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1. Introduction

In this paper, we study a property of some fractal set K satisfying the
condition

H-dim (K) < M-dim (K),

by examining the density with respect to the Hausdorff measure.

We claim that, roughly speaking, for arbitrary small 6 >0 we can find
an essential subset of K on which the lower density of K is less than §. Here,
a subset K, of K is called an essential subset, if K  satisfies the conditions

ess

H-dim (K,,) < M-dim (K ;) = M-dim (K)
and
H-dim (K) = H-dim (K \ K,,,) = M-dim (K \ K,,,).

The key point of this paper is the fact that the cause of the gap between
the Hausdorff dimension and the lower box dimension arises in a
“neighborhood” of the subset of K on which the lower density of K equals to 0.

2. Results and proofs
On the Euclidean space (R", d), the upper and the lower box dimension
M-dim, M-dim and the Hausdorff dimension H-dim are defined as follows;
for any bounded set E = R¥
log (N,(E))
logl/e

log (N,(E))

M-dim (E) = lm;ll%up log 1/2

, M-dim (E) = lirr} (i)nf

H-dim (E) = inf {«; H*(E) = 0} = sup {a; H*(E) = 0},

where
N,(E) = inf H{U;; E= U U, |U| <&},
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H*E) = lif{} {inf (Y 1U; ES U U, U] <e}}.

and |U| =sup, ,y d(x, y). We know that H-dim (E) < M-dim (E) < M-dim (E)
in general.
Now we introduce the upper and the lower spherical densities of K at x as
H*(B(x, r)nK)
| B(x, r)[*

H*(B(x, r)nK)

D*(K, x) = lim su
(K, 20 =l 30— B, e

, D*(K, x) = lim inf
rlo
where B(x, r) denotes the closed ball with radius r and center at x. It is a
well-known fact that if 0 < H*(K) < oo then
D*K,x)<1  H%ae xeK 2.1

(see Corollary 2.5 in [4]). The following theorem is the main result in this
paper.

THEOREM 2.1. Let K be a bounded Borel-measurable subset of RN and put

K° = {xeK; D*(K, x) = 0}. 2.2
If
H-dim (K) < M-dim (K) (2.3)
and
H*(K®) < H*(K) < o0, (2.4)

then for any ¢ > 0, there exists a subset K, of K such that
K°c K, S K, H(K,\K°% <&,
M-dim (K,) = M-dim (K), M-dim (K,) = M-dim (K)
and
o« = H-dim (K\ K,) = M-dim (K\ K,) = M-dim (K \ K,).

COROLLARY. Let K be a bounded Borel-measurable subset of RY. If K
satisfies the condition (2.3), then either H*(K) = oo holds or for any ¢ > 0 there
exists K, such that

K°c K, <K, HYK,\K% <¢
M-dim (K,) = M-dim (K), M-dim (K,) = M-dim (K),

and
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o« > H-dim (K\K,) = M-dim (K\K,) = M-dim (K\ K,).

From now on, we assume that K is a bounded Borel-measurable set
satisfying H*(K) < oo. For the proof of THEOREM 2.1, we will introduce several
notations and show lemmas.

Put

A7 = {[[i=, (27" G+ 027", 42}, 2= U 2",
i=1

and for each R =[]3-, [ik2™" (i + 1)27")e A", we put
Fr=[Te=1 [ — 127", (ix + 2)277).

For xeK, put
_ H*(%nK
R4-D*(K, x) = lim sup (71‘0) ,
n—0,xeReR(™ |5pR|a
H*(%rnK
#,-D%K, x)= liminf L OrNK)
n—0, xeReZ™ |yR|1

LEMMA 2.2. We have the following inequalities

R,-D*(K, x) < 2°D*K, x)  for any xeK, 2.5)

D*(K, x) < (3N%)"‘%y-l_)“(K, x)  for any xeKk. (2.6)
PROOF OF LEMMA 2.2. If 27®*D <r < 27" xeRe#™ then
H*(B(x, NNK) _ H'&,nK)
|B(x,nI* ~ [B(x, nI*
_ | FRI* HY(RNK)
2l %P

HY (SN K)

1
< (3N2)y 7
R

Therefore we have (2.6). We can show (2.5) similarly. [

For any meN, 6 > 0, put

H*(# N K)

Mf,'")={xeK;5s -
| Zkl

<2**! xeRe#™ for any an}.

The following lemma is easily seen (c.f. Theorem 1.5, Lemma 2.1 etc. in [4]).
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LEMMA 2.3. The functions R4-D*(K, x) and R4-D*(K, x) on K are Borel
measurable, and for any meN, 6 >0, M{™ is a Borel measurable set.

LEMMA 24. For any meN, 6 > 0, we have the following evaluations
M-dim (M{™) < a, M-dim (K\ M{™) = M-dim (K),

M-dim (K\ M{™) = M-dim (K).
Especially, if H*(M{™) > 0 then

M-dim (M{™) = M-dim (M{™) = H-dim (M{™) = a.

PrOOF OF LEMMA 24. Let {U}; be a minimal ¢-covering of M{™, that

is #{U}; = N,(M{™). Let {R;}; be a minimal covering of M{™ by #® (where
-1

=l(e) =[—log,(eN ?)] + 1 and [x] denotes the integer part of x). Let L

11
be a natural number such that L> (4N2)¥ 7z2N/1" (N/2 +1). Then for any j
there exist {R;,};, < {R;} such that

P;
unM™< U R, P<L
k=1
Since |R;| < &, we see that
N, (M) = H{U}; < #{R}; < L- H{U}, = L- N,(M{™). (2.7)
By the definition of M{™, we have that for any Re Z", RAnM{™ @, n>m
8| Fel* < H(SRNK) < 251 | Fg . 2.8)

Let ¢ be an arbitrary positive number satisfying Il(¢) > m. Taking the
multiplicity of &%’s and the measurability of &% NK into consideration,

together with (2.7), (2.8), we see the following inequalities

H*(K)
N,M™) <#R}, =HF )} <sup——— .3V
(M3") < *{Ry} {Zr} pr“(ijnK)

_1,
< 3N¥"* 51N 2°H%(K)2¥.
Therefore we see

_1,
log (N,(M§™) log(3" %6 !N 2 H*(K)) + allog?2
< —a
log 1/¢ —4log N +llog?2

as ¢l0.

This implies
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M-dim (M{™) <«  for any & > 0. (2.9)
Furthermore if H*(M{™) > 0, then
o = H-dim (M{") < M-dim (M{") < M-dim (M{"). (2.10)
Together with (2.4), (2.9) and (2.10), we have
M-dim (M{") = M-dim (M{") = H-dim (K) =« if H*M{")>0. (2.11)
Lastly, we will prove that
M-dim (K \ M{") = M-dim (K), M-dim (K\ M{") = M-dim (K).  (2.12)
From (2.9) and the condition (2.3), we see

N (m)
0 < lim sup Mé_l)

<1 for any 6 > 0.
0" log (N.(K))

In addition, since N,(K)— oo as ¢|0, we have

(m) (m)
lim inf NM,") = lim sup NM5™)
20 N,(K) 20 N,(K)

=0. 2.13)
On the other hand, since M{™ = K, we have the following inequalities

N,(K) — N(M{") < N(K\ M{")) < N, (K).

Therefore we see

N, (M{™)
log (N‘(K’<1 T NK) ))

(m)
lim inf < lim inf 28 NKA M)
el0 log 1/8 el0 log 1/8
< lim inf log (N.(K)) .
el0 log1/e
Together with (2.13), we see
N (m)
lim inf 28 NeEAMIT)) o 108 (LKD)
el0 log 1/8 el0 log 1/8

This implies
M-dim (K \ M{™) = M-dim (K).

Similarly, we see
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M-dim (K \ M{™) = M-dim (K) O
Now we will prove THEOREM 2.1.
Proor oF THEOREM 2.1. Let ¢ be any positive number such that
H*(K) — H*(K°) > 2e. (2.14)
Put
Ns={xeK;d < R -D*K, x) < Ry-D*(K, x) < 2°"1}.

By the inequalities (2.1), (2.5) and LEMMA 2.3, we see that there exists ¢ > 0
such that

H*(K \ (N,UK?)) < &/2. (2.15)

Furthermore we see that |J;2, M{¥ 2 N;. Since M{™ is increasing in
monotone as m — oo, there exists mye N such that

H*(N,\ M§™) < ¢/2. (2.16)
Put K, = K\ M{™ . Then by (2.15), (2.16), we see
H*(K,\ K°)
= H*((K.n Ny \ K°) + H*((K,\ N;)\ K°)
= H*((K N Ny \ (KU M) + H*((K \ (M{"™UN,;UK?)
< H*(N;\ M{™)) + H¥(K \(N;UK?)) < e.
By (2.14), (2.15) and (2.16), H*(M{™) > 0 holds. Hence by Lemma 2.4, we see
M-dim (K,) = M-dim (K), M-dim (K,) = M-dim (K)
and
M-dim (K \ K,) = M-dim (K \ K,) = H-dim (K) = «. [J

From the proof of THEOREM 2.1, we can see that K, is an essential subset
of K in §1. For the case H*(K) = 0 or H*(K) = H*(K°), K, = K satisfies the
assertion in the corollary. Therefore COROLLARY is obvious by THEOREM 2.1.

Here we observe a simple example. Put K = Q ;;UC and a =log 2/log 3
where Q. 1; = Qn[0, 1] and C is the Cantor set. Then

H-dim (K) = « < 1 = M-dim (K),

O0<H*K)=1<
and
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D*K, x)>6"¢ for xeC

hold. The last inequality means N,,; =C, K®= Q,,\C and H*K°) = 0.
In this case, K, = Qy ,; satisfies the conditions in THEOREM 2.1. Actually,

H*(Qyo,1y) =0, M-dim (Qy, ;) = M-dim (Q, 1)) = 1
and
a = H-dim (C\ Qo)) = M-dim (C\ Qyo, ;) = M-dim (C\ Qyo, ;)

hold as well known.

For more complicated cases, we can not expect that THEOREM 2.1 is valid
for ¢ =0, because the box dimension is not stable. Complicated examples
will be discussed separately.

Acknowledgements

I am much indebted to Professor I. Kubo and Dr. M. Nakamura for their
invaluable advices and hearty encouragement.

References

[1] Billingsley, P., Ergo dic theory and information. John Willy and Sons, Inc., New York,
London, Sydney (1965).

[2] Billingsley, P., The singular function of bold play. Am. Sci., 71 (1983), 392-397.

[3] Eggleston, H. G., The fractal dimension of a set defined by decimal properties, Quart. J.
Math. Oxford Ser., 20 (1949), 31-36.

[4] Falconer, K. J., The Geometry of Fractal Sets, Cambridge Univ. Press, (1985).

[5] Ikeda,S., On the Billingsley Dimension on R, Hiroshima Math. J. (to appear)

[6] Mandelbrot, B. B.,, Fractals: Form, Chance, and Dimension. San Francisco: W. H.
Freeman & Co. (1977).

[ 7] Mandelbrot, B.B., The Fractal Geometry of Nature. San Francisco: W. H. Freeman &
Co. (1983).

[8] McMullen, C., The Hausdorff dimension of general Sierpinski carpets, Nagoya Math. J.
96 (1984), 1-9.

[91 Young, L.S., Dimension, entropy and Lyapunov exponents. Ergodic Theory Dyn. Syst.
2 (1982), 109-124.

Information Engineering
Graduate School of Engineering
Hiroshima University








