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1. Introduction

In this paper, we study a property of some fractal set K satisfying the
condition

H-dim (K) < M-dim (K),

by examining the density with respect to the Hausdorff measure.
We claim that, roughly speaking, for arbitrary small δ > 0 we can find

an essential subset of K on which the lower density of K is less than δ. Here,

a subset Kess of K is called an essential subset, if Kess satisfies the conditions

H-dim (Kess) < M-dim (Kess) = M-dim (K)

and

H-dim (K) = H-dim (K \ Kess) = M-dim (K \ Kess).

The key point of this paper is the fact that the cause of the gap between
the Hausdorff dimension and the lower box dimension arises in a

"neighborhood" of the subset of K on which the lower density of K equals to 0.

2. Results and proofs

On the Euclidean space (RN, d), the upper and the lower box dimension

M-dim, M-dim and the Hausdorff dimension H-dim are defined as follows;

for any bounded set E c UN

log(N.(£)) ,,,,„_ ,:_:., log (N.(£))
M-dim (E) = lim sup & v cv ", M-dim (£) = lim inf

«i° log 1/ε *i° log 1/ε

H-dim (E) = inf {α; Hα(£) = 0} = sup (α; Hα(£) = 00},

where

N.(E) = inf #{l/f; £ <Ξ U Ut, HΊI £ β}.
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H«(£) = lim {inf (Σ |l/ f |«; E E U I/,, 11/,I < ε}}
ε υ

and 1 17 1 = sup^^ d(x, y). We know that H-dim (E) < M-dim (E) < M-dim (E)

in general.
Now we introduce the upper and the lower spherical densities of K at x as

fl UC, *> - lim sup , fl-,K, „ , lim i
α, r | α ΊO J 9 x , r α

where £(x, r) denotes the closed ball with radius r and center at x. It is a

well-known fact that if 0 < Hα(X) < oo then

D*(K9 x)< 1 Hα-a.e. xεK (2.1)

(see Corollary 2.5 in [4]). The following theorem is the main result in this
paper.

THEOREM 2.1. Let K be a bounded Bor -el-measurable subset of UN and put

(2.2)

H-dim (K) < M-dim (K) (2.3)

and

H*(KQ) < H«(K) < oo, (2.4)

then for any ε > 0, there exists a subset Kε of K such that

K°^Kε^K, H*(Kε\K°)<ε,

M-dim (Kε) = M-dim (K), M-dim (Kε) = M-dim (K)

and

α = H-dim (K \ Kε) = M-dim (K \ Kε) = M-dim (K \ Kε).

COROLLARY. Let K be a bounded Bor el-measurable subset of UN. If K
satisfies the condition (2.3), then either H*(K) = oo holds or for any ε > 0 there
exists Kε such that

K° c Kε c K, Ha(Kε\K°) < ε

M-dim (Kε) = M-dim (K), M-dim (Kε) = M-dim (K),

and



On a fractal set with a gap between Hausdorff and box dimension 435

α > H-dim (K \ Kε) = M-dim (K \ Kε) = M-dim (K \ Kε).

From now on, we assume that K is a bounded Borel-measurable set
satisfying Hα(K) < oo. For the proof of THEOREM 2.1, we will introduce several
notations and show lemmas.

Put

and for each R = f]f=ι Uk2~"> (h + !)2 ")e^(M), we put

For xeK, put

&<r'D"(K, x) = lim sup ——

^^-Dα(K, x) = lim inf
n->0,X6Λe£<Ό \frR\"

LEMMA 2.2. We have the following inequalities

@<r-D«(K,x)<2aD*(K,x) for any xeK, (2.5)

) for any xeK. (2.6)

PROOF OF LEMMA 2.2. If 2-("+1) < r < 2~", xeRe<%M then

\B(x,r)\

|2r|«

Therefore we have (2.6). We can show (2.5) similarly.

For any mef^J, δ > 0, put

; δ < c < 2«+1, xcRε@w for any n >
' — i ς ^ i α — '

I «-^Λ I

The following lemma is easily seen (c.f. Theorem 1.5, Lemma 2.1 etc. in [4]).
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LEMMA 2.3. The functions ^y-DΛ(K, x) and $y-DΛ(K, x) on K are Borel
measurable, and for any m e M , δ > 0, M^m) is a Borel measurable set.

LEMMA 2.4. For any mef^J, δ > 0, we have the following evaluations

M-dim (M£m)) < α, M-dim (K\M(^}) = M-dim (X),

M-dim (K \ M^m)) = M-dim (K).

Especially, if H*(M(^) > 0 then

M-dim (Aί Jm)) = M-dim (Mj>m)) = H-dim (M $m)) = α.

PROOF OF LEMMA 2.4. Let {U^ be a minimal ε-covering of Λfjm ), that
is #{!/.}, = Nε(M^m)). Let {Rji be a minimal covering of M^m) by #(/) (where

_ι
/ = ί(e) = [- log2(ε7V 2)] + 1 and [x] denotes the integer part of x). Let L

i ijv
be a natural number such that L> (4JV2)Nπ2 /Γ(N/2 -f 1). Then for any 7

there exist {Rjtk}jtk — {^J such that

Since |R f | < ε, we see that

Ne(Mj">) = ̂ U^ < ̂ R^ < L *{[/,}, = L. N.(M J-O- (2-7)

By the definition of Mjm), we have that for any R e ̂ (Π), Λ n M^m) ^ 0, w > m

δ\^R\* < H*(yRf}K) < 2*+l\yR\*. (2.8)

Let ε be an arbitrary positive number satisfying l(ε) > m. Taking the
multiplicity of 5 .̂'s and the measurability of ^R.ΓϊK into consideration,

together with (2.7), (2.8), we see the following inequalities

sup

Therefore we see

log(Nε(M<m))) log(3w-«5-1Λr~^JΪ"(ί:)) + α/log2
χ > α as ε [ 0.

This implies
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M-dim (M^m)) < α for any δ > 0. (2.9)

Furthermore if Ha(M(^}) > 0, then

α = H-dim (M^m)) < M-dim (M^m)) < M-dim (M^m)). (2.10)

Together with (2.4), (2.9) and (2.10), we have

M-dim (M^m)) = M-dim (A^m)) = H-dim (K) = α if Hβ(Mjm)) > 0. (2.11)

Lastly, we will prove that

M-dim (K \ M^m)) = M^dim (K), M-dim (K \ M^m)) = M-dim (K). (2.12)

From (2.9) and the condition (2.3), we see

0<limSup

lθg(N* (Mr))<l forany <5 > 0.
H O F log(N.(X))

In addition, since Nε(X) -» oo as ε 1 0, we have

N (Mlm>) N ίMlm))
lim inf ™AMs ' = lim sup ε( * ' = 0. (2 13)

«ιo N.(K) £i° N.(JC) l ;

On the other hand, since M^m) £ K, we have the following inequalities

Therefore we see

,. , < 1 . . flim inf - < hm inf
ε^°

<limin f

l o g l / ε ε^° log 1/ε

lθg(N-(K))

log l/β

Together with (2.13), we see

ε^° log 1/ε £i° log 1/ε

This implies

M-dim (K \ M^m)) = M-dim (K).

Similarly, we see
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M-dim (K \ M(

δ

m}) = M-dim (K) Π

Now we will prove THEOREM 2.1.

PROOF OF THEOREM 2.1. Let ε be any positive number such that

Hα(K) - Hα(K°) > 2ε. (2.14)

Put

Nδ = {xεK; δ < @<?-D«(K, x) < @<?-D«(K, x) < 2α+1}.

By the inequalities (2.1), (2.5) and LEMMA 2.3, we see that there exists δ > 0
such that

H α (K\(JV,uK°))<ε/2. (2.15)

Furthermore we see that (j^=1M
(

δ

k) ^ Nδ. Since M(

δ

m) is increasing in
monotone as m->oo, there exists m0eN such that

H*(Nδ\M(

δ

mo))<ε/2. (2.16)

Put Kε = K\M^0). Then by (2.15), (2.16), we see

H"(KE\K°)

= H'((Kε Π NΛ) \ X°) + Hα((Xε \ NΛ) \ K°)

= Hα((K n Nδ) \ (K° U Mj"0*)) + Hα((K \ (M(Γ} U N, U X0))

< H*(Nd \ Mim0)) + Hα(X \ (ΛΓΛ U X0)) < ε.

By (2.14), (2.15) and (2.16), Hα(M£"o)) > 0 holds. Hence by Lemma 2.4, we see

M-dim (Ke) = M-dim (X), M-dim (Kε) = M-dim (K)

and

M-dim (K \ Ke) = M-dim (K \ Kε) == H-dim (K) = α. Π

From the proof of THEOREM 2.1, we can see that Kε is an essential subset
of K in § 1. For the case Hα(K) - 0 or Hα(X) - Hα(X°), Kε = K satisfies the
assertion in the corollary. Therefore COROLLARY is obvious by THEOREM 2.1.

Here we observe a simple example. Put K = Q[0,i] U C and α = log 2/log 3
where Q [ 0 f l ] = Qn[0, 1] and C is the Cantor set. Then

H-dim (X) = α < 1 = M-dim (K),

0 < Hα(K) - 1 < oo

and
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D*(K, x )>6~ α for xeC

hold. The last inequality means N1 / 3 = C, K° = Q [0,i]\c and Hα(K°) = 0.
In this case, Kε = Q[0,i] satisfies the conditions in THEOREM 2.1. Actually,

Hα(Q[0,i]) = 0, M-dim (<Q[0ιl]) = M-dim (Q[o;ι]) = 1

and

α = H-dim (C \ Q[0> υ) - M-dim (C \ Q[0,13) = M-dim (C \ Q[0, u)

hold as well known.
For more complicated cases, we can not expect that THEOREM 2.1 is valid

for ε = 0, because the box dimension is not stable. Complicated examples

will be discussed separately.
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