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§ 1. Introduction

Let G be a semisimple Lie group with finite center, K a maximal compact
subgroup of G. Let θ be the Cartan involution of G fixing K. Let P be
a cuspidal parabolic subgroup andP=MAN its Langlands decomposition.

Let πPj<τ>v = ind^Nσ (x) v (x) 1 (σ in M, v a character of A) be the represen-
tation of the generalized principal series induced from P to G and Hp'σ'v

be its representation space. Then the operator A(P : P : σ : v) defined by the
integral

= \
JN

(A(P :P:σ: v)f)(x) = f(xn)dn , (/ e Hp^)
N

is an intertwining operator between πPt(TtV(g) and πp>σ>v(0) (g e G), where
P = ΘP.

In the following we assume that P is a minimal parabolic subgroup of
G. For y in K we denote by Hp'σ'v the y-isotypic component of Hp'σ'v.
Let Vy and Hσ be the representation spaces of y and σ respectively. Fol-
lowing Wallach [11], we consider the bijective map v (x) A -> LP(A, v, v)

(Ό eV\Ae HomM(V\ Hσ)) from Vv ® UomM(V\ Hσ) to Hp

y^\ where
LP(^, i?, v) is defined by

LP(A, v, v)(kan) = e-(v+p}(λo^A(πy(k-^v) , (k e K, a e A, n e N) ,

and the operator defined by the integral

Bγ(P :P:v)= \_ π
JN

Then the operator B7(P:P:v) satisfies

Ay(P :P:σ: v)LP(A, v, v) = Lp(A o By(P : P : v), υ, v) .

Moreover, By(P : P : v) commutes with πy(m) (m e M) and we can restrict By

to VJ, VJ denoting the σ-isotypic component of VΊ. We denote by By the
restriction of By to VJ. Wallach [11] has shown that By(P:P:v) is holo-
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morphic in a certain half-space of α£ and meromorphic in α£. In the relation
with the intertwining operator Ay(P:P:σ:v), it is important to study the
nature of the B°-function as a meromorphic function, such as its zeroes, poles
and their order.

Concerning this problem, Cohn [1] has proved that the determinant of
the C-function is a product of some quotient of /"-factors and gives a conjec-
ture on the rational numbers which appear in these factors.

Our main theorems give the determinant of the ^-function explicitly in
SL(3, R) and SL(4, R) cases. In another paper, we shall give an application
of the results to the analytical argument of the reducibility of the generalized
principal series representation (cf. Speh-Vogan [9]).

In making the conjecture of our results we have used the software "RE-
DUCE" for computers.

§2. Notation and preliminaries

Let G be a semisimple Lie group with finite center and g its Lie algebra.
Let f be a maximal compact subalgebra of g, g = I + p the corresponding
Cartan decomposition and θ the Cartan involution defining the decomposition.
We introduce an inner product Bθ on g in the standard way such that
BΘ(X, Y) = — B(X, ΘΎ\ where B is the Killing form on g. Let α be a maximal
abelian subspace of p. We fix an order in the dual space α* of α and put
n = ^α>0gα, where gα denoting the root space for the α-root α. Then we
have an Iwasawa decomposition g = f + α + n of g. Let υ = θn and m =

Zf(α), the cetralizer of α in f.
We now let K = NG(t) be the normalizer of ! in G, M = Zκ(a) the central-

izer of α in K and M' = Nκ(a) the normalizer of α in K. Let A, N09 and
FO be the analytic subgroups of G corresponding to α, n and o respec-
tively. Let P = MAN. The conjugates of P are called minimal parabolic
subgroups of G. Let 0>(A) be the set of all parabolic subgroups P of G such
that A is the split component of P. The elements in ^(A) are in obvious
one-to-one correspondence with Weyl chambers in α and the Weyl group
W= M'/M permutes the Weyl chambers transitively. For each w in W, λ a
character of A and ξ a representation of M, put

wλ(a) = λ(w~1aw) , wξ(m) = ξ(w

Then W acts on characters of A and classes of representation of M.
Let K and M be the set of all equivalence classes of the irreducible

unitary representations of K and M respectively. For each σ e M we fix a
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representation (σ, Hd) in σ and, abusing notation, we use also σ for σ. For

each 7 in K we fix an element (πyfF) in 7. Put p = pPo = i£α>0(dim gα)α.
We recall the generalized principal series representations. Let σ be in

M and v in a* (the complexfication of α*). Let C f f jV(G) be the space of all

continuous functions / from G to Hσ such that

f(xman) = e-
(v+p)(lo*a}σ(mΓlf(x) (x e G) .

Let #F°'σ'v be the completion of Cσ>v(G) by the norm

ι ι / ι ι 2 = ί \\m\\idk, (/ec
JK

The representation πPo>(T>v is given by

What we have just described is the "induced picture" for πPo>σ>v.

The "compact picture" is the restriction of the induced picture to K.

Here the corresponding dense subspace Cσ(K) is

{/: K -» Hσ|/ is continuous and /(/cm) = σ(m)~lf(k)}

and is independent of v. According to the Iwasawa decomposition G =

KAN0, each g e G is written as

g = κ(0)(exp H(g))n0(g) , (κ(0) e K, ff(^f) e α,

Then the representation is given by

If y is in K, the projection operator Ey is defined by

where d(y) and χy denote the dimension and the character of 7 respective-
ly. For 7 e K, we put

§3. C-functions and intertwining operators

In this section we recall the Harish-Chandra C-functions, intertwining

operators and the relation between them. Let P0 be as above. Let 7 be in

X, σ in M and A in HomM(Fy, H°\ where Vy denotes the representation

space of πr For v in α£, v in Ky, let

LPo(A, Ό, v)(kan) = e-(p+v*lo*a)A(πy(k-l)v) , (Jfc e X, α e X, n e ΛΓ0) .
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Then an easy computation shows that LPo(A, v, v) is in Hy°'
σ'v. Furthermore

the map Vy ® HomM(V\ Hσ) -> H^v given by v ® A -» LPo(A, v9 v) is a bijec-
tive X-intertwining operator.

We introduce formal expressions, often divergent, for operators that imple-
ment equivalences among some of these representations. For now, we work
in the induced picture. Let Px = MANί9 P2 = MAN2 be in 0>(A). For / in
Hp^\ set

A(P2:Pl:σ:v)f(x) = \ f(xv)dv,
JvίnN2

where Vv = 0Λ/Ί and dv is the normalized Haar measure on Vl Π N2 by

W^dΌ = 1 ,L
where p^ = pPι.

The following result is well known (see e.g. [6]).

PROPOSITION 3.1. When the indicated integrals are convergent,

A(P2 : P, : σ : v)πPι^v(g) = nP2^v(g)A(P2 : P, : σ : v)

for all g in G.

For w in M', let #(w)/(x) = /(xw). Then it follows from Proposition 3.1
that

APι(w, σ, v) = R(w)A(w~ίP1 w : P1 : σ : v)

satisfies
πp^wvOMp^w, σ, v) = APί(\v9 σ, v)πP l f σ t V( ) ,

whenever the indicated integrals are convergent.
We denote by Ay(P2 : Pt : σ : v) the restriction of the map A(P2 -.P^'.σ'.v)

to the space Jϊf l f < r» v. Then we have that Aγ(P2 : P1 : σ: v) is in
HomK(Hylt0ty

9 Hy2'σ'v). The inner product Bθ on g induces an inner product
on α*, which we denote by <•,•>.

PROPOSITION 3.2. // v is in α£, <Re v, α> > 0 for all α > 0 then

Ay(P, :P0:σ: v)LPo(A, v, v) = LPί(A o B^ : P0 : v), υ, v) ,

where

, :P0:v)= πγ(κ(v)Γ'
jKoΠN!
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Furthermore, By(P± : P0 : v) satisfies the following conditions,
(1) Bγ(P1 : P0 : v) is absolutely convergent.
(2) βyCPi : PO : v) is in End(Ky) and satisfies

By(P, : PO : v)πy(m) = π^B^ :P0:v) (m G M) . (3.1)

PROOF. These assertions but (2) are proved by an analogous argument
to the proof of 8.11.5 in [11]. We shall prove (3.1). We have

: P0 : v) = πy(m) ί πy
JKoΠN!

(φ)Γ

Since H(vm~^) = H(v\ κ(vm~l) — κ(v)m~l and the measure dv is invariant un-
der v -> mvm'1 (note that M is compact), the last expression is

= f πJ(κ(wι-i)rle-(v+l'*H(vm-ί»dυ
JKoΠN!

= ί πy(κ(mv)Γle-(v+p)(H(mv»dv
JVoΓiNί

= I πy(mκ(v)Yle-(^p)(H(v»dv
JKoΓUV!

= By(P, : PO : v)πy(m) .

This proves (3.1).

If σ is in M, we denote the σ-component of Vy by VJ. Let

Then B^(P1 : P0 : v) is in End(7/). Setting P = ΘP ( = 0P0), v -> βy

σ(P : P : v) is
called Harish-Chandra's C-function, as is well known, which is continued to

α£ meromorphically.

COROLLARY 3.3. // w is in M', v in α£, <Re v, α> > 0 for all α > 0

^PO(W, σ, v)L(^, t;, v) = L(A o βy(w, v)πy(w)~x, ι;, v) ,

where
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§4. The C-function for the SL(3, R) case

In this section we shall specialize to 5L(3, R) the notation described in
the previous sections. Our notation is as follows. Let G be SL(3, /?), the
group of 3-by-3 real matrices of determinant one. Let

θ = - transpose

K = SO(3)

a = {diag(xl5 x2, x3)|x f e /?, x{ + x2 + x3 = 0}

M =

-1

-1

i j

1

-1

-1 J

-1

-i j

π

A = exp α

9 =

* *

1 *

1

and define linear functions et (1 < i < 3) on αc by

β i(diag(x1,x2,x3)) = x ί .

Then each v in α£ can be written in the form

v = v^i + v2e2 + v3e3 (vj e C, 1 < i < 3),

and we sometimes write (v l 9 v 2 , v3) for v. The α-roots of g are ±(e1 — e2\
the simple α-roots are eί — e2, e2 — e3. Let

' 0 1 "

-1 0

1

W2 =

"1

0 1

-1 0

Their adjoint actions on α are corresponding to the simple reflections. We
set w0 = W 1w 2w 1. Then we have

A(P: P: σ: v) = R(w0)AP(w0, σ, v).

By the relation

Ap(w0, σ, v) = AP(wl9 w2w1σ, \v2w1 v)AP(w29 w^, w^Aptyi, σ, v)

and Corollary 3.3, we have for γ in K
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LEMMA 4.1. I f v is in α£, <Re v, α> > 0 for all α > 0, we have

-i

B (w l9 v) = Const

β (w2, v) = Const

ί:
ί:

1

/(*)

w/iere /(x) = (1 + x2)1'2.

dx,

dx,

Since the results are obtained by an easy computation, we leave the
proof to the reader.

We shall recall irreducible unitary representations of K.

LEMMA 4.2. Set

/-I/O Γ

~2~U or x -1ί° -1X2~2\ι or
0

0 -1

[Xi}ι<i<:3 's a basis of su(2) and satisfies the following relations

By the basis of su(2) given in Lemma 4.2, (SI/(2), Ad) can be considered
to be the universal covering group of K. If n is a nonnegative even integer,

we set

Vn = {p e C[zl5 z2]|p is a homogeneous polynomial of degree n}.

Then Vn is a Hubert space of dimension n + 1 equipped with the inner

product (Pι,p2) defined by

For each α = I "" " _ ) e 517(2), we assign
\c dj

(πn(g)p)(zl9 z2) = p(azί + cz2, bzί + dz2) (f e Vn).

Then it is known that (πw, Vn) (n > 0) are irreducible representations of SU(2)

and exaust SU(2)Λ. Moreover, as is well known (see e.g. [10]), for each y

in K there exists a unique nonnegative even integer n satisfying
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πn ~ πy o Ad , (unitarily equivalent). (4.1)

LEMMA 4.3. Suppose γ is in K, n is the nonnegative even integer satisfying
(4.1) and Vn is defined as above. Let

v. = z»-'zj (0 < i < n),

Then we have

(1)

1 -x

x 1

(2) πy(Ad(C))πy

/(*).

7M
1 -x

x 1

-1

π.(AD(Q)

Λ-I
1 -x

x 1

/(*)

PROOF. We first prove formula (1). From Proposition 4.2, we have

Ad(exp tX3) =

cos t — sin t

sin ί cos t

1

and by an easy computation, we obtain

ππ(exp tX3) = e^-^^'Vi, (0 < i < n).

Therefore we have

cos t — sin t

sin t cos t

1

(0 < i < n) (3.2)

If we put cos t = f(x) 1

9 sin ί = x//(x), (3.2) is equal to

1 -x

x 1

/(*)

υt =
^}Ύ\nl2-i

/(*)
(0 < i < n).

Therefore we have
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/(*)
-1

1 -x

/(*)

(0 < ί < n).

We next prove (2). We note that

cos t — sin t

sin t cos t

We thus have

= πy(Ad(expίX1))

= πy(Ad(C-1(expf*3)C)).

cos t — sin t

sin ί cos ί

Since Ad(C2) is equal to the identity, Ad(C) l = Ad(C) and the last expression

equals

f cos t —sin t Ί

πy(Ad(C))πy sin ί cos ί πy(Ad(C)).

Therefore we have

1

cos t — sin t

sin t cos ί

= πy(Ad(C))πy

cos ί — sin ί

sin ί cos ί

1

-i

πy(Ad(Q).

Putting cos t = f(x) 1, sin ί = x//(x), we obtain (2).

As is easily seen, the element Ad(C) in K normalizes α£. Thus Ad(C)

is in M'. Then we have the following

COROLLARY 4.4. Suppose v is an element in α£ such that <Re v, α> > 0

for all α > 0 and let γ, n be as in Lemma 4.3. Then

(1) ι ,v) = α(v1 - v 2,n),
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where α(s, n) = diag(α0(s, n\ ..., αn(s, n)) (s e C) wiί/i respect to the basis {^}0<ί
of Vn and for 0 < i < n,

αj(s, n) =
s + 1 - + 1 + (n/2 - i)

α/so

(2) πy(Ad(C))βy(w2, v)πy(Ad(Q) = βy(w1? -(Ad(C) v)) ,

where Ad(C) v is the element in α£ defined by

(Ad(C) v)(fl) = vίAdίCΓ1// ) , (H e αc) .

PROOF. (2) is a direct consequence of Lemma 4.3 (2). We shall prove
(1). From Lemma 4.1, we have

By(wι>v)»i =

by Lemma 4.3

1
v, dx

J -oo \ J (X) /

by A.3

This proves (1).

§5. The M-isotypic components of y

In this section we shall describe the M-isotypic components of y in
K. Let n be a nonnegative even integer satisfying (4.1) and Vn be the space
defined in §4. For any integer ξ, we write ξ = 0 (resp. ξ = 1) if ξ is even
(resp. odd). Let

K n _
O + —

-n-k\

fc=0(2)
0<k<n
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'n~k"k

T/H _ C(7n~7 77n~\y(l,-)~ L CVZ1 Z2~Z1Z2 )'
k = l(2)
0<k<n

Then we have

K" = *βi+) + ^S,.) + ^-lf+) + ^,_} , (5.1)

(orthogonal direct).

LEMMA 5.1. Let C be the matrix defined in §4. Then we have

(1) *ίS.+)^*(o.+)

(2) ϊβ.-, - ̂ "ι.+,

(3) ^ϊ , +) *" (̂o, -)

(4) ^Ί,-, - >»&-,

PROOF. For any integer r > 0, we observe that

(Zl + z2γ + (Zl - z2γ = 2 Σ (r)zΓpz2

p, (5.2)
P°ίo'f/> W

Suppose n — 2k > 0. Then we have

= 2 Σ
0<p<;r

= Const ((Zl + z2Γ *(Zl - z2)* + (Zl + z2)"(Zl - z2Γ-*)

= Const -(zf - zD'ttZi + z2)«-2* + (Zl - z2)"-2fc) .

By (5.2) we have

(Zl + z2)"-2* + (Zl - z2Γ
2* e 0̂;

2f .

Therefore, for the proof of (1) and (3), it is enough to show the following

relations

(z2 - z2)* ^o* cr F?o. +) for k = 0 (2) (5.4)

and

(zf-zi^-K^c^S.-) fork =1(2). (5.5)
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Now for each interger s > 0 such that s ΞΞ 0 (2), we have

Therefore for an even integer r > 0, we have

(z2 — z2)' Vr d Vr+_

In the same way as above, for an even integer r > 0, we have

(-2 _ 2 \ . Vr r- Vr+2
(Z1 — Z2) ^(0,-) <-- y (0,+)

This proves (5.4), (5.5). Namely (1) and (3) are proved. Similarly, we can

prove (2) and (4).

Let

-1

-1

1
? "*2

1

-1

-1

Then M is generated by m l 9 m2 and we have

m^ = Ad(exp πAΓ3) = Ad

and

m2 = Ad(exp πXJ = Ad(C) Ad

(5.6)

Ad(C). (5.7)

Since M is abelian and mί9 m2 are of order two, for each 7 in K9 its
representation space Vy is decomposed as

(5.8)

(orthogonal direct),

where

LEMMA 5.2. T/z^rβ is an M-inter twining correspondence between (5.1) and
(5.8), ί/iαt is, whenever n/2 is odd,
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whenever n/2 is even,

PROOF. According to (4.1) and (5.6), we have

The signature of n^m^ is determined by n/2 4- /c. Combining this fact with

(5.7) and Lemma 5.1, we have the desired results.

For simplicity, we denote V(

v.t.} by ( , •)•

LEMMA 5.3. Let wf (i = 1, 2) be as in §4. Then πy(Ad(C)) and πy(w4)

satisfy the following diagram.

( + , +) ( + , +)

Since the proof is simple, we leave it to the reader.
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§6. The determinant of the C-function

In this section, we shall give an explicit formula of the determinant of

B'y(P: P: v). Let

πy

σ(w) = π y(w)|Fv, (weM')

and for v in α£,

+ +, , π v27 V 2
a ' (v,y) =

+ _ , ,
« (v,y) =

«- -(v,y)=

where 5 = vx — v2, and n is a nonnegative even integer satisfying (4.1).

LEMMA 6.1. Suppose y is in K and σ is in M such that VJ + {0}. Then

we have

The assertion of the lemma is an immediate consequence of Corollary

4.4 (1) and Lemma 5.2. The proof is left to the reader.

THEOREM 6.2. Suppose y is in K and σ is in M such that VJ φ {0}. Then

we have

(1) if σ = ( + ,+),

det(^(P : P : v)) = Const α+'+(w2w1v, y)α+ +(w1v, y)α+'+(v, 7) ,

(2) if σ = ( + ,-),

det(By

σ(P : P : v)) = Const oΓ'-(w2w1v, lOoΓ +^v, y)α+'~(v, 7) ,
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(3) if σ = (-,+),

det(B£(P : P : v)) = Const α+ι~(w2w1v, γ)a.~ ~(w1v, y)α~ +(v, γ) ,

(4) if σ = (-,-),

det(B£(P : P : v)) = Const •oΓ '^WjWjV, γ)<x+ ~(wίv, y)α~ "(v, γ) ,

PROOF. We shall prove (2). By Lemma 5.3 we have

β<+ ->(P : P : v) = Bj+'-Vi, v)n?'-\Wl)B<+--\w2, Wl v)π<- ->(tv2)

B<- ->(*!, w^vX- +VJπ'+ -'K) . (6.1)

By Corollary 4.4 (2) and Lemma 5.3 we obtain

B<+ -'(w2, W lv) = πy(Aά(C))B^^(Wl, -(Ad(q Wlv))πγ(Ad(O) .

Therefore (6.1) is equal to

^K, -(Ad(C) w1v))π<+ -'(Ad(C))π<- ->(w2)

^M^X -Vo) . (6.2)

Let ί = 0 or 1 and σ' in M'. We extend B" (w,, •) to an operator B°(wt, •)
of V by

fB?'(w,, ) onK;,
B°'(Wί, )=\ (6.3)

(.identity otherwise

and define

: P : v) = Bf-'K, v)πy(Wl)π,(Ad(C))

S^ ~\W!, W2w1v)πv(w1)πv(w0) . (6.4)

Then from (6.2) we have

Bl(P:P:v)\y. = B;(P:P:v) (6.5)

and

det(By

ff(P : P : v) = d, det(β;(P : P : v)) , (6.6)

where dl is a nonzero constant which is independent of v. On the other
hand, from (6.3) and (6.4) we have
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det(B*(P:P:v))=d2'det(B(

y

+>-\wi9v))det(B(->+\w1, -(Ad(C) ι

-)(Wlj w 2 W!v), (6.7)

where d2 is a constant such that \d2\ = 1. By Lemma 6.1 and (6.6), (6.7),
we can prove (2). Similarly, we can prove the others.

§7. The C-function for SL(49 R)

Let G be SL(4, R\ the group of 4-by-4 real matrices of determinant
one. Let

θ = — transpose ,

K = S0(4),

a = {diag(xl5 x2, x3, x 4) |Xj e R, Σf=1 xf = 0},

geG 9 =

1 * * *

1 *

1

N =

P = MAN,

and define linear functions et (1 < i < 4) on ac by

^(diag(x1,x2,x3,x4)) = x ί.

Then each v in α£ can be written in the form

v = vίel + v2e2 + v3e3 + v4e4 (vt e C, 1 < / < 4),

and we write (v l5 v2, v3, v4) for v. The α-roots of g are et — βj (1 <i, 7<4, i^j
and the simple α-roots are e± — e2, e2 — e39 e$ — e^ Let

Wl =

0 1

-1 0

1

0 1

-1 0

0 1

-1 0
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Their adjoint actions on α are corresponding to the simple reflections. We

set w0 = w1w2w1W3W2w1, then we have

A(P: P: σ: v) = R(\v0)AP(w0, σ, v).

By the relation

AP(WO, σ, v) = ΛF(w l5 W2w1w3w2w1σ, w2 w^w^v)

• AP(w2, W1w3w2w1σ, W1w3w2w1v)ylp(w1, W3w2w1(7, W3w2w1v)

Άp(w3, w2w1σ, w2wίv)Ap(w29 wxσ, w1v)AP(w1, σ, v)

and Corollary 3.3, we have

B7(P: P: v) = By(w1? v)πy(w1)By(w2, w1v)πy(w2)JBy(w3, w2wx v)πy(w3)

βy(wl9 W3w2w1v)πy(w1)βy(w2, \ViW3 W2w1v)πy(w2)

•By(wl5 W2w1w3w2w1v)πy(w1)πy(w0). (7.1)

LEMMA 7.1. // v is in α£, <Re v, α> > 0 /or α// α > 0, we have

(1)

(2)

Λoo,,.)={
J-α

v2, v) = Γ
J-α

1 -x

x 1

/(*) -

-1

dx,

/(*)'-(v2-v3)-l,

/(*)

W
1 -x

x 1

(3) vK, V) =

/(x) = (1+ x2)1/2.

/W

/M-

1 -x

dx,

-1

dx,

Since the results are obtained by an easy computation, we leave the

proof to the reader.

We shall recall irreducible unitary representations of K. Let H be the

field of quaternion numbers, the algebra over R with basis 1, i, 7, k and

multiplication law i2 = j2 = k2 = — 1, ij = fc, /ci = 7, 7/c = i. If z = zx H- iz2 +

7'z3 H- fcz4, we set z = zt — iz2 — 7*z3 — fez4 and |z|2 = zz. Then we have
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|z|2 = z2 + z\ + z\ + z2 .

Let Sp(l) be the group of all quaternion numbers such that |z|2 = 1.
We identify Sp(l) with Si/(2) as follows. Each element z = zί + iz2 +

jz3 + fcz4 in 5p(l) can be written as

z = x + jy, (x = z1 + iz2, >> = z3 - iz4).

Using the above notation, we set

eSC/(2)

Then φ is an isomorphism from Sp(l) to
We identify H with R4 by the map w -> (w l5 w2, w3, w4), (w = wx + iw2 +

jw3 + few4). For each (z, z') in SP(1) x SP(l) and (w1? w2, w3, vv4) in R4, we
define a map ^ from Sp(l) x Sp(l) to X by

ψ(z, z')((w l9 w2, w3, w4)) = z wz/ - 1 .

Then (Sp(l) x Sp(l), ψ) is the universal covering group of K.
We set

LEMMA 7.2. (SU(2) x Sl/(2), /) is ί/ie universal covering group of K.
Furthermore, for each y in K there exist unique nonnegative integers m, n

satisfying the following relations,

m + n = 0 (2) (7.2)

and

, (unitarily equivalent) (7.3)
m n

ππ (n > 0) are defined in § 4 and ® denotes the exterior tensor product.

We identify Vy with Km ® KΠ by Lemma 7.2.

LEMMA 7.3. Suppose y is in K, m, n are nonnegative ίnegers satisfying
(7.2) and (7.3) and Km, Vn are the spaces defined in §4. Let

ut = z?-^ ( 0 < ί < m ) , Όj = zΓJzi (0<j<n).

Then for x in R we have the following relations,
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f

1

/(*)

- Λ -
V .

1

/(x)

Λ -

Ί -x
x 1

/W

/(*)-

Ax) ) (Ul

7(χ)
/(x)

1 -x
x 1

-|

-

η

to

-1

("i ® Vj)

-1

I".- x «/)

15 Λ rn ^

75

(2)

(0 < i < m, 0 < j < n).
\ J\*) /

PROOF. We shall prove (1). Let {Xi}ι<i<^ be the basis of su(2) given
in Lemma 4.2. We then have for t in R

πm ® πn(exp tX3, exp - tX3)(ut ® Vj)

= πm(exp tX3)uι ® πn(exp — tX^Vj

(7.4)

(7.5)

tUi φVj9 (0 < i < m, 0 < 7 < n)

and by an easy computation, we obtain

/(exp tX3, exp — tX3) =

cos ί — sin ί

sin t cos ί

/(exp ίJf3, exp

From (7.4), (7.5) and Lemma 7.2 we have

cos t — sin t

sin t cos t

(7.6)

cos t — sin ί

sin t cos t
W; (X) ty

ltUi ®Vj, (0 < i < m, 0 < j < n).
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Putting cos t = f(x) 1, sin t = x/f(x), we obtain (1). (2) can be proved

similarly.

We put

Then we have the following

LEMMA 7.4. In the setting of the last lemma we have for x in R
-i

1

/(*)

1 -x

x 1

= π.(ι(C, C))π.

PROOF. We note that

/(*)

/(*)_

1 -x

x 1

/(*)

/MJ

-1

πy(ι(C, C)) 1 .

(7.7)

and we have for t in R

= πw ® πn(C(exp — tX3)C~l

9 C(exp —tX^C'1)

= πm ® πw(C, C)πm ® πn(exp - tX3, exp - tX3)πm ® πn(C, C)"1 . (7.8)

By an easy computation we obtain for ί in R

Ί

cos t —sin t
(7.9)/(exp — ίX l9 exp — tX±) =

sin ί cos ί

1

Therefore, from (7.6), (7.8) and (7.9) we have

"l

cos ί — sin ί

sin t cos ί

1^

= πy(ι(C, C))πy

rι
1

cos ί sin ί

— sin ί cos ί

'

πy(ί(C, C))-1.
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Puting cos t = f(x) 1

9 sin ί = x//(x), we obtain the desired relation, and this
proves the assertion of the lemma.

Let m, n be nonnegative integers and s in C. For each integer i, j such
that 0 < i < m, 0 < j < n, we set

αu(s, (m, n))

/s + 1 - ((m - n)/2 - (i - j ) ) \ f s + 1 + ((m - n)/2 - (i - ;))

βt,j(s, (m, n))

- («+ Λ)

As is easily seen, the element /(C, C) in X normalizes α£. Thus z(C, C)
is in M'. We then have the following

LEMMA 7.5. Suppose v is in α£ swcΛ that <Re v, α> > 0 /or α// α > 0
y, m and n be as in Lemma 7.3. Then

(!) By(wι, v)(wf ® ιj) = a i fXv! - v2, (m, n))(u£ ® i^-) , (7.10)

β>3, v)(W/ ® υj) = βitj(v3 - v4, (m, n))(Wί (x) ^) , (7.1 1)

(0 < i < m, 0 < j < n).

(2) πy(ι(C, C))By(w2, v)πy(ι(C, C))'1 = JBy(w3, -(z(C, C) v)) , (7.12)

where /(C, C) v is the element in a£ defined by

ι(C, C) v(fl) = v(ι(C, C)-1 H /(C, C)) , (ff e ac) .

PRCX>F. We shall prove (1). We have

1 -x

x 1

and by Lemma 7.3 (1)
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Γ°° Λ - x/^ϊxY1

/W~ ( V l~V 2 )~M 77-τ
J-oo \ f(x) J

(HI ® Vj)dx,
-oo \ J\*J /

and by A.3

= αi,/Vl ~ V2> K "))("i ® Vj) '

This proves (7.10). In the same way, we can prove (7.11). This proves (1).

Furthermore, (2) is a direct consequence of Lemma 7.4.

§8. The M-isotypic components of γ

In this section we shall describe the M-isotypic components of γ in

K. Let m, n be the nonnegative integers given in Lemma 7.2 and k = 0 or

1. If i, 7 (i, 7 e TV) satisfy (m — n)/2 — (i — 7) = /c, we write (i, 7) = fc for the

above relation.

_ , _ rmZ2 ~r Z1Z2
- , _ _
Z2 + Z1Z2

0<i<m,0<j<n

0<i<m,0<j<n

-m-i-i . _ i ~m-i\ /ov ί-n-j-j -j -n-j\
1 Z 2"I~ Z 1 Z 2 J W l z l Z2 — Z1Z2 ) 9

,
0<i<m,0<j<n

(m,n) _
—

i-i -i -m-i\ fo (-n-j-j -j -n-j\
Z2 ~ Z1Z2 >I^V Z 1 Z 2~ Z 1 Z 2 )

0<i<m,0<j<π

Then we have

vm ® vn =

(orthogonal direct).

Let
-1

-1 -1

-1

-1

-1

Then M is generated by m l 5 m2, m3 and, from (7.5), (7.6) and (7.7), we have
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= z(exp πX3, exp — nX3)

= /
-1

m2 = /(exp — πXl9 exp — πJfJ

= ι(C, Qi
-i / /_ 1 \-ι

-x/^ϊ

and

Since M is abelian and m x , m2, m3 are of order two, for each 7

representation space Vy is decomposed as

* ~ M+.+.+) "̂ " M+.+.-) + - -

79

(8.2)

-1, (8-3)

(8.4)

in K its

(8.5)

(orthogonal direct),

where

κ[-,,.> = - l >

^r =-1,

* denoting + or —.

LEMMA 8.1. Suppose y is in K, m, n are nonnegative integers given in

Lemma 7.2. Then there is an M-intertwining correspondence between (8.1) and

(8.5), that is, whenever (m — ή)/2 and n are even

τ/(»ι,w) i τ/(m,π) τ/y

y(m,ή) _|_ y(m,n) _^ yy

= ^l,_,+) = {0}

whenever (m — n)/2 is odd and n even
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whenever (m — n)/2 is even and n odd

y(m,n) , y(m,n)
K(0,+,+) ~Γ κ(0,-,-)

y(m,n) , y(m,n)
κ(0,+,-) ' κ(0,-,+)

y(m,n) , τ/(m,n)
κ(l,+,+) ' κ(l,+,+)

τ/(m,n) , ι/(m,n)
κ(l,+,-) "̂  Kd,-,+)

yy
κ(+,+,-)

— yy — ίc\\,-) — κ(-,-,-) — luj

whenever (m — n)/2 and n are odd

y(m,n) , y(m,n)
K(0,+,-l-) T" κ(0,-,-)

,n ,
,+,-) '

(m,n)

τ/(m,π) , y(m,n)
κ(l,+,+) « κ(l,+,+

^+>+ι+) = ^+,_,+) = F L.^., = ^_,_,_, = {0} .

PROOF. Let m, n be as in the lemma and i, j integers such that 0 < ί < m,

0 < j < n. According to Lemma 7.2 and (8.2), we have

-1 -1 -i

= ( _ 1)(m-n)/2+(i-J ,zm-iz^ (0 < i < m, 0 < < n)

and the signature of πyίwj is determined by (m — n)/2 — (i — j). Furthermore,

by Lemma 7.2 and (8.4) we have
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= πm Qp π,m VG/ /cn

= πm (x) π.
-1

m" W M -x/-ι/' v ~ ' ' v -V-1,

Γ ί̂ , (0 < i < m, 0 < j < n)

and the signature of πy(m3) is determined by that of π^mj and n. On the
other hand, by Lemma 7.2 and (8.3) we have

= πm ® π,(C, C)πm (§) πn

πm ® π.(C, q-^ίzT-'zi

We may assume m — i > i, n — j > j without any loss of generality. Thus
the last expression equals

7cm®πΠ(C,C)πm(8)πΠ

-ι

= πm ® πn(C, C)πm ® πn

by (5.2) and (5.3)

= πm®πn(C,C)πm®πΠ
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0<q<n-2j
q=0

= (- l)(m+")/2πm ® π.(C, / lyn+n /_2 -2\i+j
I — L) \Z i — Z 2 j

>( Σ 2(n-2j\zΓ2j-«z«2}}
\0<q^-2j \ q / J J

— ί j\(m+π)/2//^m-i^i _. ^i zm~ί) 6§ (zn~3Z* + Z* Zn~*))

In the same way, we obtain

^y(^2)((ZΓlz2 ~ Z\Z^-ί)®(zΓJZJ2 ~ Z{ZΓJ))

Σ 2(m-2ί}:r*-"
0<p<m-2i \ P

p=0

— ( — 1\(m+n)/2/γ_m-i_t ί rm-
— \(zl Z2~Z1Z2
— ( — 1\
— ( ί)

n-j j
—

and

πy(m2)((zΓl'4 ± zizΓO ® (zΓJ4 ± (-l)z{zl~J))

= (- i)(m+π)/2-1((zΓ''4 ± ̂ ί^?'1') ® (zΓJzi ± (-

These formulae lead us to the assertion of the lemma.

LEMMA 8.2. Suppose y is in K and C as above. Then we have the

following relations,

(1) πy(ι(C, C))πy(m,)πy(ι(C, C))"1 = πy(m1m2m3) ,

(2) πy(ι(C, C))πy(m2)πy(/(C, C))'1 = πy(m3) ,

(3) πy(ι(C, C))πy(m3)πy(/(C, C))"1 = πy(m2) .

PROOF. We shall prove (1). From (8.2) we have

πy(ϊ(C, C))πy(m1)πy(/(C, C))'1 = πy(ι(C, C)/(exp π^3, exp -πX3)ι(C, C)"1) .

By (7.7) and the relation

cos ί — sin ί

1

sm t cos t

/(exp —tXl9 exp — tX^) =

the last expression equals

= π y(m1m2m3).

Next we shall prove (2) and (3). From (8.4) we have
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equal to
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πr(ι(C, Q)πγ(m3)πγ(ι(C, C))"1

= «/ι(C,C)ι

-1 \ /-I

83

1 -\ -i

-i is in the kernel of i, the last expression is

π ι ( C , Q ι

= πy ι(C,Q«

- i / ' V V-i
-i ^-L

, C)-1

/(c,cr ,

by (8.3)

This proves (2). We have (3) from (2).

For simplicity, we denote V^,,,*) by (*,*,*).

COROLLARY 8.3. Suppose y is in K and C as above. Then we have the

following diagram.

LEMMA 8.4. Let γ be in K and w, (1 < i < 3) be as in §7, then πy(w,)

satisfy the following diagram.
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, +f +) - (+, +, +) (4-, +, + ) ι (+, +f

Since the proof is simple, it is left to the reader.

§9. The determinant of the C-function

In this section we shall give an explicit formula of the determinant of

B°(P : P : v). We define the functions ασ(v, (m, n)) and βσ(v, (m, n)) in v (v e αfc)
as follows:

if (m — n)/2 and n are even,

α+'+'+(v, (m, n)) = Π αi.Xvι ~ V2> (̂  ")) Π A,ι(vι ~ V2» (m

?

 w)) »
(i,Λ=0 (k,I)Ξθ

] 0<fc<[m/2]

α+'"'+(v, (m, n)) = f] α^ - v2, (m, ή)) Π fl^ - v2, (m, n)) ,
(ί,j)=0 (k,0=0

0<ΐ<[m/2] 0<k<[m/2]

α"'+'"(v, (m, ή)) = Π αu(v! - v2, (m, n)) f] βktl(^ - v2, (m, π)) ,
(i.Λ = l (k ,/ )Ξl
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α~ ~ ~(v, (m, n))= f] ai,;(vi " V2> (m» w)) Π_ &.ι(vι ~ V2> (™> M)) ,

0<i<[m/2] 0<k<[m/2]

β+'+'+(v, (m, n)) = Yl ft,/v3 - v4, (m, n)) J~[ αkf ί(v3 - v4, (m, n)),

0<i<[m/2] 0<k'<[m/2]

β+'~'+(v, (m, n)) = f] βi j(v3 - v4, (m, n)) Y\ αM(v3 - v4, (m, n)),
(i,j)Ξθ (k,0=0

0<j<[n/2] 0^ί<[π/2]

jS' +'~(v, (m, n)) = Π βitj(v3 - v4, (m, n)) f] αkt,(v3 - v4, (m, n)),

0</<[m/2] 0<k<[m/2]
0<j<[n/2] Q<K[n/2]

j^~'~'~(v, (m, n)) = Y[ ft,j(v3 — v4, (m, n)) ]̂ [ αfc,/(v3 — v4, (m, n)),
(i,j) = l ' ( k j ) = l

0<i<[m/2] 0<k<[m/2]

the others are equal to 1;

if (m - n)/2 is odd and n even,

α+'~'+(v, (m, n)) = J] α^^ - v2, (m, n)) [] jS^^Vj - v2, (m, n)),

0<l<[m/2] 0<k<[m/2]

α+'+'+(v, (m, n)) = Π αf,Xvι ~ V2» (™> w)) Π Λ,Ϊ(VI ~ V2> (̂  «)),

0<ί<[m/2] 0<k<[m/2]

α~'"'~(v, (m, «)) = f] aif</(v! - v2, (m, n)) [] ^^(v! - v2, (m, n)),

ί] 0<k<[in/2]

α ' +' (v, (m, n)) = Π αu(Vl - v2, (m, n)) f] ftf ,(Vl - v2, (m, n)) ,
(«.Λ = 1 (*,/) = !

0<ί<[m/2] 0<fc<[m/2]
0<j<[n/2] 0<ί<[n/2]

jS+'-'+(v, (m, n)) = Π /Uva - V4, (m, n)) Π «*.ι(v3 - v4, (m, n)) ,
(i,7)=0 (k,ί)=0

] 0<k<[m/2]

)5+'+'+(v, (m, n)) = Π Aj(v3 - v4, (m, n)) Π αk,/(v3 - v4, (m, n)) ,
(i,j)Ξθ (fc,I)=0

0<i<[m/2] 0<fc<[m/2]
0<j<[π/2] 0<Z<[n/2]

^"'-'-(v,(m, n))= Π j8ίfj.(v3 - v4, (m, n)) Π αk f Z(v3 - v4, (m, π)) ,
(i,7) = l (*,/) = !

0<i<[m/2] 0<k<[m/2]
0<j<[«/2] 0</<[n/2]

/?-'+'~(v, (m, n)) = Π A.XV3 - V4? (w, n)) Π αk>ί(v3 - v4, (m, n)) ,
,

0<k<[m/2]
0<K[n/2]



86 Masaaki EGUCHI and Shohei TANAKA

the others are equal to 1;

if (m — n)/2 is even and n odd,

α+ -»-(v, (m, n))= [] α^ - v2, (m, n)) f] &,/(vι ~ V2> fa «))>

0<ί<[m/2] 0<fc<[m/2]

α+'+'~(v, (m, n)) = f| a^/V! — v2, (m, n)) ]̂ [ βk,ι(vι — v2, fa «)),

0<ί<[m/2] 0<fc<[m/2]

α~'~'+(v, (m, n)) = f] α^/Vi - v2, (m, n)) Π ^^(vj - v2, (m, n)),

t] 0<fc'<ϊίn/2]

α"'+'+(v, (m, n)) = f] α^^ - v2, (m, w)) f] βkj(v^ - v2, (m, n)) ,
(ij) = l (fe,/) = l

] 0<fc<[m/2]
] 0</<[π/2]

/?+'~'~(v, (m, n)) = Π βi j(v3 - v4, (m, n)) f] αfc !(v3 - v4, (m, w)) ,
(U)=0 (k,l)=0

?+' +' -(v, (m, n)) = Π &>3 - v4, (m, n)) fl α*.ι(v3 - v4, (m, n)) ,
(t,7)Ξθ (fc,0=0

0<fc<[m/2]

' "' + (v, (m, n)) = Π A./v3 - v4, (m, n)) Π α^,/(v3 - v4, (m, n)) ,
(i,j)^l (fc.0^1

0<i<[m/2] 0<fc<[m/2]
0<j<[n/2] 0<K[n/2]

β->+>+(v, (m, n)) = Π &>3 - v4, (m, n)) Π α

fc,/(v3 - v4, (m, FI)) ,

0<fc<[m/2]

the others are equal to 1;

if (m — n)/2 and n are odd,

α+'+'~(v, (m, n)) = f] α^OΊ - v2, (m, n)) Π ^^(vj - v2, (m, n)) ,
(k,l)=0

0<fc<[m/2]
0<K[n/2]

α+ '~'~(v, (m, n)) = Π αu(v! - v2, (m, n)) Π jS^,^! - v2, (m, n)) ,
«J)=0 (fc,0=0

0<i<[m/2] 0<fc<[m/2]
0<j<[/ι/2] 0<K[n/2]

α~'+'+(v, (m, n)) = Π α^ - v2, (m, n)) Π fl^ - v2, (m, n)) ,
(i,Λ = l (fc,0 = l

0<r<[m/2] 0<k<[m/2]
0<j<[n/2] 0<K[n/2]

α~'~'+(v, (m, n)) = Π a^fa - v2, (m, n)) Π βktl(v^ - v2, (m, n)) ,
(»,J) = 1 (fc,0 = l

0<fc<[m/2]



The determinant of C-function 87

AfJ.(v3 - v4, (m, π)) Π ^j(v3 ~ v4, (m, n)) ,
0 (fc,0=0
/2] 0<fc<[m/2]

n/2] 0<ί<[n/2]

β+>->-(v,(m,n))= Π A, /v3 - v4, (m, n)) Π αM(v3 - v4, (m, n)) ,
(ί,j)Ξθ (M)=0

0<i<[m/2] 0<k<[m/2]
0<j<[n/2] 0</<[n/2]

β~'+'+(v,(m, rc)) = Π β, .(v3 - v4, (m, n)) Π αM(v3 - v4, (m, n)) ,

2] 0<fc<[m/2]
2] 0<ϊ<[«/2]

β-'~'+(v,(m, n))= Π ft,Xv3 - v4, (m, n)) Π αk f l(v3 - v4, (m, n)) ,
(i,j) = l (k,l) = l

0<i<[m/2] 0<fc<[m/2]
0<j<[n/2] 0<ί<[n/2]

the others are equal to 1.

LEMMA 9.1. Suppose γ in K and σ in M satisfy VJ Φ {0}. Then we have

det(£y

σ(w3, v)) = βσ(v9 (m, n)) .

PROOF. We shall prove only in the case that σ is ( + , + , + ) and

(n — m)/2, n are even. The proof of the other cases is similar to the above

one and left to the reader. Let uh Vj (1 < i < m, 1 < j < n) be as in Lemma

7.3. From Lemma 8.1, {ut ® vj + wm_ f ®vn_p u{ ®vn_j + um_t ® ^}ι<f<m is the

basis of Vγ

σ. Furthermore, by Lemma 7.5 we have 1-J~"

= αi./V! - v2, (m, n))^ ® vj + wm_ f ® !;„_,.) ,

5y(Wι, v)(Mi ® !;„__,. +Mm_ t.® ϋj)

= ft,/vι - V2? (w, n))(Ui ® i;n_7- + wm_^ ® Vj) , (1 < i < m, 1 < j < n) .

Therefore, we obtain (1). Similarly, we can prove (2).

THEOREM 9.2. Let y be in K and σ in M such that VJ / {0}. Then we

have the following relations.

(1) If σ = ( + ,+,+),

= Const α+ '+ '+(w2w1w3w2w1v, (m, n))β+'+'+( — ι(C, C) W1w3w2wlv, (m, n))

α+ '+ '+(w3w2w1v, (m,n))j?+'+'+(w2w1v, (m, n))

β+>+>+(-ι(C,C)'W,v9 (m,«))α+'+'+(v, (m, n)) .
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(2) If σ = ( + ,+,-),

det(B?(P:P:v))

= Const α~'~'+(w2w1w3w2w1v, (m, n))β+'~'~(-ι(C, Q wίw3w2wlv, (m,n))

α+'" "(w3w2w1v, (m,n))β+ + ~(w2w1v, (m,n))

β-'~ +(-ι(C,C) Wlv, (m,n))α+ + -(v, (m, «)) .

(3) If σ = ( + ,-,+),

det(B?(P : P : v))

= Const α+'~'+(w>2w1w3w2w1v, (m, n))β~ ~'~(— ι(C, C) w1w3w2w1v, (m, n))

α~ + "(w3w2w1v, (m, ri))β~'~ ~(w2wίv, (m, n))

jΓ + ~(-»(C,C) w1v, (m,n))<x+ - +(v, (m, n)) .

(4) If σ = ( + ,-,-),

= Const α~ + ι +(w2u'1W3W2w1v, (m, n))/Γ'+ι+(— ι(C, C) W 1w3w2w 1v, (m, n))

α~ " +(w3w2w1v, (m,n))β- - +(w2wlv, (w, n))

•/?+ - -(-ι(C,C) w1v, (m,n))α+ ---(v, (m, n)) .

(5) If σ = (-,+,+),

det(B*(P:P:v))

= Const α+'+'~(w2w1w3w2w1v, (m, n))β~'~'+(— ι(C, C) W1w3w2w1v, (m, n))

α+'+>~(w3w2w1v, (m,n))β+ ~ ~(w2wlv, (m,n))

β+'+'-(-ι(C,Q Wlv, (m,n))α- + +(v, (m, n)) .

(6) If σ = (-,+,-),

det(By

σ(P : P : v))

= Const α"'"'~(w2w1w3 w^v, (m, n)))?~'+>"(— i(C, C) W 1w3w2w 1v, (m, n))

α+ >~ +(w3w2w1v, (m, n))^+'~ +(w2w1v, (m, n))

β- - -(-ι(C,C) Wlv, (m,n))α- + -(v, (m, n)) .

(7) / / σ = (-,-,+),

: P : v))
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= Const α+ '" '~(w2w1W3W2W1v, (m, n))/?+>+>~(— ι(C, C) W1w3w2w1v, (m, n))

oΓ + +(w3w2w1v, (m,n))β~ + Jr(w2w1v, (m,n))

•/Γ +>+(-»(C,C) w1v, (m,n))α- - +(v, (m, n)) .

(8) If σ = (-,-,-),

= Const α"'+'~(w2w1w3w2w1v, (m, n))β+'~ +(—ι(C, C) W1w3w2w1v, (m, n))

ιx''~ ~(w3w2wlv, (m,n))β~ + '(w2w1v, (m, n))

β+ - +(-ι(C, Q wjv, (m,»))α- - -(v, (m, n)) .

PROOF. We shall prove (2). Let

π» = πy(w)|F;, (weM')

By (7.1) and Lemma 8.4 we have

B°y(P: P : v) = B<+ + ->(w1, v)<-+'->(w1)B<+-+-->(w2, Wlv)π</ + -'(w2)

β<+-+ -)(w3,W2w1v)π(/ - -'(w3)B<+ - ->(w1,w3w2w1v)π<+ --->(w1)

• Bf'~ ~}(w2, W1w3w2w1v)π(

),~ ~ +)(w2)β<" " +)(w1, W2w1w3w2w1v)

•π'- + +'KK+ + -'K). (9.1)

By (7.11) and Corollary 8.3, we obtain

- +>(w3, -(ι(C, C) w lV))π<+ + ->

and

Bf - ->(w2, W1w3w2w1v) = ι$ >-'-\ι(C, C))&y

+ - -\w3, -(ι(C, C) w1w3w2w1v))

•π^ - -'WCCΓ1).

Therefore, (9.1) is equal to

B? + -\WI, vX^ -^X - ̂ C, O)

B<- - +>(w3, -(ι(C, Q Wlv))τ4+ +

+ - ->(w3, -0(C, C) w l W 3w2 W lv))
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(— + +)/ \ ί+ Ί —W \ ίc\ *Λ\πy ' ' ' (wjTΓy' ' '(w0). (9.2)

Let i be an integer such that 1 < i < n — 1 and σ in M'. We extend B"'(wi9 •)
to an operator B°'(wh •) of Vy by

Γ Bf(wi5 •) on VJ ,
<(wί, ) = < . (9-3)

I identity otherwise

and define

B°(P:P\ v) = B^'+'-^W!, v)πy(^)ny(ι(C9 C))^-'~'+)(w3, -(/(C, C) w^))

πy(/(C, C)~1)πy(w2)β^+'+'~)(w3, W2w1v)πy(w3)

•β^'-'-^Wi, w3w2w1v)πy(w1)πy(ι(C, C))

5j+'~'~)(w3, — (ι(C, C) w1w3w2w1v))πy(/(C, C)~1)πy(w2)

B}~»~»+ )(WI» W2w1w3w2w1v)πy(w1)πy(w0). (9.4)

Then from (9.2) we have

βy

σ(P: P: v)\v. = B°(P: P: v) (9.5)

and

det(fy(P : P : v ) ) = dl det(βy

σ(P: P: v)), (9.6)

where d± is a nonzero constant which is independent of v. On the other
hand, from (9.3) and (9.4) we have

det(5y

σ(P: P: v)) = d2 - det(Bj+ + ~)(wι> v)) det(Bj~'~'+)(w3, -(/(C, C) w tv))

•det(Bj+'+'-)(w3, w2W!v)) det^'-'-^Wi, w3^w^))

det(JB^'~'~)(w3, -(/(C, C) \ViW3w 2w 1v))

det(B;-'-'+)(wl9 W 2w 1w 3w 2w 1v)), (9.7)

where ί/2 is a constant such that \d2\ = 1. By Lemma 9.1 and (9.6), (9.7),
we can prove (2). Similarly, we can prove the others.

Appendix

A.l. Suppose that q is a positive integer and Re z > q/2. Then
ίo^""1^ + t2)~z dt converges absolutely and is equal to \B(q/2, z — q/2} (see
[11], P. 262).
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A.2. Suppose that λ is an element in C such that Re λ < — 1 and I is an
integer. Then we have

ΓJ -α

(*) I (i + /Γϊ X)
λ+l/2(i - /Γϊ χ)*-v*dx = 2 +2πΓ( λ l)

PROOF. We shall first prove inductively that (*) holds for all nonnegative

integers /. If / = 0, then we have

Jo \2' 2 2;

2λ+2πΓ(-λ-ί)

If / = 1, then we have

f« /

Π _μ /ITT γΛ<λ + 1>/2Π _ /ZT vV'1-1)/2 //Y
V 1 ' V ' v V '

J —oo

_ Γ00 2 (A-D/2 '

J —00

/•oo Λoo

J —oo J —oo

Since the second term is equal to 0, the last expression equals

2'

2 / V 2

2λ+2πΓ(-λ- 1)

2 / V 2

Let / be an integer such that / > 2 and put
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Then it is not difficult to see that the following recurrence formula holds

Suppose that (*) is true in / — 1, / — 2, then an easy computation gives that

(*) is true for / > 0. By the relation

(*) is also true for / < 0.

A.3. Let s be a complex number such that Re s > 0 and i, n nonnegative
integers such that 0 < ί < n. Then we have

ί\— /HTvV1/2-'
Π + χ2Γ(s+l)/2 f * V if \ dχ,u + x j V α + x2)^;

s + 1 - (n/2 - i)\ f s + 1 + (n/2 - f)

2

PROOF. By A.2, we have

2λ+2πΓ(-^-l)

putting A = — s — 1, / = n/2 — i, we have

Mv 2
This proves the assertion of A.3.
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