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0. Introduction

Studying the Knizhnik-Zamolodehikov equation in conformal field theory,
Matsuo found a new system of differential equations of first order for a
function taking values in the group algebra C[VK] of the Weyl group W
associated with an arbitrary root system in [4]. His system is equivalent to
the system of the differential equations given by Heckman and Opdam which
is a deformation of the system satisfied by the zonal spherical function of the
Riemannian symmetric space G/K of non compact type ([4] Theorem 5.4.1).

Let Φ be a solution of Matsuo's equations (see (1.1)). W denotes the
set of the equivalence classes of the irreducible representations of W. For
δeW let Eδ be a representation space of δ and ^^dimE^. Then

C[W]= £ C[W]δ9 where C[W]δ=@Eδti and Eδti is equivalent to Eδ

δeW ί=1

(1 < i < nδ). Let δ0 be the trivial representation and Φ0 be the C[VF]δo-
component of Φ. The Correspondence Φ -> Φδo gives the equivalence of the
above two systems.

For δεW We consider the other C^^-components &δ of Φ. In this
paper we obtain a system of differential equations satisfied by Φδ.

1. Preliminaries

Let E be an n-Euclidean space with the inner product ( , ) and £* be
the dual space of E. For αe£ with α Φ 0 put α v = 2(α, α) - 1α and denote
sa(λ) = λ — (λ, α v)α for the orthogonal reflection in the hyperplane perpendicular

to α (λeE). Let Σ d E be a root system with rank (Σ) = dim E = n. Fix
a system of positive roots Σ+ in Σ. Furthermore we put Σ0 = {αeΣ; aφ2Σ}

and Σί = Σ 0 n Σ + . Let Wbe the Weyl group and C[W] be the group algebra
of W. Put α = E*9 I) = E* 0 IE*. The inner product in E and the reflections
can be extended to ί)* naturally. We identify I)* with ί) via the inner product
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= (λ, u) (Aer>*, uety.

We define the endomorphisms σα and εα of C[tΫ"] as follows:

σα(w) = 5αw

and

f w ifw^αeΣ"*",

( — w otherwise,

where w e W ζ αeΣ. Furthermore for any >ier)* and ξ e ϊ ) we define
eξ(λ)6End(C[»Γ]) by

Consider the following system of differential equations for a C[VF]-valued
function Φ on fy:

(1.1) dξΦ(u)

= { Σ (

(we I)),

where feα are given complex numbers such that kwα = /cα for all α e Σ and w 6 W
(see Matsuo [4]).

W' denotes the set of the equivalence classes of the irreducible
representations of W and v denotes the left regular representation of W. For
<5e W let Eδ be a representation space of δ and nδ = dim Eδ. Then it is well

known that C[»Γ] = Σ CC^L, where C[P^L = Eόtl φ-Θ £Λ§lld and E^ is

equivalent to £δ (i = 1, 2, ,nί). Since EΛti is an irreducible left ideal of
, there is some irreducible idempotent εδίi€C[W] such that

(1.2) Ea f ί

χδ denotes the character of δ. We put

(1-3) Pδ = nδ\W\^ X fcίw-Xw).
vveW^

Then Pδ is the projection of C[_W~\ onto C[W]δ. We set

(1.4) Cξ=
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We have vίwJC^vίw)"1 = Cwξ for any weW. Note that Σ Cfξ commutes with
teW

the left regular representation of W for any natural number d. Let $ be the

algebra of functions on (weί), e*(u) Φ 1 for any αeΣo} generated by

{(1 - ee(M))~1; αeΣ+}. 2I(ί>) denotes the set of all differential operators on ϊ)

with constant coefficients. If P belongs to 0t (x) $l(ϊ)), P is expressed as

(1.5) P= Σ e*3(P"),
μeβ +

where Pμ is some element of the symmetric algebra of f) and β+ = { Σ n«α'
αeΣ +

nα = 0, 1, 2, }. We denote by C[l)*] the polynomial algebra on I)*. For

p = Σ έ?"a(P(μ))e#® 9l(ί>) the Harish-Chandra homomorphism r:
μeβ +

^C[ί)*] is the algebra homomorphism defined by

(1.6)

where p= Σ fe/2)α, /lei)*. For Γ® Pe End (C[^L)®(^(χ) 31(1))) we
, Λ «eΣ+

define

(1-7)

We define the differential operator D(£ξeEnά(C\_W]δ}®(@® 8ί(ί))) for

ξe^ and a nonnegative integer d inductively by

(1.8)

-l^αeΣ +

(1.9) D ^ = l a ® l ,

where lδ is the identity mapping on C[P^]δ and vδ = v\C[W]ό. We set

(i.io)

2. The differential equations for the irreducible components

Our main theorem in this paper is the following

THEOREM 2.1. Suppose that Φ is a C[W]-valued function and satisfies

(1.1). Then Φδ = Pδ o Φ satisfies the following formulas:
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(2.1) D^ξΦδ = (£ C'ξ)Φδ (d = 0, 1, 2, . ).
teW

In particular £ Cfξ is a scalar operator on C[VF]5 and we have
teW

(2.2)

(2.3)

= £ (A, tζ)2 - n,-1 X X (k.kβ/4)(a, tξ)(β, tξ)χδ(sxsβ).
teW teW a,βeΣ +

We need the following lemmas to prove Theorem 2.1.

LEMMA 2.2 ([4] Lemma 4.1.1). If Φ(u) is a solution of (1.1), we have

(2.4) D%ΦΛ = PΛ(C'Φ).

PROOF. We obtain (2.4) in the same way as [4] Lemma 4.1.1.

LEMMA 2.3. Let ΛeEnd(C[W]) If A commutes with the left regular
representation of W and ,4(1) belongs to the center of C[VF], then A is a
scalar operator on C[J/K].

PROOF. From the conditions on A

(2.5) A(x) = x A ( l ) = A ( l ) x

for any xeC[W]. A\Eό. is the endomorphism on Eδi from (2.5) and
commutes with the left regular representation on W. So A is a scalar operator
on Eδi by Schur's lemma. There exists /i,;eC[W] such that

(2 6) **.ifij**j*0

because εδιi and εδj are equivalent ( i , j = 1, 2, ,n<5). If A\Eό . = λt 1 (^eC,

i = 1, 2, ~,nδ), we have

(2-7) ^είti = A i f i i f i ,

(2.8) AeδJ = λjsδj.

Then we have

(2-9) A(εδίi)fitjεδJ = Λ ε^/^ε^ ,

(2.10)

(2.5) gives
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= edtifij*djA(l) = B09ifitjA(εδJ)

and we obtain A f = λj from (2.9)-(2.11). Hence we can see that A is a scalar
operator on C[W~\δ. q.e.d.

LEMMA 2.4. Σ C£(l) belongs to the center of C[HΓ|.
feW

PROOF. By the definition of C\ we get

(2.12) Σ £«(!) = Σ f t Φ 2 ' 1

feW feTF

-Σ Σ
ίeί̂  α,/3eΣ

we set

(2.13) C 0 = Σ Σ (fe.
feJP Λ,βeΣ$

(2.14) d = Σ Σ

Σ Σ (kΛkβ/4)(*,t ξ ) ( β , t ξ ) s Λ s β 9
teW aeΣά ,0eΣ+\Σo

(2.15) C2 =

Suppose yeΣ^" and 2y^Σ + . Then we see

(2.16) s y(Σ+\Σ0

+) =

(2.17) sy(Σ0

+) = (Σ0+\

Since s^s'1 = sSτ(α) (αεΣ), we get

(2.18) SjC^'1

= Σ Σ (k.
ίefFαeΣ+\Σ0

+,^6Σ0

+

+ Σ Σ (
ίeίΓαeΣo+,j3eΣ+\Σί

If we replace sy(oί) and sy(β) with α and j8, (2.15)-(2.17) imply
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(2.19) 5,0^= Σ Σ (kfkβ/4)(Λ,tξ)(β,tξ)sΛsβ
teW

+ Σ Σ (k.kβ/4)(*,tξ)(β,tξ)s,sβ.

(2.19) gives

(2.20)

-2Σ Σ (*Λ/4)(«« tξ)(γ, tξ)sxsr
t<=WoteΣ+\Σά

If we put α = sy(/?), we have sγsβ = sΛsy, /cα = ks (β) = kβ and the second term
of the right hand side of (2.20) is

(2.21) Σ Σ (*β
tEW<*eΣ+\Σά

= Σ Σ (̂
teW j8eΣ+\Σ0

+

(2.20) and (2.21) imply 5 yC 1s~ 1 = C1. we can see that s^CoS'1 = C0 and
s yC2s~ 1 = C2 similarly.

Next suppose yeΣo and 2yeΣ + . In this case we have

(2.22) S y(Σ+\Σ 0

+U{2y}) = Σ0

+u{27},

(2.23) sy(2γ) = - 2y.

By using (2.22) and (2.23) we can prove SγCiS'1 = Cί similarly. Hence C1

belongs to the center of C[W]. In the same way we can see that C0 and
C2 belongs to the center of C[W] and this proves the lemma. q.e.d.

LEMMA 2.5 (cf. [4] Lemma 4.1.2). For any xeC[W]^ we have

(2.24)

PROOF. When d = 0, (2.24) is valid. We assume that (2.24) holds for
d-L By using v^C^l) = C^1^) we have

(2.25)

ί)(e* - l)"1
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+ Σ (kJ2)(a, ξ)v(
αeΣ +

= μ, ξ)Cd

ξ-
ί(l)x + £ (/cα/2)(α, i£)v(sJC£;

(fcβ/2)(α,{)C?-1(sJ}x
αeΣ +

Therefore we get (2.25). q.e.d.

PROOF OF THEOREM 2.1. Suppose that Φ(u) is a solution of (1.1). Since

Σ C?ξ is a linear mapping and commutes with v(w) for any weW, we have
teW

teW teW

from (1.3). (2.1) follows from (2.4) and (2.26). By Lemmas 2.3 and 2.4 we see

that Σ ctξ is a scalar operator on C[VF]^. Since £ Cfξ(l) belongs to the
teW teW

center of C[_W~\ we get (2.2) from (2.1) and (2.25). We obtain (2.3) by

calculations. q.e.d.

REMARK. Let δ0 and δί be the trivial representation and the alternative

representation, respectively. Since C[P^]δo and C[VF]^1 are 1-dimensional

spaces, D($tξ and D(/>tξ belong to «®3I(ί)). If Φ is a solution of (1.1), the

following formulas are valid for d = 0, 1, 2, :

(2.27)

(2.28)

(2.27) is proved in Matsuo [4]. Since £ Cfξ(l) belongs to the center of
teW

C[W]δl we have (2.28) by (2.24).

3. An example of type A3

In this section let Σ be the A3 type root ststem. We put α = {(f1 ? f 2 , £3)e

#3; *ι + ί2 + *3 = °) and ί) = α + ία For h = (hι> h2> h j e f y we define α f eΣ +

(i = 1, 2, 3) as follows:

«ι(Ό = ΊI -Λ 2 5

(3.1) α2(/ι) = / ι 2 -Λ 3 ,
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Let Si be the reflection along α f. We set

ε0 = (1 + s1 + s2 + 5^2 + s2s1 + 51s2s1)/6,

- s152s1)/3,

+ s1s2s1)/3,

ε3 = (1 - s1 - s2 + 5^2 -f s2s1 - s1s2s1)/6.

o> ει> ε2? an<i ε3 are irreducible idempotent elements of C[PF]5 and
3

= 0 C[W]Ei is the irreducible decomposition of C[_W\. v acts

trivially on C[P^]ε0 and alternatively on C[H^]ε3. C[^]εi and C[PF]ε2

are equivalent. Furthermore we have

Σ 8< = i.
ϊ = 0

(3.3)

eίβj = ^jβi OVj = 0, 1,2, 3).

If we put

(3.4) Ptx = xst (ί = 0, 1, 2, 3, xeC[W])9

then PJ is the projection onto

For Σ 0(w)w and ^ ft(w)w6C[VF] we define
weW weW

(3.5) ( Σ α(w)w, Σ ft(w)w) = Σ fl(w)fr(w),
weίΓ weίΓ weίΓ

(a(w), fe(w)eC). ( , ) is a non-degenerate bilinear form and for any we Wand
w, t;eC[W] we have

(3.6) (wr, w) = (t;, w"1^).

If T is a linear mapping on C[W] and satisfies the formula (Tx, y) = (x, Ty)
(resp. (Tx, y) = (x, — Ty)), we call T is symmetric (resp. anti symmetric) with
respect to the bilinear form ( , ).

We put vf = v \C[W]εi and

(3.7)

\<^αeΣ +

(3.8)
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(3.9)
teW

For T®PeEnd(C[P^]εI )(χ)(^(χ)a(ί))) we define η(T®P) in the same way
as (1.7).

We shall prove the following theorem in this section.

THEOREM 3.1. If Φ is a solution of (1.1), we have

(3.9) D^lΦi = Γiφ^WΦi (d = 0, 1, 2,. .)?

where we put Φt = PtΦ.

We need the following lemma to prove Theorem 3.1.

LEMMA 3.2. £ Cfξ (1) belongs to the center of C[W~\ (d = 0, 1, 2,- ).
teW

PROOF. Since σαεα is anti symmetric and eξ(λ) is symmetric with respect

to the bilinear form ( , ), £ Cfξ is expressed as follows:
teW

(3-10) Σ Cft = Λ«.< + βί,«>
ίeW

where Aξtd is symmetric and ̂  d is anti symmetric with respect to the bilinear
form ( , ) and ^4^(1) is a linear combination of even products of reflections
and Bξd(i) is a linear combination of odd products of reflections. For any
weW we see that v(w)Aξ^(w)"1 is symmetric and v(w)Bξ^(w)"1 is anti
symmetric by (3.6). Therefore v(w)Aξ^(w)"1 = Aξtd and v(w)Bξ^vίw)"1 = Bξd

because v(w)(J] C^)v(w)"1 = J] Cfξ for any weW. Then we have for any

we W

because (Aξιd(w), 1) = (w^d(l), 1) = (^td(l), w"1) and (Aξtd(w), 1) = (w, ̂ fd(l))
= ( A ξ t d ( l ) 9 w). Similarly we have for any weW

Since {1, sl9 s2, s1s2s l ϊ 5^2 -h s2sl9 s1s2 — s 2 S ! } is a basis of C[W], ^>d(l)
and Bξtd(l) are expressed as follows:

(3.13)

(3.14)
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where α0, - 9a5εC. Hence we get Bξ d ( l ) = 0 and Aξ d ( l ) = a0 - 1 + a4(s1s2 +

). This shows that £ C*ξ(l) belongs to the center of C[W]. q.e.d.

PROOF OF THEOREM 3.1. In the same way as Lemma 2.2 and Lemma

2.5 we have for i = 0, 1, 2, 3

(3.15)
teW

ά((3.16) rt(D$)(λ)X = Cd

ξ(l)x

From (3.15), (3.16) and Lemma 3.2 we can prove (3.9) in the same way as the

proof of Theorem 2.1. q.e.d.
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