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1. Introduction

In this paper we consider radially symmetric solutions to the semilinear
elliptic problem

(1.1) J H + / ( M )

(1.2) lim|x|^

where n > 2 and f(u) is locally Lipschitz continuous. The problem of finding
radially symmetric solutions u = u(t), t = \x\, of equation (1.1) subject to
condition (1.2) is converted to the singular boundary value problem for the
ordinary differential equation

(1.3) u" + "-r±-u'+f(u) = 0, t>0,

(1.4) u'(0) = 0,

(1.5) lim^ooM(t) = 0.

Under the condition that

(1.6) sf(s) < 0 for \s\ > 0 sufficiently small,

the existence of infinitely many solutions to the problem (1.3)—(1.5) has been
obtained by several authors. Assumption (1.6) arises from the study of
standing wave solutions of the nonlinear Klein-Gordon or Schrodinger
equations (see the references [1], [2], [10]). Berestycki and Lions [1], Berger
[2] and Strauss [10] obtained the existence results of infinitely many solutions
by means of variational methods. They treated this problem in the case where
the function/(s) is odd,/'(0) < 0 and satisfies some growth conditions. On the
other hand, using a dynamical system approach, Jones and Kiipper [5] have
proved that for any integer k > 0 there exists a solution of (1.3)—(1.5) having
exactly k zeros in the interval [0, oo). Under the assumption (1.6) which is
weaker than the condition /'(O) < 0, McLeod, Troy and Weissler [7] have
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obtained the same result by applying a shooting method. All of these authors
have treated the problem (1.3)—(1.5) under condition (1.6) or else /'(0) < 0.

In the present paper we consider the case where assumption (1.6) does not
hold. In fact, we treat the function f(s) satisfying

(fl) sf(s) > 0 for all s # 0.

We furthermore impose assumptions which are concerned with decay of f(s) as
5 tends to zero.

(f2) There exist constants qe((n + 2)/(n - 2), + oo), C > 0 and r > 0 such that

sf(s)<C\s\q+1 for \s\<r.

(f3) lim infs.o | ^ > " ^ > w h e r e F(s) = f / W dx.

On the other hand, the next assumptions imply that the function f(s) has a
superlinear and subcritical growth order in a neighborhood of 5 = ± oo.

(f4) There exist constants pe( l , (n + 2)/{n - 2)), ct > 0 (i = 1, 2) and R > 0
such that

<sf(s)<C2\s\p+1 for \s\>R.

(f5) hm sups^ ± „ —— < .
F(s) n — 2

Our main result is stated as follows.

MAIN THEOREM (I). Let n>3. Suppose that f(s) is locally Lipschitz
continuous and satisfies assumptions (fl)-(f5). Then for any integer k > 0 there
exists a solution of (1.3)—(1.5) which has exactly k zeros in the interval [0, oo).
(II). Let n = 2. Suppose that sf(s)>0 for \s\ sufficiently small. Then any
solution u(t) of (1.3)—(1.5) must possess infinitely many zeros in [0, oo).

Our theorem gives a sufficient condition for the existence of solutions with
prescribed numbers of zeros in the case where condition (1.6) is not
satisfied. Main Theorem is established by taking three important factors into
account, namely, global asymptotic stability of the zero solution u = 0,
nonoscillation of all solutions to equation (1.3) and the existence of solutions
with arbitrarily many zeros in a bounded interval. To investigate these
problems, this paper is organized into four sections as below.

In Section 2, we give the proof of Main Theorem (II) and study global
asymptotic stability of the zero solution u = 0 to equation (1.3). Indeed, in
Theorem 1, we prove that for n > 3 the zero solution u = 0 is globally
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asymptotically stable if and only if condition (fl) holds. Also, in the case of n
= 2, we give a necessary and sufficient condition for the zero solution to be
globally asymptotically stable. This will be given in Theorem 2.

In Section 3, we discuss the nonoscillation of all solutions. A solution
u(t) # 0 on some interval [£0, oo) of (1.3) is said to be nonoscillatory if it has no
zeros in [T, oo) for some T> t0. We prove that under conditions (fl), (f2) and
(f3) all solutions u # 0 of (1.3) are nonoscillatory when n > 3.

Finally, in Section 4, we prove Main Theorem (I). To this end, we need a
key lemma, Lemma 4.2. This is obtained by applying Sturm's comparison
theorem together with a Lyapunov-like function. Moreover, we present our
earlier result discussed in [6], which guarantees the existence of solutions with
prescribed numbers of zeros in the unit interval [0, 1] under conditions (f4) and
(f5). Using this assertion together with the results obtained in Sections 2, 3 and
4, we prove Main Theorem (I).

2. Global asymptotic stability of zero solution

In this section we prove Main Theorem (II) and give a necessary and
sufficient condition for global asymptotic stability of the zero solution u = 0 to
equation (1.3). Throughout this paper, by a solution of (1.3) is meant a
function u(t) of C2 class defined on some interval [t0, tx) (0 < t0 < t1 < + oo)
which satisfies equation (1.3). When u0 = 0 is a solution of (1.3), that is, /(0)
= 0, the zero solution is said to be globally asymptotically stable if it is stable
and if all solutions u(t) of (1.3) can be extended to t = + oo and satisfy

(2.1) lim,-^ u{t) = l i m , ^ u'(t) = l i m , ^ u"(t) = 0.

We always suppose that f(s) is locally Lipschitz continuous. In the following,
we state the main results in this section.

THEOREM 1. Let n > 3. Then u = 0 is a solution of (1.3) and is globally
asymptotically stable if and only if condition (fl) holds.

In the case of n = 2, we obtain the next result.

THEOREM 2. Let n = 2. Then the following three statements are
equivalent:

( i ) The function f(s) satisfies condition (fl) and

(2.2) eXsf{s)ds = + oo and \ ex^f{s)ds = - oo
J o J -oo

for any X > 0.
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(ii) The zero solution u = 0 is globally asymptotically stable.

(iii) All nontrivial solutions of (1.3) can be extended to t = + oo and
are oscillatory.

By a nontrivial solution we mean a solution u(t) such that u(t) ^ 0. For a
nontrivial solution u(t) defined on [T, oo) for some T> 0, we say that u(t) is
oscillatory if it has an unbounded sequence of zeros in [T, oo). Otherwise it is
said to be nonoscillatory. We give the proof of Main Theorem (II) in the
following.

PROOF OF MAIN THEOREM (II). By our assumption on /(s) there is d > 0
such that

(2.3) sf(s)>0 for |s|<<5.

Let u(t) be a solution defined on [0, oo) of (1.3)—(1.5). We employ the following
transformation,

s = log t and v(s) = u(t).

Then equation (1.3) is converted to the equation

v" + e2sf(v) = 0.

Since u(t) satisfies condition (1.5), we see that l im^^ v(s) = 0. We suppose that
u(t) has at most a finite number of zeros. Then so is v(s). Hence there exists a
T > 0 such that

(A) d > v(s) > 0 for s > T

or

(B) - S < v(s) < 0 for 5 > T.

Consider the case (A). Since v(T) > 0 and l im^^ v(s) = 0, we apply the mean-
value theorem to find a T1(> T) such that t/(7i) < 0. It follows from (2.3)
that v" = - e2sf(v) < 0 for s>T, which implies that v'(s) < t/(Ti) < 0 for
s > Tx. Consequently, we have lims_oou(s) = — oo. This contradicts the fact
that l im^^ v(s) = 0. In the same way as above, we see that the case (B) is also
impossible. Hence u(t) has infinitely many zeros, and the proof is complete.

To prove Theorems 1 and 2, we prepare several lemmas.

LEMMA 2.1. In case of n>3 assume that (fl) holds. In case of n = 2,
suppose that condition (i) of Theorem 2 is valid. Let u(t) be a nontrivial solution
of (13) defined on some interval [t0, tx). Then it can be extended to t = + oo
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and u(t\ u\t) and u"(t) are bounded on [t0, oo).

PROOF. For the solution u we define

E(t) EE l-u\tf + F(u(t)),

(2.4)

F(S)EE [ f{x)dx.
Jo

Multiplying (1.3) by u\t\ we obtain

(2.5) E'(t)=-n-^u'(t)2<0.

Since the critical points of the solution u(t) are isolated, we see that E(t) is
strictly decreasing. Noting that F(s) > 0 for s ̂  0 by (fl), we have

-uf(t)2<E(t)<E(t0) for t>t0,

and so

(2.6) \u'(t)\ < {2E(to))V\

Integrating both sides of this inequality over [t0, t]9 we get

(2.7) \u(t)\<(2E(to)y
2(t-to) + \u(to)\.

It follows from (2.6) and (2.7) that

sup,0<f<T(|uWI + \u'(t)\) < oo for any Te(t0, + oo),

which asserts that u(t) can be extended to [t0, oo).

We next prove the boundedness of u(t). For this purpose we suppose that
u^) = + oo. Then there are only two cases to be checked.

(A) There exists a point t1 such that u(t^) > 0 and u\t) > 0 for all t > tx.

(B) There exists a tx such that M(*I) > 0 and M'(^) = 0.

If (B) holds, then

F(u{t)) < E(t) < E(tx) = FWJ) for t>t,.

Since F(s) is strictly increasing in [0, oo) by (fl), we obtain the inequality
u(t) < u(tx) for t>t1. This contradicts the assumption lim supf_oow(t) =
+ oo. Therefore the case (B) does not occur.

We then consider the case (A). First we treat the case where n > 3. Since
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u(t) > w^i) > 0 for t > tl9 we have

(2.8) (tH'xuy = - f-'fiu) < 0 for t > tl9

and therefore

(2.9) f - V W ^ t r M ' i ) f o r t^h-

Dividing both sides by tn~x and integrating both sides of the resultant
inequality over [tu t], we obtain

u(t)<u(t1) + -^-u'(t1) for t^t,.
n — 1

This contradicts our assumption that limsup^^M^) = + oo.
Secondly, we deal with the case of n = 2. It follows from (2.9) with n = 2

that

(2.10) u(t) < a l o g ( t / t x ) + b f o r t > t l 9

where a = t^it^ > 0 and b = w(^) > 0. Integrating (2.8) over [tl9 s] with
respect to t, we obtain

(2.11) su\s) = a- I tf(u(t))dt.

Since u\t) > 0 on [tl9 oo) and u(-) maps [tl9 oo) onto [ft, oo), the inverse
function £ = u~l(x) = W(T) is defined on [ft, oo). It follows from (2.10) that

(2.12)

By (2.9) with n = 2 and (2.12), we obtain

(2.13) W'(T) = - - L > ^ > 1 riexp((r - i)/fl).

By (2.12) and (2.13) we have

tf(u(t))dt=

1 f«(s)
> - t ? | exp(2(T-ft)/a)/(T)di.

This and (2.11) together imply

Cu(s)

su'(s)<a-c eXxf(x)dT,
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where c = a " 1 1 \ e x p ( - 2b/a) and X = 2/a. Since \ims^^ u(s) = co from our
assumption on u(t\ we see that

Xxf(T)dT= + 00

by (2.2). Therefore we have lims^^ suf(s) = - 0 0 . This contradicts (A). In
either case (A) or case (B), we have a contradiction. Hence it follows that
l imsup^^u^) < 00. By the same argument, we also obtain liminft_ „!*(*) >
— 00 and so u(t) is bounded on [t0, 00). The boundedness of u\t) on [£0, 00)
follows from the inequality (2.6). Thus we see that the right-hand side of

u'\t)=--tu\t)-f(u)

is bounded on [t0, 00). This means that u"(t) is also bounded. The proof is
now complete.

Using the results obtained in Lemma 2.1, we can prove the next lemma.

LEMMA 2.2. Assume that all of the hypotheses of Lemma 2.1 are
fulfilled. Let u(t) be a nontrivial solution of (13) defined on [£0, oo). Then there
exists a sequence {£j£°=i such that l i m ^ ^ ^ = + oo and limk_+00M(^k) = 0.

PROOF. Suppose that the assertion is false. Then we have positive
constants a and T such that

(A) u{t) >a for t > T
or

(B) u(t) < - a for t > T.

On the other hand, by Lemma 2.1 there is a C > 0 such that \u(t)\ < C and
I !*'(*) I < C for t > T. Therefore in the first case (A) we obtain

u"(t)= -—-uf-f(u)<—-C-m for t > T9

where m = minass sC/(s) > 0. This implies that u"(t) < — m/2 for t sufficiently
large. From this it follows that limf^00M(t)= — oo, which contradicts the
boundedness of u(t). In the same way as in the case (A), one can show that the
second case (B) is not valid. Hence the proof is complete.

In what follows, we suppose without further mention that the hypotheses of
Lemma 2.2 are valid, and that u(t) is a nontrivial solution on [r0, oo) of
(1.3). For the solution u(t), we define the function E(t) by (2.4). As proved in
Lemma 2.1, E(t) is positive and strictly decreasing. Therefore there exists a
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limit E^ = lim^^E^) > 0. To prove Theorems 1 and 2, we show that En

= 0. To the contrary, we assume that Eo0>0. Then we can choose positive
constants a and /? so small that

(2.14) ^>F(oc) = F(-p)>O.

For a sequence {{*}£* x obtained in Lemma 2.2, we may assume without loss of
generality that

(2.15) -P<u(ZJ<a for keN.

LEMMA 2.3. Assume that the hypotheses of Lemma 2.2 are fulfilled, and that
E^ is positive. Suppose that a and P satisfy (2.14). Then the inequality
\u\t)\ > E^2 holds for all t satisfying - p < u{t) < a.

PROOF. Let t satisfy that — P < u{t) < a. Since F(s) is increasing in
[0, oo) and decreasing in (— oo, 0] by condition (fl), we have

F(u(t)) < max(F(a), F{ - j8)) < ^En9

and therefore we obtain

l-u\tf = E(t) - F(u(t)) >ECX)-^EO0=^Ex.

This is the desired inequality and the proof is complete.

LEMMA 2.4. Under the hypotheses of Lemma 2.3, we have two sequences
{tik} and {vk} such that u{fik) > a, u(vk) < - p, l i m ^ / ^ = + oo and l i m ^ vk

= + oo.

PROOF. TO prove this lemma, it is sufficient to show the next
statement. For each keN there exist numbers \i and v such that

(2.16) \x, v > fk, u(fi) > a and u(v) < - /?.

Fix any fceiV. In view of Lemma 2.3 and (2.15) it is sufficient to consider the
following two cases:

(A) u'(Q>EU2 and (B) «'(&) <: - EU2.

First we treat case (A). If u(t) < a for all t > £k, then it follows from Lemma
2.3 that u'(t)>EH2 f o r l ^ £k- T h i s implies that lim^^iift) = + oo, which
contradicts the boundedness of u(t). Thus one finds a number \i > £k satisfying
u(fi) > a. Next, we choose an integer m such that \i < £m. Then it follows
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from (2.15) that u(fi) > a > u(£m). Hence there is a t1e(fi, £J such that

u /(r1)<0 and — /? < u^) < a.

Lemma 2.3 asserts that u'(t^) < — E1^2. Using the same argument as in the
previous discussion, one finds ve(tl9 oo) such that u(v) < — p. It turns out that
in the first case (A) there exist numbers \i and v satisfying (2.16). We can deal
with the second case (B) in the same way to get the same conclusion. This
completes the proof.

LEMMA 2.5. Assume all of the hypotheses of Lemma 2.4. Then there exist
four sequences {pk}, {qk}, {rk}, {sk} and positive constants mu m2 and C with the
following properties'.

( i ) Pk<<lk<rk<sk<pk+1 for keN,

( i i ) limk_GOpk= + oo,

(iii) u(pk) = u(sk) = - ft u(qk) = u(rk) = a,

(iv) -/J<i#(t)<a, EU2<u'(t)<C for te(pk,qk),

( v ) -j?<M(O<a, -C<u\t)<-EU2 for te{rk,sk\

(vi) a < u(t) < C, - C <c u'\t) <-m1 for te(qk9 rk),

(vii) - C < u(t) < - ft m2 < u"{t) < C for te(sk,

PROOF. By Lemma 2.1 there exists C > 0 such that

(2.17) \u(t)\, \u'(t)\, \u"{t)\<C for t > t0.

We set ax = minass:sC/(s) ( > 0) and a2 = - max_Csss_^/(s) ( > 0). Choose a
number T ( > t0) so large that

T

C(n- l)<-min(a1, a2).

For any ts[T, oo) with u(t) > a it follows that

(2.18) W{t) = - n-^W -f(u)
For any te[T, oo) with u(t) < — ft we have

(2.19) W(t) = — W - /(«) > - + a2 > ^ .

On the other hand, by Lemma 2.4, there is a sequence 1^}*=! such that
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l i m ^ ^ tk = + oo, u(tk) = — P and u'(tk) > 0 for feeN. Then Lemma 2.3 implies
that u\tk) > 0. Therefore the set A defined by

A = {te[Ty oo): u(t) = - P and u'(t) > 0}

is nonempty and is unbounded. If A has an accumulation point T, then it
follows that M(T) = — P and M'(T) = 0. This contradicts the assertion of Lemma
2.3. Hence the set A has no accumulation points and so it is a countably
infinite set, that is, we can rewrite it as

A = {pk: fe= 1, 2, •••}, where T<p1 <p2 < •••! + oo.

In the same way, we define the sequences {qk}, {rk} and {sk} by

{qk: keN} = {te[pu co): u(t) = a, u\t) > 0},

{rk: keN} = {te[pl9 ao): u(t) = a, ii'(t) < 0}

and

{sk: keN} = {te\j>u oo): u(t) = - /?, w'(t) < 0},

respectively. Then the assertions (i), (ii) and (iii) of Lemma 2.5 follow readily
from the definitions of {pk}, {qk}, {rk} and {sk}. By Lemma 2.3 and (2.17) we
obtain the assertions (iv) and (v). Combining (2.17), (2.18) and (2.19), we have
(vi) and (vii). The proof is complete.

LEMMA 2.6. Under the assumptions of Lemma 2.5 there exist two positive
constants m and M which satisfy the following inequalities for all keN,

(i) m<qk-pk<M, m<rk-qk<M,

(ii) m < sk — rk< M a n d m < p k + 1 — sk< M.

PROOF. By the application of the mean-value theorem there exists
kke(pk, qk) such that

<lk ~Pk Qk~ Pk

It follows from Lemma 2.5 (iv) that

This implies the first inequality of the assertion (i).
Let us prove the second inequality. By Lemma 2.5 (iv) and (v), we have

(2.20) - 2C < u\rk) - u\qk) < -
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On the other hand, by the mean-value theorem, there is xk e (qk, rk) such that

(2.21) u-M-*™-***.
rk ~ 4k

Combining Lemma 2.5 (vi), (2.20) and (2.21), we obtain the inequalities,

— 2E1/2 — 2C
-C< — and <-m1.

rk -4k rk~ Ik

This means that the second inequality of the assertion (i) holds. The assertion
(ii) can be proved in the same argument as in the proof of (i). The proof is
thereby complete.

We are now in a position to prove Theorem 1.

PROOF OF THEOREM 1. Let n > 3 and condition (fl) hold. Then we see
that u = 0 is a solution of (1.3) since /(0) = 0 by (fl). Using a Lyapunov
function E(t) defined by (2.4), we readily conclude that the solution u = 0 is
stable. We then show that any nontrivial solution u(t) can be extended to t =
+ oo and satisfies (2.1). Let u(t) be any nontrivial solution defined on some
interval [£0, t^). Then, by Lemma 2.1, u(t) can be extended to t = + oo. We
now suppose that E^ = l im^^E^) > 0. Let {pk} and {qk} be the sequences
defined in Lemma 2.5. Integrating (2.5) over [pk, qk~\, we have

(2.22) E(q ) - E(pk) = - (n - 1) f * - u'(t)2 dt.
Jpk l

The integral on the right-hand side is estimated as

(2.23) P - u\tf dt > EJq, - pk)/qk > mEJqk,
JPk l

where we have used Lemma 2.5 (iv) and Lemma 2.6 (i). On the other hand,
there is a positive constant a such that

(2.24) qk<ak for all keN.

We here prove this fact. Summing up all of the inequalities stated in Lemma
2.6 (i) and (ii), we obtain pk+1 — pk < AM for keN. Therefore it follows that
pk < 4(fe — \)M + px. This implies that qk < pk + M < ak for ksN, where a
= AM + px. Thus we get the inequality (2.24). Combining (2.22), (2.23) and
(2.24), we have

(2.25) E(qk)-E(pk)<-j9
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where C is a positive constant independent of keN. Summing up (2.25) from
k = 1 to k = j , we get

(2.26) IU (W W) c2U

Since £(r) is strictly decreasing, it follows that E(qk_l)> E(pk) for all
fc > 2. Using this inequality, we estimate the left-hand side of (2.26) as

(2.27) Y!k

= E(4j) + ZiU(£(<?*-1) - E(pk)) - £(px)

> E{qj) - E(Pl).

It follows from (2.26) and (2.27) that

This inequality implies that l i m ^ ^ E ^ ) = — oo. This contradicts the fact that
E(t) > 0 for all t. Consequently, we see that E^ = limf_>„£(£) = 0. Noting
that F(s)>0 for s # 0 and F(0) = 0, we conclude that limf^ooM(0 = 0 and
lim^ooM^r) = 0. Therefore it follows that

u" = u' — f(u) • 0 as t -> oo.

Thus we obtain (2.1).
Conversely, we suppose that u = 0 is a solution of (1.3) and is globally

asymptotically stable. We aim to prove that condition (fl) holds. If/(s0) = 0
for some s0 ^ 0, then u(t) = s0 is a solution of (1.3) but it does not satisfy (2.1),
which contradicts the global asymptotic stability of the zero solution. This
means that f(s) ^ 0 for s ^ 0. Therefore we have to check the following four
cases:

(A)

(B)

(Q

and

(D) / ( s ) < 0 for s < 0 .

We show that the cases (B) and (C) do not occur. Suppose that the case (B)
holds. We consider the solution u{t) of (1.3) satisfying the initial condition

/(s) =

f(s)<

/(«) =

>0

; 0

>0

for

for

for

s ;

s ;

s <

>o,
>o,
= 0
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M'(0) = 0 and w(0) = 1. Then in the case (B) we have that (tn"1w/)/ =
- r"" 1 /^ ) > 0» a n d s o ^ follows that t"~1u'(t) > 0 and u\t) > 0. We conclude
that u(t) > u(0) = 1 for all t > 0. This contradicts (2.1). Consequently, the
case (B) is impossible. In the same way, we see that the case (C) does not
occur. Now the cases (A) and (D) both assert that (fl) holds. The proof of
Theorem 1 is now complete.

To prove Theorem 2, we need the next lemma.

L E M M A 2.7. Let n = 2 and (fl) hold. Suppose that there exists a X > 0
such that

poo ro
(i) eksf{s)ds < + oo or (ii) ew\f(s)\ds < + oo.

J o J -oo

Then there exist T> 0 and a solution u(t) of (1.3) such that u{t) is defined on
IT, oo) and l i rn ,^ \u(t)\ = + oo.

PROOF. We first consider the case (i). We set a = 4/'X to obtain

)
exp(4s/a)/(s) ds < + oo.f

Jo
Jo

Next, we choose a number T (> 0) so large that

(2.28) e~2T \ exp(4s/fl)/(s) ds < —.
Jar 4

For these numbers a and % we denote by y(s) the solution of the initial value
problem

(2.29) y" + e2sf(as + y) = 0, s > T,

(2.30) / ( D = 0, y(T) = 0.

Then it is seen that the solution y(s) is defined on [7^ oo) and satisfies that
— a/2 < y'(s) < 0 for all s > T. We here prove this assertion. To this end, it
is sufficient to show that

(2.31) _ ! < 3 , ' ( s ) < o for 56(7; T*),

where T* is the right end point of the maximal interval of existence for the
solution y(s). Indeed, once the inequality (2.31) is proved, then we obtain from
(2.30) and (2.31) that

(2.32) -^(s-T)<y(s)<0 for se(T, T*).



570 Ryuji KAJIKIYA

It follows from (2.31) and (2.32) that T* = + oo, and so y(s) is defined on
[7; oo) and satisfies (2.31) and (2.32) for all SG(T9 OO). We then show the
inequality (2.31). Since y"{T) = - e2Tf(aT) < 0, it follows from (2.30) that
(2.31) holds for se(T9 T+e) with e > 0 sufficiently small. We now suppose
that (2.31) does not hold for some se(T, 71*). Then we define

Ti = sup<r: - - < / ( s ) < 0 for se(T,t)}.

This definition implies that

(2.33) - | < / ( s ) < 0 for se(

and that one of the following two cases,

(A) / (7i) = 0 or (B)

must be satisfied. Integrating (2.33) over [7^ s], we obtain

(2.34) --(s-T)<y(s)<0 for se(7; TJ.

It follows from equation (2.29) that

(2.35) y'(7i) = - P e2sf(as + y(s)) ds.
JT

This implies that / ( T J < 0 since as + y{s) > 0 by (2.34). Thus the case (A) is
impossible. Next, we set v(s) = as + y(s). It follows from (2.33) and (2.34) that

(2.36) v(s) >-(s+T)

and

(2.37) v'{s)>^ for se[7; TJ.

Since t?'(s) > 0 on [7; TJ and i;() maps the interval [7; TJ onto [a% v{J^)\
the inverse functions s = v'1^) = W(T) is well defined on the interval
[aT, tf(7;)]. Combining (2.36) and (2.37), we obtain

(2.38) W(T)<-T-T
a
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and

(2.39) W'(T) = _ L < ? f o r t e f f l j ; ^ ) ] ,

Using the change of variables x = v(s) = as + y(s\ s = W(T), and applying (2.38)
and (2.39), we have

(2.40) e2sf(as + y(s)) ds = exp(2w(r))/(T)w'(T) dx
JT JaT

2 r°°
<-e-2T\ «

where we have used (2.28) in the last inequality. The identity (2.35) together
with (2.40) implies that / (7 i ) > - a/2. Therefore the case (B) does not occur,
too. Hence we conclude that y(s) is defined on [7; oo) and the inequalities
(2.31) and (2.32) hold for all s>T. We set s = log t and u(t) = as
+ y(s). Then the function u{i) is a solution on [eT, oo) of equation (1.3) with n
= 2. Furthermore it follows from (2.32) that

M(t)>| logt + | r for t>eT,

which implies that l im^^u^) = + oo. This completes the proof under
condition (i). In the case where (ii) holds, one finds a solution u(t) satisfying
limr_+00M(t) = — oo in the same way. The proof is thereby complete.

We conclude this section by proving Theorem 2.

PROOF OF THEOREM 2. (i)=>(ii). We first note that all of Lemmas 2.1
through 2.6 are valid. Then under condition (i), the assertion (ii) follows from
the same argument as in the proof of Theorem 1.

(ii)=>(i). Assume condition (ii). In the proof of Theorem 1 we have
already seen that (fl) holds. Next, using Lemma 2.7, we obtain (2.2). Hence (i)
is valid.

(i), (ii) => (iii). Suppose that (i) and (ii) hold. Then by Main Theorem (II)
we get assertion (iii).

(iii) => (i). We assume condition (iii). If f(s0) = 0 for some s0 / 0, then
u(t) = 50 is a solution of (1.3) which is nonoscillatory. Therefore we see that
f(s) # 0 for s + 0 and we have to check the four cases (A) through (D) stated in
the proof of Theoem 1. As shown in the proof of Theorem 1, we obtain a
solution u(t) satisfying u(t) > 1 for all t> 0 under condition (B). This is
nonoscillatory. Thus the case (B) is impossible. The same argument implies
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that the case (G) does not occur, too. The two cases (A) and (D) are now
remained, and we see that (fl) holds. We then prove (2.2). To the contrary,
suppose it is false. Then by Lemma 2.7 there exists a solution u(t) such that
l i m , ^ I i/(t) I = + oo, and so u(t) is nonoscillatory. This contradicts the
assumption (iii). It turns out that (2.2) is valid and we obtain the desired
assertion (i). This completes the proof of Theorem 2.

3. Nonoscillation of solutions

The purpose of this section is to investigate nonoscillation of
solutions. We give a sufficient condition for nonoscillation of all solution to
equation (1.3).

THEOREM 3. Let n > 3. Suppose that conditions (fl), (f2) and (f3)
hold. Then all nontrivial solutions of (13) can be extended to t = + oo and are
nonoscillatory.

REMARK 3.1. We state some remarks and references related to nonoscil-
lation of solutions of equation (1.3). For n > 3 we employ the following
standard Liouville transformation (see [11]):

which reduces (1.3) to the equation

(3.1) y" + as-<Tf(s-1y) = 0, s > 0,

where a = l/(n - 2)2 and o = (n - 4)/(n - 2). If f(s) is odd (hence /(0) = 0)
and is differentiable at 5 = 0, then we set

g(r,s) = as-°f(s-1r1l2)/r1l2, r > 0,

which is continuous on (r, s)e[0, oo) x (0, oo). Therefore equation (3.1) is
rewritten as the second order equation

(3.2) y" + yg(y\ s) = 0, 5 > 0.

Under the monotonicity assumptions on the functions g(r, s) or rg(r2, s) with
respect to r, Nehari [8], Coffman and Wong [3] and many other authors gave
sufficient conditions for nonoscillation of solutions of equation (3.2). For the
details, we refer the readers to [3], [8] and [11]. These results are not
applicable to equation (1.3) unless f(s) is odd. But our result, Theorem 3, is
valid without the hypotheses that f(s) is odd and monotone. Theorem 3 is
applicable to the following type of/(s), for example
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( i ) /(sjEElsr1*,

(ii) / ( 5 )= |5 | p - 1 5 (s>0) , =|S|«"15 ( s < 0 )

and

(iii) /(s) = se"1 / | s | ( s>0) , = | s r " 1 s ( s<0 ) ,

where p, g > (n + 2)/(n - 2).

PROOF OF THEOREM 3. We first choose numbers a and r0 (<r) such that

n-2 2 , j/(s) 2 a + 2 2n
(3.3) —->a> and - ^ f > >

q - 1 F(s) " a n - 2

for 0 < |s| < r0. Let u(£) be any nontrivial solution of (1.3). Then it follows
from Theorem 1 that u(t) can be extended to t = + oo and (2.1) holds. Let
[To, oo) be the interval of existence for u(t). We now apply the change of
variables

(3.4) u(t) = e-*sw(s) and t = es.

Equation (1.3) is then reduced to the following second order equation,

(3.5) w" + aW - bw + ei<x + 2)s f(e~asw) = 0, s > Tl9

where a = n - 2 - 2a ( > 0), b = oc(n - 2 - a) ( > 0) and Tx = log To. Now, we
suppose that u(t) is oscillatory; hence so is w(s). In this case we obtain the next
lemma.

LEMMA 3.1. If w(s) is oscillatory, then

Lemma 3.1 will be proved later on. This lemma and condition (f2)
together imply that

0 < eia+2)sf(e-*sw(s))/Ms) < Ce'^wis)^1 > 0

as s -> oo, where C is a positive constnat and /? = oc(q — 1) — 2 ( > 0). Hence
we can choose a constant T* ( > Tx) such that

(3.6) -b + e{a+2)sf(e-asw(s))/w(s) < ~\ for s > T*.

We rewrite equation (3.5) as the Sturm-Liouville equation

(3.7) (p(s)w')' + { - b + e{"+2)sf(e-asw)/w} p(s)w = 0,

where p(s) = eas. Noting (3.6) and applying Sturm's comparison theorem (see
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[4, p335]) to equation (3.7), we deduce that all solutions of the equation

(3.8) \

must be oscillatory since w(s) is oscillatory. Equation (3.8) can be reduced to

(3.9) y" + ay' - b-y = 0.

This equation has a general solution of the form,

(3.10) y(t) = CiexpfV) + C2exp(A2t), Cl9 C2eR,

where k = Al5 X2 are the roots of the characteristic equation

X2 + ak - h- = 0.

Note that Xx and X2 are real roots. Therefore y(t) represented by (3.10) is
nonoscillatory. This is a contradiction. Consequently, we obtain that w(s) is
nonoscillatory, and so is u(t). This proves Theorem 3.

To complete the proof of Theorem 3, it suffices to prove Lemma 3.1.

PROOF OF LEMMA 3.1. Using (2.1) and (3.4), we can choose a number T(

> Tx) so large that

(3.11) \e-*sw(s)\<r0 for s > T.

Now, we define a Lyapunov-like function V by

(3.12) V(s) = ^w'(s)2 -^w(s)2 + e(2a+2)sF(6?-asw(5))

for s>T. We wish to show that V(s) is decreasing. To this end, we multiply
(3.5) by w'(s). Then we obtain

i\\w\s) Jw(5)l + aw'(s)2 + eia+2)sf(e-"sw)wf = 0.
ds(2 2 J

The last term on the left-hand side is written as

eia+2)sf(e-"sw)wr = — {e(2a+2)sF(e-asw(s))} + C(s),

where

C(s) = oceia+2)sf(e-asw)w - (2a + 2)e{2a+2)sF(e-asw).
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Therefore we have

V'(s) + aw'(s)2 + C(s) = 0.

Using the inequalities (3.3) and (3.11), we see that

t(s) = {otuf(u)-(2a + 2)F(u)}ei2a+2)s>0 for s>T,

where u = e~asw(s). Hence it follows that

(3.13) V'(s) + aw\s)2 < 0 for s > T.

This means that V(s) is decreasing. Integrating both sides of (3.13) over [7^ s],
we obtain

<•!>•
(3.14) V(s) + a W{x)2dx < V(T) for s > T.

Let {sfc}£°=1 ( T < sx < s2 < -" T + oo) denote the sequence of the zeros of
w(s). From the uniqueness of the zero solution to equation (3.5) it follows that
{sfc}k°= l a r e simple zeros, that is, w'(sk) / 0 and w(sk) = 0. This implies that
V(sk) = (l/2)w'(sk)2 > 0 for keN. Since F i s decreasing, we get

(3.15) V(s) > 0 for all s > T,

It follows from (3.14) and (3.15) that

f00
(3.16) I W'(T)2 dx < - V(T) < + oo.

We wish to prove that lims_oow(s) = 0. To the contrary, we suppose that

(3.17) lim s u p ^ ^ w(s) > e for some s > 0.

Since w(s) is oscillatory, we can find two sequences {pk}£°= x and {qk}?= x which
have the following properties,

(3.18) T<Pl<q1<p2<q2<"',

(3.19) l i m ^ ^ = l i m ^ ^ = + oo,

(3.20) w(p*) = | , w(qk) = s for keN,

(3.21) - < w(s) < s for sG(pfc, qk) and fceiV.

Moreover there exist positive constants Cx and C2 depending upon s such that

(3.22) C1 < w'(s) < C2 for se(pk, qk) and keN.
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We here prove (3.22). Since F(s) > 0 for seR, we have

V(T) > V(s) > ̂  w'(s)2 - ^ w(s)2 for 5 > T,

and therefore we get

(3.23) w'(s)2 < 2V{T) + be2 for se(pk,qk)9

where we have used (3.21). On the other hand, it follows from (f2) that there
exists C > 0 such that F(s) < C\s\q+1 for \s\ < r0. Using this inequality, we
obtain

(3.24) 0 < V(s) < ̂ w'(s)2 - ^w(s)2 + Ce~fis\w\q+1

for se(pk, qk), where jS = oc(q — 1) — 2 > 0. We may take a smaller positive
number s if necessary. Therefore we may assume that e satisfies the inequality

(3.25) b--ca"-'>b-.

From the inequalities (3.24) and (3.25) we deduce

(3.26) 1 £ 2 < 1 W , ( S ) 2 for se{pk9qk).

By (3.23) and (3.26) there are positive constants A and B which are independent
of k and such that A < w'(s)2 < B for se(pk, qk) and keN. This together with
the property (3.20) implies that w'(s) > 0 for se(pk,qk), and so (3.22)
follows. We now apply the mean-value theorem to find a number £k 6 (pk9 qk)
which satisfies

Ik - Pk 2(ft - pk)'

Combining this identity and (3.22), we get positive constants C3 and C4 such
that

(3.27) C3<qk-pk<C4r for keN.

By virtue of (3.22) and (3.27) we obtain
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J
fw'(s)2ds>Xi=1 \w\s)2ds>C\CsJ for jsN.
T Jpu

Passing to the limit as j -> oo, we have

wf(s)2 ds = + 00,i;
which contradicts (3.16). This means that (3.17) is false, and so
lim sups^oo w(s) < 0. In the same way, it follows that lim inf^^ w(s) > 0. Thus
we conclude that l i m ^ ^ w(s) = 0. This completes the proof of Lemma 3.1.

4. Proof of Main Theorem

In this section we prove Main Theorem (I) stated in Section 1. Our
approach is based on the so-called shooting method. To proceed this
argument, we consider the initial value problem

(4.1) u" + "-j^u' +f(u) = 0, re(O, oo),

(4.2) w'(0) = 0, u(0) = y.

This problem has a local and unique solution since f(s) is locally Lipschitz
continuous. Theorem 1 asserts that the solution can be extended to t = + oo
and satisfies (2.1) if n > 3 and if (fl) is satisfied. Throughout this section we
suppose that n > 3 and (fl) holds. We begin by introducing some notation
which will be used in the subsequent discussions.

DEFINITION 1. For each yeR we denote by u(t, y) the solution of the
initial value problem (4.1)-(4.2).

DEFINITION 2. For a continuous function u(t) on [0, oo) and each R > 0,
NR[u] and N[u] denote the numbers of zeros of u(t) in the intervals [0, K] and
[0, oo), respectively, that is,

NRM = #{te[Q, K ] : u(t) = 0} ( < + oo)

and

iV[>] = #{te[O, OO):M(0 = 0 } ( < + OO).

In Theorem 3 we have already proved that AT[M(-, y)] < + oo for all y / 0
provided that n > 3 and (fl), (f2) and (f3) are satisfied. The next lemma plays
an important role in the proof of the key lemma, i.e., Lemma 4.2 below.
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LEMMA 4.1. Let n > 3 and (fl) hold. Suppose that {)>,•}JLi converges to
y0. Then for any e > 0 there exists a T* > 0 such that

(4.3) \u(t, yj)\ <s for t > T* and j > 0.

PROOF. For simplicity we write

uj(t) = u(t, yj) for 7 > 0 .

Let s > 0. First, we choose a positive number <5 > 0 that is smaller than both
F(s) and F( - e). We define

^ for j > 0.

Then it follows from (2.5) that each Ej(t) is decreasing. Since uo(t) satisfies (2.1),
one can find a T> 0 such that E0(T) < <5/2. We also note that solutions to
(4.1)-(4.2) depend continuously on the initial value 7. More precisely, the
mapping y-+u(-9y) from R into Cfoc[0, 00) is continuous. This implies that
{Ej(T)}f=i converges to E0(T). Therefore there exists a positive integer j 0 such
that

Ej(T) < E0(T) + 6- < S for j>j0.

From this we obtain

F(Uj(t)) < Ej(t) < Ej(T) < S < min(F(£), F( - s))

for t > T and j > j 0 . This together with (fl) implies that

\Uj(t)\<s for £ > T a n d ; > ; 0 .

By (2.1) there exist constants 7 } ( 0 < ; < ; 0 ) such that

111/OI < £ for te[Tp 00) and 0 <j <j0.

Consequently we set

T* = max(T0, T1?..., 7}0, T)

to obtain the desired inequality (4.3). This completes the proof.

To prove Main Theorem (I) we need the next key lemma, which has been
proved in [7] under condition (1.6). We establish the result in the case where
condition (1.6) does not hold.

LEMMA 4.2. Let n > 3. Suppose that conditions (fl), (f2) and (f3) hold. If
yo^0 and N[M(-, y0)] = k > 0, then there exists an s > 0 such that iV|>(-, 7)] is
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equal to k or k + 1 for each y satisfying \y — yo\ < e.

PROOF. Let {£,}?=! (0 < tt < t2 < ••• < tk) denote the sequence of the zeros
of u(t, y0). We choose a number T so that T > tk. Since u(t, y) converges to
M(-, y0) in C2[0, T] as y tends to y0, we have

N[u(-9 y)] > NT[u(. , y)] = ATr[u(., y0)] = *

provided that y is close to y0. I n order to give the proof of Lemma 4.2, it is
sufficient to show that N[u(-, y)] < k + 1 when | y - y o | is sufficiently
small. Suppose to the contrary that it does not hold. Then there is a
sequence {^}j°=i such that {y,-} converges to y0 and N[M(-, y,)] > k + 2 for all
jeTV. For simplicity in notation we set

tt/t) = u(t, yj) for j > 0 .

It should be noted that for; > 1, Uj(t) has at least k + 2 zeros in [0, oo) but wo(r)
has exactly k zeros in [0, oo) and {Uj} converges to uo(t) in Cf2

oc[0, oo). First we
denote the smallest k + 2 zeros of Uj(t) for j > 1 by

Fix any T ( > tk). Then the convergence of {uj} to w0 in C2[0, T] implies that
{fy} converges to tt as ; tends to + oo for 1 < i < k. Since NTluj] = k for
sufficiently large j , we obtain that T < aj for j large. This means that l i in^^ a,
= + oo. Next, we define the functions {w7-}j°=0 by

wj(s) = e*suj(t), t = e\ j = 0 , 1 , 2 , . . . ,

where a is a postive constant chosen as in (3.3). Since Uj(t) is a solution of (4.1),
the function Wj(s) satisfies equation (3.5) for all se(— oo, + oo). We set

Pj = log aj and q} = log bi for ; e N.

Then pj and ^;. are the (fc + l)th and the (k + 2)th zeros of Wj{s),
respectively. Since {a3) tends to + oo as mentioned above, we obtain

(4.4) l im^ «, pj = lim,_ n qj = + oo.

Employing the same idea as in (3.12), we define a function Vj(s) for each; > 0 by

(4.5) Vj(s) EE iw}(s)2 - ^ w / s ) 2 + e<2*+2)sF(e-*sWj(s)),

where b = a(n - 2 — a) ( > 0). Let r0 be the positive constant chosen as in
(3.3). By Lemma 4.1 there is a T* > 0 such that

|u,(OI < r0 for t > T* and j > 0.
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We set T = log T* to obtain

(4.6) \e-*sWj(s)\ <r0 for s > T and j > 0.

Using (4.6) and applying the same method as in the proof of Theorem 3, we see
that Vj(s) is decreasing in [7; oo) for each ; > 0.

We now fix a constant M > 0 so large that

(4.7) M2 > \(V0(T) + 1) max(l, 2<T W / 2 ) ,
b

where a = n — 2 - 2a ( > 0 ) and b = a(n — 2 — a) ( > 0). Since l i m ^ ^ =
+ oo by (4.4), there exists a positive integer j 0 such that T < pj for each

j >jo- We here present a technical lemma, which asserts that a sequence {Wj}
is uniformly bounded on [pj9 q^\.

LEMMA 4.3. There exists a positive integer j * (>j0) such that

(4.8) rnax,.^,. \wj(s)\ < 2M for all j > j * .

This lemma will be proved later on. From (4.8) and (f2) it follows that

0 < e<*+2»f(e-«w{s))/w{s) < Ce'^w^r1

<C'exp(-pPj)—>0 for sE\j>pqj],

as j tends to + oo. Here C and C are positive constants independent ofj, and
P = (x(q — 1) — 2 > 0. This implies that there exists a positive integer m0 such
that

(4.9) - b + e(*+Vsf(e-*sWj(s))/Wj(s) < - b-

for se[pj9 qj] and; > m0. We here set p(s) = eas to reduce equation (3.5) to the
following Sturm-Liouville equation

(4.10) (p(5)w})' + { - b + e<*+2»f(e-tuwJ)/wj}p(s)Wj = 0-

Applying Sturm's comparison theorem to this equation and using (4.9), we see
that all solutions of the equation

(4.11) {p(s)yJ-^p(s)y = o,

must possess at least one zero in the interval [pp q^ with j >m0. But (4.11)
can be rewritten as equation (3.9) which has a general solution of the form
(3.10). In particular, if we choose a solution y(t) = exp^t), then it has no
zeros in [pp qj]. This is a contradiction, which is caused by the assumption
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that JV[u(-, y,)] > k + 2. Therefore we conclude that N[u(-9 y)] < k + 1 for all
7 with I y — y01 sufficiently small. This proves Lemma 4.2.

In order to complete the proof of Lemma 4.2, we have to prove Lemma
4.3.

PROOF OF LEMMA 4.3. Suppose that the assertion of Lemma 4.3 is
false. Then there must exist a subsequence (again denoted {wj}f=1 for
simplicity) of {vvj such that

(4.12) m a x p ^ J w , . ( s ) | > 2 M for all jeN.

We here observe that there are only two cases, namely,

(4.13) Wj(s) > 0 for all se(pp qj) and jsN

or else

(4.14) w/s) < 0 for all se(pp qj) and jsN.

In fact, since Pj is the (k + l)th zero of wp the case (4.13) occurs if either y0 > 0
and k is odd, or y0 < 0 and k is even. Otherwise, we have only the case
(4.14). We here deal with the case (4.13) only, since (4.14) can also be treated in
the same argument as in (4.13). Combining (4.12) and (4.13), we obtain
numbers ^ and £,. such that

and

M < Wj(s) < 2M for s e(£,., Q.

Since Vj(s) is decreasing in [7^ 00) for each j , we have

(4.15) Vj(s) > Vj(qj) = ^w'j(qj)2 > 0 for setf qj].

It follows from this inequality and condition (f2) that

(4.16) 0 < Vj(s) < ^w'j(s)2 -^wj(s)2 + Ce-»\wj\*+1

< \ w}(s)2 - \M2 + C'exp( - pPj)M*+'

for seKj , Cj]» where j? = oc(q — 1) - 2 > 0 and C, C are positive constants
independent of j . Since l i m ^ ^ = 00 by (4.4), one finds a positive integer j1

by (4.16) such that
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b(4.17) b-M2 <^Wj(s)2 for setfp Cj] and j

Next, noting that F(s) > 0 for ssR, we have

(4.18) Vj(T) > Vj(s) > l- w}(5)2 - b- w/5)2 for s > T.

Since {V}) converges to Vo in C/o c(- oo, + oo), there exists a positive integer j 2

( > ji) such that

(4.19) Vj(T)<V0(T)+l for j>j2.

Hence it follows from (4.7), (4.18) and (4.19) that

(4.20)

< 2&M2 + V0(T) + 1 < 3&M2

for se[£p Cj] and j>j2. By (4.17) and (4.20) we obtain

(4.21) ( - j M<\w'j(s)\<(6b)1/2M

for sE[£p Cj] and j >j2. Applying the mean-value theorem, we find x^i
such that

This relation together with (4.21) implies that

(4.22) C j - ^ > ( 6 f c ) " 1 / 2 for j>j2.

Since Vj(s) satisfies the inequality (3.13), we obtain

a f' |w}| Vj(T) < V0(T) + 1,

for 7 > j 2 . On the other hand, using (4.15), (4.21) and (4.22), one can estimate
the left-hand side as

Consequently, we have

jiCj) + a r I w'j\2 ds>j M% ~^>\ M2 (^J12 •
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But this contradicts the choice of M in (4.7). Thus the inequality (4.8) must
hold. The proof is thereby complete.

Finally, to end up the proof of Main Theorem (I), we need one more
lemma which means that the solution u(t, y) has sufficiently many zeros for |y|
large.

LEMMA 4.4. Let n > 3. Suppose that conditions (f4) and (f5) hold. Then
limy_>±ooiV[M(-, y)] = + oo.

PROOF. In [6, Proposition 6.1] we have already proved that
limy_>±00iVi[w(-, y)] = + oo. We note that iV[u(-, y)] > iV^IX-, y)], and this
proves the lemma.

We are now in a position to give the proof of Main Theorem (I). Our
approach is basic to the method used in [7].

PROOF OF MAIN THEOREM (I). Let r0 be the positive constant chosen in
(3.3). Then it is proved that

N[w(-, y)] = 0 for ye(O, r0).

In fact, suppose that for some ye(O, r0), u(t, y) has a zero in [0, oo). In what
follows, we write u(t) for u(t9 y) for simplicity. Let tx be the first zero of
u(t). Then we have

M(^) = 0 and u(t) > 0 for te[O, tx).

This implies

( t " -V) ' = - t"-1 f{u) < 0 and t"" V(f) < 0

for te(O, tx). Therefore we obtain

(4.23) 0 < u{t, y)<y<r0 for te(0, t±).

On the other hand, Pohozaev's identity [9] gives

ffl

(4.24) {2nF(u)-(n-2)f(u)u\tn 1 it = u'(tl)
2tH

1.
Jo

The relation (4.24) is obtained in the following way. First, multiplying (4.1) by
u(t)tn~x and integrating both sides of the resultant identity over [0, r t ] , we
obtain
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(4.25) lii'l2*""1 dt = uf
Jo Jo

Secondly, multiplying (4.1) by u\t)tn and integrating over [0, £ j , we have

\(4.26) \u\h)2t\ + ^ -

- n \ F(u)tn-1dt = 0.
Jo

Now, combining (4.25) and (4.26) yields the identity (4.24). Using (4.23) and
(3.3), we see that the left-hand side of (4.24) is negative. This is a
contradiction. Hence it follows that u{t, y) has no zeros in [0, oo) when 0 < y
<r0.

Now, we define

it follows from Lemma 4.4 that 0 < y0 < + oo. Lemma 4.2 then implies that
N[u(-9 y0)] = 0, and moreover there exists an e0 > 0 such that

(4.27) iV[u(.,y)] = l for ye(y0, y0 + s0).

Next, we set

y1=sup{y>0:iV[M(-,7)] = l} .

It follows from (4.27) and Lemma 4.4 that 0 < y0 < yx < oo. Lemma 4.2 then
implies that N[u(-9 yx)] = 1, and there is an ex > 0 such that

y)] = 2 for

Repeating this argument, we obtain the sequences {yk}™=0
 a n ^ {£/k}fc°=o s u c h

e k > 0 ,

and

N[M(.,y)] = / c+1 for ye(yk9 yk + ek).

Since u(t, yk) satisfies (2.1) by Theorem 1, this is the desired solution. The proof
is now complete.
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