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Consider the punctured open unit ball {0 < |x| < 1} in the punctured
Euclidean m-space Rm \ {0} (m > 2) in which we regard the origin x = 0 as
an ideal boundary component of Km\{0}. For each s in (0,1] we set
Us = {0 < |x| < s}, which is also an ideal boundary neighbourhood of the
ideal boundary component x = 0 in Km\{0}, so that Γs: \x\ = s is the relative
boundary of Us and the relative closure Όs of Us in Km\{0} is USU Γs. We
set U1 = U and Γ1 = Γ. A density P(x) on Us is a locally Holder continuous
function defined on Us. Consider the time independent Schrδdinger equation

(1) LPu(x) = - Au(x) + P(x)u(x) = 0

defined on US9 where A is the Laplacian A = £™=1 d
2/dxf. We are interested

in the class P(US9 P) of nonnegative solutions of (1) in Us with vanishing
boundary values on Γs. Let rω be the polar coordinate expression of x, where
r = \x\ and ω = (x/|x|)eΓ. We set

=-— ί Γ^tωm j r |_<3r
/(„)=-— t dω,

where dω is the area element on Γ, ωm the area of Γ and d/dr the outer
normal derivative on Γs considered in Us. It is convenient to consider the
subclass P^l/s, P) = {ueP(Us, P); l(u) = 1}. Since P^U,, P) is convex, we can
consider the set ex.Pι(Us9 P) of extreme points of PI((/S, P) and the cardinal
number #(ex.P1(Us, P)) of ex.P^U^ P) which will be referred to as the Picard
dimension of (l/s, P) at x = 0, dim(ί/s, P) in notation:

There exists a t in (0, 1] such that dim P(ί/s, P) = dim P(Ut, P) for any s in
(0> f] ([8], [7], [9]). Hence we can define the Picard dimension of P at x = 0,
dim P in notation, by

dim P = lim dim (L/s, P).
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We showed in [5] that there exists a radial density P on Us with 0 < s < 1

such that dimP= 1 but dim(cP) = 0 for every c> 1. Here a density P is

radial, by definition, if P(x) depends only on |.x|. It is asked in [9] whether

or not there exists a radial density P on U such that dim P = 0 but

dim (cP) = 1 holds for every c in (0, 1). Consider the negative radial density
P given by

, ί
(m - 2)2 +

ι ιgΠ hog—--log log—
\x\J \ |x| |*

where a is any fixed positive constant and η is any fixed constant with

η > ee. The purpose of this paper is to show the following result which settles
the above problem in the positive.

THEOREM. The density P given by (2) satisfies

dim P = 0 but dim (cP) = 1

for any c in (0, 1).

The above density P given in (2) is also considered in [2] for the case

m = 2 in the study of the existence and asymptotic behaviors of positive

solutions of (1) near the point at infinity; it is also shown that there exists

a density P for every dimension m > 2 such that dimP = 0 (i.e. the

nonexistence of positive solutions) and dim (cP) > 1 (i.e. the mere existence of

positive solutions) for every 0 < c < 1 stated in our formulation.

1. We begin with some definitions. A function u is a solution of (1) in

Us if u is a C2 function on Us which satisfies (1) in Us. A lower

semicontinuous, lower finite function v on Us is a supersolution of (1) in Us

iϊ v(x)>u(x) in B whenever v(x) > u(x) on the boundary dB of B for any

ball B in Us and for any solution u(x) of (1) in B continuous in B. If t (x)

is a C2 function on US9 then v(x) is a supersolution of (1) on Us if and only

if LPυ(x) > 0 on Us. A potential p of (1) on Us is a nonnegative supersolution

of (1) in Us such that, if p > u holds on Us for some solution u of (1) in US9

then u < 0 on Us. We take any point y fixed in Us. By the Green's function

Gs(x, y) of (1) on Us (with its pole y) we mean, if it exists, the potential of

(1) on Us satisfying LPGs(x, y) = δy(x) on US9 where δy(x) is the Dirac measure

at y. The pair (US9 JfP) with the sheaf Jjfp of solutions of (1) on Us is a

Brelot's harmonic space. There exists a positive potential of (1) on Us if and

only if there exists the Green's function Gs(x, y) of (1) on Us ([3], [6], etc.).

Consider the density Q(x) on U given by
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(3) β W = - τ τ (m ~ 2)

4W I ^ o^.,oglogΛΛ / \ Λ Λ

To find linearly independent solutions of

dr2 r dr
(4) - ~ u(r) + —- u(r) + fi(r)ιι(r) = 02

where β(r) is given in (3) with r = |x|, we set Iog2 r = log log r and Iog3 r =

Ioglog2r. Take the function p^β(r) = rα(log(?//r)log2(f//r)/, where α and j8
are arbitrarily given constants which are determined later. Then by the direct
computation we can easily see that

α β β

Ό a(r\ r n n nPt'^' rlog" rlog + lozz"
r r r

and hence

d2 I α(α - 1) . β(l - 2α) . ^2 - jS,2 ?«»=<; ^L_^ + ̂ ^̂ :Z +

β(ί - 2α) β(2β - 1) β2 - β
+ — + / . X 2 : + 7— ..N2 } P«»

r2 log - Iog2 - r2
\2 / \2

log - ] Iog2 - ( r log - Iog2 - )
rj r \ r rj

on (0, 1]. Therefore we have the following identity:

d2 „ m-l d f . } α(α + m-2) (2a + m-2)β β2 - β

.
r2 log - r log -

r V r

Hog")2 log," (rlog"log 2^
rj r \ r r

Setting α = - (m - 2)/2 and jβ = 1/2, it follows that the function

vι
_mn2

p(r) = r 2
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is a solution of (4) in (0, 1]. Observe that the function q(r) = I o g 3 ( η / r ) is a

solution of

dr

, . f m - 1 dr } d
"(r) + < + 2—— \τυ(r) = 0

( r p(r) J d r

in (0, 1]. Hence p(r) and p(r)q(r) are linearly independent solutions of (4) in

(0, 1]. It is also evident that p(|x|) and p(|x |)g( |x |) are solutions of

(6) LQιι(x) = (-Λ + β(x))ιι(x) = 0

in 17 continuous in U.

Choose any s in (0, 1] and take any ί fixed in (0, s). We set

which is a solution of (6) in U which coincides with p(t) on Γt and 0 on

Γs. Observe that

for |x| < t (> ί, resp.). In view of this we see that

fc(x)>p( |x | ) ( h ( x ) < p ( \ x \ ) , resp.)

for |x| < ί (> ί, resp.). Consider the function v(x) given by h(x) on Us\Ut

and p(|x|) on Ut. Since

ι (x) is a positive supersolution of (6) on Us. The unicity theorem assures

that v(x) is not a solution of (6) on Us by virtue of the fact that h(x) Φ p( |x |)

on ί/s. Hence by the Riesz decomposition theorem (cf., e.g. [1], [6]) there

exists a positive potential and thus the Green's function of (6) on Us. Observe

that β(x) = 0(|x|~2) as |x|->0. It is known ([4]) that dim(t/a, β) = 1
whenever β(x) = O(|x|"2) as |x |->0 and there exists the Green's function of

(6) on Us. Since s is arbitrary in (0, 1], we have shown:

ASSERTION 1. dim Q = 1 for the density Q given by (3).

2. We next consider the Schrόdinger equation

(7)
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on Us with 0 < 5 < 1, where P(x) is the density given by (2). We set

(a \ (a \
f(r) = p(r) sin I - q(r) 1 and g(r) = p(r) cos I - q(r) J .

Since Δr(u(r)v(r)) = (Δru(r))υ(r) + 2Vru(r) F>(r) + u(r)(Δrv(r)) for any functions
u(r) and v(r), where Δr = d2/dr2 + (m — l ) r ~ 1 d / d r and Vr = d/dr, it is easy to

see that

d

ΔJ(r) = --
4 [dr } } 2( p(r) dr

and

o(r) 4 [dr } } 2 [ p(r) dr

Then (5) with v - q yields

T PW Adr d

~p(r)~drq(r}* rq(Y} =

and also (4) with u = p implies Δrp(r)/p(r) = Q(r). Therefore functions /(r)
and g(r) are solutions of

(8) - ( ̂  u(r) + —- ̂  M(r)) + P(r)ιι(r) = 0
\αr z r dr J

in (0, 1], where P(r) is given in (2) with r = \x\. Also the Wronskian of /(r)
and g(r) does not vanish in (0, 1] so that /(r) and g(r) are linearly independent
solutions of (8) in (0, 1].

Suppose that there exists a nonzero function h(x) = h(rω) in P(US, P) for
some s in (0, 1]. The function

Λ*(r)= h(rω)dω
Jr

is a positive solution of (8) in (0, 5) so that it is a linear combination of /(r)
and #(r). Hence we have
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in (0, s) for some constant k> 0 and p with 2π > p > 0. This is a
contradiction since h* is not of constant sign in (0, 5). Therefore P(US, P) =

{0} for any s in (0,1] and we have:

ASSERTION 2. dim P = 0 for the density P given by (2).

3. Proof of Theorem. Since we have shown dim P = 0 in the above
assertion 2, we only have to show that dim (cP) = 1 for any c in (0, 1). Let
S(x) and T(x) be any densities on U. We write S(x) -< T(x) if there exists
an s. in (0, 1] such that S(x) < T(x) in Us. We consider the Schrόdinger
equation given by

(9) LcPu(x) = (- A + cP(x))u(x) = 0

where c is any constant in (0, 1). We observe that the following relation is
valid for any c in (0, 1):

4 | x | 2 l Iog^log2^ cP(x) - Q(x)) + ca2 =
\x\ \x\

I ι i \ / Λ r>/.-\ SΛS..\\ i _ _ 2

(1 — c)(m — 2)2 log — Iog2 — I + (1 — c)( Iog2 — ) + (1 — c)> cα2.
\ M \χ\J \ M/

Therefore we have β(x) -< cP(x) for any c in (0, 1). We recall that u(x) = p( |x |)
is a positive solution of (6) in 17: LQu(x) = 0 on U. On the other hand, since
we have

LcPu(x) = LQu(x) + (cP(x) - Q(x))u(x) = (cP(x) - Q(x))u(x) > 0,

there exists a fe(0, 1) such that LCPu(x) > 0 on L/s for any se(0, ί) so that
w(x) is a positive supersolution but not a solution of (9) in L/s. Hence, again
by the Riesz decomposition theorem, there exists a positive potential of (9) in
C/s and thus the Green's function of (9) in L/s. It is clear that cP(x) = 0(|x|~2)
as |x| -»0. Hence again by [4] we have dim([/s, cP) = 1 for any s in (0, ί)
and a fortiori

dim cP = lim dim (L/s, cP) = 1

for any c in (0, 1). The proof of Theorem is herewith complete.
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