HiroSHIMA MATH. J.
25 (1995), 313-319

Nonhomogeneity of Picard dimensions
for negative radial densities

Dedicated to Professor Fumi-Yuki Maeda on his 60th birthday

Hideo IMmaIl
(Received November 26, 1993)

Consider the punctured open unit ball {0 <|x| <1} in the punctured
Euclidean m-space R™\ {0} (m >2) in which we regard the origin x =0 as
an ideal boundary component of R™\{0}. For each s in (0, 1] we set
U, = {0 < |x| < s}, which is also an ideal boundary neighbourhood of the
ideal boundary component x = 0 in R™\ {0}, so that I: |x| = s is the relative
boundary of U, and the relative closure U of U, in R™\ {0} is U,u I,. We
set Uy=U and I, =I'. A density P(x) on U is a locally Holder continuous
function defined on U,. Consider the time independent Schrodinger equation

(1) Lpu(x) = — du(x) + P(x)u(x) =0

defined on Uy, where 4 is the Laplacian 4 =) T, 0*/0x?. We are interested
in the class P(U,, P) of nonnegative solutions of (1) in U; with vanishing
boundary values on I',. Let rw be the polar coordinate expression of x, where
r=|x| and w = (x/|x|)el. We set

)= — ij [3 u(rw)] do,
wm r ar r=s

where dw is the area element on I, w, the area of I' and 0/0r the outer
normal derivative on I, considered in U,. It is convenient to consider the
subclass P, (U, P) = {ue P(U,, P); I(u) = 1}. Since P,(U;, P) is convex, we can
consider the set ex.P,(U,, P) of extreme points of P,(U,, P) and the cardinal
number #(ex.P,(U,, P)) of ex.P,(Us, P) which will be referred to as the Picard
dimension of (U, P) at x =0, dim (U,, P) in notation:

dim (U, P) = #(ex.P (U, P)).

There exists a ¢ in (0, 1] such that dim P(U;, P) = dim P(U,, P) for any s in
0, t] ([8], [7], [9]). Hence we can define the Picard dimension of P at x = 0,
dim P in notation, by

dim P = lsilrg dim (U,, P).
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We showed in [5] that there exists a radial density P on U, with 0 <s <1
such that dim P =1 but dim (cP) =0 for every ¢ > 1. Here a density P is
radial, by definition, if P(x) depends only on |x|. It is asked in [9] whether
or not there exists a radial density P on U such that dim P =0 but
dim (cP) = 1 holds for every ¢ in (0, 1). Consider the negative radial density
P given by

1 1 1 + a?
el NURE _+ S
X
<log i) <log . log log l)
x| | x| x|

where a is any fixed positive constant and # is any fixed constant with
n > e°. The purpose of this paper is to show the following result which settles
the above problem in the positive.

@ Px=

THEOREM. The density P given by (2) satisfies
dmP =0 but dim(cP)=1
for any ¢ in (0, 1).

The above density P given in (2) is also considered in [2] for the case
m=2 in the study of the existence and asymptotic behaviors of positive
solutions of (1) near the point at infinity; it is also shown that there exists
a density P for every dimension m >2 such that dimP =0 (ie. the
nonexistence of positive solutions) and dim (cP) > 1 (i.e. the mere existence of
positive solutions) for every 0 < ¢ < 1 stated in our formulation.

1. We begin with some definitions. A function u is a solution of (1) in
U, if u is a C? function on U, which satisfies (1) in U;. A lower
semicontinuous, lower finite function v on Uy is a supersolution of (1) in U
if v(x)> u(x) in B whenever v(x) > u(x) on the boundary dB of 1_3 for any
ball B in U, and for any solution u(x) of (1) in B continuous in B. If v(x)
is a C? function on U,, then v(x) is a supersolution of (1) on Uj if and only
if Lpv(x) >0 on U,. A potential p of (1) on U, is a nonnegative supersolution
of (1) in U, such that, if p > u holds on U for some solution u of (1) in Uj,
then u <0 on U,. We take any point y fixed in U;. By the Green’s function
G,(x, y) of (1) on U, (with its pole y) we mean, if it exists, the potential of
(1) on U; satisfying LpG,(x, y) = é,(x) on U, where 6,(x) is the Dirac measure
at y. The pair (U,, #,) with the sheaf #, of solutions of (1) on U; is a
Brelot’s harmonic space. There exists a positive potential of (1) on Uj if and
only if there exists the Green’s function Gy(x, y) of (1) on U ([3], [6], etc).

Consider the density Q(x) on U given by
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To find linearly independent solutions of

d? 1d
4) (dzu(r)+fd—u(r)>+Q()()=0
where Q(r) is given in (3) with r = |x|, we set log, r = loglogr and log,r =
loglog, r. Take the function p, 4(r) = r*(log (n/r)log, (n/r))’, where « and f
are arbitrarily given constants which are determined later. Then by the direct

computation we can easily see that

d

;pa,ﬁ(r) @ ﬂ ~ ﬂ
Ppt) rlog 1 rlogﬂlogz 1
r r r
and hence
d? a(e — 1 (1-2a 2
Fpa,ﬂ(r)= (r2 )+ﬂ ’7)-+- b ﬂﬁz
r?log - <r log—>
r r
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2 2
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r r r r

on (0, 1]. Therefore we have the following identity:

ijf_ (r)+m_1£p ") = a(a+m—2)_(2a+m—2)ﬁ+ B —B
dr? Da,p Y ar Pt 2 2 logﬂ (r 10gg>2
r r
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2 oy (T
r? log 1 log, 1 <r log ﬂ) log, - <r log - log, —)
r r r r r r

Setting o = — (m — 2)/2 and B = 1/2, it follows that the function

Nj=

_m=2
py=r 2 {logﬁlogzﬂ}
r r
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is a solution of (4) in (0, 1]. Observe that the function g(r) = log; (y/r) is a
solution of

<)
d? m—1 dr d
(5) W U(r) + { . + 2 p(r) }E U(r) = 0

in (0, 1]. Hence p(r) and p(r)q(r) are linearly independent solutions of (4) in
(0, 1]. It is also evident that p(|x|) and p(|x|)q(|x|) are solutions of

(6) Lou(x) = (— 4 + Q(x)u(x) =0

in U continuous in U.
Choose any s in (0, 1] and take any ¢ fixed in (0, s). We set
_ 4(x) — q(9)
q(t) — q(s)

which is a solution of (6) in U which coincides with p(t) on I, and 0 on
I',. Observe that

h(x) p(Ix])

q(|x]) — q(s)
q(t) — q(s)

for |x| <t (>t, resp.). In view of this we see that

>1 (<1, resp.)

h(x) > p(Ix])  (h(x) < p(|x]), resp.)
for |x| <t (>t, resp.). Consider the function v(x) given by h(x) on U,\ U,
and p(|x|) on U,. Since

v(x) = min (h(x), p(|x]))  (xe Uy,

v(x) is a positive supersolution of (6) on U,. The unicity theorem assures
that v(x) is not a solution of (6) on U, by virtue of the fact that h(x) # p(|x])
on U;. Hence by the Riesz decomposition theorem (cf., e.g. [1], [6]) there
exists a positive potential and thus the Green’s function of (6) on U,. Observe
that Q(x) = O(|x|™2) as |x|—0. It is known ([4]) that dim(U,, Q)= 1
whenever Q(x) = O(|x|™2) as |x| = 0 and there exists the Green’s function of
(6) on U,. Since s is arbitrary in (0, 1], we have shown:

ASSERTION 1. dim Q =1 for the density Q given by (3).

2. We next consider the Schrodinger equation

™ Lpu(x) = (=4 + P(x))u(x) =0
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on U, with 0 <s < 1, where P(x) is the density given by (2). We set
fv)=puoﬁn(gqoﬂ and g&)=p0VmS<gﬂﬂ>-
Since 4,(u(r)v(r)) = (4,u(r))v(r) + 2V,u(r) - V,v(r) + u(r)(4,v(r)) for any functions

u(r) and o(r), where 4, = 8%/0r* + (m — 1)r~*d/0r and V, = 8/0r, it is easy to
see that

d
y 3 {A,P(r) B aZ{d ()}Z}f(r) +a{2$p(r) 4 ")+ 4 (r)} ()
S) = () y Eq r 2 (") drq rd g
and
d
—p()
{40 a*fd 2 ~c_z{ dr d }
Arg(r)—{ () Z{drq(r)} }g(r) > 2—p(r) drq(r)+A'q(r) f@).
Then (5) with v = q yields
< p0)
2W i q(r) + 4,9(r)=0

and also (4) with u = p implies 4,p(r)/p(r) = Q(r). Therefore functions f(r)
and ¢g(r) are solutions of

d? m—1d
) - <F u(r) + T u(r)) + P(r)u(r)=0

in (0, 1], where P(r) is given in (2) with r =|x|. Also the Wronskian of f(r)
and g(r) does not vanish in (0, 1] so that f(r) and g(r) are linearly independent
solutions of (8) in (0, 1].

Suppose that there exists a nonzero function h(x) = h(rw) in P(U,, P) for
some s in (0, 1]. The function

h*(r) = J h(ro)dw
r

is a positive solution of (8) in (0, s) so that it is a linear combination of f(r)
and ¢g(r). Hence we have

hﬂﬂ=kﬂﬂﬁn<§an+p>
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in (0,s) for some constant k>0 and p with 27>p>0. This is a
contradiction since h* is not of constant sign in (0, s). Therefore P(U;, P) =
{0} for any s in (0,1] and we have:

ASSERTION 2. dim P =0 for the density P given by (2).

3. Proof of Theorem. Since we have shown dim P =0 in the above
assertion 2, we only have to show that dim (cP) =1 for any c in (0, 1). Let
S(x) and T(x) be any densities on U. We write S(x)< T(x) if there exists
an s in (0, 1] such that S(x) < T(x) in U,. We consider the Schrodinger
equation given by

©) Lpu(x) = (-4 + cP(x))u(x) =0

where ¢ is any constant in (0, 1). We observe that the following relation is
valid for any c in (0, 1):

2 n n\* 2 _
4|x| (log—log2—> (cP(x) — Q(x)) + ca* =
[x] | x|

2 2

(1 = ¢)(m — 2)? <1ogilog2 i) +(1— c)<1og2 i) +(1=¢) > ca?.
x| | x| | x|

Therefore we have Q(x) < cP(x) for any c in (0, 1). We recall that u(x) = p(|x|)

is a positive solution of (6) in U: Lyu(x) =0 on U. On the other hand, since

we have

Lepu(x) = Lou(x) + (cP(x) — @(x))u(x) = (cP(x) — Q(x))u(x) > 0,

there exists a te(0, 1) such that L_u(x) >0 on U, for any se(0, t) so that
u(x) is a positive supersolution but not a solution of (9) in U,. Hence, again
by the Riesz decomposition theorem, there exists a positive potential of (9) in
U, and thus the Green’s function of (9) in U,. It is clear that cP(x) = O(|x|™?)
as |x] - 0. Hence again by [4] we have dim (U;, cP) =1 for any s in (0, 1)
and a fortiori

dim ¢cP = lifl(} dim (U, cP) =1

for any ¢ in (0, 1). The proof of Theorem is herewith complete.
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