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1. Introduction

In this paper we consider radially symmetric solutions to the semilinear
elliptic problem

(L.1) du+ f(uy=0, xeR",
(1.2) lim,| ., u(x) = 0,

where n > 2 and f(u) is locally Lipschitz continuous. The problem of finding
radially symmetric solutions u = u(t), t =|x|, of equation (1.1) subject to
condition (1.2) is converted to the singular boundary value problem for the
ordinary differential equation

(1.3) u' + #w +fW=0, t>0,
(1.4) w(0) = 0,
(1.5) fim, ., u(t) = 0.

Under the condition that
(1.6) sf(s) <0 for |s|>0 sufficiently small,

the existence of infinitely many solutions to the problem (1.3)—(1.5) has been
obtained by several authors. Assumption (1.6) arises from the study of
standing wave solutions of the nonlinear Klein-Gordon or Schrodinger
equations (see the references [1], [2], [10]). Berestycki and Lions [1], Berger
[2] and Strauss [10] obtained the existence results of infinitely many solutions
by means of variational methods. They treated this problem in the case where
the function f(s) is odd, f'(0) < O and satisfies some growth conditions. On the
other hand, using a dynamical system approach, Jones and Kiipper [5] have
proved that for any integer k > 0 there exists a solution of (1.3)—(1.5) having
exactly k zeros in the interval [0, co). Under the assumption (1.6) which is
weaker than the condition f'(0) <0, McLeod, Troy and Weissler [7] have
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obtained the same result by applying a shooting method. All of these authors
have treated the problem (1.3)-(1.5) under condition (1.6) or else f'(0) <O.

In the present paper we consider the case where assumption (1.6) does not
hold. In fact, we treat the function f(s) satisfying

(f1) sf(s)>0 for all s#0.

We furthermore impose assumptions which are concerned with decay of f(s) as
s tends to zero.

(f2) There exist constants ge((n + 2)/(n — 2), + o0), C > 0 and r > 0 such that
sf(s) < C|s|7*t for |s|<r.

sf(s) 2n
—»0}6 > n— 2,

(f3) lim inf, where F(s) = j 1) dr.
0

On the other hand, the next assumptions imply that the function f(s) has a
superlinear and subcritical growth order in a neighborhood of s = + oo.

(f4) There exist constants pe(l, (n + 2)/(n —2)), ¢; >0 (i=1,2) and R>0
such that

C,lsIP*! < sf(s) < C,lslP*t  for |s|>R.

) sf(s) 2n
f5) lim supﬁiwm < —-

Our main result is stated as follows.

MAIN THEOREM (I). Let n>3. Suppose that f(s) is locally Lipschitz
continuous and satisfies assumptions (f1)-(fS). Then for any integer k > 0 there
exists a solution of (1.3)—(1.5) which has exactly k zeros in the interval [0, o0).
(IT). Let n=2. Suppose that sf(s) >0 for |s| sufficiently small. Then any
solution u(t) of (1.3)—(1.5) must possess infinitely many zeros in [0, o0).

Our theorem gives a sufficient condition for the existence of solutions with
prescribed numbers of zeros in the case where condition (1.6) is not
satisfied. Main Theorem is established by taking three important factors into
account, namely, global asymptotic stability of the zero solution u =0,
nonoscillation of all solutions to equation (1.3) and the existence of solutions
with arbitrarily many zeros in a bounded interval. To investigate these
problems, this paper is organized into four sections as below.

In Section 2, we give the proof of Main Theorem (II) and study global
asymptotic stability of the zero solution u =0 to equation (1.3). Indeed, in
Theorem 1, we prove that for n>3 the zero solution u=0 is globally
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asymptotically stable if and only if condition (f1) holds. Also, in the case of n
= 2, we give a necessary and sufficient condition for the zero solution to be
globally asymptotically stable. This will be given in Theorem 2.

In Section 3, we discuss the nonoscillation of all solutions. A solution
u(t) £ 0 on some interval [t,, o) of (1.3) is said to be nonoscillatory if it has no
zeros in [T, o) for some T >t,. We prove that under conditions (f1), (f2) and
(f3) all solutions u # 0 of (1.3) are nonoscillatory when n > 3.

Finally, in Section 4, we prove Main Theorem (I). To this end, we need a
key lemma, Lemma 4.2. This is obtained by applying Sturm’s comparison
theorem together with a Lyapunov-like function. Moreover, we present our
earlier result discussed in [6], which guarantees the existence of solutions with
prescribed numbers of zeros in the unit interval [0, 1] under conditions (f4) and
(f5). Using this assertion together with the results obtained in Sections 2, 3 and
4, we prove Main Theorem (I).

2. Global asymptotic stability of zero solution

In this section we prove Main Theorem (II) and give a necessary and
sufficient condition for global asymptotic stability of the zero solution u = 0 to
equation (1.3). Throughout this paper, by a solution of (1.3) is meant a
function u(t) of C? class defined on some interval [ty, t,) (0 <ty <t; < + )
which satisfies equation (1.3). When u, = 0 is a solution of (1.3), that is, f(0)
= 0, the zero solution is said to be globally asymptotically stable if it is stable

and if all solutions u(t) of (1.3) can be extended to t = + oo and satisfy
2.1) lim,, , u(t) = lim,, , u'(t) = lim,_, L u"(t) = 0.

We always suppose that f(s) is locally Lipschitz continuous. In the following,
we state the main results in this section.

THEOREM 1. Let n>3. Then u=0 is a solution of (1.3) and is globally
asymptotically stable if and only if condition (f1) holds.

In the case of n = 2, we obtain the next result.

THEOREM 2. Let n=2. Then the following three statements are
equivalent :

(i) The function f(s) satisfies condition (f1) and
0

(2.2) jw e*f(s)ds= + o0  and f el f(s)ds = — o0

0

—

for any 1> 0.
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(ii) The zero solution u =0 is globally asymptotically stable.

(iii) All nontrivial solutions of (1.3) can be extended to t = + o and
are oscillatory.

By a nontrivial solution we mean a solution u(t) such that u(f) £ 0. For a
nontrivial solution u(t) defined on [T, co) for some T > 0, we say that u(t) is
oscillatory if it has an unbounded sequence of zeros in [T, o). Otherwise it is
said to be nonoscillatory. We give the proof of Main Theorem (II) in the
following.

ProoF OF MAIN THEOREM (II). By our assumption on f(s) there is 6 > 0
such that

2.3) sf(s)=0  for |s|<9.

Let u(t) be a solution defined on [0, o) of (1.3)—(1.5). We employ the following
transformation,

s=logt and o(s) = u(r).

Then equation (1.3) is converted to the equation
v" + e*f(v) = 0.

Since u(t) satisfies condition (1.5), we see that lim,_, , v(s) = 0. We suppose that
u(t) has at most a finite number of zeros. Then so is v(s). Hence there exists a
T > 0 such that

(A) o0>v(s)>0 for s>T
or
(B) —d<v(s)<0 for s>T

Consider the case (A). Since v(T) > 0 and lim,_, ,, v(s) = 0, we apply the mean-
value theorem to find a T; (> T) such that v'(T}) < 0. It follows from (2.3)
that v” = — e f(v) <0 for s> T, which implies that v'(s) < v'(T;) <0 for
s> T,. Consequently, we have lim,_, uv(s) = — oo. This contradicts the fact
that lim,_, ,v(s) = 0. In the same way as above, we see that the case (B) is also
impossible. Hence u(t) has infinitely many zeros, and the proof is complete.

To prove Theorems 1 and 2, we prepare several lemmas.

LEMMA 2.1. In case of n>3 assume that (f1) holds. In case of n=2,
suppose that condition (i) of Theorem 2 is valid. Let u(t) be a nontrivial solution
of (1.3) defined on some interval [ty, t;). Then it can be extended to t = + o0
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and u(t), u'(t) and u"(t) are bounded on [t,, o).
Proor. For the solution u we define
B = 30 + Flu(),
(24
F(s) = J:f(t) dr.
Multiplying (1.3) by u'(¢), we obtain

2.5) E@= "1

w'(t)? < 0.

Since the critical points of the solution u(t) are isolated, we see that E(r) is
strictly decreasing. Noting that F(s) > 0 for s # 0 by (f1), we have
%u’(t)2 <EWt)<E{l,) for t>t,,

and so
(2.6) lw'(8)] < E(to))"2.
Integrating both sides of this inequality over [t,, t], we get
(O] lu(®)] < (2E(t0))!/2(t — to) + |ulto)-
It follows from (2.6) and (2.7) that

SUP; << (lu(t)| + |4/ (£)]) < 00 for any Te(ty, + ),

which asserts that u(¢) can be extended to [t,, ).
We next prove the boundedness of u(f). For this purpose we suppose that
lim sup,, L u(t) = + co. Then there are only two cases to be checked.

(A) There exists a point ¢, such that u(t,) >0 and u'(t) > 0 for all ¢t >¢,.
(B) There exists a t; such that u(t,) >0 and u'(t,) = 0.

If (B) holds, then
F(u()) < E(t) < E(t,) = F(u(t,)) for t>t,.

Since F(s) is strictly increasing in [0, o) by (fl), we obtain the inequality
u(t) < u(t,) for t>t,. This contradicts the assumption lim sup,.  u(t) =
+ o0. Therefore the case (B) does not occur.

We then consider the case (A). First we treat the case where n > 3. Since
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u(t) = u(t,) > 0 for t > t,, we have
(2.8) @ wy=—t""'fw<0 for t>1t,,
and therefore
(2.9) T <) for t>t.
Dividing both sides by "~ ! and integrating both sides of the resultant
inequality over [t,, t], we obtain

tl
n—2

u(t) < ulty) + u'(ty) for t>1t,.

This contradicts our assumption that lim sup,_, ,u(f) = + oo.
Secondly, we deal with the case of n =2. It follows from (2.9) with n =2
that

(2.10) u(t) <a log(t/t;)+ b for t>1¢,,

where a = t,u'(t;) >0 and b = u(t;) > 0. Integrating (2.8) over [t,, s] with
respect to t, we obtain

(2.11) su'(s)=a— Js tf (u(t)) dt.

t

Since u'(t) >0 on [t;, ) and u(-) maps [t,, o) onto [b, ), the inverse
function t = u~!(t) = w(z) is defined on [b, ). It follows from (2.10) that

(2.12) w(t) >t exp((t — b)/a).
By (2.9) with n =2 and (2.12), we obtain
1 1
(2.13) w'(t) = ) > w—:.l > 2 tiexp((t — b)/a).

By (2.12) and (2.13) we have

f " () di = f * @ fw () de
t) b

> ét{ Jmm exp(2(t — b)/a)f(z) dx.

b

This and (2.11) together imply

u(s)

su'(s)<a-— Cf e* f(1) dr,

b
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where ¢ =a~!t?exp(— 2b/a) and 1 =2/a. Since lim,,  u(s) = co from our
assumption on u(t), we see that

u(s)
lims_.wjv e’ f(r)dr = + o
b

by (2.2). Therefore we have lim,_su'(s) = — co. This contradicts (A). In
either case (A) or case (B), we have a contradiction. Hence it follows that
lim sup, ., , u(t) < 0. By the same argument, we also obtain lim inf,_, _ u(t) >
— o0 and so u(t) is bounded on [ty, ). The boundedness of u'(t) on [t,, o)
follows from the inequality (2.6). Thus we see that the right-hand side of

1
u'(t) = — Uk fw)

is bounded on [ty, c0). This means that u"(¢) is also bounded. The proof is
now complete.
Using the results obtained in Lemma 2.1, we can prove the next lemma.

LEMMA 22. Assume that all of the hypotheses of Lemma 2.1 are
Sfulfilled. Let u(t) be a nontrivial solution of (1.3) defined on [t,, c©). Then there
exists a sequence {& )X, such that lim,_, & = + oo and lim,_, ,u(&,) = 0.

Proor. Suppose that the assertion is false. Then we have positive
constants a and T such that

(A) u(t)>a for t>T
or
(B) ut)< —a for t>T.

On the other hand, by Lemma 2.1 there is a C > 0 such that |u(t)] < C and
|u'(t)] < C for t > T. Therefore in the first case (A) we obtain

n—1 n—1

u' —f(uw <

u"(t) -

C—m for t>T,

where m = min,_,.cf(s) > 0. This implies that u"(t) < — m/2 for ¢t sufficiently
large. From this it follows that lim,, u(f) = — co, which contradicts the
boundedness of u(f). In the same way as in the case (A), one can show that the
second case (B) is not valid. Hence the proof is complete.

In what follows, we suppose without further mention that the hypotheses of
Lemma 2.2 are valid, and that u(f) is a nontrivial solution on [t,, o) of
(1.3). For the solution u(t), we define the function E(t) by (2.4). As proved in
Lemma 2.1, E(t) is positive and strictly decreasing. Therefore there exists a
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limit E_ = lim,, E()>0. To prove Theorems 1 and 2, we show that E_
=0. To the contrary, we assume that E_ > 0. Then we can choose positive
constants o and f so small that

B > F@=F(—p>o.

(2.14) :

For a sequence {{,};-, obtained in Lemma 2.2, we may assume without loss of
generality that

(2.15) —B<u() <a for keN.

LEMMA 2.3. Assume that the hypotheses of Lemma 2.2 are fulfilled, and that
E_ is positive. Suppose that o and B satisfy (2.14). Then the inequality
|u'(t)] = EX? holds for all t satisfying — B < u(t) < .

PrOOF. Let t satisfy that — f <u(t) <a. Since F(s) is increasing in
[0, o0) and decreasing in (— oo, 0] by condition (f1), we have

Flu®) < max(F(@), F(~ §) < 5 Ea.

and therefore we obtain

1 (2 — _1 —1
407 = E@Q) — Fu(®) 2 E = 5 By =5 Eoo.

This is the desired inequality and the proof is complete.

LeEMMA 2.4. Under the hypotheses of Lemma 2.3, we have two sequences
{m} and {v} such that u(w) > a, u(vy) < — B, lim,_, o, = + 00 and lim,_, , v,
= + .

ProoF. To prove this lemma, it is sufficient to show the next
statement. For each ke/V there exist numbers x4 and v such that

(2.16) wv>&, u>a and u(v)< —B.

Fix any ke N. In view of Lemma 2.3 and (2.15) it is sufficient to consider the
following two cases:

(A) w(@E)2EJS and (B) w(&) < —EJ%.

First we treat case (A). If u(t) < a for all ¢t > &, then it follows from Lemma
2.3 that u'(t) > EY? for t > &,. This implies that lim,_ ,u(f) = + oo, which
contradicts the boundedness of u(t). Thus one finds a number u > &, satisfying
u(p) > . Next, we choose an integer m such that u < &,. Then it follows
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from (2.15) that u(u) > o« > u(&,). Hence there is a t, e(y, £,) such that
u(lt,)<0 and —B<u(t,) <a.

Lemma 2.3 asserts that u'(t;) < — EY?. Using the same argument as in the
previous discussion, one finds ve(t;, o) such that u(v) < — B. It turns out that
in the first case (A) there exist numbers p and v satisfying (2.16). We can deal
with the second case (B) in the same way to get the same conclusion. This
completes the proof.

LemMMA 2.5. Assume all of the hypotheses of Lemma 2.4. Then there exist

Sfour sequences {p.}, {qi}, {rv} {sx} and positive constants m,, m, and C with the
following properties :

(i) P < Qi < T <S¢ < Dr+1 for keN,

(i) lim,, , p, = + o,

(iii) u(py) = uls) = — B, ulqd) = u(ry) = a,

(iv) —B<u(t)<a, E2<u(@®)<C for te(pw ),
(v) —B<ul)<a, —C<u(@)<—EY?> for te(r, sy,
(vi) a<ut)<C, —C<u'()<—m, for te(qy, ),
(vii) —C<ut)y<—pB, my<u't)<C Jor te(sy, Pr+1)-

ProoF. By Lemma 2.1 there exists C > 0 such that
(2.17) lu@)l, |¥'@®)], [w"@®)| <C for t>t,.
We set a; = min, g, f(s) (>0) and a, = — max_c,_5f(s) (>0). Choose a
number T (> t,) so large that

T
Cn-1)< Emin(al, a,).

For any te[T, o) with u(t) > a it follows that

n_lu’_f(u)sw_als_a_l‘

(2.18) W)= —— 7

For any te[T, oo) with u(t) < — p we have

n_lu’—f(u)Z—M+a22az—2.

(2.19) W)= - — 7

On the other hand, by Lemma 2.4, there is a sequence {t};>,; such that
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lim,_ , t, = + oo, u(ty) = — B and v'(t,) > 0 for ke N. Then Lemma 2.3 implies
that u'(t,) > 0. Therefore the set A defined by

A= {te[T, o0): u(t) = — B and u'(t) > 0}

is nonempty and is unbounded. If 4 has an accumulation point 7, then it
follows that u(t) = — B and u'(r) = 0. This contradicts the assertion of Lemma
2.3. Hence the set 4 has no accumulation points and so it is a countably
infinite set, that is, we can rewrite it as

A={p:k=1,2,---}, where T<p; <p,<:-T+ o0.
In the same way, we define the sequences {q.}, {r,} and {s;} by
{qx: ke N} = {te[p,, o0): u(t) = a, u'(t) > 0},
{r.: ke N} = {te[p,, ©): u(t) = a, u'(t) < 0}
and
{s,: ke N} = {te[py, ©): u(t) = — B, u'(t) <0},

respectively. Then the assertions (i), (i) and (iii) of Lemma 2.5 follow readily
from the definitions of {p;}, {q;}, {ri} and {s,}. By Lemma 2.3 and (2.17) we
obtain the assertions (iv) and (v). Combining (2.17), (2.18) and (2.19), we have
(vi) and (vii). The proof is complete.

LEMMA 2.6. Under the assumptions of Lemma 2.5 there exist two positive
constants m and M which satisfy the following inequalities for all ke N,

(1) m<q,—p <M, m<rn—q<M,
(ii) m<s,—n<M and m<p,,—s, <M.

Proor. By the application of the mean-value theorem there exists
A€ (P> qi) such that

u(qy) — u(py) _* + B

u'(A) = .
. qx — Pk 9k — Dk

It follows from Lemma 2.5 (iv) that

a+ p <

El? < <
qx — Dx

C.

This implies the first inequality of the assertion (i).
Let us prove the second inequality. By Lemma 2.5 (iv) and (v), we have

(2.20) —2C<u'(r) —u'(g) < — 2EY2.
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On the other hand, by the mean-value theorem, there is t,€(q,, r,) such that
(2.21) u”(Tk) — u (rk) —u (qk) .
Te — Gk
Combining Lemma 2.5 (vi), (2.20) and (2.21), we obtain the inequalities,
— 2E12 —
= and 2€

Ty — 4y Ty — gy

—-C<

< —my.

This means that the second inequality of the assertion (i) holds. The assertion
(i) can be proved in the same argument as in the proof of (i). The proof is
thereby complete.

We are now in a position to prove Theorem 1.

PrOOF OF THEOREM 1. Let n > 3 and condition (f1) hold. Then we see
that u =0 is a solution of (1.3) since f(0) =0 by (f1). Using a Lyapunov
function E(t) defined by (2.4), we readily conclude that the solution u =0 is
stable. We then show that any nontrivial solution u(t) can be extended to t =
+ oo and satisfies (2.1). Let u(t) be any nontrivial solution defined on some
interval [t,, ;). Then, by Lemma 2.1, u(t) can be extended to t = + c0. We
now suppose that E, =lim,,,E(t) >0. Let {p,} and {q,} be the sequences
defined in Lemma 2.5. Integrating (2.5) over [p,, q,], we have

qx

(2.22) E(g) — E(p) = —(n — I)J %u’(t)2 dt.

Pk

The integral on the right-hand side is estimated as

qx 1

(2.23) f ;u’(t)2 dt > Eo(qx — Po)/9k = ME /i,
Pk

where we have used Lemma 2.5 (iv) and Lemma 2.6 (i). On the other hand,

there is a positive constant a such that

(2.24) q, < ak for all keN.

We here prove this fact. Summing up all of the inequalities stated in Lemma
2.6 (i) and (ii), we obtain p,.; — py < 4M for ke N. Therefore it follows that
P < 4k — )M + p,. This implies that g, < p, + M < ak for ke N, where a
=4M + p,. Thus we get the inequality (2.24). Combining (2.22), (2.23) and
(2.24), we have

a

(2.25) Eq) — E(p) < — 1>
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where C is a positive constant independent of ke N. Summing up (2.25) from
k=1 to k=j, we get

(2.26) Y _(E@)—E@)<-CYi_, %
Since E(t) is strictly decreasing, it follows that E(q,—,)> E(p,) for all
k > 2. Using this inequality, we estimate the left-hand side of (2.26) as
2.27) Y- (E(a) — E(y)

= E(q) + Y2 (E@x-1) — E() — E(py)

> E(q) — E(py).
It follows from (2.26) and (2.27) that

E@)—-Ep)<—-CYi_, for jeN.

x| =

This inequality implies that lim;_, , E(q;) = — oo. This contradicts the fact that
E(t) >0 for all t. Consequently, we see that E_ = lim,, E(f) =0. Noting
that F(s) >0 for s #0 and F(0)=0, we conclude that lim,, u(f) =0 and
lim,, ,u'(t) = 0. Therefore it follows that

n—

1
u'=— . u —f(uy—0 as t— 0.

Thus we obtain (2.1).

Conversely, we suppose that u =0 is a solution of (1.3) and is globally
asymptotically stable. We aim to prove that condition (f1) holds. If f(so) =0
for some s, # 0, then u(t) = s, is a solution of (1.3) but it does not satisfy (2.1),
which contradicts the global asymptotic stability of the zero solution. This
means that f(s) # 0 for s #0. Therefore we have to check the following four
cases:

(A) f(sy>0  for s>0,
(B) f(s) <0 for s>0,
© fs)>0 for s<0
and

(D) f(s) <0 for s<0.

We show that the cases (B) and (C) do not occur. Suppose that the case (B)
holds. We consider the solution u(t) of (1.3) satisfying the initial condition
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w'(0)=0 and u(0)=1. Then in the case (B) we have that (t" 'u) =
— t" 1 f(u) > 0, and so it follows that t"~*u'(t) > 0 and u'(f) > 0. We conclude
that u(t) >u(0) =1 for all t >0. This contradicts (2.1). Consequently, the
case (B) is impossible. In the same way, we see that the case (C) does not
occur. Now the cases (A) and (D) both assert that (f1) holds. The proof of
Theorem 1 is now complete.

To prove Theorem 2, we need the next lemma.

LeMMA 2.7. Let n=2 and (f1) hold. Suppose that there exists a A >0
such that

© 0
(i) J e’ f(s)ds< + o0  or (ii) f e*sl| f(s)|ds < + oo.
0 —
Then there exist T> 0 and a solution u(t) of (1.3) such that u(t) is defined on

[T, ) and lim, .. |u(t)| = + oo.

Proor. We first consider the case (). We set a =4/4 to obtain

on exp(4s/a) f(s)ds < + oo.
0

Next, we choose a number T (> 0) so large that

(2.28) e‘”ﬁb exp(4s/a) f(s) ds < ‘:—2.
T

a

For these numbers a and 7, we denote by y(s) the solution of the initial value
problem

(2.29) y' +e¥flas+y) =0, s>T,
(2.30) y(T)=0, yT)=0.

Then it is seen that the solution y(s) is defined on [T, o) and satisfies that
—a/2<y(s)<0forall s> T We here prove this assertion. To this end, it
is sufficient to show that

2.31) - g <y(s)<0 for se(T, T®,
where T* is the right end point of the maximal interval of existence for the
solution y(s). Indeed, once the inequality (2.31) is proved, then we obtain from

(2.30) and (2.31) that

(2.32) — g(s —T)<yis) <0 for se(T, T*).
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It follows from (2.31) and (2.32) that T* = + oo, and so y(s) is defined on
[T, ) and satisfies (2.31) and (2.32) for all se(T, c0). We then show the
inequality (2.31). Since y”(T)= — e*Tf(aT) <0, it follows from (2.30) that
(2.31) holds for se(T, T + &) with ¢ > 0 sufficiently small. We now suppose
that (2.31) does not hold for some se(T, T*). Then we define

T1=sup{t: —g<y’(s)<0 for se(T, t)}.

This definition implies that
(2.33) - g <y()<0 for se(T, Ty,
and that one of the following two cases,

A  Y(T)=0 or B Yy(T)=- ;

must be satisfied. Integrating (2.33) over [T, s], we obtain
(2.34) - ;(s “T)<ys)<0 for se(TT).
It follows from equation (2.29) that

T:
(2.35) Y(T) = — J e f(as + y(s)) ds.

T

This implies that y’(T;) < O since as + y(s) > 0 by (2.34). Thus the case (A) is
impossible. Next, we set v(s) = as + y(s). It follows from (2.33) and (2.34) that

(2.36) o(s) = g(s +7)
and
2.37) v'(s) zg for se[T, T,].

Since v'(s) >0 on [T, T;] and v(-) maps the interval [T, T;] onto [aT, v(T)],
the inverse functions s=0v"!(t)=w(t) is well defined on the interval
[aT, v(T;)]. Combining (2.36) and (2.37), we obtain

(2.38) (o) < 31 T
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and

(2.39) w'(t) = Ls) < for telaT, v(T})].

v'(

Using the change of variables © = v(s) = as + y(s), s = w(t), and applying (2.38)
and (2.39), we have

QIN

(2.40) JTX e** f(as + y(s)) ds = Jvm) exp(2w(t)) f(r)w'(z) dz
T aT
< ge-"r exp(de/a) f(x)dt < 2,
a T 2

a

where we have used (2.28) in the last inequality. The identity (2.35) together
with (2.40) implies that y'(T;) > — a/2. Therefore the case (B) does not occur,
too. Hence we conclude that y(s) is defined on [T, o0) and the inequalities
(2.31) and (2.32) hold for all s>T We set s=logt and u(t)=as
+ y(s). Then the function u(t) is a solution on [e”, o) of equation (1.3) with n
= 2. Furthermore it follows from (2.32) that

u(t)zglogt+ET for t>eT,
2 2

which implies that lim,, u(f) = + oco. This completes the proof under

condition (i). In the case where (ii) holds, one finds a solution u(t) satisfying

lim,_, ,u(t) = — oo in the same way. The proof is thereby complete.

We conclude this section by proving Theorem 2.

ProOF OF THEOREM 2. (i)=>(ii). We first note that all of Lemmas 2.1
through 2.6 are valid. Then under condition (i), the assertion (ii) follows from
the same argument as in the proof of Theorem 1.

(ii)=(i). Assume condition (ii). In the proof of Theorem 1 we have
already seen that (f1) holds. Next, using Lemma 2.7, we obtain (2.2). Hence (i)
is valid.

(i), (i) = (iii). Suppose that (i) and (i) hold. Then by Main Theorem (II)
we get assertion (iii).

(iii) = (). We assume condition (iii). If f(s;) = 0 for some s, # 0, then
u(t) = s, is a solution of (1.3) which is nonoscillatory. Therefore we see that
f(s) # 0 for s # 0 and we have to check the four cases (A) through (D) stated in
the proof of Theoem 1. As shown in the proof of Theorem 1, we obtain a
solution u(t) satisfying u(t) > 1 for all ¢t >0 under condition (B). This is
nonoscillatory. Thus the case (B) is impossible. The same argument implies
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that the case (C) does not occur, too. The two cases (A) and (D) are now
remained, and we see that (f1) holds. We then prove (2.2). To the contrary,
suppose it is false. Then by Lemma 2.7 there exists a solution u(t) such that
lim,,, |u(t)) = + oo, and so wu(t) is nonoscillatory. This contradicts the
assumption (iii). It turns out that (2.2) is valid and we obtain the desired
assertion (i). This completes the proof of Theorem 2.

3. Nonoscillation of solutions

The purpose of this section is to investigate nonoscillation of
solutions. We give a sufficient condition for nonoscillation of all solution to
equation (1.3).

THEOREM 3. Let n>3. Suppose that conditions (f1), (f2) and (f3)
hold. Then all nontrivial solutions of (1.3) can be extended to t = + oo and are
nonoscillatory.

ReMARK 3.1. We state some remarks and references related to nonoscil-
lation of solutions of equation (1.3). For n>3 we employ the following
standard Liouville transformation (see [11]):

y(s) = su(t), s=t""2,
which reduces (1.3) to the equation
(3.1 y' +as  f(s"ly)=0, s>0,

where a=1/(n—2)*> and 0 =(n—4)/(n—2). If f(s) is odd (hence f(0) =0)
and is differentiable at s = 0, then we set

glr, s)=as™° f(s~r1?)/rt2,  r>0,

which is continuous on (r, s)e[0, o0) x (0, 0). Therefore equation (3.1) is
rewritten as the second order equation

(3.2 " + yg(y%, s)=0, s>0.

Under the monotonicity assumptions on the functions g(r, s) or rg(r?, s) with
respect to r, Nehari [8], Coffman and Wong [3] and many other authors gave
sufficient conditions for nonoscillation of solutions of equation (3.2). For the
details, we refer the readers to [3], [8] and [11]. These results are not
applicable to equation (1.3) unless f(s) is odd. But our result, Theorem 3, is
valid without the hypotheses that f(s) is odd and monotone. Theorem 3 is
applicable to the following type of f(s), for example
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(i) fl)=Isl""1s,
(i) f=IsP"'s (s=0), =I[sl""'s (s<0)
and
(iii) f(s)=se ¥ (s>0), =]s]""'s (s<0),
where p, ¢ > (n + 2)/(n — 2).
ProoF OF THEOREM 3. We first choose numbers a and r, ( < r) such that

n—2 2 sf(s) _ 2a+2 2n
3.3 d >
33 2 %1 ™ 9T e T2

for 0 < |s| <ry. Let u(t) be any nontrivial solution of (1.3). Then it follows
from Theorem 1 that u(tf) can be extended to t = + oo and (2.1) holds. Let
[T, o) be the interval of existence for u(tf). We now apply the change of
variables

(3.4) u(t) = e *w(s) and t=¢".
Equation (1.3) is then reduced to the following second order equation,
(3.5) w4+ aw —bw + @25 fe™®w) =0, s> T,

wherea=n—2—-2a(>0,b=a(n—2—a)(>0)and T, =log T,. Now, we
suppose that u(t) is oscillatory; hence so is w(s). In this case we obtain the next
lemma.

Lemma 3.1.  If w(s) is oscillatory, then
lim,_, , w(s) = 0.

Lemma 3.1 will be proved later on. This lemma and condition (f2)
together imply that

0 < 2" fle™*w(s))/w(s) < Ce P|w(s)|*~! — 0

as s - oo, where C is a positive constnat and f=a(q — 1) — 2 (> 0). Hence
we can choose a constant T* (> T;) such that

b
(3.6) — b + €@+ fe = w(s))/w(s) < — 3 for s> T*.
We rewrite equation (3.5) as the Sturm-Liouville equation

3.7) (WY + {— b+ e fle™*w)/w} p(s)w =0,

where p(s) = e*. Noting (3.6) and applying Sturm’s comparison theorem (see
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[4, p335]) to equation (3.7), we deduce that all solutions of the equation
b
(38) (PEYY — 5Py =0, s> T*,
must be oscillatory since w(s) is oscillatory. Equation (3.8) can be reduced to
" ! b
(3.9) y' +ay —§y=0.

This equation has a general solution of the form,
(3.10) y(1) = Ciexp(41) + Crexp(4,1),  Cy, C1€R,

where A = 4, 4, are the roots of the characteristic equation
b
A +al—=-=0.
2

Note that A, and A, are real roots. Therefore y(t) represented by (3.10) is
nonoscillatory. This is a contradiction. Consequently, we obtain that w(s) is
nonoscillatory, and so is u(¢). This proves Theorem 3.

To complete the proof of Theorem 3, it suffices to prove Lemma 3.1.

ProoF oF LEMMA 3.1. Using (2.1) and (3.4), we can choose a number T (
> T,) so large that

(3.11) le”®w(s)| <r, for s>T
Now, we define a Lyapunov-like function V by
1o a2 b 20+2 -
(3.12) V(s) = 7Y (s)*> — 3 w(s)? + e?** 25 F(e ™ w(s))
for s > T. We wish to show that V(s) is decreasing. To this end, we multiply

(3.5) by w'(s). Then we obtain

i 1 /()2 b 2 ()2 (@+2)s —as r_
ds{Zw(s) —EW(S)}+aw(s) +e fle™®ww’' = 0.

The last term on the left-hand side is written as

e(a+2)sf(e—asw)wr — dilg {e(2a+2)sF(e—asw(s))} + C(s)’

where

C(s) = ae(a+2)sf(e-asw)w _ (2d + 2)e(2a+2)sF(e—asW)'
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Therefore we have
V'(s) + aw'(s)> + {(s) = 0.
Using the inequalities (3.3) and (3.11), we see that
{(s) = {ouf(w) — R + 2)F(w)}e®**?" >0  for s> T,
where u = e *w(s). Hence it follows that
(3.13) V'(s) +aw'(s)* <0 for s>T

This means that V(s) is decreasing. Integrating both sides of (3.13) over [T, s],
we obtain

(3.14) V(s) + ar w@Pdt<V(T) for s>T

Let {s;}i~; (T<sy <s;<--1+ o0) denote the sequence of the zeros of
w(s). From the uniqueness of the zero solution to equation (3.5) it follows that
{si}s>, are simple zeros, that is, w'(s,) # 0 and w(s,) = 0. This implies that
V(s) = (1/2)w'(sy)? > 0 for ke N. Since V is decreasing, we get

(3.15 V(isy>0  for all s>T,
It follows from (3.14) and (3.15) that

@ 1

(3.16) J w(t)tdr < P V(T) < + .
T

We wish to prove that lim,,  w(s) =0. To the contrary, we suppose that

(3.17) lim sup;., , W(s) > ¢ for some &> 0.

Since w(s) is oscillatory, we can find two sequences {p,}i>; and {g,}x>, which
have the following properties,

(3.18) T<p; <q,<py<q,<-,

(3.19) lim_, ,p, = lim,, ,q, = + O,
(3.20) w(py) = g wig)=¢ for keN,
(3.21) §< wis)<e for se(p, qy) and keN.

Moreover there exist positive constants C,; and C, depending upon & such that

(3.22) Ci<w(s)<C, for se(p., q,) and keN.
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We here prove (3.22). Since F(s) > 0 for se R, we have
1 ()2 b 2
V(T) = V(s) > 7Y (s)* — Ew(s) for s>T,

and therefore we get
(3.23) w(s)? <2V(T) + be?  for se(py 90>

where we have used (3.21). On the other hand, it follows from (f2) that there
exists C > 0 such that F(s) < C|s|**! for |s| <r,. Using this inequality, we
obtain

1
(329 0<V(s) < Ew’(s)2 - gw(s)2 + Ce Bs|w|a*?
1 ()2 b q—1 2
< 2w (s (2 Ce )w(s)
1t ., ., (b -1)\8
< 2w(s) (2 Ce >4 ,

for se(py, qi), where p=oa(q—1)—2>0. We may take a smaller positive
number ¢ if necessary. Therefore we may assume that ¢ satisfies the inequality
b b
. ~—Cet 1>,
(3.25) 5 Ce?™ 1 > 2
From the inequalities (3.24) and (3.25) we deduce

b 1
(3.26) Eez < Ew’(s)2 for se(pe qi)-
By (3.23) and (3.26) there are positive constants 4 and B which are independent
of k and such that A < w'(s)*> < B for se(p,, q;) and ke N. This together with
the property (3.20) implies that w'(s) >0 for se(p, qi), and so (3.22)
follows. We now apply the mean-value theorem to find a number &, €(p,, q,)

which satisfies
w(gy) — w(py) - €
dx — Pk 2(qx — po

w(l) =
Combining this identity and (3.22), we get positive constants C; and C, such
that
(3.27) C;<q,—p<C, for keN.
By virtue of (3.22) and (3.27) we obtain
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© . L3
f wi(s)ds > Y5 _, J w'(s)*ds > C3C;j  for jeN.
T

Pk

Passing to the limit as j —» oo, we have

J w'(s)>ds = + oo,
T

which contradicts (3.16). This means that (3.17) is false, and so
lim sup,_, ,w(s) < 0. In the same way, it follows that lim inf,,  w(s) > 0. Thus
we conclude that limg, w(s) = 0. This completes the proof of Lemma 3.1.

4. Proof of Main Theorem

In this section we prove Main Theorem (I) stated in Section 1. Our
approach is based on the so-called shooting method. To proceed this
argument, we consider the initial value problem

n—1
t

4.1) u” + u +fu=0, te(0, ),

42) w(0) =0, u0)=1y.

This problem has a local and unique solution since f(s) is locally Lipschitz
continuous. Theorem 1 asserts that the solution can be extended to t = + oo
and satisfies (2.1) if n > 3 and if (f1) is satisfied. Throughout this section we
suppose that n >3 and (f1) holds. We begin by introducing some notation
which will be used in the subsequent discussions.

DerINITION 1. For each ye R we denote by u(t, y) the solution of the
initial value problem (4.1)-(4.2).

DerINITION 2. For a continuous function u(t) on [0, o) and each R > 0,
Ng[u] and N[u] denote the numbers of zeros of u(t) in the intervals [0, R] and
[0, o), respectively, that is,

Ng[ul =#{te[0, R]: u(t) =0} (< + )
and
N[u] =#{te[0, o0): u(t) =0} (< + ).

In Theorem 3 we have already proved that N[u(-, y)] < + oo forall y #0
provided that n > 3 and (f1), (f2) and (f3) are satisfied. The next lemma plays
an important role in the proof of the key lemma, ie., Lemma 4.2 below.
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LemMA 4.1. Let n>3 and (1) hold. Suppose that {y;}> converges to
vo. Then for any ¢ > 0 there exists a T* > 0 such that
4.3) lu(t, y))l <& for t>T* and j > 0.
Proor. For simplicity we write
u;(t) = u(t, y;) for j>0.
Let ¢ > 0. First, we choose a positive number § > 0 that is smaller than both
F(¢) and F(—¢). We define
1 .
Et)= Eu}(t)2 + F(uft))  for j>0.

Then it follows from (2.5) that each E(t) is decreasing. Since u,(t) satisfies (2.1),
one can find a T> 0 such that E,(T) < /2. We also note that solutions to
(4.1)(4.2) depend continuously on the initial value y. More precisely, the
mapping y — u(-, y) from R into C2.[0, o) is continuous. This implies that
{E{(T)}~, converges to Eo(T). Therefore there exists a positive integer j, such
that

0

From this we obtain

F(uj(t)) < Ej(t) < E{(T) < 6 < min(F(e), F(— ¢))
for t > T and j > j,. This together with (f1) implies that

lujt)| <e for t>T and j > j,.

By (2.1) there exist constants T; (0 <j < j,) such that

lui(t)| < e for te[T;, ) and 0 <j < j,.
Consequently we set

T* = max(Ty, Ty, ..., T, T)

to obtain the desired inequality (4.3). This completes the proof.

To prove Main Theorem (I) we need the next key lemma, which has been
proved in [7] under condition (1.6). We establish the result in the case where
condition (1.6) does not hold.

LEMMA 42. Let n > 3. Suppose that conditions (f1), (f2) and (f3) hold. If
Yo # 0 and N[u(-, yo)] = k > 0, then there exists an ¢ > 0 such that N[u(-, y)] is
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equal to k or k + 1 for each vy satisfying |y — | <e.

Proor. Let {t;}¥., (0 <t, <t, < --- < t,) denote the sequence of the zeros
of u(t, yo). We choose a number T so that T>t,. Since u(t, y) converges to
u(+, yo) in C?[0, T] as y tends to y,, we have

N[u(-, y)1 = Nz[u(-, )] = Nr[u(-, y0)] = k

provided that y is close to y,. In order to give the proof of Lemma 4.2, it is
sufficient to show that N[u(:,y)]<k+1 when |y—y,| is sufficiently
small. Suppose to the contrary that it does not hold. Then there is a
sequence {y;}72, such that {y;} converges to y, and N[u(-, y;)] >k + 2 for all
jeN. For simplicity in notation we set

u(t) = u(t, y)) for j>0.

It should be noted that for j > 1, uj(t) has at least k + 2 zeros in [0, 00) but u(t)
has exactly k zeros in [0, co) and {u;} converges to u,(t) in C2.[0, o). First we
denote the smallest k + 2 zeros of uyt) for j>1 by

0<t1J<t2j<"'<tk]<aJ<bJ.

Fix any T(>t). Then the convergence of {u;} to u, in C2[0, T] implies that
{t;;} converges to t; as j tends to + oo for 1 <i<k. Since Ny[u;] =k for
sufficiently large j, we obtain that T < q; for j large. This means that lim
= + . Next, we define the functions {w;}}>, by

j- w0 G

wj(s) = e”uj(t)a L= es, .] = 09 la 2a ceey

where « is a postive constant chosen as in (3.3). Since u/(t) is a solution of (4.1),
the function wy(s) satisfies equation (3.5) for all se(— oo, + c©). We set

pj=loga; and gq;=1logb; for jeN.

Then p; and gq; are the (k+ 1)® and the (k+2)" zeros of wys),
respectively. Since {a;} tends to + oo as mentioned above, we obtain

(44) limj—’oopj=limj—»oo Qj= + 0.

Employing the same idea as in (3.12), we define a function V(s) for each j > 0 by
1 b -
4.5) Vi(s) = Ew}(s)2 -3 wi(s)? + et 2 Fe™w(s)),

where b=a(n —2 —a) (>0). Let r, be the positive constant chosen as in
(3.3). By Lemma 4.1 there is a T* > 0 such that

lu;(t)] <o for t>T* and j > 0.
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We set T=1log T* to obtain
4.6) le” wis)| < for s> Tand j>0.

Using (4.6) and applying the same method as in the proof of Theorem 3, we see
that Vj(s) is decreasing in [T, o0) for each j> 0.
We now fix a constant M > 0 so large that

4.7 M? > %(VE,(T) + 1) max(1, 2a~1(6b)*/?),

where a=n—-2—-20 (>0) and b=a(n—2— o) (>0). Since lim;, p; =
+ oo by (4.4), there exists a positive integer j, such that T < p; for each
j=Jjo. We here present a technical lemma, which asserts that a sequence {w;}
is uniformly bounded on [pj, g;].

LEMMA 4.3. There exists a positive integer j* (= j,) such that
4.8) max, .., [wis)| < 2M for all j> j*.
This lemma will be proved later on. From (4.8) and (f2) it follows that
0 < @25 fle™®w(s))/wi(s) < Ce P|w(s)|"™*
< C'exp(—fp) — 0  for se[p; q;l,

as j tends to + oo. Here C and C’ are positive constants independent of j, and
f=a(@g—1)—2>0. This implies that there exists a positive integer m, such
that

4.9) — b + €@+ D5 fle™my (5))/wy(s) < — 1—2’

for se[p;, q;1 and j > my,. We here set p(s) = e* to reduce equation (3.5) to the
following Sturm-Liouville equation

(4.10) (W) + {— b + e 2= f(e™*w))/w;} p(s)w; = 0.

Applying Sturm’s comparison theorem to this equation and using (4.9), we see
that all solutions of the equation

b
@.11) @@)yY —5p()y =0,

must possess at least one zero in the interval [p;, q;] with j > m,. But (4.11)
can be rewritten as equation (3.9) which has a general solution of the form
(3.10). In particular, if we choose a solution y(t) = exp(4,t), then it has no
zeros in [pj, q;]. This is a contradiction, which is caused by the assumption
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that N[u(-, y)] > k + 2. Therefore we conclude that N[u(-, y)] < k + 1 for all
y with |y — y,| sufficiently small. This proves Lemma 4.2.

In order to complete the proof of Lemma 4.2, we have to prove Lemma
43.

ProoF OF LEMMA 4.3. Suppose that the assertion of Lemma 4.3 is
false. Then there must exist a subsequence (again denoted {w;}>, for
simplicity) of {w;} such that

4.12) max, .., |ws)| > 2M for all jeN.
We here observe that there are only two cases, namely,
(4.13) wj(s) >0 for all se(p;, q;) and je N
or else

(4.14) wi(s) <0 for all se(pj, q;) and jeN.

In fact, since p; is the (k + 1) zero of w;, the case (4.13) occurs if either y, > 0
and k is odd, or y, <0 and k is even. Otherwise, we have only the case
(4.14). We here deal with the case (4.13) only, since (4.14) can also be treated in
the same argument as in (4.13). Combining (4.12) and (4.13), we obtain
numbers ¢; and {; such that

pi<&i<ii<g;, wi&)=M, wil)=2M
and
M < wjs) <2M for se((; ().

Since Vj(s) is decreasing in [T, co) for each j, we have

1
4.15) Vi(s) = Vi(g;) = Ew}(qj)z >0 for se[T q;].
It follows from this inequality and condition (f2) that

1 b
(4.16) 0<Vs) < iw}(s)2 - ij(s)2 + Ce™Fs|w,|a+?

< S wifs)? — §M2 + Cexp(— fp)Me*!

for se[¢; (], where f=a(@—1)—2>0 and C, C’ are positive constants
independent of j. Since lim;_,p; = co by (4.4), one finds a positive integer j;
by (4.16) such that
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4.17) by <

1 wis)*  for se[¢;,(;] and j > j;.

ST

Next, noting that F(s) > 0 for se R, we have

1 b
(4.18) V(T) > Vj(s) > 3 wi(s)? — 7" (5)?  for s>T

Since {V;} converges to V; in Cj,.(— o, + o0), there exists a positive integer j,
(= j,) such that

4.19) VAT) < Vo(T) + 1 for j>j,.
Hence it follows from (4.7), (4.18) and (4.19) that

(4.20) %w}(s)z < gw (52 + V(T)

< 2bM? + Vo(T) + 1 < 3bM?
for se[¢, {;] and j > j,. By (4.17) and (4.20) we obtain

b 1/2
4.21) <§> M < |Wi(s)| < (6b)'* M

for se[¢;, {;] and j > j,. Applying the mean-value theorem, we find ;€(¢; {))
such that

wi{;) — wi(&) _ M

wit)) = .
==y TL-g

This relation together with (4.21) implies that
4.22) {j—¢& = (6b) 12 for j>j,.

Since V(s) satisfies the inequality (3.13), we obtain
i
Vi(Cy) + af [wjil?ds < V(&) < VAT) < Vo(T) + 1,
&

for j > j,. On the other hand, using (4.15), (4.21) and (4.22), one can estimate
the left-hand side as

& ab a b\'?
Vi) +al| |wi*ds> 7MZ(CJ. —&)> EMz <5> .
¢

Consequently, we have



radially symmetric solutions 583
a, (b

~M?* — < Vo(T) + 1.
s (2)" s v

But this contradicts the choice of M in (4.7). Thus the inequality (4.8) must
hold. The proof is thereby complete.

Finally, to end up the proof of Main Theorem (I), we need one more
lemma which means that the solution u(t, y) has sufficiently many zeros for |y|
large.

LeEMMA 4.4. Let n>3. Suppose that conditions (f4) and (f5) hold. Then
limy—’iooN[u('s y)] = + 00.

Proor. In [6, Proposition 6.1] we have already proved that

limy—'iooNl[u(" '}’)} = + . We note that N[u(" '}’)] 2 Nl[u('a )0]9 and this
proves the lemma.

We are now in a position to give the proof of Main Theorem (I). Our
approach is basic to the method used in [7].

Proor oF MAIN THeOREM (I). Let r, be the positive constant chosen in
(3.3). Then it is proved that

N[u(-,»]=0  for ye(0,r).

In fact, suppose that for some y€(0, ry), u(t, y) has a zero in [0, ). In what
follows, we write u(t) for u(t, y) for simplicity. Let t, be the first zero of
u(t). Then we have

u(ty))=0 and u(t)>0 for te[O0, t,).

This implies
" Wy =—t""1fuy<0 and " 'u'(t)<0

for te(0, t;). Therefore we obtain
4.23) O<u(t,y) <y<ry for te(O, t,).
On the other hand, Pohozaev’s identity [9] gives

1
4.29) J {2nF(u) — (n — 2) f(wpu}t" ' dt = u'(t,)*t].

0
The relation (4.24) is obtained in the following way. First, multiplying (4.1) by

u(t)t"~! and integrating both sides of the resultant identity over [0, t,], we
obtain
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4.25) f |u’|2t"‘1dt=f uf(wi"~1dt.
0

0
Secondly, multiplying (4.1) by u'(¢)t" and integrating over [0, t,], we have

(31
(4.26) %u'(tl)z "+ (g — 1) f | |26"~ L dt

0

31
- nf Fut" 1dt=0.

0

Now, combining (4.25) and (4.26) yields the identity (4.24). Using (4.23) and
(3.3), we see that the left-hand side of (4.24) is negative. This is a
contradiction. Hence it follows that u(t, y) has no zeros in [0, o) when 0 <y
<o

Now, we define

yo = sup {y > 0: N[u(-, y)] = 0}.

{t follows from Lemma 4.4 that 0 <y, < + c0. Lemma 4.2 then implies that
NTu(-, y0)] =0, and moreover there exists an &, > 0 such that

4.27) N[u(-,y)1=1  for ye(yo, yo + &)-
Next, we set
71 =sup{y > 0: N[u(-, y)] = 1}.

It follows from (4.27) and Lemma 4.4 that 0 <y, <y; < co. Lemma 4.2 then
implies that N[u(-, y;)] =1, and there is an &, > 0 such that

N[u(-,1]=2  for ye(yy,y: + &)
Repeating this argument, we obtain the sequences {y,};>-, and {g};>, such that
0<po<p1<y,<--T+ 0,
&>0,  N[u(-,yl=k
and
N[u(-,)I=k+1  for ye v+ &)

Since u(t, y,) satisfies (2.1) by Theorem 1, this is the desired solution. The proof
is now complete.
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