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§1. Introduction

Let G be a semisimple Lie group with finite center, K a maximal compact
subgroup of G. Let 0 be the Cartan involution of G fixing K. Let P be
a cuspidal parabolic subgroup and P=MAN its Langlands decomposition.

Let np, ., = ind$, .6 ® v® 1 (6 in M, v a character of A) be the represen-
tation of the generalized principal series induced from P to G and HP°"
be its representation space. Then the operator A(P:P:o:v) defined by the
integral

(A(P:P:o:v)f)(x) = .[ﬁ f(xn)dn , (f € HP*)

is an intertwining operator between 7np,.(9) and 7, .(g) (g€ G), where
P =0P.

In the following we assume that P is a minimal parabolic subgroup of
G. For y in K we denote by HM*" the y-isotypic component of H”*.
Let ¥V’ and H°’ be the representation spaces of y and ¢ respectively. Fol-
lowing Wallach [11], we consider the bijective map v ® A — Lp(4, v, v)
(ve V’, Ae Homy(V’, H°)) from V?® Homy(V?,H’) to H}'®", where
Lp(A, v, v) is defined by

Lp(A, v, v)(kan) = e **P894(m (k)v), (keK,aeA,neN),

and the operator defined by the integral

B(P:P:v)= f 7, (k(@)) e~ VTPHE@ g
N
Then the operator B,(P:P:v) satisfies
AY(I—J :P:0:v)Lp(A,v,v) = Lp(A o By(l3 :P:v),0,v).

Moreover, BV(F:P:v) commutes with =, (m) (me M) and we can restrict B,
to V;?, V) denoting the o-isotypic component of V?. We denote by By the
restriction of B, to V. Wallach [11] has shown that B,(P:P:v) is holo-
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morphic in a certain half-space of a¥% and meromorphic in a¥. In the relation
with the intertwining operator AY(F:P:a:v), it is important to study the
nature of the By-function as a meromorphic function, such as its zeroes, poles
and their order.

Concerning this problem, Cohn [1] has proved that the determinant of
the C-function is a product of some quotient of I'-factors and gives a conjec-
ture on the rational numbers which appear in these factors.

Our main theorems give the determinant of the Bj-function explicitly in
SL(3, R) and SL(4, R) cases. In another paper, we shall give an application
of the results to the analytical argument of the reducibility of the generalized
principal series representation (cf. Speh-Vogan [9]).

In making the conjecture of our results we have used the software “RE-
DUCE” for computers.

§2. Notation and preliminaries

Let G be a semisimple Lie group with finite center and g its Lie algebra.
Let f be a maximal compact subalgebra of g, g =+ p the corresponding
Cartan decomposition and 6 the Cartan involution defining the decomposition.
We introduce an inner product B, on g in the standard way such that
By(X, Y) = —B(X, 0Y), where B is the Killing form on g. Let a be a maximal
abelian subspace of p. We fix an order in the dual space a* of a and put
n=>,.08, where g, denoting the root space for the a-root a. Then we
have an Iwasawa decomposition g=f+a+mn of g Let o =6n and m =
Z(a), the cetralizer of a in £

We now let K = Ng(f) be the normalizer of f in G, M = Zg(a) the central-
izer of a in K and M’ = Ng(a) the normalizer of a in K. Let 4, N,, and
V, be the analytic subgroups of G corresponding to a, n and o respec-
tively. Let P = MAN. The conjugates of P are called minimal parabolic
subgroups of G. Let 2(A) be the set of all parabolic subgroups P of G such
that A4 is the split component of P. The elements in #(4) are in obvious
one-to-one correspondence with Weyl chambers in a and the Weyl group
W= M'/M permutes the Weyl chambers transitively. For each w in W, 1 a
character of A and ¢ a representation of M, put

wi(a) = A(wlaw), wé(m) = E(w imw).
Then W acts on characters of 4 and classes of representation of M.

Let K and M be the set of all equivalence classes of the irreducible
unitary representations of K and M respectively. For each o € M we fix a
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representatlon (6, H%) in o and, abusing notation, we use also ¢ for 6. For
each y in K we fix an element (n,H?) in 7. Put p=pp = 3D a0 (dim g,)a.

We recall the generalized principal series representations. Let ¢ be in
M and v in a* (the complexfication of a*). Let C,..(G) be the space of all
continuous functions f from G to H? such that

f(xman) = e~ O*P0RAG(m)~1f(x)  (xe€G).

Let H™?” be the completion of C, ,(G) by the norm
112 = j If®Nz2dk,  (feC,,(G)).
K

The representation 7p , , is given by

Troo(9f(X) = flg7'x), (g€ ).

What we have just described is the “induced picture” for np_, ,.
The “compact picture” is the restriction of the induced picture to K.
Here the corresponding dense subspace C,(K) is

{f:K - H°|f is continuous and f(km) = o(m) f(k)}

and is independent of v. According to the Iwasawa decomposition G =
KAN,, each ge G is written as

g =«x(g)exp H(g)no(g),  (k(g) € K, H(g) € a, ny(g) € Np) .
Then the representation is given by
Tporo (S (K) = €™+ PHE O (1e(g71k)) .
If y is in K, the projection operator E, is defined by
E,f=dWX,f, (f e G(K)),

where d(y) and x, denote the dimension and the character of y respective-
ly. For ye K, we put

HIo"" = {f e HP*|E,f = f}.

§3. C-functions and intertwining operators

In this section we recall the Harish-Chandra C-functions, intertwining
operators and the relation between them. Let P, be as above. Let y be in
K, o in M and A in Hom,(V?, H’), where V’ denotes the representation
space of m,. For v in a%, v in V7, let

Lp,(A4, v, v)(kan) = e~ **V0294(m (k™ )v), (keK,acA,neN,).
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Then an easy computation shows that Lp (4, v,v) is in H!>®. Furthermore
the map V? ® Hom,,(V?, H°) > H}>"" given by v ® A — Lp (4, v, v) is a bijec-
tive K-intertwining operator.

We introduce formal expressions, often divergent, for operators that imple-
ment equivalences among some of these representations. For now, we work
in the induced picture. Let P, = MAN,, P, = MAN, be in #(4). For f in
HPvoY set

APy:Py:o:v)f(x) = J f(xv)dv,

ViNN,

where V; = 0N, and dv is the normalized Haar measure on ¥; NN, by

f e PIHO) 4,y — 1 ,
VNN,

The following result is well known (see e.g. [6]).

where p; = pp,.

PrOPOSITION 3.1. When the indicated integrals are convergent,
APy Py :o:v)mp, 4,(9) = Tp, 0, (9)A(P,: Py o)

for all g in G.

For w in M’, let R(w)f(x) = f(xw). Then it follows from Proposition 3.1
that

Ap (W, 0,v) = RW)AW 'Piw: P :0:v)
satisfies
nP,,wa,wv(')APl(W’ o, V) = APl(w9 o, v)nP,,a,v(‘) H

whenever the indicated integrals are convergent.

We denote by A,(P,: P;:0:v) the restriction of the map A(P,:P;:0:v)
to the space Hf»®". Then we have that A/(P,:Py:o:v) is in
Homg(Hy ", Hf»"). The inner product B, on g induces an inner product
on a*, which we denote by (-, ).

ProposITION 3.2. If v is in a¥, (Rev,a) >0 for all o« >0 then
A,(Py:Py:0:v)Lp (A, 0,v) = Lp (Ao By(P,:Py:v),0,v),

where

B,(P;:Py:v) = J 7, (k(v)) te”HIEO Gy

VoNN,
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Furthermore, B,(P, : P, :v) satisfies the following conditions,
(1) B,(P,:P,:v) is absolutely convergent.
(2) B,(Py:Py:v) is in End(V?) and satisfies

B,(P; : Py:v)n,(m) = m,(m)B,(P; : Py:v) (meM). (3.1

Proor. These assertions but (2) are proved by an analogous argument
to the proof of 8.11.5 in [11]. We shall prove (3.1). We have

n,(m)B,(P, : Py :v) = m,(m) 7, (1c(v)) "Le"HE®) gy
VoNN,

= f n,(k(v)m™1) e CTAEE gy
VoNN,

Since H(vm™') = H(v), k(vm™!) = k(v)m™' and the measure dv is invariant un-
der v > mvom™ (note that M is compact), the last expression is

P
= 7, (k(om 1)) LT HAHEM) gy
JVonn,

n

= m,(k(mp)) e~ CHAHm gy
JVoNN,

.
= 7, (mx(v)) e~ CHOHO gy
JVoNN,

= B,(P, : Py: v)m,(m).

This proves (3.1).

If ¢ is in M, we denote the o-component of V” by V. Let
Bj(P;: Py:v) = B,(Py: Py:v)|yy .

Then BS(P,:P,:v) is in End(V;). Setting P = 6P (=0P,), v—> BJ(P:P:v) is
called Harish-Chandra’s C-function, as is well known, which is continued to
a¥ meromorphically.

COROLLARY 3.3. If wisin M, vin a¥§, {(Rev,a) >0 for all « > O then

Ap,(w, 0, V)L(A4, v,v) = L(A o By(w, vm,w) o, v),

where

B,(w,v) = B, (W 'Pow: Py:v).
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§4. The C-function for the SL(3, R) case

In this section we shall specialize to SL(3, R) the notation described in
the previous sections. Our notation is as follows. Let G be SL(3, R), the
group of 3-by-3 real matrices of determinant one. Let

0 = —transpose
K =S0(3)
a = {diag(x,, x,, x3)|x; € R, x; + x, + x3 = 0}
-1 1 -1 1
M= -1 , -1 , 1 , 1
1 -1 -1 1
A=expa
1 * *
N=<geG|lg= 1 =*
P =MAN

and define linear functions e¢; (1 <i < 3) on ac by
ei(diag(xy, x5, X3)) = X; .
Then each v in a¥% can be written in the form
v=yve; + v,e, + vie; veC 1<i<3)),

and we sometimes write (v, v,, v3) for v. The a-roots of g are *(e; — e;),
+(e, — e;3), +(e; — e;3), and the simple a-roots are e, —e,, e, — e;. Let

0 1 1
w=|-10 . ow,= 0 1
1 -1 0

Their adjoint actions on a are corresponding to the simple reflections. We
set wo, = w;w,w;. Then we have

A(P:P:0:v) = R(wy)Ap(wy, 0, V).
By the relation
Ap(wo, 0, V) = Ap(wy, wyw; 0, wyw; V) Ap(W,, Wy 0, w V) Ap(Wy, 0, V)

and Corollary 3.3, we have for y in K
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BV(F 1P V) = By(wl9 v)ny(wl)By(W29 Wy v)ny(WZ)B‘y(W]., W W, V)”y(w1)7ty(wo) .

LemMMma 4.1. If v is in a¥, {Rev,a) >0 for all o >0, we have

" [ (1 —x 17
B, (wy, v) = Const-J flx)~ 2 1y, b x 1 dx,
—w J(x)
L ) )
o 1 (f (x) 117
B,(w,, v) = Const J flo)= v g | — 1 —x dx,

where f(x) = (1 + x?)'2,

Since the results are obtained by an easy computation, we leave the
proof to the reader.

We shall recall irreducible unitary representations of K.

LEmMA 4.2. Set

S (R A ()

2 1 0 2721 o 372\ -1

Then {X}<i<3 is a basis of su(2) and satisfies the following relations

X, X,]1=X;, [XZ’X3]=X1’ [X35X1]=X2'

By the basis of su(2) given in Lemma 4.2, (SU(2), Ad) can be considered
to be the universal covering group of K. If n is a nonnegative even integer,
we set

V"= {peCl[z,,z,]|p is 2 homogeneous polynomial of degree n} .

Then V" is a Hilbert space of dimension n+ 1 equipped with the inner
product (p,, p,) defined by

(Zﬁ:o aziz5 7, ZZ=0 bziz37") = ZLO k!(n — k)layby .

b

For each g = <Z d

)e SU(2), we assign

(®a(9)P) (21, 22) = plazy + cz,, bz, + dz,) (fevn.

Then it is known that (%,, V") (n > 0) are irreducible representations of SU(2)
and exaust SU(2)". Moreover, as is well known (see e.g. [10]), for each y
in K there exists a unique nonnegative even integer n satisfying



Masaaki EGucHl and Shohei TANAKA

fi,~m,oAd, (unitarily equivalent). 4.1)

Lemma 4.3. Suppose y is in K, n is the nonnegative even integer satisfying
(4.1) and V" is defined as above. Let

v=2z7"2 (0<i<n),

C =22, /-1<i _i) eSUQ).

Then we have

1 —x -1 i
(1—~/—1x>"’ lu

1 -1 .=
(1) T, | f(x) x 1 . v; 70
fx) -
2 n,(Ad(O)r, | f(x)7 1 —x n,(AD(C))
x 1
1 —x -1
=xn, | f(x)7" | x 1
f(x)

Proor. We first prove formula (1). From Proposition 4.2, we have

cost —sint

Ad(exp tX;) = | sint cos t , (teR)
1
and by an easy computation, we obtain
7, (exp tX5) = ™20V 1ty (0<i<n).

Therefore we have

cost —sint

T, sin t cost

v, =e"2 OV 0<i<n) (32
1

If we put cost = f(x)7!, sin t = x/f(x), (3.2) is equal to

1 —x i
m, | f)7! | x 1 ui=<u> ? v, 0<i<n).
f(x) f(x)

Therefore we have
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1 —x -t
1— /_ 1 nj2—i
T, | ()7 | x 1 v; = <Wx> v; O<i<nm.
fx)
We next prove (2). We note that
C_IXIC = X3 N
1
Ad(exp tX,) = cost —sint
sin ¢ cost
We thus have
1
T, cost —sint = m,(Ad(exp tX,))
sin t cost

= ,(Ad(C ! (exp tX3)C)) .

Since Ad(C?) is equal to the identity, Ad(C)™! = Ad(C) and the last expression
equals

cost —sint
n,(Ad(O)r, sin ¢t cos t n,(Ad(C)) .

Therefore we have

cost —sint
sin ¢ cos t

cost —sint -1
= n,(Ad(O))m, sin t cost n,(Ad(C)).
1

Putting cos t = f(x)™}, sin t = x/f(x), we obtain (2).

As is easily seen, the element Ad(C) in K normalizes a¥. Thus Ad(C)
is in M'. Then we have the following

COROLLARY 4.4. Suppose v is an element in a¥ such that {(Rev,a) >0
for all « >0 and let y, n be as in Lemma 4.3. Then

(1) By(wl9 V) = a(vl — V2 n) »
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where a(s, n) = diag(oo(s, ), ..., &,(s, n)) (s € C) with respect to the basis {v;}o<i<n

of V" and for 0 <i<n,
var(s)r(5)

s+1—m2—i)\ (s+1+@m2—i)\
(P ()

o;(s, n) =

We have also
) n,(Ad(C))B,(w,, v)n,(Ad(C)) = B,(w;, —(Ad(C)V)),
where Ad(C)-v is the element in a¥ defined by

(Ad(C)-v)(H) = v(Ad(C)*H), (Heag).

Proor. (2) is a direct consequence of Lemma 4.3 (2). We shall prove
(1). From Lemma 4.1, we have

1 X
B,(wy, v)v; = f fx)= 2 g | | x 1 v;dx
- 76 1
by Lemma 4.3
= on f(x)‘("l‘vz)—l 1- vV ~* 1 x>n/2—idxvi
— f(x)
by A3

= o;(v; — v, Mv; .

This proves (1).

§5. The Me-isotypic components of y

In this section we shall describe the M-isotypic components of y in
K. Let n be a nonnegative even integer satisfying (4.1) and V" be the space
defined in §4. For any integer & we write £ =0 (resp. £ =1) if £ is even
(resp. odd). Let

Vo,+ = C(z1™ kzlzc + 2122 ),
k=0(2)
O<k<n

Vo,-) = Z Cl(z17%23 — 21237,

(2
k<n

|/\ III
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Vi+ = P C(z}7%25 + 24257%),
0<k2n
Vi = C(zi™ *z k 2122 ).
k=1(2)
0<k<n
Then we have
yr= I/}'('),+) + VIS,—) + V('{,+) + I/(’il,—) s 5.1

(orthogonal direct).

LEMMA 5.1. Let C be the matrix defined in §4. Then we have

() B =V
) Vo, — V14
3) Vi,+y— Vo,
4 Vi, — Vi

Proor. For any integer r > 0, we observe that

(z,+z) +(zy—2,) =2 Z (;) zy7Pz%, (5.2)

p<r
( )

III |/\

(21 +2) — (2, —z) = Z < )Zl Pz} . (5.3)

g
(2)

m |A

Suppose n — 2k > 0. Then we have
7 (C) (27 7*25 + z¥z57%)
= Const*((z, + z,)" Mz, — z)* + (21 + 2,)"(z1 — 2,)"7%)
= Const- (22 — 22)((z; + 25)" 2 + (z, — z,)" %Y.
By (5.2) we have
@+ - By e K

Therefore, for the proof of (1) and (3), it is enough to show the following
relations

@2 -3 ViV fork=0() (5.4)
and

(22 -2V Ve -, fork=1(). (5.5
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Now for each interger s >0 such that s =0 (2), we have

(22 — 23)(a528 + 242579) = (D702 — 21722472

+ (Z.;+22(2r+2)—(s+2) _ z(lr+2)—(s+2)z§+2) .

Therefore for an even integer r > 0, we have

2 2y, r+2
(zt —22) Vio,s = Va5 -

In the same way as above, for an even integer r > 0, we have

2 2y. +2
(z1 — 23) Vo,-) < Vie s -

This proves (5.4), (5.5).
prove (2) and (4).

Let
-1 1
my; = -1 ,

1

Then M is generated by m,, m, and we have

(o

m, = Ad(exp nX;) = Ad
and

)

Namely (1) and (3) are proved. Similarly, we can

(5.6)

m, = Ad(exp nX,) = Ad(C) Ad(( vl ))Ad(C). (5.7)
/=1

Since M is abelian and m,, m, are of order two, for each y in K, its

representation space V' is decomposed as

Vi=Vint+t Vi o+ Vgt Vo,

(orthogonal direct),

where
7ty(m1)|VZ+,,,, = 1, ny(mz)lV(’,,,,,, =
ny(ml)|V(y+__) = 1, T, (my)ly:, =
ny(m1)|V{.,, =-1, my(my)ly, =
”y(m1)|V{_'_, =-1, 7Iy(m2)|V{___, =

(5.8)

LEMMA 5.2. There is an M-intertwining correspondence between (5.1) and

(5.8), that is, whenever n/2 is odd,
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Vio.h=Vi--»
Vo= Ve,
ViLo = Vi,
Vi = Vi,
whenever n/2 is even,
V?o,+) - V(y+,+) >
Vo, = Vs>
ViLo = Vi

Y
Vio = Vi

ProoFr. According to (4.1) and (5.6), we have

gy ((ﬁ

ny(ml)(zl zZ) = ﬁn (Z'i—kzg)

)
-/ -1
= (- 1)"/“"z;"‘z§\./_
The signature of =, (m,) is determined by n/2 + k. Combining this fact with
(5.7) and Lemma 5.1, we have the desired results.
For simplicity, we denote ¥ ., by (-, *).
LEMMA 53. Let w; (i=1, 2) be as in §4. Then n,(Ad(C)) and m,(w;)
satisfy the following diagram.
(+, +) 224D (4, 1)
(+, =) —— (= +)
(= +)— (+, )
(= -)— (=)
(4, 4) 200 (4 (4, )22 (4
(+, =) ——(+, =) (+, =) —— (-, —)
(=) —— (=) (—+H)—— (- +)

’ ) ————b(_9 +) ('-’ —)——') (+’ '-)

Since the proof is simple, we leave it to the reader.
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§6. The determinant of the C-function

In this section, we shall give an explicit formula of the determinant of
B;’(}—’:P:v). Let
miw) = m,W)ly;,  (weM)

()
"n/zq F<s+1—(n/2 k))rs+l+(n/2 k))

0<k<n/2

<s+1+(n/2—k)>’
2

and for v in a¥,

r

a” (v, y) = ,./zl_k[ (S +1—(n2-— k)>

Osk<n/2 r
2

var(5)r(3)

o= I F(s +1—(n2— k))r<s + 1+ /2~ k)>’

0<k<n/2

a ()=

3@1} 1 F(s +1 —;n/2 k)>r(s +1 +§n/2 — k)>’

where s =v; — v,, and n is a nonnegative even integer satisfying (4.1).

LEMMA 6.1. Suppose y is in K and o is in M such that V) # {0}. Then

we have
det(By(wy, v)) = a’(v, 7).

The assertion of the lemma is an immediate consequence of Corollary

44 (1) and Lemma 5.2. The proof is left to the reader.

THEOREM 6.2. Suppose y is in K and o is in M such that V) # {0}. Then
we have

1) if o=(+, +),

det(BZ(P: P:v)) = Const-a™*(wywyv, p)a**(wyv, p)a™* (v, 7),
@ i o=(+ )

det(B;’(P :P:v)) = Const- o™ " (wyw; v, p)a " H(wyv, p)at ~(v,7),
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B) if o=(—,+),
det(BZ(P: P:v)) = Const-a™ " (wyw, v, p)a™ " (wyv, )™ (v, 9),
@ if o=(—,—)
det(B;'(I_J :P:v)) = Const-a ™t (wyw, v, )™ " (wyv, y)a™ (v, ),
Proor. We shall prove (2). By Lemma 5.3 we have
B{" (P P:v) = BS(wy, vl D (wy) BS D (wy, wy vyl O (wy)
BT D (wy, wywy V) P (wy )1t D (wy) (6.1)
By Corollary 4.4 (2) and Lemma 5.3 we obtain
B{" 7wy, wyv) = m,(Ad(C))B{™ P(wy, —(Ad(C) w; v))7,(Ad(C)) .
Therefore (6.1) is equal to
B I (wy, vl (wy )nl ™ H(AD(C))
B P (wy, —(AD(C): wyv)nlt D(A(C)) ™ (w,)
BT ) (wy, wywy W) P (wy )l D (wp) (6.2)

Let i=0 or 1 and ¢’ in M. We extend B] (w, ') to an operator E;’(wi, ‘)
of V7’ by

- B/ (w;,") on¥}

By (w;, ) = (6.3)

identity otherwise

and define
BY(P: P:v) = B"(wy, v, (w;)n,(Ad(C))

B D(wy, —(Ad(C) wyv))m,(Ad(C))m,(w,)

SB D wy, wywy ), (W), (wo) - 6.4)
Then from (6.2) we have

B3(P:P:v)ly, = BI(P: P:v) (6.5)
and

det(BI(P: P:v) =d, -det(BS(P: P:v)), (6.6)

where d, is a nonzero constant which is independent of v. On the other
hand, from (6.3) and (6.4) we have
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det(BZ(P: P:v)) = d,-det(B{ ) (wy, v))det(B™ (wy, —(Ad(C)-wyV)))
“det(B{™ D (wy, wywyv), 6.7)

where d, is a constant such that |d,| =1. By Lemma 6.1 and (6.6), (6.7),
we can prove (2). Similarly, we can prove the others.

§7. The C-function for SL(4, R)

Let G be SL(4, R), the group of 4-by-4 real matrices of determinant
one. Let

0 = —transpose ,
K = S0(4),

a = {diag(x,, x,, X3, X4)|x; € R, Y {o; x; = 0} ,

M = Zk(a),
1 % % x
*  x
N=49geGlg= ,
1 =
1
P =MAN,

and define linear functions e¢; (1 <i<4) on ac by
ei(diag(xy, x5, X3, X4)) = X; .
Then each v in a¥% can be written in the form
v=v.e; + v,e, + vze; + vse, veC 1<i<4),

and we write (v, v,, v, v,) for v. The a-roots of g are e;—e; (1<i, j<4,i#))
and the simple a-roots are e; —e,, e, — e3, €3 —e,4. Let

01 1

-1 0 01
w1: =

W3=
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Their adjoint actions on a are corresponding to the simple reflections. We
set wo = w, w,w; w;w,w,;, then we have

A(P:P:0:v) = R(wy)Ap(wy, 0, v) .
By the relation
Ap(Wg, 0, v) = Ap(Wy, WyW W3 W, W, G, WoW; W3W, W, V)
- Ap(Wy, Wy W3W, W, G, Wy Wy Wy W; V) Ap(Wy, W3W, W, G, Wyw, w; V)
- Ap(W3, Wyw, 0, Wow, V) Ap(W,, Wy a, w; V) Ap(w,, 0, V)
and Corollary 3.3, we have
BV(P : P:v) = B,(wy, v)m,(w;)B,(wz, w; V)1, (W;) B, (w3, wyw; V)T, (w3)
*B,(wy, wyw,wy V), (wy) B, (Wy, wy wyw, wy V)T, (W)

'By(Wn W Wi W3 W Wy V)ny(W1)7fy(Wo) . (7.1)

LemMma 7.1. If v is in a¥, {(Rev,a) >0 for all « >0, we have

A I
® 1 |x 1
1 - —(v1—v2)-1 -
(1) B,(w,, V) j . fx) | 69 dx ,
. ¢ fx) ) )
[ () 11
_” —(v2-v3)-1 b 1 —x d
(2) By(WZ’ V) J‘_w f(X) nv f(x) x 1 X,
L f(x)J J
(f(x) 117
3) B,(w3,v) = f::f(x)—(v;—u)—lny ?% fx) . dx.,
L v X 1J J

where f(x) = (1 + x?)'2,

Since the results are obtained by an easy computation, we leave the
proof to the reader.

We shall recall irreducible unitary representations of K. Let H be the
field of quaternion numbers, the algebra over R with basis 1, i, j, k and
multiplication law i? = j2=k*=—1, ij=k, ki=j, jk=i If z=1z, +iz, +
jz3 + kz,, we set Z =z, — iz, — jz; — kz, and |z|> = zz. Then we have
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|z|2 =22 + 22 + 23 + 2.

Let Sp(1) be the group of all quaternion numbers such that |z|> = 1.
We identify Sp(1) with SU(2) as follows. Each element z =z, + iz, +
jz3 + kz, in Sp(l) can be written as
z=x++jy, (x=1z, +izy,y=123—liz4).

Using the above notation, we set
o(2) = <x __y> eSUQ).
y X

Then ¢ is an isomorphism from Sp(1) to SU(2).

We identify H with R* by the map w — (w;, w,, Wy, w,), (W = w; + iw, +
jws + kw,). For each (z,z') in SP(1) x SP(1) and (w;, w,, ws, w,) in R* we
define a map ¥ from Sp(1) x Sp(1) to K by

Yz, 2')(wy, wy, wy, wy)) = 2wz’

Then (Sp(1) x Sp(1), ¥) is the universal covering group of K.
We set

t=y-(p7' x 07,

LemmA 7.2. (SU(2) x SU(2), 1) is the universal covering group of K.
Furthermore, for each vy in K there exist unique nonnegative integers m, n
satisfying the following relations,

m+n=0 (2 (7.2)
and

PN

@R, ~m, 01, (unitarily equivalent) (7.3)
where #, (n > 0) are defined in §4 and ® denotes the exterior tensor product.

We identify V? with V" ® V" by Lemma 7.2.

~

LEMMA 7.3. Suppose y is in K, m, n are nonnegative inegers satisfying
(7.2) and (7.3) and V™, V" are the spaces defined in §4. Let

w=zpzy 0<i<m), v=zI"z24 0O<j<n).

Then for x in R we have the following relations,
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1 —x -1
1 b 1
(1) ﬂ:), m f(x) (ui ® vj)
)
1 — ./ —1x\m—m2-G-)
=<T> ®),
fx) !
1 S(x)
2 T, m 1 —x w® Uj)
X 1

_(1 - —1x
a Sx)

(m+n)/2—(i+j)
) w,®v), 0<i<m 0<j<n).

75

Proor. We shall prove (1). Let {X;}, ;.3 be the basis of su(2) given

in Lemma 4.2. We then have for ¢t in R
iy ® 7 (exp tX5, exp —tX5)(4; ® v;)
= T,(exp tX3)u; ® 7,(exp —tX3)y;
= (™2~ 1y ) @ (e~ ™2~ \/'_“vj)
= elm=mi2=G-)/1y & v,
and by an easy computation, we obtain

e .
cost —sint

sin ¢t cos t
1(exp tX;, exp —tX;) =

L
(1
1(exp tX;, exp tX;) = !
ptds, eXpids) = cos t
L sin t
From (7.4), (7.5) and Lemma 7.2 we have
cost —sint
sin t cost
u; ® v;

= lm—m/2—(i—j) \/-lrui ® Vi,

O<i<mO0<j<n)

—sint

cost
J

O<i<mO<j<n).

(7.4)

(1.5)

(7.6)
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Putting cost = f(x)"!, sint= x/f(x), we obtain (1). (2) can be proved
similarly.

We put

C=212, /—1(1 _i) eSU(Q).

Then we have the following

LEMMA 7.4. In the setting of the last lemma we have for x in R

() -
1 1 —x
o f(x) x 1
f)
1 —x -1
= ,(i(C, O)n o n,((C, O) 7.
AR T f(x) fx) !
f(x)

ProOF. We note that
C—IXIC = X3 ’ (7.7)
and we have for ¢t in R

i, ® 7, (exp —tX,,exp —tX;)

i & ,(Clexp —tX3)C™", C(exp —tX3)C™")
= ﬁm ® ﬁ"(C, C)ﬁm ® 7?n(exp _tX39 €Xp _tX3)7~tm X ﬁn(ca C)_l . (78)

By an easy computation we obtain for ¢ in R

1

t —sint
1exp —tX,, exp —tX,) = cost —sim 71.9)

sin t cost

1
Therefore, from (7.6), (7.8) and (7.9) we have
1 1
cost —sint
= CC . =
! sint cost (C, O, cost sint | | UG O

1 —sint cost
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Puting cos t = f(x)7}, sint = x/f(x), we obtain the desired relation, and this
proves the assertion of the lemma.

Let m, n be nonnegative integers and s in C. For each integer i, j such

that 0 <i<m, 0<j<n, we set
s s+ 1
r
(2) ( )

<S+1—((m—n)/2—(l—1)) r S+1+((m—n)/2—(l—])))

)
Voro)r(3)

=F<s+1—((m+n)/2—(z+1))>r<s+1+((m+n)/2—<i+j»>'

%, (s, (m, n))

r

B, j(S5 (m, n))

2 2
As is easily seen, the element i(C, C) in K normalizes a§. Thus i(C, C)

is in M’. We then have the following

LeEMMA 7.5. Suppose v is in a¥- such that (Rev,a) >0 for all « >0 and
let y, m and n be as in Lemma 7.3. Then

(1) By(wl7 v)(u; ® Uj) = ai,j(vl — vy, (m, n))(u; ® Uj) s (7.10)
By(Ws’ V)(u; ® ”j) = :Bi,j(v3 — Vg, (M, n))(4; ® Uj) , (7.11)

O<i<mO0<j<n).

(2) ny(l(c’ C))By(W2> v)ny(l(c’ C))_l = By(WS’ —(Z(C, C) V)) ’ (712)

where 1(C, C)'v is the element in a% defined by
(C, C)v(H) =v((C,C)'H1(C,C)), (Heag).

Proor. We shall prove (1). We have
By(Wla v)(u; ® vj)

= J‘_"‘; f(x)_("l_")_lny m ) u; ® v])dx ,

fx)
and by Lemma 7.3 (1)
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@© / __ (m—n)2—(i—j)
= x)"T < x) (u; ® v))dx ,
f_w fx) 70
and by A3
= o j(vy — V2, (m, n))(u; ® vy) .

This proves (7.10). In the same way, we can prove (7.11). This proves (1).
Furthermore, (2) is a direct consequence of Lemma 7.4.

§8. The M-isotypic components of y

In this section we shall describe the M-isotypic components of y in
K. Let m, n be the nonnegative integers given in Lemma 7.2 and k=0 or
1. If i, j (i, je N) satisfy (m —n)/2 — (i — j) =k, we write (i, j) = k for the
above relation.

m—ii i m—i n—j,j j ,n—j
Vi, = C(z77'zy + 2127 ) ® (217723 + z12377),
i,)=k
0<i<m,0<j<n
Vi, = Cizy "2y + 2123 7) ® (217725 — 21237),
@i,))=k
Osisn}n.OSan
Vi = Cz7 ™'z — 2323 7) @ (21725 + z12377) ,
@i,))=k
osisﬁ’t,osjﬂ
Vi = C(z7™'25 — 21257 ® (217725 — z{z37).
i, ))=k
0<i<m,0<j<n

Then we have

VP V™ =Y oo VimPsy + Vi) + Vil + Ve, 8.1)
(orthogonal direct).
Let
-1 1
-1 -1
m1 = 1 ) m2 - _1 )
1 1
1
_ 1
my = 4
—1

Then M is generated by m,;, m,, m; and, from (7.5), (7.6) and (7.7), we have
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m,; = i(exp nX;, exp —nX3)

A

AT e

m, = 1(exp —nX,,exp —nX,)

—iC. C),<(\/:_1 J-1

A e

and

(8.4)

m= () (=)

Since M is abelian and m,, m,, m; are of order two, for each y in K its
representation space V? is decomposed as

Vi=Vivnt Vet Vi -+ Vi -

+ VetV e+ VL +VEZ Ly, (8.5)
(orthogonal direct),
where
ny(ml)lVL.‘_‘., =1, ny(ml)]V(y_,._.) =-1,
7‘-,(’"2)|V{.,,., =1, ny(mZ)lV{_'_',, =-1,
T, m3)ly,. ., =1, Tm3)lyy,.,., = —1,

* denoting + or —.

LeEMMA 8.1. Suppose y is in K, m, n are nonnegative integers given in
Lemma 7.2. Then there is an M-intertwining correspondence between (8.1) and
(8.5), that is, whenever (m — n)/2 and n are even

V(g',l':,)ﬂ + V(g',l’—".)—) - V<’+,+,+) )

V(g)”,l’-:,)—) + V}g)",l,—".)ﬂ - V(K-,—,+) s
(m, (m,n)

Ve + VD > Vv

ymn 4 pymn -,y
1,+,-) 1,-,+) (=-=-)>

v = Y - b4 = = .
V(+.+.—') - V(+,—,‘) - V(—»+.+) - V(l,'-‘*‘) - {0} ’

whenever (m — n)/2 is odd and n even
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Ve + V8 = Vi -4
V&) + Vi = Vi en) s
Vil + VE o 2 V2 - o)
Vo + Vg = Ve

Vv = V- =Vl =W - =1{0};
whenever (m — n)/2 is even and n odd

Vol + Ve, =
Ve, + IQ{,’{'!‘Q,—» Gt
VErhn + Vg = V- b
Vo + Vo 2 Ve
Ver =Vemm =Wor =Wy =1{0};

whenever (m — n)/2 and n are odd

I/(() +,+) I/(0 - —) (v+,+,—) 9
Vo) + V8 > Vi - o
V((lm’+ +) V(1 ¥, +) -Vl
VDo + Vg > V-,
Vi =Vion=W =W = {0} .

PROOF. Let m, n be as in the lemma and i, j integers such that 0 <i <m,
0<j<n According to Lemma 7.2 and (8.2), we have

n (ml)(zm iz} ®Z1-122)

=1~rm®ﬁn<< 1 _\/_—1),< -1 _\/‘_j) >(Zm i l®Z'1l JZz)
= (v _121)m_i(_\/ ‘lzz)i®(_\/ _121)"—j(\/ _lzz)j

= (—1)m=mR*G=igmoi @ 207izy,  0<i<m0<j<n)

and the signature of n,(m,) is determined by (m — n)/2 — (i — j). Furthermore,
by Lemma 7.2 and (8.4) we have
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7, (m3) (@02} ® 2477z

(G I e
=non (V7)o (VL ) e

_(_l)n( 1)(m n)/2+(@i— j)zm i l®zl zz’

®»

=7,

O<i<mO<j<n)
and the signature of m,(m;) is determined by that of n,(m,;) and n. On the
other hand, by Lemma 7.2 and (8.3) we have

7, (my) (27725 + 2125 7)) ® (217725 + 2{23'7))

=m®maam®m«v”

i ® 7,(C, C) (27"

A

izb + 2L 20 @ (20 Vzd + 2 z87)).

We may assume m —i>i, n— j>j without any loss of generality. Thus
the last expression equals

#, @ 7,(C, C)ﬁ,,,@ﬁ,,((v -1 vl

-1 -1
=)0 A) )
(@72 /=" ((2y + 22)" (21 — 22)' + (21 + 23)(2y — 2)"7)

® (21 + )" 72y — z5) + (24 + 25)(zy — 2,)" 7))

-moncondn((V ) (o))
(@72 /=123 — 23) (24 + z)™ % + (zy — 2™ )
® (23 — 23)((21 + 22)" ™% + (2, — 2" %)),

by (5.2) and (5.3)

ST A))

®
< -1/2, \/_)m+n ((Zf _ 22)' 2 2<m , 2l>z;n 2i- pzp>
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. —2j .
® <(Zf -y ) 2 (n J) Z'i‘“‘%))
054‘1126—21' q

= (= )"27, @ 7,(C, C)((—Z_”2 O (ed = 23y

—92i . —2i .
.< Z 2<m l> ZT_Zt—ng> ®< Z 2<n 21) z'll_zj_ng>>
0O<p<m-2i )4 0<q<n—2j )
p=0 q=0

= (= )" + 24287 @ (24 2h + 225 )).
In the same way, we obtain
7, (ma) (772 — 25287 @ (24 72d — z{z57)
= (= D)™z — 2257 @ (217725 — 2] z57Y))
and
7, (my) (277723 £ 21257 ® (217724 + (—1)z{z57))
= (=)™ (2725 £ 20287 @ (@1 7z £ (—1)z{z57)).

These formulae lead us to the assertion of the lemma.

LEMMA 8.2. Suppose y is in K and C as above. Then we have the
following relations,

) m,((C, C))m,(m,)m,((C, C))™" = m,(mym;m3) ,
@ m,((C, C))m,(m;)m,((C, C)" = m,(m3) ,
©)] 7,(t(C, C))my(m3)m,((C, C))™" = m,(m,).

Proor. We shall prove (1). From (8.2) we have
m,((C, C))m,(my)m,(1(C, C))™' = m,(1(C, C)r(exp nX3, exp —nX3)i(C, C)7Y).
By (7.7) and the relation

cost —sin t
1lexp —tX,,exp —tX,) = ! 1 , (teR)
sin t cos t
the last expression equals
= m,(m;myms) .

Next we shall prove (2) and (3). From (8.4) we have
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ny(l(c’ C))ny(m3)ny(l(ca C))_l

csfeeo(T )

-1 -1
Since <( _ 1>,< 1)) is in the kernel of i, the last expression is

i

equal to

7, (z(c, C)t((_‘/_vl J—_1> !
= ny(z(c, C)z((ﬁ_\/?)—l’ (

by (8.3)

(V7 o)
S ) peer).

=7, (m,) .

This proves (2). We have (3) from (2).

For simplicity, we denote V(. ., by (x, *, *).
COROLLARY 8.3. Suppose 7 is in K and C as above. Then we have the
following diagram.
(+, +, +) 2UEOL (4 4 4
(+, = +) —— (=, +, )

(_’ +, —) — (+’ > +)

(+, 4+, =) —— (=, —, +)
+, = =) — (+, -, -)
(= + +) —— (= + +)
(= —+) — (+, +, )
LEMMA 84. Let y be in K and w, (1<i<3) be as in §7, then m,(w,)
satisfy the following diagram.
(4, +, +) 20, (4 4y

(+’ ) +) —_— (+1 T +)
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(= +, =) —— (= —, )

(== =) —— (= +,-)

(+, +,—-) — (+, +, )

(+,— =) —— (+, =, )

(= ++) — (= = +)

(= —+) —— (=, +,+)
(+, 4+ +) 22 (1 4) () 2 (4 4 )
(+,—+)— = —-) () —— = 1)
(—+,-) — (= +,-) (—+-)——(=— )
(- — ) — M —+) (- -)—— (= +, )
(+, 4, ) ——H +, ) (++, ) ——(+, - )
(+,— =) — (== +) (+,— ) ——(+, +, )
(= +,+) — (= ++) (= +, +)—— (= +, +)
(= —+)——(+ =) (=) — (= — +)

Since the proof is simple, it is left to the reader.

§9. The determinant of the C-function

In this section we shall give an explicit formula of the determinant of
B;’(P:P:v). We define the functions a’(v, (m, n)) and B°(v, (m, n)) in v (v € a¥)
as follows:

if (m —n)/2 and n are even,

o, mom) = T o0 —va,(mn) ] Bl — vy, (mom)),

0<i2tm2) s(k<[m/2]
0<j<[n/2] <I<[n/2]
CX+’_’+(V’ (m3 n)) = l_l 0 ai,j(vl — V2, (m’ n)) 1—[ ABk Wy — Vo, (m, n)) )
oé‘.’i)ﬁn/z] om0
0<j<[n/2] 0<i<[n/2]

a_‘h—(v, (my n)) = . 111 ai,j(vl — V2, (m’ n)) n ﬂk I(vl V2, (ms n)) s
0L 2mi2) 0k 252
0<j<[n/2} 0<I<[n/2]
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(v, (m, n)) =

I

@i, )=1
0<i<[m/2]
0<j<[n/2]
ﬂ+,+ +(V, (m’ n)) =

85
(V1 — vy, (m n)) o l—[ Bi,i(vi — v,, (m, n))
H Bi.j(vs
@i,j)=

Sl<[n/2]
V4, (m’ n)) n ak,l(vii — V4, (m) n)) )
=0 (k. 1)=0
0<i<[m/2] 0<k<[m/2]
0<j<[n/2] 0<i<In/2]
ﬁ+,_’+(v9 (m’ n)) = l_[ ﬁl ](v3 V4, (m’ n)) kll—[ ak,l(vi’a — Vs (m7 n))
o<':1<)[_m/z1 0k 25m21
0<j<[n/2] 0<i<[n/2]
ﬁ_’+ _(V, (m, n)) = 1_1 :Bz _](v3 V4, (m7 n)) kIl—[ ak,l(v3 - v4a (m, n))
0<;<[m/2] oél€<)[=m1/2]
0<j<[n/2] 0<1I<[n/2]
B_’_’_(V, (m’ n)) = l_[ ﬁl ](VS V4> (m, n)) kl_[ ak,l(v3 V4, (m, n)) ’
o<.<[_m/2] _(k'l<[=m1/2]
0<j<[n/2] 0<l<[n/2]
the others are equal to 1;
if (m —n)/2 is odd and n even
a7 (v, (m, n)) =

11

a; j(vy —
(i, ))=0

V2, (m9 n)) l—[ ﬂk l(vl V2, (m’ n)) s
0<i<[m/2] 0<k<[m/2]
0<j<[n/2] 0<i<[n/2]
a+ * +(V, (m’ n)) - (‘H o i _](vl V2, (m’ n)) I_I Bk l(vl V2, (ma n))
L=
Osil<)[m/2] Os(k<[m/2]
0<j<[n/2] 0<i<[n/2]
(V, (ma Yl)) = ) H o; j(vl V2, (ma n))
0 i 25m2
0<j<[n/2]
a7 (v, (m, m) =

l_[ Be.1(v1
1] e

V2, (m, n))
k<[m/2]
s <[n/2]
( . l,j(vl — Va, (m5 n)) l—[ Bk l(vl V2, m, n))
i,j)=
OsiQ[m/2] 0_<(_k<[m/2]
0<j<[n/2] 0<I<[n/2]
Bt " (v, (m,n) = 'l'_[—o Bi,j(v3 vy, (m, n)) l_[ o, 1(v3 — Vg, (M, 1))
0Si2m2) oS hva
0<j<[n/2] 0<i<I[n/2]
ﬁ+ * +(V, (m n)) = l_[ ﬁz ](v3 Va, (ma n))
o<,<[_m/21
0<j<[n/2]
B (v, (m,n)) =

o, (V3 — V4, (m, 1))
(k,1)=0
0<k<[m/2]
0<l<{n/2]
H B:.i(vs
(i, j)=1
0<i<[m/2]

Va, (ma n)) H
0<j<([n/2]
B (v, (m, m)

<[n/2]

ak,l(v3 — V4, (m’ n)) s
(k,)=1
0k <[m2)
0<i<{n/2]
('l'—[—l ﬁi,j(v3 V4, (m’ n)) l_[ ak I(V3 - V4, (m n)) ,
osiZima s( l<)[m1/2]
0<j<[n/2] o<l
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the others are equal to 1;

if (m —n)/2 is even and n odd,

T, mm) =[]
(i,)=0
0<i<[m/2]
0<j<[n/2]

" T(, (mm) = ]
(i,))=0
0<i<[m/2]
0<j<[n/2]

Fv,mn) = ]
(i,)=1
0<i<[m/2]
0<j<[n/2]

mom) =[]

&;, j(V1
o, j(Vl
a Tty

&, j("1

Frommmy = ]

0<1<[m/2]
0<j<[n/2]

Bi, 1(vs

BT (v, (m,m)) =
(i,j)=0

0<i<[m/2]

0<j<(n/2]

[1 B
(i,)=1
0<i<[m/2]
0<j<[n/2]

l_[ Bz ](v3

O<z<[m/2]
0<j<[n/2]

B (v, (m,m)) =

B—’+’+(V, (m9 n)) =

the others are equal to 1;

if (m —n)/2 and n are odd,
BT, mm) =[]

(i,j)=0
0<i<[m/2]
0<j<n/2]

T mm) = ]
(i,J)=0
0<i<[m/2]
0<j<ln2]

a o mm) =[]

a;, j(vl

"t mn) =[]
Oits)[mlﬂ]
0<j<[n/2]

— V3, (m, n))
— vz, (m, n)
— Vs, (m, n)
— Vs, (m, n)) kl_[
[T Bisvs—

— Va, (m’ n)) H

&, j(Vl -
- V29 (m’ n))
o, j("l -

o, j(V1 -

H Bei(vy —
1_[ Bi, (v —

H R\

(k n=1
<[m/2]

g
0<I<[n/2]

ot (v

%, 1(v3

V4’ (m’ n)) l—[ o
“k.t("a

vy, (M, n)) l_[ ak,l(v3

v2 ’ (m9 n)) l_[
(k,1)=0
0<k<[m/2]
0<l1<[n/2])

H Bii(v1 —

Osk<[m/2]
<1<[n/2]

n By —

0<k<[m/2]
0<l1<[n/2]

H ﬂk vy —

05k<[m/2]
0<1<[n/2]

Br, (vt

vz, (m, n))

V2, (m, 1))

V2, (m’ n)) ’

V2, (m9 n)) s

— V2, (m,n),

3~ V4 (m9 n)) s

— Vs, (m’ n)) s

— Vs (m’ n)) )

— Vs (m’ n)) s

- VZ’ (m’ n)) ’

V2, (my n)) ’

vz, (m, n),

vz, (m, n)),
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Bt (v, (m, n) = Bij(vs —va, (m,m)) [T e i(vs — va, (m,m)),
@i,))=0 (k,1)=0
0<i s[m/2] 0<k<[m/2]
0<j<([n/2] 0<I<[n/2]
B+'_'_(V, (m, n)) = 1—[ ﬁi,j(v3 — V4, (m, n)) kll_[— ak,l(v3 — Vs (m9 n)) »
é Js(_m/ 2] 0% 2tm21
0<j<[n/2] 0<I<[n/2]

Bt (v, (m, n) = 11 B, i(vs — V4, (m, n)) l’_[ . %, 1(V3 — Va, (m, 1)) ,

0<1<(m/ ] S( k<[m/2]
0<j<(n2] 0<I<[n/2]
ﬂ_’_,+(v’ (m7 n)) = l—l ﬂl 1(v3 V4, (m’ n)) kll—l— ak,l(vé} — V4, (m’ n)) )
o125 0k 252
0<j<[n2] 0<1<[n/2]

the others are equal to 1.

LEMMA 9.1. Suppose y in K and o in M satisfy V) # {0}. Then we have
det(B;(wh V)) = ao’(v’ (m’ n)) s
det(By (w3, v)) = B°(v, (m, n)) .

Proor. We shall prove only in the case that ¢ is (+, +, +) and
(n —m)/2, n are even. The proof of the other cases is similar to the above
one and left to the reader. Let u;, v; (1 <i<m,1<j<n) be as in Lemma

7.3. From Lemma 8.1, {#; ® v; + thy,_; ®V,_;, U ®V,_j + Up_; ® U} <i<m is the
basis of V7. Furthermore, by Lemma 7.5 we have 1<jsn

B,(wy, v)(4; ® v; + Up—; @ v,,_})
=0 j(vy — v, (M, n))(U; ® 0 + ;@ V)
B,(wy, v)(4; ® v,—; +u,,_;®v))
= B, j(vi — V2, (M, n))(; @ v, + Up—; ® 1)), l<i<ml<j<n).
Therefore, we obtain (1). Similarly, we can prove (2).

THEOREM 9.2. Let y be in K and o in M such that V) # {0}. Then we
have the following relations.

1) If a=(+, +, +),
det(BZ(P: P:v))
= Const-a™ "+ (wyw, wyw,wy v, (m, n))B" " *(—1(C, C)- wywyw,w,v, (m, n))
T (wywywy v, (m, )BT (wywy v, (m, n))

'B+,+,+(—1(C, C) Wl v, (m’ n))a+’+’+(v’ (m’ n)) :
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Q If o=(+,+, )
det(BJ(P: P:v))
= Const-a™ " *(wywywawywy v, (m, m)B™ "~ (—1(C, C) wywyw,wy v, (m, n))
at T T (wawawyy, (m, )BT T (wywy v, (m, m))
BT (=UC, O)-wyy, (mym))at (v, (m,n)).
B If a=(+,—, +),
det(BS(P: P:v))
= Const o™ =" (wywywyw,w, v, (m, n))™ 7" (=1(C, C): wywyw,wyv, (m, n))
T T T (Wywawy v, (m, n))BT T T (wywy v, (m, n))
B (—=1(C, C) wyv, (mym)at T (v, (mym).
@ If o=(+,—, )
det(B(P: P:v))
= Const-a™* " (wyw; wywywy v, (m, n))B~**(—1(C, C)- wywyw,w,v, (m, n))
0T T (wawywy v, (m, m))BT T T (wowy v, (m, n))
BH T (—1(C, C) wyy, (myn))at (v, (m, n)).
S If o=(—, +, +),
det(BS(P: P:v))
= Const- ™" " (wyw; wyw,wyv, (m, n))B™"*(=1(C, C): wywsw,wyv, (m, n))
ot T (wawywy v, (m, n)BE T T (wywy v, (m, )
BHTT(=1C, C) wy, (myn)a T (v, (m,n)).
©6 If o=(—,+, —),
det(BZ(P: P:v))
= Const-a™ ™ " (wow;wywywy v, (m, )™ "7 (=1(C, C)- wywswyw,v, (m,n))
0T (wywywy v, (m, )BT (wywy v, (m, n))
BT (=UC, C)-wyv, (m,m)a (v, (m,n)).
N If o=(—,—, +),
det(BS(P: P:v))
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= Const a7~ (Wywywywowyv, (m,n))B"""(—i(C, C): wywsw,w,v, (m,n))
T (wawawy v, (my )BT (wawy v, (m, n))
B (=u(C, C) wyy, (myn))a” " (v, (m,n)).
@ If o=(—,—,-)
det(BS(P: P:v))
= Const- o™ " " (Wyw, wywowy v, (m, n))B" 7 (—u(C, C): wywyw,wy v, (m, n))
T T T (wywawy v, (m, )BT T T (wawy v, (m, n))
B (=uC, C)-wyy, (m,n)a” "7 (v, (m,n)).
Proor. We shall prove (2). Let
yw) =Wy, (weM)
By (7.1) and Lemma 8.4 we have
By(P: P:v) = B{""(wy, ym{ " (wy ) B wy, wyv)mlt ) (wy)
BT T (wa, wowy W) T D (wa) BSY T ) (wy, waw, wy v)mtt T )(wy)
“BST T T (wy, wy wawa wy VTS T P (W) BST T P (g, wywy wyw, wy v)
'n(y-'+'+)(W1)“(y+'+'—)(Wo) . 9.1
By (7.11) and Corollary 8.3, we obtain
B{" N wy, wyv) = 7l P(C, C)BS T P (wy, —((C, C) wyv))alt )
(€, O

and
B{" 7wy, wywawawy v) = 1l 7 0(C, C)BST T I (wg, —((C, C) wy wyw, wy v))
T I0(C, 0.

Therefore, (9.1) is equal to
B D wy, v)rlt e (wy ) a0 0(C, C)
BT ws, —((C, C) wyv))altH20(C, Ol (wy)
BT (wy, wowy V)t T D (wy) BT D (wy, waw,y wy vl T D (wy)
T I(C, C)BS T (s, —(U(C, C) wy wywywy v))

A UC, O P ows) B Dy, waw, ey )
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T wy)mlt T  (w) 9.2)

Let i be an integer such that 1 <i<n—1 and o in M. We extend BZ (w;, *)
to an operator By (w;, *) of V? by

B (w;, ) on V],
By (w;, ) = { , 9.3)
identity  otherwise

and define
BI(P: P:v) = B 7wy, v)m,(wy)m,((C, C) B~ P (ws, —((C, C)-wyv))
1, (U(C, C) ), (w,y) B ) (wy, wywy v)m,(ws)
“B{H O (wy, wawywy ), ()7, (1(C, C))
- B (ws, —(1(C, €) wywywywy W), (1(C, C) 1wy (w,)
~§$_’_’+’(w1, Wy Wy WaW, Wy V)T, (Wy) T, (W) 9.4)
Then from (9.2) we have
B(P:P:v)ly,=By(P:P:v) (9.5)
and
det(BI(P: P:v)) =d, -det(B3(P: P:v)), (9.6)

where d, is a nonzero constant which is independent of v. On the other
hand, from (9.3) and (9.4) we have

det(B2(P: P:v)) = dy - det(B+ (wy, v)) det(BC D (wy, —((C, C)- ;)
~det(B{" (w3, wyw, v)) det(BSH T 2 (wy, waw, wy v)
~det(BSH ™ (wy, —((C, C)- wywywywy V)
~det(BS 7 P (wy, wowy waw, wyv)), 9.7)

where d, is a constant such that |d,| =1. By Lemma 9.1 and (9.6), (9.7),
we can prove (2). Similarly, we can prove the others.

Appendix

A.l. Suppose that q is a positive integer and Rez > q/2. Then
Jot971(1 + t2)™2 dt converges absolutely and is equal to 1B(g/2,z — q/2) (see
[11], p. 262).
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A.2. Suppose that A is an element in C such that Re A < —1 and | is an
integer. Then we have

© At+2 N
(*) J 1+ /=1 x**20 - /-1 x)* Pdx = Y ml(—A—1) .
-® r A+l r A=l
2 2
Proor. We shall first prove inductively that () holds for all nonnegative
integers I. If [ =0, then we have

r (1 + /=1 01 - /=1 x)*2dx

—a0

® 1 A1
= 2)4/2 = — —_— — =
2L (1 + x*)"dx B<2, 5 2)

22— i— 1)

}. 2
r<—5>
If /=1, then we have

j (1 + /=1 )*D2(1 — /1 x)*D2 dx

J (1 + x2)*D2(1 4+ /1 x)dx

—a0

J (1 + x2)().—l)/2dx + /__IJ x(l +x2)().—1)/2dx'

Since the second term is equal to O, the last expression equals
1 A A+1
o, A)_r<i>r<‘i>r<‘ )
2 2) A—1 A+1
r{-—" (22—
(3 (=5)
_ 22 2nn(—A—1)
- A—1 A+ 1)
rl|-2—=)r( -2==
(=) ()
Let | be an integer such that [ > 2 and put

L(A) = j“" a +\/:‘1 X)AD(q ——\/—71x)“’”/2dx.
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Then it is not difficult to see that the following recurrence formula holds
() =21, — 1) — [,_,(4), (1=2).

Suppose that (%) is true in [ — 1, | — 2, then an easy computation gives that
(x) is true for [ > 0. By the relation

f (14 —1x)%2(1 — \/Tl x) D2 gy
=f 1+ \/—_71 x)u+1)/2(1 _ \/__‘1 x)(l—l)/2dx’

(*) is also true for [ <O.

A3. Let s be a complex number such that Re s > 0 and i, n nonnegative
integers such that 0 <i<n. Then we have

fw (1 4 x*)76r0rz (1 —V o lx x>n/2-idx

(1 + x2)1/2

()

s+ 1—m2—=0)\ [s+1+@m2-0)\
()

—a0

ProoF. By A.2, we have

© l__ /_1 l
j (1 + x*)*2 (mu—zx> dx

2*2n(— ) — 1)

NSRS B () (2

) 2
putting A = —s— 1, I =n/2 — i, we have
275 I(s)

=F<s+;_l>1“<s+;+l>
V()3
F<s+;—l)r<s+;+l>'

This proves the assertion of A.3.
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