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§0. Introduction

Each one dimensional piecewise smooth expanding transformation T on a
finite interval has the following ergodic property (A), which is the result of Li
and Yorke [11] and Wagner [15], (see also Morita [13]). In one dimensional
case m denotes the Lebesgue measure.

(A) There exists a sequence of m-absolutely continuous T-invariant
probability measures {y,---,u,} with L;:=supp y; for i = 1,---,1, which has the
following properties.

M) w(L)=1 fori=1,---,L

(2) (T, ;) is ergodic for i =1,---,1L

B) m(L;nL)=0 if i #j.

4 T-YL)>L; m—ae. for i=1,--,1.

(5) If n is an m-absolutely continuous T-invariant probability measure, n can
be written as a convex combination of u's.

(6) Put C=UZo{x; T"(x)¢Ui=1 L}, then m(C)=0.

(7) For i=1,---,1, there exists a collection of sets Li,--,L;. with the
following properties :

(@) L;= U;'(=i)1 L;;.

(b) m(Lyn Ly) =0 if j #k.

() T '(L;j+1) > L;j m—a.e. for j=1,---,r() — 1, and T '(L;) > L;

m—a.e.

@) (T, u;) is exact, where p; = r(@i)- ply,,-

On the other hand, Lasota, Li and Yorke [8] pointed out that the behavior
of the Frobenius-Perron operator P associated with T is asymptotically
periodic. Namely it has the following property (B).

(B) There exists a sequence of densities g,,--+,g, and a sequence of bounded
linear functionals ,,---,, such that

lim, ., [| P"(f — Z:=1 4(f)g) lim =0 for feL'(m),
the densities {g;} have mutually disjoint supports (§;g; =0 for i # j) and

Pg; = g,
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where {a(1),-,a(r)} is a permutation of the integers {1,---,r}.

In addition to the property (B), we interoduce the following property (B*)
which is weaker than (B).

(B*) There exists a sequence of densities g,,---,g, and a sequence of bounded
linear functionals ,,---,4, such that

limn—mo ” Anf_ Z:=1 1;(f)gl ”L’(m) =0 for fELl(m),

| R
where A,f = ;ZL;P" f, the densities {g;} have mutually disjoint supports (g;g;

=0 for i #j) and Pg; = g;.

In this paper we discuss the relation between (A) and (B) or (B*) for a
nonsingular transformation on a o-finite measure space (X, &, m), which is
more general than a piecewise smooth expanding transformation on a finite
interval. As a matter of fact, in §4 we prove that (B) implies (A) and that (B*)
implies (A) except (7). Conversely, in §5, we show that (3), (6) and (7) of (A)
implies (B) ((7) is a strong condition). And we also show that (A) except (7)
implies (B*). Therefore (A) is equivalent to (B) and (A) except (7) is equivalent
to (B¥).

Further, for a nonsingular transformation on a o-finite measure space with
the property (B*), we discuss the ergodic decomposition (the corresponding
result for piecewise smooth expanding transformations is studied in [7]) and
prove “the individual ergodic theorem” in §6. The central limit problem is also
discussed in §7.

§1. Preliminaries

In this section we give a definition of the Frobenius-Perron operator and
state its basic properties. Let (X, #, m) be a o-finite measure space and T: X
— X be a nonsingular transformation, that is, a measurable transformation
satisfying m(T ~!(4)) = 0 for all Ae# with m(4)=0.

DErFINITION 1.1. The operator P:L' — L' defined by
(1.1) J Pf(x)m(dx) = f f(x)m(dx) for Ae #, feL'(m)
A T~ Y(A4)

is called the Frobenius-Perron operator associated with (T, m). Clearly P is a
positive operator. We define the average A, of the Frobenius-Perron operator
by

Af = %Z;;éP"f for fe L!(m).
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By D(m) = D(X, #, m) we shall denote the set of all densities associated
with m on X, that is,

D(m):= {feL}(m); £ 2 0 and | f]Lim = 1}.

For an feD(m) we define a probability measure m, on (X, #) by
mg(A) = J fdm, AeF.
A

An feD(m) is called a stationary density of P if Pf=f m—a.e.
Here we state some basic properties of Frobenius-Perron operators, which
are well known and are easily proved.

LemMMA 1.1. (1) P is characterized by the following:

[9(x) Pfix)ydm = [f(x)g(T (x))dm

for fe LY(m), ge L®(m).

(2) For every integer n = 1, P" = Py., where Prn is the Frobenius-Perron
operator associated with (T", m).

(3) For geD(m), Pg=g if and only if m, is T-invariant, that is m, A)
=m,(T ~'(A)) for all AcF.

(4) Let g be a stationary density. Then,

g-Pyf=P'(f-g) m—a.e. for feD(m,),

where P, is the Frobenius-Perron operator associated with (T, my).

(5) For he L*(m) and ge L*(m), we have P((Uh)g) = hPg where Uh(x) =
h(T(x)).

In this paper S(f) denotes the support of a nonnegative function f, that is,
S(f):= {x;f(x) > 0}.
The following lemmas play an important role.

LemMa 1.2. (1) S(f)<= T~ (S(Pf)) m—a.e. for every feD(m). In
particular, if g is a stationary density of P, then

S(g) = T~1(S(g)) m—a.e.
(2) For AcF with Ac T™*A, S(f) < A implies S(Pf) = A m—a.e. for
feD(m).

PrOOF. (1) Put A = S(P f) in the equality (1.1). Then the left hand side
of the equality (1.1) is equal to 1. Hence we have
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S(f)c T~YS(Pf)) m—a.e.

(2) The assumption of (2) implies that the right hand side of the equality (1.1) is
equal to 1. So,

SPf)c A m—a.e.
LemMMA 1.3. Assume that P has a stationary density g, and put
C@:=Nizo {x; T"(X)¢S(@} = Nazo T "(X\S()).

Then C(g) is an invariant set with respect to (T, m), that is, C(g) = T *(C(g))
m—a.e.

This lemma is easily obtained from Lemma 1.2.

LEMMA 1.4. For Ae¥ with Ac T 'A m—a.e. and for a stationary
density g, we have

Plg-1)=9g'1, m—a.e.
where 1, denotes the indicator function of the set A.
Proor. We get

Pgl)=sP@gIr-)=1,Pg=1,9g m—ae.

from Lemma 1.1(5). This shows
Pg-l)=g 1, m—ae.,

because P preserves integrals.

§2. Ergodicity and exactness

Here we define ergodicity and exactness of a nonsingular transformation,
and we state some conditions for ergodicity and exactness using Frobenius-
Perron operators.

DerFINITION 2.1.  Let (X, &%, m) be a o-finite measure space, and T: X —» X
a nonsingular transformation. Then, (T, m) is called ergodic if m(4) =0 or
m(X\ A) =0 for every AeF with T"'4A=A4 m—a.e.

ProrosITION 2.1 ([9] Theorem 4.2.2). If (T, m) is ergodic, then there is at
most one stationary density of the Frobenius-Perron operator P.

DEeFINITION 2.2. Let (X, #, u) be a probability space and T: X - X a
measure preserving transformation, that is, p is T-invariant. If N\, T "Z is
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trivial, then (T, u) is called exact.

We have the following useful lemma concerned with a Frobenius-Perron
operator and exactness.

LemMa 2.2. Let (X, #, n) be a probability space, T: X - X a measure
preserving transformation and P the Frobenius-Perron operator associated with
(T, w). Then, (T, p) is exact if and only if

lim, . | P"f — gy =0 for any feD(y).

This lemma is proved in [12]. So we omit the proof. Using this lemma,
we prove the following proposition which gives the condition for the existence
of an exact invariant measure.

PropoSITION 2.3. Let (X, #, m) be a o-finite measure space, T: X - X a
nonsingular transformation and P the Frobenius-Perron operator corresponding to
(T, m). If there exists g€ D(m) such that

(2.1) lim, . | P"f — gllLi =0 for feD(m) with S(f) = S(g),

then T preserves the measure m, and (T, m,) is exact.

Conversely, if there exists a stationary density g such that (T, m)) is exact,
then (2.1) holds.

Proor. To prove the first part of the proposition, assume that there exists
geD(m) with (2.1). Then it is clear that Pg=g. Thus T preserves the
measure m,. Now let P, be the Frobenius-Perron operator associated with
(T, m;). Then, from Lemma 1.1(4), for any f,eD(m,),

J |Pgfo — 1]dm, =f g|Pgfo — 1{dm
X X

= J |P"(fo"g) — gldm.
X
Clearly f,-geD(m) and S(f,-g) = S(g). Hence, from the assumption, the right
hand side of the above equality converges to 0, as n— co. Thus,
lim,, , [| Pgfo — LllLimy =0 for any f,eD(m,).

By Lemma 2.2, this implies that (T, m,) is exact.
To prove the second part of the proposition, assume that g is a stationary
density of P and (T, m,) is exact. For any feD(m) with S(f) < S(g), set

A f(x)/g(x)  xeS(g)
Jx) = {0 x&S(g).
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Then it is easy to see that fe D(m,). Thus, from Lemma 1.1(4) we have

1P — gllLiom = f |P"(f-g) — gl dm
X

=f |gPZf—0|dm=f |Pgf— 1] dm,.
x x

Since (T, m,) is exact, the right hand side of this equality converges to 0, as
n — oo, which implies (2.1).

§3. Asymptotic periodicity

In this section we introduce the notion of asymptotic periodicity of
Frobenius-Perron operators.

DErFINITION 3.1, Let (X, %, m) be a o-finite measure space and P: L'(m)
— L'(m) be a Frobenius-Perron operator. Then, {P"} is called asymptotically
periodic if there exists a sequence of densities g,,:--,g, and a sequence of
bounded linear functionals A,,---,4, such that

(1) Timye g | P~ Yimy ()9l scmy = O for all feD(m),

(2) the densities {g;} have mutually disjoint supports (g;g; = 0 for i # j),

(3) Pg;=g.z> where {a(l),---,a(r)} is a permutation of the integers

{ 1,...’;-}.
If r =1 namely there exists a unique density g such that
lim, ., o [ P"f— gl im =0 for all fe D(m),
then {P"} is called asymptotically stable.

REMARK 3.1. Taking the cycles from the permutation «, Definition 3.1
may be rewritten in the following form: {P"} is called asymptotically periodic if
there exists a sequence of densities

9115 591r1)s " 9115 5 ey

and a sequence of bounded linear functionals

'111:"'1'1“(1)3"'alll,'“a'llr(l)

such that

() lim, o |1 P*(f = Y12y 252, 4;(f) 9i) lLsgm = O for all feD(m),
(2) the densities {g;;} have mutually disjoint supports, and
(3) for each i, Pg;;= Ji,j+1 for 1<j=r@)—1, Pgiwy = 9u-

REMARK 3.2 ([8], see also [6]). If P is a constrictive Frobenius-Perron
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operator, namely there exists a weakly precompact set F = L!(m) such that
lim, ., d(P"f, F)=0 for all fe D(m),
where d(g, F) = inf;p |g — fllL1(m> then {P"} is asymptotically periodic.

ExaMpLE 3.1. A simple example of the constrictive Frobenius-Perron
operator is the one corresponding to a transformation T: [0, 1]— [0, 1]
satisfying the following two conditions: (1) There is a partition 0 =g, < a,
< ---<a,=1of [0, 1] such that for each integer i = 1,---,n the restriction of T
to (a;—4, a;) is a C? function, (2) inf|T'(x)| > 1, x #4a;,i=0,---,n. For the
proof of this, see [8], [9] and [10].

§4. Ergodic structure

From now on, we research what asymptotic periodicity of Frobenius-
Perron operators implies. In this section we consider the following
situation. Let (X, &#, m) be a o-finite measure space, T: X - X a nonsingular
transformation, and P the Frobenius-Perron operatoer associated with
(T, m). The main result is the following theorem.

THEOREM 4.1. If {P"} is asymptotically periodic, then T has the property (A)
stated in §0.

First we prove a weaker version of Theorem 4.1, which is

THEOREM 4.2. Assume that there exists a sequence of stationary densities

g1,-+»g; with mutually disjoint supports and a sequence of bounded linear
Sfunctionals Ay,---,, such that

M, | A, f = Y5, A(f)g:l =0 for feL'(m),

1o
where A,,f=;2,’:=;P"f. Let y;=my, for i=1,---,1

Then pu,,---,w; are m-absolutely continuous T-invariant probability measures
with the properties from (1) to (6) in (A).

Proor. The properties (1) and (3) are clear from the definition of p;.

(2) Let E be a measurable set such that y,(E) >0 and T 'E =E y;—a.e.
Pick an f;e D(m) whose support is contained in E. Then Lemma 1.2 (2) shows
that S(Pfg) =« E m—a.e. Using inductive argument, we have S(A4,fp) < E m
—a.e. for all n. Therefore, from the assumption of this theorem it follows that
S(9) € E m—a.e. This implies that p(E) =1. Hence (T, y,;) is ergodic.

(4) is a direct consequence of Lemma 1.2 (1).

(5) Let f be an arbitrary stationary density. Then we have A,f =f, and
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so f=Y1_, 4(f)g: m—a.e., which implies (5).
(6) Put g(x)=121=lg,~(x). Then g is a stationary density. So from
r

Lemma 1.3, C is an invariant set. Let {X,} be an increasing sequence of
measurable sets such that m(X,) < oo and U X, = X. Then we have

m(Cﬂ Xk)=J\ Icnxkdm=J\ Icnxkdm
T-"C

(o}

=I P'lcox,dm  for all n, k.
C
And so,

m(Cﬂ Xk) = J‘ AnICnxkdm fOI‘ all n, k.
C

From the assumption of the theorem it follows that

limn—»ooj A Icnx, dm = f Z:=1 Al cnx,) gidm = 0.

C C

Therefore, m(Cn X,) = 0 for all k, which implies m(C) = 0. This completes the
proof.

Now we are going to prove Theorem 4.1. Below in this section, let g;’s
and A;j’s be as in Remark 3.1 and f be a density on (X, m). In the proof of
Theorem 4.1, the following lemma is essential.

LemMa 4.3. If S(f) < S(g:,;,) m—a.e., then A;(f) =0 for (i, j) # (io, jo)-

Proor. Put r* =r(1)---r(l), and G = S(g;,;). Then, by Lemma 1.2, we
have

S(P"f)c G m—a.e.

From this and P"g,; = g;; for each i, j, it followws that

P""(f Yic1 2121 A i)l dm

= IP""f Yo 22 1,,(f)g.,|dm+j Vi1 2724 () giydm

»

=| |P"f— A’iojo(f)giojoldm + f Z(i,j);e(io,jo) lij(f)gijdm'
X\G

v G




Asymptotic periodicity of densities 605

The left hand side of this equality converges to 0, as n — co. Hence,

j 2.y G joy i (f )gijdm = 0.
X\G

Thus 4;,(f) =0 for (i, j) # (o, jo)-

PrROOF OF THEOREM 4.1. Put

1 .
g:(%):=—=>"2 gi;(x) and p; =m,, for each i.

r(i)
Then from Remark 3.1 (3), g; is a stationary density of P. Hence yu; is an m-
absolutely continuous T-invariant probability measure. Set

A(f):= 272, 4 f).

Then, it follows from Theorem 4.2 that yu’s have the properties from (1) to
(6). Because all assumptions of Theorem 4.2 are satisfied, which is easily
checked. So, it remains to show that u’s have the property (7).

Put L;;:= S(g;;). Then (a) and (b) are trivial and (c) follows from Lemma
1.2. So all we have to do is to prove (d). Let f be any density whose support
is contained in L;;. Then by Lemma 4.3, we have

lim, ., ,, | P"(f— giy)ll = 0.
Using the fact P"@g,; = g,;, we have

lim,_, ,, | P"®f — giil = 0.
Let P, be the Frobenius-Perron operator associated with (7", m). Then
the above equality may be rewritten as

lim,, o, | Pproom f — gij" =0.

Therefore Proposition 2.3 implies that (T"®, p;) is exact. This completes the
proof.

ReEMARK 4.4. Assume that T is a binonsingular transformation, that is,
m(T 1 4)=0 for AeF with m(A) =0, TAe F for Ae ¥ and m(TA4) =0 for
Ae % with m(4) = 0. Then, the conclusion (4), (7) (c) of Theorem 4.1 may be
rewritten in the following form.

4 T(L)=L; m—ae. fori=1,--,1L

(7 © T(L;)=L;j+y m—ae. for j=1,---,r@)— 1.

T(L;,s) =L;, m—ae.

REMARK 4.5. As an example of transformations of infinite measure space
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to which our result is applicable, we have the transformations on the real line
which were studied by M. Jabtonski and A. Lasota [3] and so on.

§5. Converse theorems

In this section we study the converse of Theorems 4.1 and 4.2. Let
(X, #,m), T and P be the same as in §4. First we prove the converse of
Theorem 4.1.

THEOREM 5.1. Assume that there exists a sequence of densities

9115 591,15 9115 Jir)

with the following properties:
(i) {gi;} have mutually disjoint supports.
(ii) m(C) =0 where C = ;o {x; T"(x)¢U;;S(9:)}
(iii) For each i
S(gij) < T—I(S(gi,j+1)) m—a.e. for j=1,---,r(i)) — 1,

$(Gira) <= T7'(S(g;))) m—a.e. '
(iv) For each i,j wj=m,, is a T'P-invariant probability measure and

(T™®, ;) is exact.
Then, we have

(1) Timy g IP"(f = iy 2721 45 9i) Isomy = O for feL(m),

j=
where 2;;(f) =f fdm and B;j = U o {x; T"""(x)eS(g;)}, and
B;j

V)] Pgij =4¢;,j+1 Mm—a.e. for j=1,---,r@—1,
Pgys =gy m—a.e.

REMARK 5.2. From Theorems 4.1 and 5.1, if P is a Frobenius-Perron
operator, the bounded linear functional A; in Definition 3.1 can be written as

A(f) = fln.-'fdm

for some set D;.

To prove this theorem, we first prove the following proposition which is a
special case of Theorem S5.1.

PROPOSITION 5.3. If there exists a stationary density g such that
(i) m(lim,_,,, (T ~"(X\S(g)))) = 0, and
@iv) (T, my) is exact,
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then {P"} is asymptotically stable, that is,
lim,,, | P"f—gllpim =0  for all fe D(m).
We begin the proof of this proposition with the following lemma.
LEMMA 5.4. If there exists a stationary density g such that
m(lim,_, (T "(X\5(9)))) = 0,

then for each ¢ > 0 and each fe D(m), there exists an integer N = N(g, f) such
that for each k 2 N we can find a density h, which satisfies the following
conditions

S(h) < S(g) and | P*f—hy lLimy <&

Proor. For simplicity we put S = S(g9). From the assumption, we have

(5.1) lim,,_,mj P'fdm = lim,,ﬂ,f fdm =0 for fe D(m).
X\s T

-n(X\S)
Thus

(5.2) lim,,_,wj‘ P'fdm =1 for fe D(m).
N

From this fact, we may define

hoe PIs
ke ||(Pkf)'Is||Ll(m)

Clearly, S(h) = S = S(g) and

for sufficiently large k.

(5.3) IPf = Bl Ligmy = J |P*f — hy| dm
X

= f | PXf — hy| dm + J P*fdm.
S

X\S
Since

P"f
kf_ = —_—
L'Pf Pl dm L 1) Is lioom

1
. — P*fd
<||(P“f)~lsnu<m, )f Jam
1

. —T
"(Pkf)'ls ”Ll(m)

PHf— dm

IIA
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it follows from (5.1)—(5.3) that
limy_, , | P*f — By lL1om = O.
This completes the proof.

ProOF OF ProOPOSITION 5.3. Let h, be defined in Lemma 5.4 and n > k.
We shall denote |- [lLim by [I-. Then we have

IPf—gll S|P — P *hll + | P""*hy — gl
Since P is a contraction,
IP"f — P"*h || < | P*f — hyll.

By the condition (iv)’, Proposition 2.3 implies that

lim,. | P""*h, — gl = 0.
Thus

limsup,.,, [ P"f — gl < || P*f — k.
Therefore by Lemma 5.4, we obtain
lim,,, [P'f—gl =0 for fe D(m).

In the following discussion in this section, we use the notation below.
Ly:=5(gy), Lii=UfLy Li=Ui-i L,
Byi=Uslo{x; T"(x)eL;;}, Bii= Upko{x; T"(x)e L}
r¥:=r ---r

To finish the proof of Theorem 5.1, we give the following lemmas, in which
we assume the conditions in Theorem 5.1.

LEMMA 5.5. We have the conclusion (2) of Theorem 5.1.

Proor. We shall estimate |Pg;; — g; j+1llL1m- We have
“Pgij —Gi,j+1 =1 P'(i)nPgij —9ij+1 Il

Since

J Pg;;dm = J gijdm = 1,
Lij+1 T~ 1Li,j+1

it follows that S(Pg;)) = L; j,,. From this and the condition (iv), Proposition
2.3 implies
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lim,, , || P'(i)"Pgij —gi,j+11 =0.
Therefore |Pg;; — gi 11l =0 and hence Pg;;=g; ., m—a.e.

LEMMA 5.6. (a) B/s are mutually disjoint m—a.e.
(b) m(X\Ui-=,B)=0.

(¢) Bijs are mutually disjoint m—a.e.

(d) Bi = U;(i)l Bl] for i= 1,"‘,1.

Proor. (a) Since {T~"(L;} is increasing in n, we have
m(B;n B)) = m(Up=o T "(L)N UnZo T "(L))
S m(Upo(T™"(L)N T7(L)))
=m(Uszo T "(L;N L))
<Y om(T™"(L;in Ly).

Since T is a nonsingular transformation, it follows from the condition (i) of
Theorem S.1 that

m(T™™L;nL))=0 for n20, i#]j.

Thus m(B;nB;) =0 for i #j.
(b), (c) and (d) are easily obtained.

The following two lemmas are easily proved.

LEMMA 5.7. (a) B, is an invariant set with respect to (T, m), that is, T ~'(B,)
=B, m—a.e. for i=1,---,1.

(b) By; is an invariant set with respect to (T™®, m), that is, T "®(B;) = B
m—a.e. for j=1,---,r@), i=1,---,L

LEMMA 5.8. (a) lim,_ ., T "(B,\L) =0 for i=1,-,L1.
() lim,.y T"™BNL) =B  for j=1,-,7(), i = 1,---,1.

ProoOF OoF THEOREM 5.1. By Lemmas 5.7 and 5.8, Proposition 5.3 implies
that

lim, o, | P""(f" Ip,, — 4i(f)g:y) |
< lim,, (|l P(f* 'IB;, - )‘ij(f+)gij)'| + | P™(f 'IBU - 'q'ij(f_)gij) )}
=0 for feL!(m).
Thus, it follows from Lemma 5.6 that

lim, o | P (f = Licy Lj21 A(N)gi) |l =0 for feL'(m).
Since P is a contractive operator,
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lim, o | P"(f— i, 250, 4i(N)gi) =0 for feL'(m).
From this and Lemma 5.5, we obtain the theorem.
Next, we discuss the converse of Theorem 4.2.

THEOREM 5.9. Assume that there exists a sequence of stationary densities
g1, *»g; with the following properties:

(i)* {g;} have mutually disjoint supports.

(ii)* m(C) =0 where C = (\;o{x; T"(x)¢Ui-=15(g)}

(@iv)* (T, m,) is ergodic for i=1,---,L
Then, we have

lim, o, | nf = Yoy 2(N)illiomy =0 for all fe L' (m),
where 2,(f) =J fdm and B; = ;%o {x; T"(x)€S(g)}.
Bi
We begin the proof of this theorem with the following proposition which is

a special case of Theorem 5.9 and corresponds to Proposition 5.3.

PROPOSITION 5.10. If there exists a stationary density g such that
(i)* m(lim,_ (T ""(X\S(g)))) =0
@v)* (T, my) is ergodic,

then

limy s | Apf — Gllismy =0 for all feD(m).
This proposition is easily obtained from the following proposition.
PROPOSITION 5.11. If there exists a stationary density g such that
m(lim,, (T ~"(X\§(9)))) = 0,
then {P"f} is weakly precompact for all feD(m).

PROOF OF PROPOSITION 5.10. From Proposition 5.11, {P"f} is weakly
precompact for fe D(m). Thus the Kakutani-Yosida abstract ergodic theorem
implies that there exists a stationary density g, such that

limn—'w " Anf_ 9gr ”L’(m) =0 for fED(m)

Since the ergodicity of (T, m,) implies that g is a unique stationary density, we
have g = g, for all feD(m).

In order to prove Proposition 5.11, we use the following lemma.

LemMMA 5.12. For feD(m) with S(f) < S(g), {P"f} is weakly precompact.
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PrOOF. Set u=m,. For any feD(u) and ¢ > 0, there exists a §, >0
such that

jfdu<a if u(A) <é, for all AeZ.
A

Since p is T-invariant and m-absolutely continuous, there exists a § > 0 such
that

w(T"A)=u(A) < o, if m(A) <o for all n.

Therefore, for P,, the Frobenius-Perron operator corresponding to (T, p), we
have

j ifdu = fdu<e if m(A)<d for all n.
A T "A

Thus the criterion of weakly precompactness (see [1] VI.8.9) shows that {P% f}
is weakly precompact with respect to the measure u.
Now for any feD(m) with S(f) < S(g), set

P {f(x)/g(x) xeS(g)
o0 x¢5(g).

Then it is clear that f,e D(u). Hence the above discussion implies that there
exists an he L'(u) such that

lim,, ., , {Pif,, e>, =<h, e, for ee L*(u).
So

lim, ., <g - Pif,, e>n=<g"h e>n for ee L*(u).
From Lemma 1.1 (4) and L®(m) = L*(u), it follows that

lim, ., {P™(f,"9), e)m=<g h, e>p, for ee L*(m).
Thus

lim, ., {(P™f,e)p=<g h, e, for ee L®(m).
This completes the proof.

PrOOF OF PROPOSITION 5.11. Let ¢ > 0 and fe D(m) be arbitrary and h, be
as in Lemma 5.4. Then it follows from Lemma 5.12 that {P""*h,} is weakly
precompact, that is, there exists a density g, and a subsequence {n;} of {n} such
that

lim, ., (P *hy, ), = {go, €>m  for ee L*(m).
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For n; > k, we have
[P f, €>m — {Gos €>ml
SIKPUS, e)p— (P Iy, €Dl + KPP by, €3 — {Go> €Dml-
Since P is a contraction,
IPYf— P * By llpsomy < 1Pf = hillsm-
Therefore

lim, o [<PYf, €Y — {gos €Dml = ll€llLoem 1 PS = MillLim = €ll€llLom-

Thus {P"f} is weakly precompact for feD(m).

Now we return to the proof of Theorem 5.9. First we remark that
Lemma 5.6 (a) and (b), Lemma 5.7 (a) and Lemma 5.8 (a) still hold for B;’s in
Theorem 5.9.

PrOOF OF THEOREM 5.9. By Lemmas 5.7 and 5.8, Proposition 5.10 implies
that
lim, | 4,(f 1) — 4(f) gl
Slimy o (14,(f " 1) — A(f7) il + 1AL ™ 1) — 4(f ) 4:l)
=0 for feL'(m).
Thus it follows from Lemma 5.6 that

lim,. o [ A, f— Yio, A(f) gl =0 for feL'(m).

ReEMARK 5.13. G. Keller [5] proved the following result.
Keller’s result. If T:[0, 1] - [0, 1] is S-unimodal and if

limsup,_, . n~*log|(T") (x)| > 0

on a set of x’s of positive Lebesgue measure, then there is a unique m-absolutely
continuous ergodic T-invariant probaility measure g with the property that
m(Us=o T " "(suppu)) = 1 and for some power T? of T the measure u can be
decomposed into p components each of which is exact for T?.

From this result and Theorem 5.1 it follows that the Frobenius-Perron
operator P associated with T has asymptotic periodicity with only one cycle,
that is, there exists a sequence of densities g,,---,g, with the following
properties :

() Lim, o I P"(f = 37 A()g) i =0 for feL'(m),
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where lj(f)=f fdm and B; = ;2o {x; T™(x)eS(g;)}, and

Bj
(2) ng=g,-+1 m—a.c. fOrj:l,...p_l,

Pg,=g, m—a.e.

§6. Ergodic decomposition

In this section we discuss the ergodic decomposition of nonsingular
transformations and prove the “individual ergodic theorem”. The first main
result in the present section is the following theorem.

THEOREM 6.1 (Ergodic decomposition theorem). Under the assumption of
Theorem 4.2, put

B;:=UXo{x; T"(x)eS(g)}  fori=1,---,l

Then {B,,---,B} is a measurable partition of X such that B;= T 'B; m—a.e.
and (T, m|g) is ergodic.

Proor. It was already proved in Lemmas 5.6 and 5.7 that {B,,---,B,} is a
measurable partition and B; = T~ 'B; m — a.e. So all we have to do is to show
that (T, m|g) is ergodic. In the following proof, B denotes B; for
simplicity. Let A be a measurable set such that T~'14 = 4 m|;—a.e.

First suppose m(S(g;))nA) > 0. Lemma 1.4 shows that P(g;-I,)=g;"1,
m|z—a.e. Hence, applying Proposition 2.1 to (T, m|g), we get g;"I,=g;
m—a.e. and so

6.1) S(g)c A m—a.e.

Let {X;} X, e be an increasing sequence such that m(X,) < « and U X,
= B. From the fact T~ '(4°) = A® m|z—a.e. and (6.1), we have

Mlpax,(A9) = Mpax, (T ~"(A) < mlpax, (T "(B\5(g))).
Since the right hand side of the above inequality converges to 0 as n— oo,
m|pax, (4) = 0.
Therefore
m|g(4A°) = 0.

If m(S(g)n A) =0, then S(g;) = A m—a.e. Substituting A€ for A in the
above discussion, we get
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m|p(4) = 0.
Thus (T, m|g) is ergodic.

Related to this theorem, we have the following theorem, which is obtained
from the Birkhoff Individual Ergodic Theorem.

THEOREM 6.2. Under the assumption of the above theorem, we have
1im,m%22;3, (T"x)=Lf(x)g,-(x)dm m|p,—a.e.
for feL'(w), where p; =m,. Consequently,
lim,,_.w%Z:;(l) (Tkx) =Y, I,(%) L f(x)gi(x)dm m—a.e.

for every fe(\i=y L'(n).
For the proof of Theorem 6.2 it is sufficient to prove the following lemma.
LEMMA 6.3. If there exists a unique stationary density g and

63) m(C) = 0 where C = (Vo {x; T"(X)¢5(9)},

then, for feL'(m,)

1im,,m%2;;;f(T"x)=Jf(x)g(x)dm m—a.e.
X

ProOF. Let feL'(m,). By the virtue of the Birkhoff Individual Ergodic
Theorem, we may choose a set N — S(g) with m,-measure O such that

lim"ﬁw%Z:;é (T*x) = f f(x)g(x)dm  for each xeS(g)\N.
X

Put S;:=Uj-o T "(S(9)), S, :=1im;, ., S; and N := U;2o T *(N). Then, for
each xeS,\N,, there exists an integer j such that xeS§; and

. )
hmﬁw;zk:; f(T*x) = f f(x)g(x)dm.
X
Thus, all we have to do is to prove that
m(X\(S\Ny)) = 0.

Since m(X\(S,\N,)) =m(C)+ m(N,) and T is a nonsingular transformation,
it is sufficient to prove m(N) = 0.
First we assume m(X) < co. Since m,(N) =0, we have
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m(N) =m({xeX; g(x)Iy(x) > 0})
— m({xe X; g0 Iy(x) 2 k1)
+m({xeX;0<gx)Iyx)<k™'})

< k'f g(x) Iy(x)dm + m({xe X; 0 < g(x)Iy(x) < k™ '})

=m{xeX;0<gx)Iyx) <k™'}.

Letting k — oo, we obtain m(N) =

In the case m(X) = oo, there exists a sequence of measurable sets {X,} such
that m(X,) < o0 and X,1X. From the discussion in the case m(X) < oo, we
have m(Nn X,) =0 for all n. Therefore m(N) =

REMARK 6.4. In the above lemma, the assumption m(C) =0 may be
replaced by the ergodicity of (T, m). In fact, since C€ is an invariant set and
has positive m-measure, the ergodicity of (T, m) implies m(C) =

Conversely we have:

ReEMARK 6.5. If there exists a stationary density g and (6.3) holds, then
(T, m) is ergodic. In fact, suppose that there is a measurable set E such that
m(E)>0, m(EY)>0 and T"'E=E m—ae. And put f=I;. Then there
exists an xe E such that

1=lim,,4mrll o Ie(T* x) = J Ig(x)g(x)dm.
X

Thus we have E > S(g) m—a.e. Similarly we have E€ > S(g) m—a.e. This is
a contradiction. Therefore (T, m) is ergodic.

§7. Central limit theorems

The aim of this section is to give central limit theorems of mixed-type
under the assumption of Theorem 4.2 by means of the one for stationary
processes (Lemma 7.2) proved by Gordin. For the simplicity of notation, we
restrict ourselves to the case that T is not invertible with respect to each
invariant measure.

In the present section we use the following notation

G(o, 2):= )dx for o > 0,

af e“’(

1 z>0
G(0,z):={0 2<0
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LEMMA 7.1. In addition to the assumption of Theorem 4.2, assume that for
each i, fe L*(u;), the limit

Uiz = limn-'oo J(ﬁz:;éf(’rk X)>2 d#l

exists and

1
(7.1) lim,,_.mui{— :;(l)f(T" x) < z} = G(o}, 2)
7

at every continuity point of the right hand side, where du; = g;dm.
Then, for an m-absolutely continuous (not necessarily T-invariant) probability
measure v, we have

lim,_, v{ﬁ P o f(Tx) < z} =Y!_, 4(hGloy, 2)

at every continuity point of the right hand side, where hdm = dv.

ProOF. We first prove the following equality:

(7.2) lim,_, f exp< A4 \;;1 92;; S(f(T" x)))h(x)dm

— tim, ., XL, A0 f exp(V :/;1 Osnatpr x)))g.-(x)dm.

For any ¢ > 0, choose an integer p such that

(7.3) | A,h — Z:=1 AW gillLromy < &

From Lemma 1.1 (1), it follows that

lim,_, exp(‘\/_ Y (f(T"x)))h(x)dm

V=105 ‘(f(T“x))>h(x)dm

= lim,_, ., | exp

ﬁx

Z: o "(f(T"x))) Ph(x)dm

= lim,_, ., | exp

v

(%
_lim, .., exp<
(%

Y- (l)(f(T"x))>P“h(x)dm for g < p.
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As a consequence, we have

(7.4) lim,, J exp( \-/;1 02;;(‘,( f(T"x)))h(x)dm

= lim,_, Jexp<7‘_1022;3 (f(T* x))) A h(x)dm.
n

(7.3) and (7.4) imply (7.2).
From (7.1) and (7.2), it follows that

im,-. exp(——V}”’Z:;é(f(T"x»)h(xwm - S ater( - 5),
n

2
This completes the proof.

In the above lemma, we assume that a central limit theorem holds for each
invariant measure. Next, we quote a central limit theorem for stationary
processes by Gordin.

Lemma 7.2 ([2]). Let (X, &, u) be a probability space, T be an ergodic not
invertible measure preserving transformation. Assume that f belongs to L*(w)
with {fdu =0 and that

Z:;o "E,‘(f‘T_kf)"Lz(u) < .
Then

o = lim, .., f(—j—; 2;3,f(T"x)>2 du

exists and
1 _
lim”_,wﬂ{722=(l) (Tkx) < Z} = G(O', Z)
/n

at every continuity point of the right hand side.
The following Theorem follows from Lemma 7.1 and Lemma 7.2.

THEOREM 7.3. Suppose that the assumption of Theorem 4.2 s
Sfulfilled. Assume

feNi=1 L2(w)

and

(1.5) Yimo lE (fITT*F) — f* ]| 2y < o0,
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where du; = g;dm,
f*= Z:=1IB,-(x)f J(x)gi(x)dm and B; = ;o T " S(g)).
X

Then the limit
o} = lim,_, ,, J‘(ﬁZZ;é(f(T" x) —f"‘(X)))2 dy;

exists for each i. Further, if v is an m-absolutely continuous probability measure,
then

lim, -, v{iz;:;:,(f(T"x) — 1) < z} =3 4(WG(s;, 2)
Jn

at every continuity point of the right hand side, where hdm = dv.

PRroOOF. Substitute f—f* for f in Lemma 7.2. Then for all i, the
assumptions of Lemma 7.2 are satisfied. Hence Lemma 7.1 immediately shows
our result.

ReMARK 7.4. If the Frobenius-Perron operator P associated with (T, m) is
asymptotically periodic, the condition (7.5) can be replaced by

(7.6) Yoreo I Phi(f = Eu (f1F o) 2y <
In fact, we have
“ Pfl.(f‘_ Eu,(flgao) ”Lz(u,-)
= |U*Phi(f — E,,(f1F ) | L2y
= | E,,(fIT %) — E,,(f|F o) | L2u-

Remark that E, (U*f|T %) = U*E,(fIT """ ®%) for all 0 < k <n. Then it
is clear that condition (7.6) implies

Yieo lE,(FITOF) — E, (FIF )2 < + o,

where  F(x) = {f(x) + f(Tx) + -+ + f(T"®"'x)}/(r())*/*. Since E,(F|#,)
= F*(x) y;—a.e., it follows from Theorem 7.3 that

t—o (F(T"@x) — F*(x)) < Z} =Y. 4(WGla, 2)

lim V{L
n— oo \/;l

at every continuity point of the right hand side. This implies that (7.5) can be
replaced by (7.6) in this case.
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Next we give the examples which satisfy the condition (7.5).

ExampLE 7.1. Let T be a transformation as in Example 3.1 and f: [0, 1]
— R be of bounded variation. Then the condition (7.5) is satisfied. For the
proof of this fact, see [5], in which a simple proof is given by means of a
spectral theorem of I. Tulcea and Marinescu.

ExampLE 7.2. Let (X, #, p) be a probability space and T be a measure
preserving transformation on it. Assume that there exists a family of sub-o-
fields

{(Fr.0<n<m< o}

satisfying
(i) FrcFm . forn <n<m<m,
(i) F§ = Z,

(i) T 'Fm=gmtl
Define ¢(n) by
¢(n):= sup|u(An B) — p(A)u(B)|/u(4),

where the supremum is taken over all 4e #¥ with u(4) %0, Be #,, and k
=0.
It is not difficult to verify that if

Yie1(@k)? < 0
and if fe L™ satisfies

Z,:D=0||E(f|9f"{)) — L2 < o,

then we have

Y lE(/1Z ) = E(f) 2 < 0.

Hence the condition (7.5) is valid for such a function f.
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