
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the functional differential inequality

k
(I, 0) {O'y‘"’(t) +p(0) i;) Hi(g(t))y(fi(g(t)))} sgn y(t) = 0

for t = T,, and that if (2.3) holds, then for any integer m = 1, the function y(t) is
a nonoscillatory solution of

(I, 0) {Uy‘"’(t) —p() 2 [flfj(r_j(g(t)))]_1y(T_’(g(t)))} sgn y(1) 2 0

fort= T,
As an immediate consequence of the above observation we have the follow-
ing oscillation theorem.

THEOREM 3.1. Assume that there are integers k =0 and m = 1 such that
the functional differential inequalities (I, 6) and (I,,, 6) have no nonoscillatory
solutions. Then all proper solutions of (A) are oscillatory.

In order to ensure the nonexistence of nonoscillatory solutions of the
inequalities (I}, ) and (I, o) for some k = 0 and m = 1, respectively, we shall
use the results (Lemmas 3.2-3.5 below) due to Kitamura [16] specialized to
functional differential inequalities of the form

(1, 0) {au‘“)(t) £y m(t)u(g.-(t))} sgn u() <0,

where n 22,0 = +1 or —1, p;:[ty, 0)—> (0, ), i=1, ..., N, are continuous,
g;: [to, ©©) = R are continuous and lim,,g;(t) = o0, i=1,..., N. We use the
notation:

g¥(@) = max {g,(0), t},  a[g:](t) = min g&(s).

gix(® =min {g;(0), t},  p[g:1(t) = max g;,(s).

to<s=t

LEMMA 3.2. Let 0 =1 and n be even. Suppose that there exists an integer
ie{l,..., N} such that

3.3) f [9:x(®)1" " [g:()]1*pi(t) dt = 0
to
for some ¢ > 0. Then all proper solutions of (I, + 1) are oscillatory.

LEMMA 3.3. Let 0 =1 and n be odd. If there is an integer i€ {1,..., N}
such that
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(3-4) fw (901" 2[g:(0)]" *pi(t) dt =

for some & > 0, then all possible nonoscillatory solutions of (I, +1) are of degree
0. Such nonoscillatory solutions are precluded if there is je {1,..., N} such that

J o {s—plg )" {plg1(®) — gi(s)}vp,-(s) ds > 1

n—v-—1)! v!

(3.5) lim sup

Lindd plg;1@)

for some ve {0,1,...,n— 1}.

LEMMA 34. Let 6 = —1 and n be odd. If there is an integer i€ {1,..., N}
such that

(3.6) J tL9: (01" *[g/0] *pi() dt =

for some & >0, then all possible nonoscillatory solutions of (I, —1) are of
degree n. Such nonoscillatory solutions are precluded if there is an integer
ke{l,..., N} such that

J“[g"l(') {gk(s)(;f[g’ﬂ(lt;'}n p—1 {d[gk](t) } k(s) ds > 1

(3.7) limsup

t—oo

for some pe{0,1,...,n—1}.

LEMMA 3.5. Let 0 = —1 and n be even. If there exists an integer i€
{1,..., N} such that

(3.8) f t[g: (01" [g:(0)] ~*pu(t) dt =

for some ¢ > 0, then every nonoscillatory solution of (I, —1) is either of degree 0
or of degree n. Solutions of degree 0 [resp. degree n] are precluded provided
that (3.5) holds for some je{1,...,N} and ve {0, 1,...,n — 1} [resp. (3.7) holds
for some ke {l,...,N}and pe{0,1,...,n— 1}].

The main results of this paper will now be stated and proved.

THEOREM 3.2. Let 0 =1 and n be even. Then all proper solutions of (A)
are oscillatory if there exist a nonnegative integer i and positive integers j, k and
m such that

(3.9) f . [0 9), ()] [(z"° 9)(O]*P()Hi(g(2)) dt =

for some & > 0,
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i =3[ o s p@® _
(3.10) J:o tL(r™ 0 9) ()] [z 0 g)()]* 6ﬁj(1:_j—og(7)) dt =

for some & > 0,

(3.11) lim sup

t— oo

f ‘ {s—ple™ gl " {plr™ 0 g1() — (™" 2 9)(9)}"

plt—*ogl®) n—v—1) v!

. p(s)
H,(t™* o g(s))
for some ve {0,1,...,n— 1}, and

alt=™ 0 g](r) {(‘E_'” og)(s) —aft™og] (t)}”_“—l {“[T_m ogl(®) — S}”
(n—pu—1)! , u!

ds > 1

(3.12) lim sup j
t

t—o

, p(s)
H,(t™" o g(s))

for some ue {0,1,...,n—1}.

ds > 1

THEOREM 3.3. Let 6 =1 and n be odd. Then all proper solutions of (A)
are oscillatory if there exist nonnegative integers i and k and positive integers j
and m such that

(3.13) f [ 0 9), ()12 [(z° 0 g)()]' () Hi(g(2)) dt = 0
for some & > 0,

® e o n—2[ (i o - p@®) _
(3.14) f 6o O e YOI g e di =

for some 6 > 0,

(3.15) lim sup J t {s —pl*ogl®)}" " {p[r* 2 g1(t) — (* 0 9)(5)}"
10 J pleogin) (n—v—1)! 1
"P(s)Hy(g(s)) ds > 1

for some ve {0,1,...,n— 1}, and (3.12) holds for some ue {0, 1,...,n— 1}.

THEOREM 3.4. Let 0 = —1 and n be even. Then all proper solutions of (A)

are oscillatory if there exist nonnegative integers i, k and m and a positive integer
j such that

(3.16) r t[(r' 0 9), (01 °[(z 0 9)()]' *p() Hi(g(t)) dt = ©

0
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for some ¢ > 0,

00 =i n—1 —io - p(t) —
(3.17) L [z 09,01 ' [ og)()]° H(t 70 g(1)) dt = oo
for some 6 > 0, (3.15) holds for some ve {0, 1,...,n — 1}, and

f w0 (2 0 g)(s) — alt™ o g1 ()" {ale™ 0 41() — s)*

(3.18) lim sup (n—p— 1) u!

t— o0

“p(s)H,,(g(s)) ds > 1

for some pe{0,1,...,n—1}.

THEOREM 3.5. Let 6 = —1 and n be odd. Then all proper solutions of (A)
are oscillatory if there exist nonnegative integers i and m and positive integers j
and k such that

(3.19) f tl(e' 0 9), (01" 2[(z" 0 9) ()] *p() Hi(g (1)) dt = o0

o]

for some ¢ > 0,

p@®) .
Hj(t™/ 0 g(t))

for some 8 >0, and (3.11) and (3.18) are satisfied for some ve {0,1,...,n — 1}
and pe {0, 1,...,n — 1}, respectively.

(3.20) f [0 9T 2[(x77 0 9)(®]*°

ProOF OF THEOREM 3.2. According to (2.5), 47", A5, ..., 4,1, and A},
Ny, ..., N, are the possible nonoscillatory solution classes for equation (A)
with 6 =1 and n even. We shall show that under the conditions of the
theorem none of these solution classes has a member.

Suppose first that A, # & for some le{1,3,...,n—1}. Then each of
the inequalities (I, +1), N =0, 1, ..., has a nonoscillatory solution of degree L.
However, this is impossible, because from Lemma 3.2 applied to (I}, + 1) with
N =i it follows that (3.9) prevents (I}, 1) from having a nonoscillatory solution
of any kind. Thus we must have N;" = @ forall le {1,3,...,n — 1}.

If #;7 # for some l€{2,4,...,n— 2}, then all inequalities (I,;, +1),
M =1, 2, ..., must possess nonoscillatory solutions of degree I. On the other
hand, from (3.10) and the first part of Lemma 3.5 it follows that (I, + 1) with
M =j cannot have a nonoscillatory solution of degree le{2,4,...,n—2}.
This contradiction shows that A/, = A =+ = A#,", = .

If /5 # &, then the inequalities (I,;, +1), M =1, 2, ..., have nonoscil-
latory solutions of degree 0. However, from (3.11) and the second statement of
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Lemma 3.5 we see that (I;;, +1) with M = k cannot have a solution of degree
0. Thus, /5 = O as well.

Finally, suppose that 4, # . Then the inequalities (I;, +1), M =1, 2,
..., have nonoscillatory solutions of degree n. But this contradicts the fact that
(I;7, +1) with M = m do not admit solutions of degree n because of (3.12) and
the second statement of Lemma 3.5. Thus the class .4,  must be empty.
This completes the proof of Theorem 3.2.

PROOF OF THEOREM 3.3. Let ;% # (& for some € {0,2,...,n — 1}. Then
each of the inequalities (I, +1), N =0, 1, ..., must possess a nonoscillatory
solution of degree I. However, this is impossible, because the first part of
Lemma 3.3 implies that under (3.13), (I, +1) with N =i cannot possess a
nonoscillatory solution of degree /€ {2,4,...,n— 1}, while the second part of
Lemma 3.3 implies that, under (3.15), none of (I§;, +1) with N = k admits a
solution of degree 0. i

Next, by Lemma 3.4, (3.14) guarantees the nonexistence of solutions of
degree € {1, 3,...,n — 2} for each of the inequalities (Iy;, +1) with M > j and
(3.12) implies that none of (I, +1) with M = m may have nonoscillatory
solutions of degree n. Consequently, /7 = A3 == AN, = &. The con-
clusion of the theorem now follows from (2.5).

ProoF oF THEOREM 3.4. From (3.16) and the first part of Lemma 3.5 we
see that none of the inequalities (I;, —1) with N =i has nonoscillatory solutions
of degree € {2,4,...,n — 2}, which implies that #/;* = &, l€ {2,4,...,n — 2},
for (A) with ¢ = —1 and n even. Similarly, the second part of Lemma 3.5
applied to (Iy, —1) with N = max {k, m} shows that both 45" and #,* have to
be empty provided that (3.15) and (3.18) hold.

Furthermore, we claim that the condition (3.17) ensures that 4" = J for
all I=1,3,...,n— 1. In fact, if #;” # & for some le{1,3,...,n— 1}, then
for any integer M =1 the inequality (I,;, —1) has a solution of degree .
However, because of (3.17), this contradicts the assertion of Lemma 3.2 applied
to (I, —1) with M = j.

Since A5, ..., A, and A7, ..., A, are the only possible nonoscillatory
solution classes for (A) with ¢ = —1 and n even, we conclude that (A) may have
only oscillatory proper solutions in this case.

PrOOF OF THEOREM 3.5. In view of (2.5), it suffices to prove that
N =N == M =Ny =Ny == N =

If 4% # & for some le{1,3,...,n}, then all the inequalities (I}, —1),
N =0, 1, ..., have nonoscillatory solutions of degree I. This, however, is
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impossible since Lemma 3.4 shows that all proper solutions of (Iy, —1) with
N = max {i, m} must be oscillatory provided that (3.18) and (3.19) are satisfied.

Similarly, if A4~ # & for some 1€{0,2,...,n— 1}, then all (I}, —1),
M =1, 2, ..., must possess a nonoscillatory solution of degree I. This is also a
contradiction, since, according to Lemma 3.3, (3.11) and (3.20) guarantee the
oscillation of all proper solutions of (I;, —1) with M = max {j, k}. This com-
pletes the proof.

ReEMARK. The oscillation criteria given in the above theorems become
somewhat simpler if the functions h(f) and (f) in (A) satisfy the additional
conditions

(3.21) O<h(®)sh*<1 and )<t for t = t,
or
(3.22) h*Z h(t) 2 h, > 1 and (t) >t fort>1t,,

where h* and h, are constants. In fact, if (3.21) holds, then, as is easily verified,
a nonoscillatory solution x(t) of (A) such that x(z) [x(¢t) — h(t)x(z(t))] < O for all
large t satisfies

(3.23) lim x(¢) =0, lim [x(t) — h(t)x(z())]1 =0,

t—o0 t—o0

which implies that A4~ = (J for all k = 1. Thus, in this case, the classes 4},
k = 1, are automatically excluded from the classification list (2.5), and so the
conditions (3.10), (3.12), (3.14), (3.17) and (3.20) in Theorems 3.2-3.5 and super-
fluous and need not be considered.

Similarly, if (3.22) holds, then a nonoscillatory solution x(t) of (A) such that
x()[x(t) — h(t)x(z(¢))] > O for all large t satisfies (3.23), so that the classes 4",
k = 1, are absent in (2.5). This shows in this case that the conditions (3.9),
(3.13), (3.16), (3.18) and (3.19) can be deleted from Theorems 3.2-3.5.

ExampLES. Consider the equation
dn
(3.24) W[x(t) — h(t)x(log t)] + op(t)x(log (log (et))) = 0

which is a special case of (A) in which
1(t) =logt, g(t) = log (log (et)) .
Suppose that there are positive constants h,, h* and p, such that

(3.25) h,ShOSH, pOZp,, tZ1.
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We claim that if ¢ = +1, then all proper solutions of (3.24) are oscillatory.
In fact, since

1 og(t)=log(er), p[r ' oglt) =logl(er),

t2og(t)=et, af[t™20gl(t) =et,

for t sufficiently large, and since simple calculations show that

Jw [log (log (e))]" ' ~*p(t) dt = o ,

1

f " tllog ()2 ~p(t) dt = oo,
J" [s — log (et)]" !

n— 1) p(s)ds =

lim sup

t—=o og(er)

and

et _ n—1
lim sup Le(s — 1]

n st ' _—(n— DI p(s)ds = o,

the conditions (3.9)(i =0), (3.10)(j =1), B.11)(k=1,v=0) and (3.12)(m =2,
u = 0) are satisfied. The desired conclusion for the case of even n then follows
from Theorem 3.2. The oscillation of all solutions of (3.24) in the case of odd n
is guaranteed by Theorem 3.3, since the conditions (3.13)(i =0), (3.14)(j = 1)
and (3.15)(k = 0, v = 0) are easily verified.

The situation changes when ¢ = —1; neither Theorem 3.4 nor Theorem 3.5
is applicable to this case. It suffices to observe that the condition (3.18) is not
satisfied, because a[t™ o g](t) =t for m =1, 2, ..., so that the class 4, can by
no means be eliminated. As a matter of fact, (3.25) is not sufficient to elimi-

nate the class A4,* for (3.24) with ¢ = —1; one such example is given by the
equation

9 1(®) — hox(log )] — —°— x(log (log (ef))) = 0

ar oX{08 log (e ELO8 o

where h, > 0 is a constant. This equation has a nonoscillatory solution x(t) =
e' which clearly belongs to .#,*.
The following is an example of equations to which Theorems 3.4 and 3.5
apply:
d'l
d—t—"[x(t) — h(®)x(t*)] + ap()x(t¥) =0,
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where h(t) and p(t) satisfy (3.25), and « and f are positive constants such that
a>1,<1and aff > 1.
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