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0. Introduction

The study of the subjects of multiple comparisons under univariate and
multivariate statistical analyses has been done by many authors. Reviews on
some aspects of multiple comparison procedure have been given in Miller
[22]. We refer to Miller [23, 24], Hochberg & Tamhane [11], etc. for the
univariate case and to Roy & Bose [27], Krishnaiah & Reising [20] and
Krishnaiah [18, 19], and so on for the multivariate case. This paper is
concerned with multiple comparisons of correlated mean vectors under the
multivariate normal populations. One of the important problems is to
construct the simultaneous confidence intervals for the multivariate multiple
comparisons with the given simultaneous confidence level in unbalanced
models. In multivariate setting, however, it is difficult to find the exact
simultaneous confidence intervals even in balanced models. In order to
respond to the problem, we discuss the approximation procedures to obtain
the good approximate simultaneous confidence intervals. We also discuss the
approximation to the simultaneous confidence intervals in a GMANOVA
model which is a useful basis in the analysis of data on growth curve. First,
in order to achieve the purpose, it is necessary to find the upper percentiles
of the key statistics which play an important role in constructing the
simultaneous confidence intervals. This is what is called the generalized
T2 .-type statistic. In Section 1, the approximate upper percentiles of the
statistics are given for multiple comparisons among pairwise treatments and
for comparisons among treatments with a control, respectively, and the
accuracy of the estimated percentiles is investigted by Monte Carlo
simulations. On the approximate procedure, we adopt the modified second
approximation procedure which have been referred to Siotani [32, 33], Seo &
Siotani [29]. The modified second approximation procedure based on
Bonferroni’s inequalities offers an attractive and an intuitive approach to
produce fairly accurate approximations, though the accuracy of the approxima-
tions depends on parameters. Further, in Section 2, the approximate
simultaneous confidence intervals for multiple comparisons among the
components of treatment vectors are discussed. In Section 3, we consider a
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multivariate version of the generalized Tukey-type conjecture in which the
procedure yields the conservative simultaneous confidence intervals. The
Tukey-Kramer (T-K) procedure (Tukey [35], Kramer [16, 17]) offers a very
simple and practicable solution to the problem of making pairwise comparisons
in univariate unbalanced cases. Seo, Mano & Fujikoshi [31] have established
the generalized Tukey conjecture for pairwise comparisons among mean vectors
in multivariate setting, and they proved the conservativeness in the case of
three correlated mean vectors. Here we consider the generalized Tukey-type
conjecture in the comparisons with a control, and discuss the conservative
simultaneous confidence intervals. In Section 4, we discussed multiple
comparisons in the GMANOVA model which are useful in the analysis of
data on growth curve.

1. Multiple comparisons among correlated mean vectors

Consider the simultaneous confidence intervals for multiple comparisons
among mean vectors. Let M = [u,,---,n,] be the matrix of k p-dimensional
mean vectors corresponding to the k treatments. Let M = [f,,---, ji,] be the
estimator of M such that vec (A:I) is distributed as N, ,(vec (M), V' ® X), where
vec (-) denotes the column vector formed by stacking the columns of the
matrix under each other, and V:k x k and X:p x p are a known and an
unknown positive definite matrices, respectively. Let S(= [s;;]) be an unbiased
estimator of ¥ such that vS is independent of M and is distributed as a
Wishart distribution W,(Z, v).

Then, the usual simultaneous confidence intervals for multiple comparisons
can be written as the form

(1.1) aMbe[aMb + t(b'Vb)''*(a'Sa)''?], VaecRP, VbeB,

where RF is the set of any nonzero real p-dimensional vectors and B* is a
subset that consists of r vectors in the k-dimensional space.

In order to make the simultaneous confidence intervals (1.1) with the
confidence level, it is necessary to find the value ¢(> 0), which is usually
satisfying

Pr{T%, >t*} =q,
for given a(0 < a < 1), where

ryvroO—1
(1.2y T2 = may  2XS A X=M-M.
max bEBk b/ Vb 9
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The generalized T2, -type statistic (1.2) which is an extension of the multivariate
Studentized range statistic (see, Seo & Siotani [29]) is fundamental for pairwise
comparisons among correlated mean vectors, and is also used for comparisons
with a control when V = I, (see, Seo & Siotani [30]). In general, however,
it is difficult to find the exact percentiles of the generalized T2 -type statistic.
Here we adopt the modified second approximation procedure based on
Bonferroni’s inequalities, which is explained in the next subsection, in order
to obtain a practically good approximation. The accuracy of the approxima-
tion is investigated by Monte Carlo simulations for the selected parameters.

1.1. Modified second approximation procedure

This subsection attempts to give the modified second approximation
procedure for a general multiple comparison. For references for the idea
of this approximation procedure, see Seo & Siotani [29, 30].

Put z; = (b; Vb;) /2 Xb,;, i = 1,---,r, where b,s i = 1,---,r are given vectors.
Let B*={b,,---,b,}, and let t*> =t*(«; p, k,r, v, ¥) be the exact upper «
percentile of the generalized T2, -type statistic. Then z; has the p-dimensional
normal distribution with mean vector 0 and covariance matrix X.

On the basis of Bonferroni’s inequalities for the generalized T2 -type
statistic; that is,

Y Pr{ziS7'z;>t*} >Pr{Ti, >t*}> ) Pr{ziS 'z;>1t*} — B,

i=1 i=1

where

B=3YPr{ziS 'z;>1t? zjS 'z;> 1%},
i<j
we define the first approximation to ¢> by t7 satisfying Y ;_, Pr {z/S7 'z, > t}}
=o. Such t{ can be determined by using the fact that z;S~'z; is the Hotelling
T2-statistic with v degrees of freedom (d.f); that is,

vp o
1.3 t2=———F,,. =,
( ) 1 v_p+1 P, p+1<7’>

where F,,_,. (a/r) is the upper a/r percentile of F-distribution with p and
v—p+1 df’s.

The first approximation (1.3) to the upper « percentile of the generalized
T.2,.-type statistic is an overestimate and a conservative approximation. Note
also that the first approximation tf = t#(«; p, k, r, v, ¥) does not depend on

V, and hence t, /ﬁ coincides with the corresponding first approximation of
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the multivariate Studentized range in Seo & Siotani [29].
The modified second approximation to t* is defined by t3 satisfying

Y Pr{z/S 'z, > th} =a+ By,
=1

i

where

(1.4) By =YY Pr{z/S 'z, >}, z}S 'z; > t}}.

i<j

Hence the modified second approximation t can be written as

vp o+ B
[2=———F v— —_— ).
M v—p+1 s p+1< ; )

The modified second approximation consists of the form of the second
approximation with the use of the first approximation. It may be noted that
the modified second approximation is larger than the second approximation
andsmaller than the first approximation. However, there is no theory about
conservativeness of the modified second approximation.

If the modified second approximation is still an overestimate with
significant excess, we can obtain an accurate approximation by repeating once
more this procedure. This approximation is called the doubly modified second
approximation given by

2 vp «+ f
Ipm = me,v—p+1(——7_ s

where

By=YY Pr{z/S 'z, >t} 28  z; > th}.
i<j

Though we have to evaluate 8, in order to obtain the modified second
approximation tZ, it is difficult to obtain the exact evaluation of the
probabilities in (1.4). As the large sample approximations, however, an
asymptotic expansion formula up to the term of order v~2 can be obtained,
and is derived for pairwise comparisons and comparisons with a control,
respectively, in the next subsections.

1.2. Pairwise comparisons and comparisons with a control

In many experimental situations, pairwise comparisons and comparisons
with a control are standard for multiple comparisons. In this section, we
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evaluate the probability in (1.4) by asymptotic expansions in general form, so
that the approximate simultaneous confidence intervals by the modified second
approximation procedure are given in the cases of pairwise comparisons and
comparisons with a control.

To evaluate the probability in (1.4), the following results are needed. We
use the bivariate x* distribution with p d.f. and correlation parameter p;; (see,
e.g., Siotani [32], Krishnaiah [18]) which has the following density function
o Ir'Gp+m ,,

Ui, V) = 1 - i2‘p/2 Ty 1 Vi ’ m\Ui » m\Uj),
f( 1) ( pj) ,,,;0 m‘r(%p) p_] gp+2 ( )gp+2 ( _])
where g (v) = [2¥?I'(k/2)]"'v*/?~1e™ "2, Then, we have the following lemma.

LEMMA 1.1.  Suppose that vec (X)~N,,(0, VQZX), and let z;=(b; Vb))~ '/* Xb,,
z;=(bjVb)~''*Xb;, i #j. Then

()AL 5 )

where
~ b Vb,
P bve) 2 (6 VD) 2
and
ry—1 1 ry—1
vi=1_pi2jz.~2 Zis v,-=1—_—piz;z,~2 z;

have the bivariate y* distribution with p d.f. and parameter p;;.

Further, from Lemma 1.1, for any fixed q, we have

Pﬂdf”a>q€¢2*@>f}=u—pw“ji€%%%?P?Gﬁmamx
where
Mij = L 4>, Griomn) = fw 9% o+ 2m (V) dv.
2(1 - p) .

Note also that
Pri{zS'a>¢% 557 g, > ¢*)
= Eg[Pr{z/S™ 'z, > ¢%, 2;S " 'z; > ¢*| S is fixed}].

According to Welch [36] and James [13], we can make the Taylor expansion
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of the function of § inside of above brackets about §=2X and take the
expectation of the resultant with respect to S. Thus we can use the following
formula.

LemMa 1.2, If f(S) is a function of S, where vS is distributed as W,(Z, v),
v > p, then

Es[f(9]1=6 -f(D)g-;
=0 -Pr{z/Q 'z;>¢% 2} '2;> ¢} g5,

where

-v/2

0= etr (— X0)

2
I,- x50
v

=1+v 1tr(20)? + v'z[%tr (Z9)® + % {tr (26)2}2] + 03,

0:pxp=[1/2)(A+6;)0/0w;], 2:p x p=[wy].

By Hotelling and Frankel [12], the upper percentile of the Hotelling’s
T? statistic has an asymptotic expansion such that

t2=co+vie, +v i, +O(v73),
where

2
Co=X">

1
a=5 2202+ p),

1
cy = 2—412{4)(4 + (13p — 2)x* + Tp* — 4},

x> = x*(a/r; p) is the upper o percentile of the y? distribution with p
d.f. Hence it follows from Lemma 1.2 that

Pr{z/S™'z;>t}, 2;S 'z, > t}}

=[1 +v e, D + tr (20)*}
-2 1 2n2 2 4 3 1 212
+v c2D+5c1D + ¢, tr (X0) D+§tr(26) +E{tr(26)}

+ O(v_3)] X Pr{ziQ7 'z, >u, 2,27 2, > u} lg=s.u=co>
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where D = d/0u.

When V = I, an asymptotic expansion of the probability in (1.4) was given
by Siotani [32], and its simplified and practical formula was obtained in Seo
& Siotani [29]. After a great deal of calculation, we can obtain the following
theorem.

THEOREM 1.1. With the notations

XZ

(1 - pu)

’7?1‘_ 1e_'lij(a > 0)’ Ga(nij) = J‘ ga(t)dt’

Nij

nij =

1
ga(nij) = m

1 N
Ipr-1)) = — 5 '7;; 32e=mi for p=1; =0 for p=2,

()42 oee )

it holds that
Pr{z,8 'z, > 1}, zjs_lzj >t}} = Ao(pyy) + v_lAl(pij) + v_ZAZ(pij) + 073,

where

6 p)m m
AO(pij) =(1- piZj)p/Z Z 2 Pzzl Gp/2+m(’7q)

m=0

1 p)m m
Axlpy) = 5 (1 — pEypI2y? Z 2 p?, Gpr2+m(M)
2m + 1

X |:{pi2j(X2 + 2m) — 2m} Gp/2 +m(’7ij) + P+ 2m

ngp/Z +m(’7ij):| s

1 (GD)m m
Az(Pij)=48( P;,)p/z 4X2 2 2nl1’ 2 [al(Pij)gp/z—l+m(’7ij)Gp/2+m(’1ij)

+ a2(0:) 952+ mMi) G2 +m(Mij) + a3(pij)g§/2+m('7ij):|

with the coefficients a,(p;;), a,(p;;) and as(p;;) given by

ay(py) = —3(L = P3P > (* + ),

a,(p;) = 3058 + (1 — pB)x*{ — 8p% — 2(3p + 12m — 2)p% + 3(p + 2m — 2)}
+2(1 = p7)?x*{—(3p* — 13p — 12m* + 2)p}, + 3p* + 6(m — 1)p + 2m(3m + 1)}
+(1—pZ)?*{3p® + 6(m — 1)p*> — 4m(3m + 4)p — 8m*(3m — 4)},
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22m+ 1)(2m + 3
(14 2m)pl+ (2m + )(m+)}

4
a5(pi) =3 6{ 5+
3= P p (p+2m)(p +2m +2)

+2m
1
+12(1 —p,-zj)x“{—(l +3m)pl— ———(@m+1)2m+ 1)}
p+2m
1
+6(1—p2)x? {_ {(14m* + 4m + 3)p + 28m> — 2m — 2}}
p+2m

Therefore, the modified second approximation to the upper percentile of
the generalized T2, statistic is given by

(1.6) tﬁ:v‘prv—p+1<a+ﬁl>’
v—p+1 7 r

where

(L.7) B = ZZ {Ao(pi) + v A1 (o) + v 2 A5(piy) + O(v )}

Practically, we can numerically calculate an asymptotic expansion (1.7) of
B, up to the order v™? by computer. On pairwise comparisons and
comparisons with a control, we discuss the accuracy of the approximate
percentiles for each parameters o, p, k, v and ¥ by the Monte Carlo simulations

in final subsection.
In the case of pairwise comparisons, the generalized T}2,-type statistic
can be reduced to

2 cX'S™ ' Xe

where C* = {ceC*:c=¢,—e,, 1 </ <m <k} and e, is the /th unit vector
of the k-dimensional space. It is easily noted that r = k(k — 1)/2 in this case.

THEOREM 1.2. The modified second approximation tf,.p for pairwise
comparisons among the correlated mean vectors is given by (1.6) with
r=kk—1)/2 and

¢/ Ve;
= b
(c/Ve)'2(cjVey)'/?

Pij

and then, the approximate simultaneous confidence intervals are given by
a(p;—p)ela(p—p)+ tM-p(dijalsa)l/z:L VaeRP, 1 <i<j<k,

where d;; = v; — 2v;; + vy;.
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We note that, when ¥V = I, the result in Theorem 1.2 can be reduced to
the one in Seo & Siotani [29].

Next, in order to discuss the case of comparisons with a control, we
assume that k-th treatment is the control treatment with which the remaining
(k — 1) treatments are to be compared. Note that r =k — 1, and that t2 is
the upper percentile of the generalized T2, statistic given by

'X'S X
(1.8) T2, .= max (d——q>,
de Dk dVvd

where D* = {deR*:d=e¢;, — ¢;, i = 1,---,k — 1}. When the (k — 1) treatments
are independent of the control, the generalized T2, .. statistic (1.8) is reduced
to T2 statistic with a control in Seo & Siotani [30]. Then we have the

max

following theorem.

THEOREM 1.3. The modified second approximation ti.. for comparisons
among the correlated mean vectors with a control is given by (1.6) withr =k — 1
and

~ dvd,
(V) *d;yd) 12’

Pij

and then, the approximate simultaneous confidence intervals are given by
@' (u; — w)eld (f; — fiy) + ty.(dya'Sa)' ], VaeR?, i=1,---,k — 1,
where dy = v; — 204 + Uk

We note that, when V = I, the result in Theorem 1.3 is reduced to the
one in Seo & Siotani [30].

1.3. Monte Carlo simulation

In the case of pairwise comparisons, Monte Carlo simulation was done
to compare the simulated values of the upper percentiles t(x; p, k, r, v, V) of
the generalized T2, statistic with the approximations by the modified second
approximation procedure. The programs for computing the approximations
are written by FORTRAN, in which subroutines for the gamma density and
distribution functions, and the percentiles of y*> and F distributions are taken
from Statistical Tables and Formulas with Computer Applications JSA-1972
(edited by Yamauti [37]). Without any loss of generality, we may assume
that £ =1,. To obtain precisely simulated values, the large scale Monte
Carlo simulation was done; that is, 20,000 simulations for each set («; p, v, V)
of parameters based on normal random vectors from N,,(0, ¥®1,). Note
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that the sample covariance matrix § is formed independently in each
time. This process is repeated 100 times to obtain 100 estimates. The average
of 100 estimates based on 20,000 simulations is used as the simulated value
of generalized T} -type statistic. Computations are made for p=1, 2, 3, 5;

k=3,4; v=10, 20, 40, 60; « = 0.10, 0.05, 0.01; V¥ is made for the following
four cases when k = 3:

1 05 1 1 0 0 1 025 045
LV,=|05 2 15|, %=|005 01, V=] 025 1 07
1 15 3 0 0 o0l 045 07 1

Note that V; satisfies d,, =d,; = d,3, and d,;’s are the same for ¥, and V,
(dy,=15,d,3=11,d,; =06). Table 1.1 gives simulated values with 10
(S.D.)), where S.D. means the estimated standard deviation of simulated
values. From the magnitude of the standard deviation in Table 1.1, it can
be seen that the simulated values are good enough for using as the reference
values in our examination of precision of the approximations. Note that the
first approximation are overestimate of the exact upper percentile of the
statistic.

In the case of pairwise comparisons where V = I and p = 1, the generalized
T2 -type statistic can be reduced to the univariate Studentized range
distribution whose percentiles given by Harter [7]. The results in Table 1.1
suggest that the first approximations are not depend on ¥, and the modified
second approximations are the same when the corresponding d;’s are the
same, which are shown in Section 3. Also, it can be seen in Table 1.1 that
the modified second approximations are conservative for the case k =3 and
give the pretty better approximations than the first approximations. In
general, however, the modified second approximation does not always give
the conservative approximation. If 0.10 <« <001, 1<p<5, k=3 and
appropriate large values of v are concerned, then the modified second
approximations are at least good approximations with sufficient precision for
the practical use.

Further, it may be noted that the modified second approximation
procedure yields good approximations for the practical use to the case where
k > 4. In addition, Monte Carlo simulation for the case of comparisons with
a control was done for selected parameters in the same way as the case of
pairwise comparisons. Consequently, it is also noted that the results similar
to those for the case of pairwise comparisons are obtained.
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Table 1.1. Simulation results and approximations (a = 0.10)
k=3 p=1
v 1 4 ty Iyp v, Vs ty typ
10 2312 2314 2.466 2349 2.290 2291 2.466 2331
(0.013)  (0.013) (0.013)  (0.013)
20 2.176 2.176 2285 2.201 2.153 2.154 2.285 2.185
0.011)  (0.012) (0.011)  (0.011)
40 2.114 2114 2204 2133 2.091 2.092 2204 2.118
(0.009)  (0.010) (0.010)  (0.010)
60 2.092 2.093 2178 2.111 2.071 2.071 2178 2.096
(0.010)  (0.009) (0.009)  (0.009)
p=2
10 3.175 3.177 3.361 3221 3.147 3.148 3.361 3.199
0.016)  (0.014) (0.016)  (0.015)
20 2.824 2.825 2934 2.849 2.800 2.800 2934 2.832
(0.011)  (0.011) (0.013)  (0.011)
40 2677 2679 2.761 2.694 2.654 2.656 2.761 2678
(0.010)  (0.010) (0.011)  (0.010)
60 2.634 2.632 2708 2.647 2612 2611 2708 2.631
(0.009)  (0.010) (0.009)  (0.010)
p=3
10 4.026 4.025 4.255 4.079 3.991 3.989 4.255 4.053
(0.021)  (0.019) 0.021)  (0.021)
20 3.357 3.357 3.473 3.382 3.330 3.331 3.473 3.363
(0.012)  (0.014) 0.012)  (0.012)
40 3.105 3.106 3.188 3.123 3.083 3.083 3.188 3.106
(0.010)  (0.011) 0.011)  (0.010)
60 3.033 3.033 3.105 3.046 3.011 3.011 3.105 3.030
0.011)  (0.010) 0.010)  (0.010)
p=35
10 6.190 6.194 6.633 6.317 6.139 6.142 6.633 6.278
(0.034)  (0.033) (0.033)  (0.031)
20 4.356 4.355 4.491 4.384 4.325 4324 4.491 4.362
(0.015)  (0.016) (0.014)  (0.015)
40 3.826 3.827 3.908 3.841 3.801 3.803 3.908 3.823
0.010)  (0.010) (0.009)  (0.011)
60 3.682 3.681 3.752 3.693 3.658 3.657 3.752 3.677
(0.009)  (0.010) (0.010)  (0.009)
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Table 1.1. Continued (¢ = 0.05)

k=3 p=1
v 1 v, ty trp v, v, t trtep
10 2.740 2.743 2.870 2.767 2.715 2.715 2.870 2.748
(0.020)  (0.016) 0.018)  (0.018)
20 2.528 2.530 2.613 2.545 2.506 2.506 2.613 2.529
(0.014)  (0.016) (0.014)  (0.015)
40 2.436 2435 2.499 2.445 2415 2413 2.499 2.430
(0011)  (0.013) (0.012)  (0.012)
60 2.404 2.405 2463 2413 2.383 2.384 2.463 2.398
0013)  (0.012) 0.013)  (0.011)
p=2
10 3.691 3.696 3.852 3.725 3.661 3.661 3.852 3.703
0.021)  (0.023) 0.022)  (0.022)
20 3.198 3.199 3.283 3.214 3.174 3.174 3.283 3.197
0.015)  (0.015) 0.018)  (0.013)
40 2.998 3.000 3.057 3.008 2.976 2978 3.057 2.992
0013)  (0.013) 0.013)  (0.012)
60 2.939 2937 2.989 2,944 2918 2916 2.989 2.929
0011)  (0.012) 0.010)  (0.012)
p=3
10 4.665 4.662 4.868 4.703 4.624 4.622 4.868 4.677
0.031)  (0.030) (0.030)  (0.029)
20 3.759 3.759 3.849 3.776 3.732 3.732 3.849 3.757
0.017)  (0.017) 0.018)  (0.016)
40 3.432 3.433 3.491 3.443 3412 3410 3.491 3.426
(0014)  (0.013) 0.014)  (0.015)
60 3.337 3.339 3.387 3.345 3.317 3.317 3.387 3.329
0.014)  (0.012) 0.014)  (0.013)
p=5
10 7.269 7.278 7.695 7.383 7.211 7.211 7.695 7.341
0.052)  (0.047) (0.054)  (0.049)
20 4.836 4.833 4.940 4.853 4.802 4.801 4,940 4.830
0.021)  (0.020) 0.021)  (0.020)
40 4.171 4.175 4.230 4.180 4.148 4.149 4.230 4.162
0.016)  (0.014) 0.013)  (0.013)

60 3995 3995 4042 4001 3974 3972 4042 3984
0012)  (0.013) 0.014)  (0.013)
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Table 1.1. Continued (« = 0.01)
k=3 p=1
v 1 4 ty Ly v, Vs t, Inop
10 3.723 3.721 3.827 3.739 3.694 3.693 3.827 3.719
(0.044) (0.045) (0.043) (0.040)
20 3.285 3.283 3.331 3.286 3.260 3.258 3331 3.269
(0.033) (0.034) (0.033) (0.028)
40 3.089 3.087 3.122 3.092 3.066 3.069 3.122 3.076
(0.027) (0.028) (0.024) (0.026)
60 3.027 3.027 3.057 3.031 3.008 3.009 3.057 3.016
(0.024) (0.024) 0.022)  (0.025)
p=2
10 4913 4913 5.052 4.936 4.876 4.876 5.052 4912
(0.052) (0.041) (0.050) (0.049)
20 4.005 4.005 4.057 4.011 3.981 3.981 4.057 3.993
(0.032) (0.035) (0.032) (0.035)
40 3.655 3.655 3.687 3.659 3.639 3.636 3.687 3.643
(0.029) 0.027) (0.031) (0.028)
60 3.555 3.550 3.577 3.554 3.534 3.532 3.577 3.540
(0.025) (0.024) 0.021)  (0.024)
p=3
10 6.212 6.228 6.405 6.246 6.172 6.179 6.405 6.218
(0.082) 0.077) (0.074) (0.083)
20 4.637 4.632 4.693 4.644 4.611 4.607 4.693 4.624
(0.039) (0.037) (0.038) (0.037)
40 4.105 4.102 4.137 4.110 4.086 4.085 4.137 4.094
(0.026) (0.025) (0.026) (0.029)
60 3.957 3.954 3.981 3.959 3.937 3.937 3.981 3.944
(0.025) (0.023) (0.026) (0.023)
p=>5
10 10.102 10.127 10.555 10.215 10.001 10.036 10.555 10.164
(0.145) (0.124) (0.153) (0.135)
20 5.889 5.891 5.966 5.904 5.857 5.861 5.966 5.879
(0.043) (0.048) (0.040) (0.044)
40 4.891 4.889 4920 4.893 4.870 4.867 4.920 4.876
(0.030) (0.030) (0.029) (0.030)
60 4.634 4.632 4.655 4.634 4614 4.616 4.655 4.618
(0.027) (0.027) (0.026) (0.026)

2. Multiple comparisons among the components of the mean vector

In this section, we consider the simultaneous confidence procedures for
multiple comparisons of the components of the mean vector in a multivariate
normal distribution. Such a situation arises, for example, in multiple
comparisons of the components of repeated measurements of the same quantity

in different conditions.

For the purpose of constructing of the intervals in
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this case, the upper percentiles of the statistic for comparing of the components
of the mean vector are discussed. The form of this type statistic is given by

(2.1) Fiax =max<axxa>,
acA? \ g'Sa

where x corresponds to X with p=1 and A? is a subset that consists of s
vectors in the p-dimensional space. Note that F2,, statistic (2.1) is similar to
the generalized T2 -type statistic. We discuss the upper percentiles of F2,,
statistic, so that the simultaneous confidence intervals are obtained for the
cases of pairwise comparisons and comparisons with a control.

2.1. Pairwise comparisons and comparisons with a control

Let fi be the estimator of u such that g is distributed as N,(u, X), where
p and X are unknown, and let S(= [s;;]) be an unbiased estimator of £ such
that vS is independent of ji and is distributed as a Wishart distribution
W,(Z,v). Let x=ji—p, and consider the statistic given by (2.1). The
approximate upper percentiles of F2,, statistic by the modified second
approximation procedure are described as follows.

Let F? = (a/xx'a;)/(a}Sa;), w} = F, ,(a/s) and

(2.2 P, = ZZ Pr {F? > wi}, F} > wi}.
i<j

Then, by Bonferroni’s inequality for F2,, statistic, the modified second
approximation is a solution of the equation

Pr{F? > wi} =a + 7.
i=1

i

Hence

WI%IZFI,‘,(a_:yl).

Since the exact evaluation of the probability in (2.2) is also complicated
in this case, we obtain an asymptotic expansion for the probability in (2.2)
which is a large sample approximation.

Letting y, = a/x/(a;2a)"'? and y; = ajx/(a;Za)''?, i #],

()=(6) L, VD

where
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5 ala;
v (a/%a)''*(a}Za)'/?’

Then
f0n») : ep[ L 02— 26, +yﬂ
Vi Yj)) = ——F——=¢X 72 ijYiVj J
2n/1 -8 2(1 — 5

The following result corresponds to a univariate case of Lemma 1.1.

LEMMA 2.1.  Suppose that y; and y; are under the assumptions above. Then,
for any fixed g,

Pr {)’12 > g2, )’f > qz} =(1- 5,'2;)”2 z (;)m 52me+ 12(M3),

m=0
where

1 1 _
q°, Guir2y) = —— tm V2e'dr.

2(1 - 63 rm+3%J,,

Put v, = y?/(1 — 6%) and v; =y}/(1 —6%). Then (v;, vj) is the bivariate
x* distribution with 1 d.f and parameter J;;.

We give an asymptotic expansion for probability in (2.2) by using the
following idea which is essentially due to Welch [36]. The method was used
for the probabilities similar to (2.2) by Siotani [32]. Let ¢, and x be the
vectors such that t/t; = a/Za; and t/x = a/x, respectively. Consider for any

fixed gq,
t-’~ 2 2~ 2
JEPr{i > g2, UL >q2},
t;(I + e)t, t(I+ ot;

where ¢ = [¢,,] is a symmetric matrix consisting of small increments ¢, to i
such that I+ ¢ is still positive definite. Then

J= |: + Zgrsars + = 21 Z 8rsgmarsam +- :|

rstu

2 r=\2
m{() s g, 69 >¢}
1O, 1,01

where 0,, = (1/2)(1 + J,))0/0w,s, and 9, is the Kronecker delta.

Nij =

rs

(2.3)

’

Q=1

On the other hand, we can express J as

1
(24 J= l: 14_52*( —20;;y:y; + i )] dy;dy;,

227[,/1—5,3
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where
tt, t't,
T e e el T
t{(I + )t (I + o)t;

After a great deal of calculation, we obtain the following theorem by comparing
(2.3) with (2.4).

THEOREM 2.1. For any fixed q,

Pr(Fiz >q°, sz > qz} = B0(5ij) + V_IB1(5ij) + v_ZBZ(éij) + 007,
where

2 D som
Bo(@y) = (1= 08)"1* 3 = W65 G 1201,

2 (D som
Bl(‘sij) =(1- 5i2j)1/2 Z #5;2, [{2’71'21' - (2m — 1)’1ij}9m+ 1/2('Iij)Gm+1/2(’7ij)

m=0

+ 2’7i2jgr2n+ I/Z(nij)]a

1
i _)m m
Bz(éij) =(1 - 5.'2,')1/2 ZO (——:n' 51’2; [b1(5ij)gm+1/2(’7ij)Gm+1/2('lij)

+ bz(éij)gﬁw 12(M:)]
with the coefficients by(d;;), b,(0;;) given by

1 1
by (d:;) = — g(ISm + N + o 2m — 1)(18m + 5)n};

1
% (2m — 1)(2m — 3)(6m + 1)n;;,
by (0;;) = (26 + 4067 + nf — {22m — 1)6f; + 4(2m + 1)67 + 2m — 1)} n},

+ {%(2m — 1?65 + 2m — 1)2m + 1)63 + %(Zm — 1)2} ni.
When d;; = 0, the above asymptotic expansion can be simplified. The
following corollary is useful for evaluation of approximation by computer.
CoOROLLARY 2.1. If 6;;=0, then
Pr{F?>q* F}>q*}

=Gi )+ v H{@n+ D1 gy, Gy 5 + 20 g3 2(n)}

(1 1
+v7?2 {ﬁ (24n* — 28n* + 100 — 3)n - gy, (M) G 2 () + n @2n+ 1)2q2g%/2(;1)}
+0(™Y),
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where n = q*/2.

For the details of derivation of the above result, see Seo [28]. In addition,
in order to check this result, we consider an asymptotic expansion for the
probability in (2.2) by a perturbation method which is different from the
preceding method. However, it is also complicated to evaluate the asymptotic
expanision up to the higher order in the case of the perturbation method. This
is why we give the asymptotic expansion up to the term of order v~ ! for the
probability and then check previous result with this one.

Letting A =1 + V/\/;, we have
& (D som i ;
Pr {F? > ¢, sz > q*} = E,4 |:(1 - 5:‘21)1/2 Z —:n' 5i2j Gm+1/2(’7$j))Gm+1/2(’73')) s
m=0 .

where n% =riq*/2(1 — 6}), k =i, j, and r{ = At /t;t,.
Further, suppose that n% =n, + 7, where

Mo = q%/2(1 — 82) 0¥ = (1//V)noti Ve /tit,.
Then we have

Gm+1/2('73‘))Gm+ 1/2(’79) = Gm+1/2('70) + Gm+1/2(’70)Gm+1/2 No {”Im + W(lj)}

1 " i .
+ [Gmﬂ/z(’?o)"‘f’"‘x” + 5 Gae11210) Gy 2 n0) {1t +f1‘1”2}] T

Note that

Gr/n+1/2(’70) = - gm+1/2(’10),
" l -1
Gm+1/2('70) = E {2 — (2m — D)n, }gm+1/2("lo)-

Using the formulas for expectations about ¥ and V? (see, e.g., Fujikoshi [3]),
we can obtain

1
Pr{F2>q F2> %) = (13! ¥ ‘m—),"'a [anﬂ/z(no)
m=0 .

- {{2’70 (2m—1) ﬂo}gm+1/2(’70)Gm+ 172(Mo) + 2”/09m+1/2(’70)}:| +0(7?).

This is the same as the result of Theorem 2.1 up to the term of order v=!. The
approximate upper o percentile of the statistic by modified second approxima-
tion procedure is given by

+
2.5) Wl = Fl,v<°‘ I >

N
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where
1= 22, {Bo(0;) + v7!B1(3;) + v 2B,(8;) + O(v™?)}.
i<j
Applying the above results to the pairwise comparisons and comparisons
with a control among the components of the mean vector, we have the
following results.
In the case of pairwise comparisons, F2,, statistic is reduced to

’ !
u'xx'u
2
Froxp = max< ),

ucUP u' Su

where U? = {ueRP:u=e¢ —e;, 1 <i<j<p} and e is the ith unit vector of
the p-dimensional space.

THEOREM 2.2. The modified second approximation wi,., for the pairwise
comparisons among the components of the mean vector is given by (2.5) with
s=pp—1)/2 and

5. = ulu;
Y (”.{E"i)l/z(.l’,{zuj)l/z,

and then, the approximate simultaneous confidence intervals with the confidence
level (1 — o) are given by

i — € LA — fiy £ wag (s — 2855 + sjj)l/z]a I<i<j<p.

In the case of comparisons with a control, assuming that p-th component
is the control component with which the remaining (p — 1) components are
to be compared, F2_ statistic is reduced to

max
/ ’
v Xxx vy
F:%\arc = max ’ ’
veVP Ay Sy

where V? = {veR:v=¢,—e, i=1,--,p—1}.

THEOREM 2.3. The modified second approximation w,., for the comparisons
with a control among the components of the mean vector is givne by (2.5) with
s=p—1 and

5. = viZy;
Y Zv) vzt

and then, the approximate simultaneous confidence intervals with the confidence
level (1 — o) are given by

Wi — Hp€ LA — fi, & Warosiu — 25, +5,,)"%),  i=1p— L.
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2.2. Monte Carlo simulation

A computer program for evaluating the approximate upper o percentile
of the statistic by the modified second aproximation procedure is written in
FORTRAN. Since the modified second approximation procedure produces
the accurate approximations in most cases, it is expected that the
approximations give good estimates. Here, as evaluation of the approxima-
tions in practical use, we use the extimate of p;;, that is,

. ¢;Sc;
Y (eiSe) ' (cjSey)'?

In the case of pairwise comparisons, Monte Carlo simulation based on
20,000 simulations was done for the parameters a = 0.10, 0.05, 0.01; p=3, 5, 10;
v =10, 20, 30, and repeated 100 times, where X is given by I It may be
noted that the simultaneous confidence intervals which are constructed by
using the upper percentile in the case £ =1 in Table 2.1 are conservative in
most cases. Also, it may be seen that the approximations are close to the
simulated values as v is large. It can be expected that the modified second
approximations give good estimates if X # L

In the case of comparisons with a control, the approximations by the
modified second approximation procedure and simulation results for selected
parameters which is £ =1 and p =3, 5, 10; v = 10, 20, 30; « = 0.10, 0.05, 0.01
are given in Table 2.2. It may be noted that the approximations by the
modified second approximation procedure are close to the exact critical points
as p is large.

Table 2.1. Case of pairwise comparisons

p=3 p=>5 p=10
a o o
v 010 005 001 010 005 001 010 005 001
10 Approx. (MSA) 2.383 2.822 3.822 3.061 3.540 4.586 4.048 4.513 5.617
Simulation 2379 2812 3.797 3.033 3489 4.549 3923 4419 5582

20 Approx. (MSA) 2209 2.558 3311 2713 3.068 3.829 3.368 3.733 4.484
Simulation 2202 2558 3304 2718 3.067 3.815 3360 3.707 4.459

30 Approx. (MSA) 2.159 2484 3166 2624 2941 3.613 3.187 3.506 4.169
Simulation 2151 2483 3.164 2628 2945 3.605 3.201 3.510 4.152
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Table 2.2. Case of comparisons with a control

p=3 p=>5 p=10

o a o
v 010 005 001 010 005 001 010 005 001
10 Approx.(MSA) 2.173 2599 3.576 2535 2984 3.999 2988 3467 4.516

Simulation 2177 2600 3.564 2.536 2970 3.979 2959 3417 4475

20 Approx.(MSA) 2.038 2389 3.140 2326 2676 3.433 2.644 3.004 3.776
Simulation 2039 2390 3.135 2332 2682 3427 2661 3.012 3.762

30 Approx.(MSA) 1.997 2327 3015 2268 2591 3.272 2555 2.878 3.563
Simulation 1.996 2330 3.015 2272 2597 3.266 2.576 2.895 3.566

3. A multivariate generalized Tukey-type conjecture

In this section, we discuss a multivariate version of the generalized Tukey
conjecture given as the statement that the Tukey-Kramer (T-K) procedure
yields the conservative simultaneous confidence intervals. The T-K procedure
(Tukey [35], Kramer [16, 17]) is an attractive and simple procedure for
pairwise multiple comparisons (see, e.g., Hochberg & Tamhane [11]). On
the univariate case, it is shown in Dunnett [2] that the generalized Tukey
conjecture for pairwise comparisons by an extensive simulation study.
Theoretical discussions related to this conjecture are referred to Hayter [8, 9],
Brown [1]. It is known that this generalized conjecture is true for (i) k = 3
(see, Brown [1]) and (i) d;;’s satisfy d;; = a; + a; for some positive numbers
a; and a; (see, Hayter [9]), where d;; = v; — 2v;; + v;;. Thus even for the
univariate case, there has been no analytical proof of the generalized Tukey
conjecture except the special cases. Further, Lin, Seppianen & Uusipaikka
[21] have discussed the generalized Tukey conjecture for pairwise comparisons
among the components of the mean vector. Recently, Seo, Mano & Fujikoshi
[31] have established the generalized Tukey conjecture for pairwise compari-
sons among mean vectors in multivariate setting, and they proved the
conservativeness in the case of three correlated mean vectors. In this section,
we consider the multivariate T-K type procedure including comparisons with
a control. Some interesting properties of the procedure are presented; first,
we describe the multivariate T-K procedure and give a reduction for the
coverage probability related to the ultivariate T-K procedure. Secondly, a
conservative procedure for comparisons with a control is derived, so that we
show that the obtained procedure gives the conservative confidence intervals
in the case of three mean vectors, and we give the conjecture in the case
more than four correlated mean vectors. Further, we discuss the conservative
procedure in the case of comparisons with a control among the components
of the mean vector. Finally, we investigate the conservativeness of the
procedure for some selected parameters by Monte Carlo simulations.
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3.1. Multiple comparisons among mean vectors

Under the situations in Section 1, we consider T-K procedure which is
often used for making the simultaneous confidence intervals for the case of
pairwise multiple comparisons in unbalanced models. We also apply T-K
type procedure to the problem of multiple comparisons with a control in
multivariate setting.

Under the same notations as in Section 1, the following properties of
generalized T2, -type statistics (1.2) are obtained.

THEOREM 3.1. The distribution of generalized T2 -type statistics depend
on V only through p;;, i <j.

Proof. Let X=[x,,---,x] and Z=[zgy,---,2,], where x;,=f;,— u;,
i=1,---,k, and z; = (Xb,)/(b;Vb;)''?, i = 1,---,r. Without loss of generality we
can assume that £ = I. Then the generalized T2, statistic depends on vec (Z)
and S. Then the distribution of vec (Z) is normal with means zero, and the
covariance matrix of z; and z; is given by

if =],

1
CO is &) = .
V(@ 2) {pijl if i#j,

where
_ b; Vb,
(b Vb)2(b;Vb)'*

Pij

Therefore, the covariance matrix of vec (Z) depends on ¥V through the values
of p;;, i <}

COROLLARY 3.1. Suppose that by,---,b, be the elements of B* = {beR*:
b=e, —e,, 1<t/<m<k}. If for all 1 <i<j<k, dj=v;—2v;+v;;=
d(constant), then the distributions of generalized T2 -type statistics are the same
as that of T2, statistic with V = L.

Proof. Under the situation above, it is easily checked that the distribution
of vec(Z) in the case d;; = v; — 2v;; + vj; = d is the same as that of vec(Z)
in the case V=1

COROLLARY 3.2. The generalized T2,. statistics with d;; = dy + d;, have
the same distribution for all 1 <i<j<k—1.

Proof. When d,; = d; + d;, the covariance matrix of z; and zj (i #))
is given by 0. Hence we have the corollary.

The property of Theorem 3.1 in the case of pairwise comparisons is shown
by Seo, Mano & Fujikoshi [31], and is an extension of Hochberg [10]. In
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that case, the simultaneous confidence intervals by the multivariate T-K
procedure were proposed by replacing with the upper « percentile of generalized
T2, statistic with ¥ = I Similarly, in the case of multiple comparisons with
a control, the simultaneous confidence intervals by the multivariate T-K type
procedure may be obtained by replacing the upper a point of generalized

T2 statistic with that of T2,.. statistic with ¥ = I; that is,

- 1 1
adMde[aMd + 1, (d'Vd? (@Sa3?], VaeRP, VdeD*,

where ¢, =t.(o; p, k, v, I), D*={deR*: d=e,—¢,, i=1,---,k—1}. However,
we cannot expect the property that the multivariate T-K type procedure gives
the conservative simultaneous confidence intervals in the case of multiple
comparisons with a control. We shall show this fact by reduction for the
coverage probability, and give T-K type procedure with another condition
which satisfies the conservativeness. The following idea for the reduction is
the same as that of Seo, Mano & Fujikoshi [31]. Consider the coverage
probability

G.1) Q(q, ¥, DY) = Pr {(Xd) (v8) ™" (Xd) < q(d'Vd), Vde D'},

where ¢ is any fixed constant, and we can assume without loss of generality
that £ =1

Let A and B be k x (k — 1) matrix constructed from an orthonormal basis
of space spanned by D* and (k — 1) x (k — 1) nonsingular matrix such that
BB = A'VA, respectively. Then, by the transformation ¥ = XAB™!, vec (Y) ~
N, I,_, ®I,). Further, letting

G ={yeR*';y=(d'Vd)!'>*BA'd, Vde D*},

the coverage probability Q(g, ¥, D¥) can be written as

0(g, ¥, D¥) = Pr {(YBA'd) (vS)™ " (YBA'd) < q(d'Vd), Vde D¥}
=Pr{(1y)Y(vS)"'¥y < g, y€G}.

Further, we can write vS = HLH' such that L = diag(¢,,--+,¢,), £, > >/,

and H is an orthogonal matrix. Then L and H are independent and the pdf

of L is given by
P2

6 S

1 14 )4 p
exp(-— /i>nfﬁ'v~p_1)/2n([i_/‘)a
(r/2) 2 i=zl i=1 i<j !

where I',(n) = n?®~DI*]]P_ I'(n — (i — 1)/2) (see, e.g., Siotani, Hayakawa &
Fujikoshi [34], p. 450). Then
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0(q, V, DY) = E [Pr {(Yy)L™'Yy < g, yeG}].

Consider the special case k = 3. Since the dimension of the space spanned
by D* equals 2, there exists an orthogonal matrix H such that y;H = [cos f;,
sin f;],j=1, 2, where 0 < 8, < B, <n. Further, we can write YH = [u,,---,u,],
where w; =r;[cos0;,sinf]), i=1,--,p, and r} and 6,0<6,<2n) are
independently distributed as y3 and uniform distribution on [0, 27). Hence
the coverage probability can be expressed as

~ |-m

0@V, [D")=EL’R|:Pr{§ —B)<q for j=1, 2}]

where R = diag(ry,---,r,) is independent of L = diag (¢, --,Z)).
Consider the probability

r2
_‘

(3.3) G(B1, Bo) = Pr{ Z, —B)<gq for j=1, 2}-

Then we have the following lemma by using Lemma 4.1 in Seo, Mano &
Fujikoshi [31].

LemMmA 3.1. For 0 < B, < B, <=, the probability (3.3) is minimized when

Br— By =m/2.

THEOREM 3.2. lf d12 = d13 + d23, Where dU = vii + U”
probability (3.1) is equal or greater than 1 — .

v;j, the coverage

Proof. From Lemma 3.1, te coverage probability (3.1) has the minimum
value when B, — f, = /2 for 0 < B, < B, <= Further, since f, — ff;, = n/2
if and only if y{y, =0, it follows from Corollary 3.2 that the coverage
probability (3.1) is equal or greater than 1 — o.

From Theorem 3.2, it is noted that the multivariate T-K procedure with
t.; = tJa; p, k, v, I) for multiple comparisons with a control does not always
yield the conservativeness for general ¥V when the case k = 3. For the case
k > 4, it may be expected that the conservativeness of the multivariate T-K
procedure does not hold, though the procedure may give good approximations.
We can conjecture that conservative simultaneous confidence intervals are given
by

A 1 1
(3.4) dMde[adMd + 1., (d Vd?(a@Sa)?], VaeR?, Vde D,

with t.y, =t.(«; p, k, v, ¥V,) obtained under the conditions d;;=d,; +d
1<i<j<k-—1, where d;; =v; +v;; — 2v

ko

ije
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In this subsection, we have proved that the obtained procedure defined
by (3.4) yields conservativeness when the case k = 3. However, it is a future
problem whether the procedure gives the conservative confidence intervals in
the case more than four correlated mean vectors. In the next subsection, we
discuss the conservative procedure in the case of comparisons with a control
among the components of the mean vector.

3.2. Multiple comparisons among the components of the mean vector

Recall the situatin in Section 2. It is known (see, Lin, Seppanen &
Uusipaikka [21]) that the T-K procedure yields the conservative simultaneous
confidence intervals in the case of pairwise comparisons among the components
of the mean vector. However, in the case of comparisons with a control, it
may not hold this fact.

Consider the simultaneous confidence intervals for comparing with a
control. Then the T-K type procedure can be written as

(3.5)

Pr{p — pp€ [l — fip £ We (55 — 255 +5,p)' %], 1<i<p—-1}>1-ua
where w?; = w2(a; p, k, v, I) is the upper o point of FZ, .. statistic when
2 =1 We discuss whether or not the statement (3.5) holds for the general

covariance matrix X.
Consider the coverage probability for (3.5) given by

(3.6) 0(q, Z, V) = Pr {(v'x)? < q(v'Sv), VveV},

where ¢ is any fixed constant. By the same idea as in the previous subsection,
we can obtain a reduction for the coverage probability as follows.

Let 4 and B be p x (p — 1) matrix constructed from an orthonormal basis
of space spanned by V and (p — 1) x (p — 1) nonsingular matrix such that
BB = A'XA, respectively. Using the transformation y =B 'A'’x and V=
vB~'A'SA(B)', then y ~N(0,1,_,) and ¥V~ W,_,(I,_,,v). The coverage
probability Q(g, X, V) can be written as

2
EL[Pr{(”y) <1, ne[E}:l,
nLy v

E={neRP~'; 9= (Zv)"'2BA'y, YveV},

where

L = diag (¢y,"++,£,-,) such that ¥ = HLH', and L and an orthogonal matrix
H are independent and the pdf of L is given by (3.2) with g=p — 1.
In the special case p = 3; that is, the dimension of the space spanned by V
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equals 2, we can write Hy; = [cos ¢, sin ¢;]', j=1, 2, and Hy =r[cos 6, sin 6],
where r? and 0 are independently distributed as y3 and uniform distribution
on [0, 2m). Hence

B r? cos? (6 — ¢)) qa . }]
(3.7) 0(g, %, V) = E{Pr{(/1 e e LSy T 1,25 |.

Lemma 32. If ¢, — ¢, =n/2, then the probability (3.7) achieves its
minimum value for 0 < ¢, < ¢, <mn. Also, ¢, — ¢, =n/2 if and only if

diy = dy3 + dyy, where d;; = 0, + 0;; — 203

Proof. The probability in (3.7) is equal to

Pr{cos®> (0 — ¢)) < c[(v—1)cos’ ¢; + 1], j=1,2},
where

c=q/(r’vty), v=1{1/4(21).

Without loss of generality, we can assume that §e[0, n), since cos? () =
cos? (0 + um) for any integer u.

Letting @ ={0: 0<0 <=} and R;={0c®: cos’? (0 — ¢;) <c[(v—1)cos® ¢;
+ 1]} for j=1,2, then (3.7) equals (1 —area[R,;UR,]/n). Therefore, to
minimize Q(q, X, V) is equivalent to maximizing the area of the union of R,
and R,. It may be noted that the area of the union of R; and R, becomes
maximum when ¢, — ¢, = n/2. Further, since ¢, — ¢, = n/2 if and only if
n1n, = 0, the probability (3.7) has a minimum value when nin, =0. The
proof is similar to the one as in Lin, Seppanen & Uusipaikka [21] and Seo,
Mano & Fujikoshi [31]. All the distributions of F2, . statistic with
d,, =d;; + d,; are the same, since i, = p,, =0 if and only if d,, =d,; +
d,s.

THEOREM 3.3. If dy, = d;3 + d,3, where d;; = 0;; + 0;; — 20, the coverage
probability (3.6) is equal to or greater than 1 — a.

It may be noted that there is no diagonal matrix satisfying d,, = d,3 + d,3
in the class of positive definite matrix. It is noted that the case of X =1
isn’t satisfied with d,, =d,; + d,5. From Theorem 3.3, T-K procedure for
the case of comparison with a control is not always conservative for general
Y when p=3. We can also conjecture that conservative simultaneous
confidence intervals for comparing with a control are given by

Hi — lupe[ﬁi - ﬁp * Wc,Vo(sii - 2Sip + Spp)l/z]s I1<i< D — 1’

with w, ,, obtained under the conditions d;; = d;, + d;

i 1 <i<j<p—1where
dij=o-ii+o-jj_20-

ije
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In conclusion, T-K procedure for the cases of comparisons with a control
is not always conservative when p = 3. It may be implied that T-K procedure
is not always conservative for p > 3 in those cases.

3.3. Monte Carlo simulation

In order to see the conservativeness of the simultaneous confidence
intervals by the obtained procedure, the upper percentiles of the generalized
T2 ... statistic are computed for some selected parameters by Monte Carlo
simulation. The Monte Carlo simulation is made in the same way as in Seo,
Mano and Fujikoshi [31]. Computations are made for k =3,4;p=1,2, 3, 5;
v =10, 20, 40; « = 0.1, 0.05, 0.01, 0.001; and for the cases of I and V,;

(i) k=3,
1 0 05
Vo= 0 1 05],
05 05 1
(i) k=4,
1 0 0 05
0 1 0 05
Vo =
0 0 1 05
05 05 05 1

Table 3.1 gives the upper percentiles of generalized T?,. for each
parameters. It is seen from some simulation results that the upper percentiles
with ¥V = ¥, are always largest values in general V for each parameters. It
may be noted that the obtained procedure leads to the simultaneous confidence
intervals with the conservative confidence level on multiple comparisons with

a control.

Table 3.1. Simulation results

k=3 p=1
o 0.10 0.05 0.01 0.001
v I v, I v, I v, I v,
10 2.148 2.195 2.566 2.610 3.525 3.563 4.964 5.003
20 2.027 2.063 2.376 2.409 3.123 3.142 4.116 4.133
40 1.968 2.005 2.291 2.321 2.947 2967 377 3.781

p=2

10 2.980 3.032 3.479 3.529 4.665 4.713 6.525 6.627
20 2.664 2.703 3.037 3.070 3.836 3.856 4915 4.935

40 2.529 2.562 2.852 2.880 3.516 3.532 4.355 4.361
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p=3
10 3787 3847 4405 4462 5907 5965  8.361 8.493
20 3180 3223 3584 3617 4451 4476 5656  5.663
40 2953 2985 3282 3307  3.961 3975 4836 4.843
p=>5
10 5.823 5927 6852 6958 9552 9.686 14619  14.654
20 4147 4192 4621 4.663 5667 5699 7190  7.201
40 3.661 3695 4013 4037 4738 4753 5653  5.683
k=4 p=1
« 0.10 0.05 0.01 0.001
v I v, 1 v, 1 v, I v,
10 2337 2411 2760 2828 3732 3792 5222 5292
20 2193 2255 2541 2594 3277 3322 4275 4301
40 2124 2181 2440 2485 3090 3116  3.891 3916
p=2
10 3204 3291 3717 3798 4929 5019 6842 6950
20 2839 2903 3210 3262 4012 4048 5113 5135
40 2688 2739 3005 3046  3.658 3683 4476 4491
p=3
10 4058 4164 4688 4794 6250 6351 8858 8951
20 3374 3439 3773 3829 4644 4682 5872 5878
40 3116 3167 3439 3478 4106 4131 4954 4960
p=>5
10 6257 6431 7335 7512 10177 10360 15399  15.653
20 4369 4449 4845 4912 5894 5952 7396  7.448
40 3832 3884 4176 4216 4887 4915 5793 5.822

4. Multiple comparisons in the GMANOVA model

In this section, the simultaneous confidence intervals for multiple
comparisons in a generalized multivariate analysis of variance (GMANOQOVA)
model are discussed.

Consider the model equation proposed by Potthoff & Roy [26]

@.1) E[Y1= A 2 B,

where the rows of Y:N x p are independent multivariate normals with
unknown common covariance matrix X: p x p. Suppose that E: k x q is an
unknown matrix, and 4: N x k and B: g x p(q < p) are assumed to be known
such that the ranks of 4 and B are equal to k and g, respectively. This
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model is called a generalized multivariate analysis of variance model. When
B =1, the model (4.1) is reduced to the multivariate analysis of variance
(MANOVA) model.

We discuss multiple comparisons in the GMANOVA model with a positive
definite covariance matrix. Multiple comparisons related to the simultaneous
test procedure under the model (4.1) were discussed by Khatri [15], Morrison
[25] and Krishnaiah [18]. They discussed the confidence bounds for all
non-null vectors a and b. Recently, these confidence bounds in the growth
curve model with the covariance structures have been discussed by Kanda
[14]. In this section, we consider the simultaneous confidence intervals on
@' Z'b for all non-null vector a and pre-determined vector b, for example,
pairwise comparisons and comparisons with a control.

It is well known (see, e.g., Grizzle & Allen [6], Khatri [15]) that the
maximum likelihood estimator of & which is unbiased is given explicitly by
E=(4A4)"'AYS 'B(BS 'B)",

where '

1
S= Y- A4 4, n=N-k

Then, we note that vec (£) is asymptotically distributed as N,,(vec (£’), Ve E),
where ¥V =(4'dA)"* and £ =(BX~'B)~!. Further, let $=(BS 'B)"! and
v=n—(p— q), then (n/v)§ is an unbiased estimator of 5.

In relation to asymptotic distributions of a(E — EYb and their error
bounds, Fujikoshi [5] has discussed a general approximation theory of a scale
mixture of the standard normal distribution. Since the distribution of vec (&)
is not exactly but asymptotically normal, the result in the previous sections
cannot be applied for constructing the simultaneous confidence intervals in
this case. Here, we obtain the simultaneous confidence intervals for the mean
parameters in the GMANOVA model similar to the ones in the previous
sections by extending the distributional results in the previous sections.

4.1. T2, -type statistic in the GMANOVA model

Based on an asymptotic distribution of vec(Z'), we consider the
simultaneous confidence intervals on a'E’'h for all non-null aeR? and
beB* = {b,,---,b,} such that

(4.2) dE'be[aE b+ (b Vb)/*(@Sa)''?], VaecR? VbeB*

Then we need to obtain the upper a percentiles t2 of the following T2, -type
statistic
~ bE—-E)S (& -&Y
T2, = max ( )S~ ( )b.
beBk b Vb
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It is easily seen that the distribution of T2, is the same as the one of
(4.3) T2, = max {¢;X§ ' X'c,;},
i

where X = (4'A)V*(&E — E), ¢, =b,/(b/b)"'?, and b, =(4'A)"'?b,. In the
following we study the upper percentiles of this statistic. As stated in the
previous sections, it is difficult to find the exact upper percentiles of this type
statisticc.  We consider the approximate percentiles of the statistic (4.3) by
modified second approximation procedure.

First, we derive the upper percentiles of T2 = ¢’ XS ! X'¢c, where ¢'c =1,
by using a perturbation method. An asymptotic expansion of the distribution
of T? has been essentially obtained by Kanda [14]. However, we give
derivation method, since the method is also used for the joint distribution of
T and T?, where T;> = ¢;XS™'X'c;, i=1,2. The latter problem is a main
interest in this section.

Let

U= (4'4)"1?4(Y — AEB)X 172,
V=nE Vs 12 _p),
respectively. Then, putting z = (BX~'B)'/?X’¢c, we have
z=7M+ Lz‘z’ 41 ¥ +0,(n3?),
n n
where
iV =HUec,
2@ =HVP - DUk,
7 =HVP -DVP - DUk,

H=(BB) '?B B=B>'? and P= HH.
Further, we can expand T2 as

~ ~ 1 =~ 1~
2 _ 1 2 —
T? = T( )+_T( )+—T(3’+Op(n 3/2)’
N
where
TW = 70 70,
(4.4) T® =27V — sV HVH' 7™,
TR = 270073 _ 2,0 YR 72 4 72,2 4 VO HV2H V.
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Hence, the characteristc function Cz:(it) can be expressed as

Ci(it) = E[exp (it T?)]

—E[exp(ltT“’){l + U ge ey (2) (T(2>)2}]+0(n’3/2).
n

\/ﬁ n

Since U and V are independent, first we calculate the expectation with respect
to V¥, and then we calculate the expectation with respect to U. For the
expectation with respect to V, we have

@5 E,J[T®1=0, E,J[T® =@+ X +qY, E,[(T®?*] =4XY+2X?2,
where X = cUPUc¢, Y=cU(I— P)Uc. Then we obtain

Caalit) = E[exp (itX){l + e+ )X +qY) + (i (2XY + XZ}}]
n n

+0(n™3).

We note that X and Y are independently distributed as y2 and x2_,
distributions. Hence we can obtain

Cia(it) = q)“”z[l + Litlp—q+(p+ Do~}
n
+ @) 20— '+ +1 ‘2}>}+0(n"2)

- q,—qxz[l + % {—(@4p—39)+22p—29— Do ' +(q+ 2)(/)‘2}}

+0(n™?),

where ¢ = (1 — 2it).
Therefore, inverting this characteristic function Cs:(it), we have

2
4.6) Pr (T2 > x) = Pr (2 > x) + % Y B Pr (124> X) + O(n™),
j=0
where ho= —(4p —3q), h, =2(2p—2q— 1) and h, =q + 2. Further, we
obtain an expansion for the upper percentiles by using a general formula (see,
e.g., Fujikoshi [4]) for the upper percentiles of the statistic whose distribution
has an expansion given by (4.6). Summarizing these results, we have the
following results, which has been essentially obtained by Kanda [14].

THEOREM 4.1. The distribution of T? = ¢ XS ' X'c can be expanded as in
(4.6), and its upper o percentiles can be expanded as
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2 1, 2 -2
x =2 + - (@)@ + 4p — 3q) + O(n™?),
where () is the upper o percentiles of y* distribution with q d.f.

We note that, when p = g, the result in Theorem 4.1 is reduced to an
asymptotic expansion for the uppér percentiles of the Hotelling’s T2 statistic.
Next, we consider the following joint probability to give the modified
second approximation to the upper percentiles of T2 ; that is,
4.7) Pr{T?>a}, T? > a}},

where T;2 = ¢/XS™'X'¢;, i=1,2, a} and a2 are given constants. In practice,
we use the probability (4.7) with a? = a% = t? to obtain the modified second
approximation tZ. By the same line as the previous first approximation, we
consider the joint characteristic function of T2 and T; that is,

Crality, it;) = E[exp (it; T2 + it, T)].

By using the perturbation method, we have
~ ~ 1 ~ ~
Csality, ity) = E[exp (it, " + it, T\Y)] [1 + 7 {it, ¥ + it, T,¥}
n

(it2)*
2

1 s (3 (it1)2~22 2 (3 T(2))\2
+— ztlTl"+—2 (T + i, T + ()
n

* (imarz)ﬁmﬁ”}] +0(™"2),

where TV, T® and T;V, i =1, 2, are given by (4.4) with ¢ = c,.
Using (4.5) with ¢ = ¢; and the following results, which are obtained by
calculating the expectation with respect to V,

E [TOT®] = 4¢;UPUe, - ¢, Ul — P\Uc, + 2(c,UPUc,)?,
these imply that
Ciality, it,) = E[exp (it, X, + it,X,)]

X [1 + % {itl[q(p —q) + @+ D)X,]+it,[q(p— 9 + (p + DX,]

) 4o — gx, + 2x27 + 02

5 5 [4(p — 9) X, + 2X3]

+

+ (it1) (itz) [4(p — @)pei UPU'c; + 2(c} UPUCz)Z}] +0(m™7?),
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where p = p;, = ¢i¢,;, X1 = ¢iUPU¢, and X, = ¢,UPU¢,. Further, we have
Elexp (it; X, + it, X,)] = ¢ 92,
E[c;UPU'c, exp (it; X; + it, X,)] = ¢ ~9* qp,
E[(c;UPUc,)* exp (it X| + it,X,)] = ¢ 927 2q{(1 — p*)¢ + (¢ + 2)p*},

where ¢ = (1 — 2it,)(1 — 2it,) — 4p?i*t,t,. From these results, putting

Q1 = 4}»112 {1112 - ('11 + /12)} + (/11 + /12)2,
0, =314, = 2(41 + 4;) + 1,
Q3= =244, + A1 + 4,

we have

Ciality, it,) = ¢~ 92

af q+2 ., q+l . p—q . |
X[”n{«l—;ﬂ)zo"d’ -2 T % }]
+Om),

where A; =1 —2(1 — p?)it, and A, =1 —2(1 — p?)it,. We also note that

¢)_q/2 = (1 — p2)4/2 i (%q)m pzm

meo m| /1:{/2+mi%/2+m

Inverting this characteristic function Cz(it,, it,), the following result is
obtained.

THEOREM 4.2. With the notations

’i=1’2’

[ee]

) . 1

G = G(n) = f a0t gyl6) = — e,
k k o k k Ik

it holds that

o (1
Pr{T? > a3, 2 > ak} = (1 —p»i? Y 2D oo

m=0 m!

11 ~ 1 ~
x [G&"G‘f’ + ;{4 (@+2m(g +2m+ 290, — (g + V(g +2m0

+(—qg+ 2m)é3}] +0(m™?)
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with the coefficients Q,, Q2 and Q5 given by
0,=4{GPGP—(GPGR, +GPGH )} +GPGH,+GP G, +2Gi, GRL,,
0, =3GPGP —2(GPGR, + GPGM,) + G, GRLy,
0= —2GMGP + GMGA, + GPGN,.
Further, after a great deal of calculation, we have the following theorem.
THEOREM 4.3. If a? = a3 = a?, then the joint probability is given by
(4.8)
P TZ 2 TZ 2\ 1 2\q/2 - (%Q) 2m
r{i>a,j>a}“( — pij) Z—m"—l’ij

m=0
1 .~ ~
X [Gg/z +m(’1ij) + _r; {h1gq/2+m('7ij)Gq/2 +m(’1ij) + h293/2+m(’7ij)}] + O(n—z),

where 2n;; = a*/(1 — p?), and the coefficients h, and h, are given by
ﬁ1 =n;;(2n; + q — 2m) + 4n;;(p — q),
by = 2n%(2m + 1)(q + 2m) 1.

4.2. Simultaneous confidence intervals in the GMANOVA model

We can construct the simultaneous confidence intervals (4.2) in the
GMANOVA model by using the upper percentiles of T2 statistic (4.3), which
can be approximated as follows.

From Theorems 4.1 and 4.3, we note that the modified second
approximation to £2 is given by

~ . 1 - . _

th = x2(0) + o 22@) {x2@) + 4p — 3q} + O(n™?),
where y;(@) is the upper &= (« + B.)/r percentiles of x* distribution with g
df, py =Yy, ;Pr{T* >}, T? >t7}. In practice, each term of B, can be
evaluated by using an asymptotic expansion up to the order n™* of (4.8). An
asymptotic expansion for t7 is given by

~ 1
4.9) 17 = x(a/r) + o Xo(o/r) {x2(@/r) + 4p — 3q} + O(n™?).
Further, we have an asymptotic formula such that

Gz +miy) = G2+ m(7liy) — [nd (/) {xg (@/r) + 4p — 3q}]

2n(1 — p})
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X Gar2+mi) Gay2 +m(Tlj) + O(n=?,
where
1} . xaafr)

From these results, we obtain
4.10)

P 7"2 2 TZ 2 1 — p2)9/2 < (%q)m 2m
r{T;* >, T > t7} = ( pi) Y — Pij

m=0
- 1 -~ . . ~ - _
X [G;/2+m('7ij) + ; {thq/z +m('7ij)Gq/2+m('7ij) + h§g§/2+m(”ij)}:| +0(@™?),

where

i’f = zﬁij(pizjﬁij -m)+ 4’7;‘,‘(1’ - q),
h% is given by h, in Theorem 4.3 with m:;; = 1;;. We note that, when p = g,
the result is reduced to the one in Theorem 1.1.

THEOREM 4.4. The approximate simultaneous confidence intervals based on
the modified second approximation procedure in the GMANOV A model are given

by
dE'be[aEb + f;(b'Vb)'*(@8a)'/?],  VaeR?, VbeB,

where 152 is given by

~ 1

0 =2 0*) + o 23 (@*) {13 («*) + 4p — 34},
o* = (o + ﬁ’{‘)/r, and /}’f is an asymptotic expansion of Bl up to the order n=!
based on (4.10).

It is easily noted that the approximate simultaneous confidence intervals
for pairwise comparisons and for comparisons with a control in the
GMANOVA model can be constructed by Theorem 4.4. It may be expected
that these intervals are shorter length intervals than the simultaneous
confidence intervals on a’'Z’b for all non-null @ and 4’1 =0 in those cases.
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