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1. Introduction

In [7], J. E. Hutchinson set up a theory of strictly self-similar set, which
is defined as the unique compact set satisfying the following equality;

for a given finite set {/JΓ=ι °f contraction affine maps on a compact subset
X of RN (m > 2). Let r, be the contraction rate of fh that is, \fi(x)-ft(y)\ =
ri\x — y\ f°Γ x>yεX9 i = l , 2, ,w, and let α be the unique solution of
ΣΓ=ι r?= l ^n k*s ^eory, a Borel probability measure v on RN satisfying
v(fii °fi2

 0'"0./inPO) = Πjί=ι ro coincides with the α-dimensional Hausdorff
measure on X up to constant, that is, there exists a positive constant C such
that v(A) = CH*(A) for any Borel set A^K. Here Hα denotes the
α-dimensional Hausdorff measure.

We now explain his result from the standpoint of Tricot. Tricot [13]
showed that for any Borel set E a RN,

H-dim (E) = sup {inf φ(μ; x)}. (1.1)
xeE

Where JίE = (μ; positive finite Borel measure on UN with μ(E) > 0} and for

H-dim (E) denotes the Hausdorff dimension of E, B(x, r) denotes the closed
ball with radius r and center at x. We can easily see that the α-dimensional
Hausdorff measure itself attains the supreme in the righthand side of (1.1) in
Hutchinson's case. Let

as

β(Pί,P2,~ ,PJ denote the Hausdorff dimension of K(Pl9 P2, ,PJ and
V(p l fp 2 f... fpm ) be the Borel probability measure satisfying
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Billingsley [1] treated K(Pl5 P2, ,PJ instead of X. Since in Billingsley's
cases, v(Pl>p2>... jPm) attains the supreme in the righthand side of (1.1), we
analogically guess that v(Pl P2>... Pm) is equivalent to /J^, P2, ,PJ-dimensional
Hausdorff measure like v for K. In this paper, however, readers will know
that it is not so.

In this paper, we will introduce a loosely self -similar set K (see (2.4))
which is a Cantor set topologically isomorphic to {1, 2, ,w}^ but does not
have strict self-similarity in the sense of Hutchinson's. We construct a Borel
probability measure v (similar to the case of strictly self-similar set) and show
that v and the α-dimensional Hausdorff measure are absolutely continuous to
each other on K (see THEOREM 1 (A)) but they are not necessarily coincident
up to constant (see section 4). Nevertheless in Hutchinson's case, they are
coincident up to constant.

Moreover, we show that a Borel probability measure v(Pl>p2,...>Pm) and
/?(P1? P2, ,Pm)-dimensional Hausdorff measure are absolutely continuous to

each other on K(Pl9 P2, ,ΛJ if and only if (P1? P2, ,Λ») = (Ί> Ί, X)
(see REMARK of THEOREM 1).

Finally in this paper, we show that K(Pl9 P2, ,PJ and K are equivalent
in the view of the box dimension (see THEOREM 4) but not so in the view of

the Hausdorff dimension (see THEOREM 3 (G) (I)). More precisely if(Pl9P29 9

ΛJ^K* r2V"> rm) then the Hausdorff dimension of K(Pl9 P2, ,PJ is less
than α (see THEOREM 3 (I)). The α-dimensional Hausdorff measure of
X \ X ( r ΐ , r2, X) equals to 0 (see THEOREM 2 (E)). However K\K(rl, r$, ,
r^) and K are equivalent in the view of the Hausdorff dimension (see THEOREM

3 (H)).
In section 2, we introduce a loosely self-similar set and claim the results

in this paper. In section 3, we prove them. In section 4, we introduce two
examples.

2. Results

Through the whole paper, Hα and λN denote the α-dimensional Hausdorff
measure and the N-dimensional Lebesgue measure, respectively (α > 0, ΛΓef^J).
H-dim, M-dim and* M-dim denote the Hausdorff dimension, the lower and
the upper box dimensions, respectively, which are defined on the Euclidean
space (RN

9 d) as follows; for any bounded set E c ίRN

H-dim (E) = inf {α; Hα(E) = 0} = sup {α; Hα(E) = 00},
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= liminflθg(N-(£)), M îE (E) = lim sup lθg
F,

log ι/ε ε o Jog

where

H"(E) = Ijminf (Σ l l/ i l " ; E ς= y i/4, 1^ < fi),

and 1 17 1 = suρJC)>,6l7 |x-y|. We know that H-dim (E) < M-dim (E) < M-dim (£)
in general.

Suppose that {φίlί2...ίk: (i\, f 2 , ,ik)e{l, 2, ,m}\ fe = 1, 2, } (m > 2) is
a sequence of mappings on a compact subset A' of RN with AN(X) > 0 such that

' 'j^ί1' 2,-,m}, (2.1)

i for all x, yeX, 0 < rik < 1, (2.2)

.̂..,̂ ^^) = 0 (i* ^ ifl (2.3)

Put

K= Π U [ii,*2,-»iJ. (2.4)
«=1 (iι, i2, ,in)e{l,2, ,m}"

We say that K is a loosely self-similar set generated by {φiίί2...ik}

Since ΠΓ=ι Cωι> ω2> >ωJ consists of a single point for any ω = (ωl5 ω2, )
E{!, 2, ,m}N, we denote it by Π^°=ι[ωι» ω2, 5ωw]. Then we can define a
bijection map φ from {1, 2, ,m}N to K by

oo

φ: ω = (ωl5 ω2,•••)€{!, 2, ,m}N-*φ(ω) = Π [ωl9 ω2, ,ωj. (2.5)

Through the whole paper, we assume that {PjΓ=ι satisfies the conditions

m

Σ Λ = 1. 0 < Pf < 1, (2.6)

and set

where
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Nt(ω, n) = #{k;l<k<n,ωk = ί} for ω = (ωlf ω2, )6{l, 2,. ,m}N.

K(Pl9 P2, ,PJ is a Borel set but not a compact set and hence it is
not a Cantor set. Let v(Pl P2 ... Pm) be the Borel probability measure on RN

such that v(Pl>p2>... jpm)([ω1,ω2, ,ωJ) = Π"=ι^ω, for any n, ω l 9 ω2, ,ωπ.
Since

V(PlfP2.....p,*)(K) = v^.p^.p^ίKίP!, P2,-,PJ) = 1,

the probability measure v(Pl5p2>...>Pm) is called the (P1? P2,-',PJ- Bernoulli
measure on K.

We say that a (an outer) measure μ on UN is a Borel (outer) measure if
any Borel set is μ-measurable. It is well-known that β-dimensional Hausdorff
measure H^ is a Borel outer measure, since it is a metric outer measure [5].
Two Borel (outer) measures v and μ on UN are said to be absolutely continuous
to each other on a given Borel set F if v(B) = Ooμ(B) = 0 for any Borel set

THEOREM 1. Assume that (Pl9 P2, ,PJ satisfies (2.6). Let β(Pl9 P2, ,

Pm) = H-dim(K(P1,P2,'~9Pm)) and α be the unique solution of ΣΓ=ι r?= *•
Then
(A) v(r« >rα ... ̂  and the (^-dimensional Hausdorff measure are absolutely
continuous to each other on K.
(B) There exists a Borel subset M of K(Pl9 P2, ,PJ such that v(Pl,P2,...>Fm)(M)

= 1 and Hβ(p»p»->p™\M) = 0 unless (P1? P2,-,Λn) = (Ί, r1,-,ii).§

REMARK. Taking THEOREM 2 (D) and the fact v(X(P1? P2, ,PJ) = 1
into consideration, by THEOREM 1 we see that the Hausdorff measure
H/?(pi,p2,-,Pm) and v(Pl P2 ... Pm) are absolutely continuous to each other on

X(P1? P2, ,Λn) if and only If (P1? P2, ,PJ = (rα

1? rα

2,.. ,C). On the other
hand, by using Bowen's results [3], K. Handa [6] has already acquired a
similar result to (A) on R1 under a different setting. Our idea of proof in
this paper is different from his. It seems to us difficult that we generalize his
proof to RN. Moreover we add the result (B) to his results in this paper.

The second theorem claims that the α-dimensional Hausdorff measure on
K concentrates in K(r\ , r\ , , r£).

THEOREM 2. For α in THEOREM 1,
(C) H-dim (K) = α,
(D)

(F) 0 < H*(K) < oo.

The third theorem claims that the Hausdorff dimension of K\K(r°[9
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r£J equals to the Hausdorff dimension of K itself. For a similar example, the
Hausdorff dimensions of simply normal numbers and simply non-normal
numbers on [0, 1] both equal to 1 (c.f. [12]). Nevertheless the one-
dimensional Hausdorff measure of simply non-normal numbers equals to
0. This is clear from the law of large number and the fact that the
one-dimensional Hausdorff measure on [0, 1] coincides with the one-
dimensional Lebesgue measure.

THEOREM 3. For α in THEOREM 1,
(G) H-dim (K(r*l9 r*2,. 9r*m)) = H-dim (K) = α,
(H) H-dim(K\K(r\, r2, .,O) = H-dim(K),

(/) H-dim(K(Pl9 P2,-,PJ) = ym

=1 ^ iQ* r* < α for any (Pl5 P2, ,PJ

satisfying (2.6) α«rf fλe equality is attained only in the case of (Pί9 P2, ,Pm) =

The fourth theorem claims that the box dimension of K(Pl9 P2, ,PJ
equals to α for any (Pί9 P2, ,Pm). Together with (G), this fact implies that
there is a gap between the Hausdorff dimension and the box dimension of

K(P19 P2,-,PJ if (Pi, P2>-,PJ * ft, ̂ -^

THEOREM 4. For α in THEOREM 1 and for any (Pl5 P2, ,PJ satisfying

(2.6),
(J) M-^m (K(P15 P2, ,PJ) = M-rfOii (K(Plf P2,-,PJ) = α.

3. Proofs

For the proof of THEOREM 1, the result of THEOREM 3 (I) is needed.
Therefore we will prove THEOREM 3 (I) at first. Put

n = {[ωl9 ω2, ,ωj; (ωl9 ω2, ,ωπ)e{l, 2, ,m}/1}, m = (J
00

*..
n = l

The following two propositions are proved under more general conditions
[8]. PROPOSITION 3.1 can be proved in accordance with Billingsley's method
[1]. In this paper, we will give a brief proof of PROPOSITION 3.2 for readers'
convenience.

PROPOSITION 3.1. Assume that μ is a positive finite Borel measure on RN

such that

MI>ι,ω2, ,ωJ)>0 for any (ωl9 ω2, ,ωn). (3.1)

If E c K with μ*(E) > 0 satisfies
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, ω2,...,ω,]))

? ω2, ,ωj|)a < l im i n f 1 ? 2 ? ? ^ ̂ -

α < #-Λw (E) < b,

where μ* is the outer measure induced from the measure μ.

PROPOSITION 3.2. Assume that μ is a positive finite Borel measure on RN

satisfying the condition (3.1). If

a < lim inf "(Eω" ̂ -,ωj) ^ ̂
<5

ι, ω2, ,ωj|'

hold for any Π^°=ι Lωι5

 ω2» ?ωje£, //zew /Λ^re ejcw/5 a positive constant L
depending only on N, X, λ = l/miiif rf > 1 swcΛ

PROOF OF PROPOSITION 3.2. For p > 0, ε > 0, set

Ep,ε = {xe£; (α - ε)\R\* < μ(R) <(b + ε)\R\δ or \R\ > λp

for any Re& such that xeR}.

Firstly we prove the lefthand side inequality of the proposition. Put

C = λN(X)/\X\N

9 L= (2λ)NΩNC~l and ΩN = π*N/Γ(N/2 + 1). Then 0 < L<
oo, since 0 < λN(X) < oo. For a given U c= UN and the integer n with
λ~n < 1 17| < >l~w + 1, L / n X can be covered by K's less than L such that Re@,
λ~n < \R\ < λ~n+1. For any y > 0, (0 <)p' < p9 let {l/J, be a p'-covering of
£p>ε such that H^(£p>ε) > ̂ JC// - 7. Then we can find {Kyjjϊi c: ̂  such

that

m, < L, Λ0 n Eptε Φ 0, I/, n Ep,ε c yji , Λy ,

A- * i t / i i< ικ0 l^l^l for any w'
Then

Σ l*ι/ < ̂ Σ I ^1* £ Λ*L(Hj,(E,iβ) + 7).
«J i

By the definition of £p>ε and |Λy | < Ap, we have μ(Rij) < (b + ε)|jR y |
Λ for any

z',7'. Therefore we have the following estimate

λδL(Hδ(E) + 7) > Λ*L(Hj,(Epfβ) + 7) > Σ I**/



On loosely self-similar sets 533

> (b + εΓ1 £ μ(RtJ) > (b + ε)- lμ*(EpJ.
ij

By letting y|0, we have

Since μ* is an outer measure and Ep^E as p|0, we have

Since ε > 0 is arbitrary, we have the lefthand side inequality.
Secondly we prove the righthand side inequality. For 7 > 0, (0 < )p' < p,

we can find {Ri}i <= & such that

Since (α - ε)!^^ < μ(Rt) by the definition of £p>ε and |R£ | <

> (a - ε)Σ IK/ - γ > (a - e)H',(EpJ - y.
i

By letting p', y 1 0, we have

H'(EpJZ(a-εΓlμ*(E).

Therefore we have the righthand side inequality. Π

PROOF OF THEOREM 3 (I). By the definition of K(Pl9 P2, ,PJ, for all
(ω1,ω2, ) such that Ππ°°=ι [ω^ ω2,. ,ωπ]6X(P1, P2, ,PJ,

Iog|[ω1,ω2,. .,ωj| "-00 ΣΓ=ι

Since v(PlfF2f... fPm)(X(P1, P2, ,PJ) = 1, we have

H-dimίlC^, P2f-,PJ) = ξ<

i:
1^0gf< for any (Plf P2,-,PJ

Σ i ^ i Λ l o g r ,

by PROPOSITION 3.1. Since ^̂  — - — ̂ — - < α and the equality holds if and
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only if P, = r?, i = 1, 2, ,m, we have (I). Π

PROPOSITION 3.3. Assume that (P1, P2, , PJ satisfies (2.6). Pw/

H-dim(K(Pί9 P2, ,PJ) = 0(Pι, P2, ,PJ Λv ω = (ωl5 ω2, )e{l, 2,-,m}N,

",Λn)

= (ω);limsupdw(ω)= oo, lim i(ω' "' = Pf i = 1, 2, ,ro>.
n->oo n-»oo

see that

= 0 wrtto (Pi, P2, ,PM) = (r?, r5, ,ri).

PROOF OF (a). Put P = v(PltP2i...iPm) o φ, β = β(Pl9 P2,-,PJ and Xπ(ω) =
p

log-p1, then {Xn} is independent, identically distributed random variables
r"» Ym_ P. log P.

with respect to P. Since β = -̂̂ —-—-—- by (I), we see that

'p[*J = Σ Λflog P, - log rf) = 0.

By the uniqueness of α, P, = rf for i = 1, 2, , m if and only if (P^ , P2 , , P J =

(Ί^ΊU-.O since (Λ^iΓ ^J^W/Ί, — ,ri) by the assumption, we
have

0 < EP[Xft = Σ P^og Pf - log rf)2 < oo.
i = l

Since log dn(ω) = Σ"= i Xj(ω)> by the law of iterated logarithm [2], we see that

Vι,p2, ,pm)({φ(ω)' lίm SUP loβ d«(ω) = °°}) = L

Π~* 00

This implies v(Pl>p2>...jPm)(£) = 1. Π

PROOF OF (b). Put

Λn(η) = {[ωi, ω2,-,ωj; dΛ(ω) > η, ω = (ωlf ω2, 0e{l, 2,-,m}N}, Λ(η) =
\J*=ι9tn(η). Then we can choose {R1}i for any p > 0 and η > 0, such that

B £ Uι*7, I Λ 7 I < A KfeΛfo), v(Pl,P2,..,Pm)(R?) > , 1̂ , Λ f n J l J = 0(ί /;)•

By the definition of Hβ, we have
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< Σ \R1\' < - Σ v(PliP2i...f Pm)(Λ» < 1 for any p > 0.
t η i η

Therefore, by letting η -> oo, we see

Hj(B) = 0 for any p > 0.

This implies Hβ(B) = 0. Q

Now we prove THEOREM 1.

PROOF OF THEOREM 1. (B) is clear from PROPOSITION 3.3. Let α be the

positive number which satisfies ΣΓ=ι r? = l Let us assume that (P1? P2, ,Pm)
= (Ί, r*2,> 9r*m). Then we have for all ωe{l, 2, ,m}N and

= ΠΓ i *ΐ*<(*'i

Since v(r«>r«>...>Γ«ι)([ω1, ω2, jωj) > 0 for any ω l 9 ω2, ,ωπ, n by the condition
(2.6), the condition (3.1) of PROPOSITION 3.2 is satisfied. Therefore by
PROPOSITION 3.2, we have

|^|αv(r?,r«,..,0(B) (3.3)

for any Borel set B ^ K. Therefore we have THEOREM 1 (A). Π

PROOF OF THEOREM 2. By the definition of K(Pl9 P2, ,PJ, we see that
is a Borel set for any (Pl5 P2, ,PJ. Since

we see (E) H*(K \ X(rί , r|, , rj)) = 0 by (3.3). Since Hα is an outer measure,

(3.4)

Therefore we have (D) Hα(K) = Ha(K(ra

l5 r^ .,^)). On the other hand, by

(3.3) and v̂ ,...̂ ,̂ ra

2,-.,C))= 1, we see that (F) 0<Hα(K(rα

1, r
α

2, . ,C))
< oo. Therefore together with (D), we have (G) H-dim (X) = H-dim (K(r\ , r£, ,

= α D

(I) has been already proved and (C) is clear from THEOREM 3 (G).
Therefore we have to prove only (H) and (J).

PROOF OF THEOREM 3 (H). Suppose that {Pu}Γ=ι, k = l , 2, 3, is a
sequence of probability vectors such that
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m

0 «*--P •*-" 1 V P — 1 lim P — ι Λ (P P ... P ^ -Λ /Vα f α ... rΛ \
< *i,k < !> Zj * i , k ~" A' ^™ * i , k "~ '» ' I* l ,k» ^2,fc> J - ^ r n . k ; ^ V I » Γ2» » Γ m/

Then by (I), we see

/v '"̂  T T /I -ί *VΛ /^ f^ \ ί̂  ̂  »«Λ »»̂  i ^ \ \ "̂ ^ T T f\ -ΐ *\Λ /^ ί̂ " ί U P P ^ \Oί > Jtl-Qim (A \ A(Γ 1 ? Γ2, • * * , ^mjj ^ Γl-Qim ( A ( / ι £, x 2,k? ' * ' » *m,k))

for any fc. Letting fe -> oo, we have

α = H-dim

Therefore we have (H). Π

Finally, we will prove THEOREM 4 (J). It is showed by the next proposi-

tion.

PROPOSITION 3.4. Assume that M is a Borel subset of K and μ is a
positive finite Borel measure on RN. Put @(n} = {Re@; λ~n < \R\ < λ~n + ΐ}

and

CJα, n) = min , C2(α, n) = max
1 α "

μ( U R) = μ(^N) far all neN (3.5)

M-dim (M) = M-dim (M) = α.

PROOF OF PROPOSITION 3.4. For any ε > 0, we can find n such that

A'" < ε < λ~n+1. Let {C/J, be an ε-covering of M such that #{l/J = Nε(M).
Here Nε(M) = min{l/.} #{E7|; M £ (j£ t/£j | C/J < ε}. Then there exists a positive

constant L' not depending on ε > 0 such that

1 <#{Rl jE^- 9 RΐjnUt *0, i/,nAf c U.,R«., Λ^nΛf^ ^0 (7 ^/)} <L'

for any i. Therefore we have
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IT *Nf (M) < N.(M) < Nf (M) (3.7)

where Nf (M) = min,Rj) #{/?;; M £ Ui^i. \Rι\ ̂  ε, Rfe^}. Since

by (3.5), we see by (3.7) that

μ(UN)λ-ΛL'-lCϊl(a, "Uα/I < Nβ(M)

By (3.6), we have

βi° logl/ε

This implies that

M-dim (M) = M-dim (M) = α.

PROOF OF THEOREM 4 (J). In Proposition 3.4, put M = X(P1? P2, ,PJ
and μ = v(r«>r«,...,r^). Then we see by (3.2) that

Therefore we can easily see that A* = v ( r« f r« f... f r«) and M = X(P l f P2, ,PJ
satisfy the conditions (3.5) and (3.6). Therefore we have

M-dim (M) = M-dim (M) = α for any (Pl5 P2, ,PJ.

4. Examples

EXAMPLE 4.1. Let us define two sequences of contraction maps {^^...ij
and { |̂|2...J for (il9 i2,.. ,ije{l9 2}n, n = 1, 2, . Put X = [0, I]2. Suppose
that

φi9ψi:X-+X, i = l , 2 ,

I 2 1
-x + -,-

2 1 2
^ + -,-y + -

Then define
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Φllfe-fc, = <Pin>

Ίin n = 1,

*>in *Ί = 1, π > 2,

yίn J! = 2, n > 2.

Put

oo

E "̂ "̂*\ I I/V ^= [ I I I (β - o (JP , i o o (Λ

00

Then we see that Kφ is Cantor's ternary set C on [0, 1] and Kψ = {(x,/(x));
xeC}. Here /: [0, 1] -> [0, 1] such that

,, . JO 0 < x < l / 2 ,
/W = |χ 1 / 2 < x <ι

By the THEOREM 1, H-dim (Kφ) = H-dim (K^) = log 2/log 3 = α, and Hα on Kφ

(resp. K ,̂) the (5, ^-Bernoulli measure on Kφ (resp. Kψ) are absolutely
continuous to each other.

In fact, for any Borel set B9

= f

where IA is the indicator function of A, [1]̂  = ψι(X) and [2]̂  = ψ2(X)- v^ n

and v^ j denote (|, |)-Bernoulli measure on ̂  and Kψ, respectively. That

is to say, Hα and v^ are coincident but Hα and v£ t are not coincident up

to constant.

EXAMPLE 4.2. Let /: [0, 1] -> R be a Lipschitz continuous function such
that

!/(*) -/(y)l £Q\x-y\ for any x, ye[0, 1] and /(O) = 0 (4.1)

with some positive constant Q. Now we will construct a Cantor set on
{(x,/(x)); xe[0, 1]} by our method. Put X = [0, 1] x [- β, Q]. Define a
sequence of functions {φ/lί2...ίn; (ι'ι, ί2, ,ij6{l, 2}", n = 1, 2, } such that for
any iί9 i2, ,ϊ,,, w,



On loosely self-similar sets 539

n n

where ε: (1, 2} -> {0, 2} such that ε(l) = 0, ε(2) = 2. Then we can see that

y\ for any *, ye* and il,i2,~ ,in>n

Put

00

# = Π U 9ii

09iii2°'"
09ili2-in(X)'

n=l ( iι, i2, ,in)e{l,2}»

Then we see that 1C = {(x,/(x)); xeC}, where C is Cantor's ternary set,
H-dim (K) = log 2/log 3 (= α) and that by THEOREM 1, Hα and v 1} are

absolutely continuous to each other on K. Furthermore if / is differentiable
on (0, 1), then we can easily see that

H*(B{]K) = (1 + (/' o π(ω))2frdv (ω) for any Borel set B <Ξ K.
JB 2 '2

(4.2)

Here π is the projection, that is, π((x, y)) = x.
For any Cantor set C' ^ [0, 1] constructed by Hutchinson or our method,

we can construct {(x, /(x)); xeC'} by using our method and have a similar
formula to (4.2).
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