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1. Introduction

In [7], J. E. Hutchinson set up a theory of strictly self-similar set, which
is defined as the unique compact set satisfying the following equality;

K = Ui, fiK)

for a given finite set {f;}7», of contraction affine maps on a compact subset
X of R (m>2). Let r; be the contraction rate of f;, that is, | f;(x) — f;(y)| =
r;|x—y| for x,yeX, i=1,2,---,m, and let o be the unique solution of
m,rf=1. In his theory, a Borel probability measure v on R" satisfying
V(fi, o fiy oo fi(X)) =[1}=, 7%, coincides with the a-dimensional Hausdorff
measure on K up to constant, that is, there exists a positive constant C such
that v(4) = CH%*(A) for any Borel set A< K. Here H* denotes the
a-dimensional Hausdorff measure.
We now explain his result from the standpoint of Tricot. Tricot [13]

showed that for any Borel set E = RV,
H-dim (E) = sup {inf ¢(u; x)}. (1.1)
ue Mg xeE

Where # = {u; positive finite Borel measure on R¥ with u(E) > 0} and for
HE Mg

log u(En B(x, r))

1.2
logr (12)

d(u; x) = llrrI}(l)nf
H-dim (E) denotes the Hausdorff dimension of E, B(x, r) denotes the closed
ball with radius r and center at x. We can easily see that the a-dimensional
Hausdorff measure itself attains the supreme in the righthand side of (1.1) in
Hutchinson’s case. Let

K(PI’ P29"'3Pm) =
{xeNnzrfiyo fiyoro fi(X); #{j;i;=k, j < n}/n— P, as n—> oo},

p(Py, P,,---,P,) denote the Hausdorff dimension of K(P,, P,,:--,P,) and
Ve, Py, p,y D€ the Borel probability measure satisfying
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v(PhPZ,"‘,Pm)(f‘i‘ oﬁz o---of;."(X)) = .l_ﬂll Pij‘

Billingsley [1] treated K(P,, P,,---,P,) instead of K. Since in Billingsley’s
cases, Vp, p,...p, attains the supreme in the righthand side of (1.1), we
analogically guess that vp, p, ... p,, is equivalent to g(P,, P,,--,P,)-dimensional
Hausdorff measure like v for K. In this paper, however, readers will know
that it is not so.

In this paper, we will introduce a loosely self-similar set K (see (2.4))
which is a Cantor set topologically isomorphic to {1, 2,---,m}" but does not
have strict self-similarity in the sense of Hutchinson’s. We construct a Borel
probability measure v (similar to the case of strictly self-similar set) and show
that v and the a-dimensional Hausdorff measure are absolutely continuous to
each other on K (see THEOREM 1 (A)) but they are not necessarily coincident
up to constant (see section 4). Nevertheless in Hutchinson’s case, they are
coincident up to constant.

Moreover, we show that a Borel probability measure v, p,.... p,, and
B(P,, P,,---, P,)-dimensional Hausdorff measure are absolutely continuous to
each other on K(P,, P,,---,P,) if and only if (P,, P,,---,P,) = (r}, 15,-**,1%)
(see REMARK of THEOREM 1).

Finally in this paper, we show that K(P,, P,,---,P,) and K are equivalent
in the view of the box dimension (see THEOREM 4) but not so in the view of
the Hausdorff dimension (see THEOREM 3 (G)(I)). More precisely if (P,, P,,--,
P,) # (r5, r5,---,ry) then the Hausdorff dimension of K(P,, P,,---,P,) is less
than « (see THEOREM 3 (I)). The a-dimensional Hausdorff measure of
K\ K(r§, r5,---,r%) equals to O (see THEOREM 2 (E)). However K\ K(r§, 1%, -,
r%) and K are equivalent in the view of the Hausdorff dimension (see THEOREM
3 (H)).

In section 2, we introduce a loosely self-similar set and claim the results
in this paper. In section 3, we prove them. In section 4, we introduce two
examples.

2. Results

Through the whole paper, H* and 1, denote the a-dimensional Hausdorff

measure and the N-dimensional Lebesgue measure, respectively (« > 0, NeN).
H-dim, M-dim and. M-dim denote the Hausdorff dimension, the lower and

the upper box dimensions, respectively, which are defined on the Euclidean
space (R, d) as follows; for any bounded set E c R¥

H-dim (E) = inf {a; H*(E) = 0} = sup {a; H*(E) = o0},
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log (N.(E))
logl/e

log (N,(E))

M-dim (E) = lim inf
&l0 log1/e

, M-dim (E) = lingl%up
where
HU(E) = lig inf (¥ |U*; E < U U, Ul < 2},
N,(E)=inf #{U; ES YU, |U;| < ¢}

and |U|=sup, ,.y |x—y|. We know that H-dim (E) < M-dim (E) < M-dim (E)
in general.

Suppose that {@; ;... : (i1, iz, i )€{l, 2,--,m}*, k=1,2,---} (m=>2)is
a sequence of mappings on a compact subset X of R¥ with Ay(X) > 0 such that

Piriyrin X = X, ije{1,2,---,m}, 2.1)
X — Y =104 (%) — 05155, for all x,yeX, O0<r, <1, (22
Piyizei 1 XN Qi it (X) =0 (g # ). (23)
Put
i, iz, 0n] = @iy 0 @iy 0000 @iy, (X)

K= U irs izyeesinl (2.4)
n=1 (i1,iz,*,in)e{1,2, - ,m"
We say that K is a loosely self-similar set generated by {@; ...}

Since N [w,, w,,--,®,] consists of a single point for any w=(w,, @,, )
€{1,2,---,m}N, we denote it by N, [w,, ®,,"-,®,]. Then we can define a
bijection map ¢ from {1, 2,---,m}N to K by

¢:0= (601, 0)2,“‘)6{1, 25"'am}N - (P(w) = ﬂ [wl’ 0)2,‘“,(1),,]~ (25)

n=1

Through the whole paper, we assume that {P;}/L, satisfies the conditions

M=

P, =1, 0<P; <], (2.6)
i=1
and set
N.
K(Py, P,,---,P,) = {cp(w); (@, n) —P,as n— oo},
n

where
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Niw,n)=#{k; 1 <k<n w,=i} for o= (w;, ®,,-)e{l, 2,---,m}N.

K(Py, P,,--+,P,) is a Borel set but not a compact set and hence it is
not a Cantor set. Let vp, p, .. p,, be the Borel probability measure on RY
such that v, p, ... p([01, ©3,-,@,]) = [[}=; Py, for any n, 0, 0, -, 0,
Since

Vies, P2 Py (K) = Vipy oo Py (K(Py, Poyoee, Pp)) = 1,

the probability measure vp, p, .. p,, is called the (Py, P,,---,P,)-Bernoulli
measure on K.

We say that a (an outer) measure p on RN is a Borel (outer) measure if
any Borel set is yu-measurable. It is well-known that f-dimensional Hausdorff
measure H? is a Borel outer measure, since it is a metric outer measure [5].
Two Borel (outer) measures v and u on RY are said to be absolutely continuous
to each other on a given Borel set F if v(B) = 0<>pu(B) = 0 for any Borel set
BcF.

THEOREM 1. Assume that (P, P,,---, P,) satisfies (2.6). Let B(P,, P,,--,
P,) = H-dim (K(Py, P,,---,P,)) and o be the unique solution of YT ri=1.
Then
(A) Vvya,s...,2) and the a-dimensional Hausdorff measure are absolutely
continuous to each other on K.

(B) There exists a Borel subset M of K(Py, P,,---,P,) such that vp, p, .. p,,(M)
=1 and HF®+P2 P (M) = 0 unless (P,, P;,--+, P,) = (r%, 15,-++,1%).

RemArRk. Taking THEOREM 2 (D) and the fact v(K(P,, P,,---,P,)) =1
into consideration, by THEOREM 1 we see that the Hausdorff measure
HP®1.P2Pm) and vy p, .. p,, are absolutely continuous to each other on
K(P,, P,,---,P,) if and only if (P, P,,--+,P,) = (%, r%,-+-,r%). On the other
hand, by using Bowen’s results [3], K. Handa [6] has already acquired a
similar result to (A) on R! under a different setting. Our idea of proof in
this paper is different from his. It seems to us difficult that we generalize his
proof to R¥. Moreover we add the result (B) to his results in this paper.

The second theorem claims that the a-dimensional Hausdorff measure on
K concentrates in K(r§, 3, --,r%).

THEOREM 2. For a in THEOREM 1,
(C) H-dim (K) = a,
(D) H*(K)= H*(K(r{, r3,""*sTm))s
(E) HY(K\K(3,r5,,r%) =0,
(F) 0< H*K) < oo0.

The third theorem claims that the Hausdorff dimension of K\ K(r§, r%,:-,
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r%) equals to the Hausdorff dimension of K itself. For a similar example, the
Hausdorff dimensions of simply normal numbers and simply non-normal
numbers on [0, 1] both equal to 1 (cf [12]). Nevertheless the one-
dimensional Hausdorff measure of simply non-normal numbers equals to
0. This is clear from the law of large number and the fact that the
one-dimensional Hausdorff measure on [0, 1] coincides with the one-
dimensional Lebesgue measure.

THEOREM 3. For o in THEOREM 1,
(G) H-dim (K5, 1%,---,r%)) = H-dim (K) = a,
(H) H-dim(K\K(%, 1%, --,1r%)) = H-dim (K),
(I) Hedim(K(Py, Py, P,)) = =1 F1108 P
i=y Pilogr;
satisfying (2.6) and the equality is attained only in the case of (P,, P,,--+,P,,) =
(rq’ r;""’r:n)'

<a for any (P,,P,,---,P,)

The fourth theorem claims that the box dimension of K(P,, P,,--+,P,)
equals to « for any (P, P,,:--,P,). Together with (G), this fact implies that
there is a gap between the Hausdorff dimension and the box dimension of
K(Pla P2""’Pm) if (Pl’ P29""Pm) ;;é(r‘}, r;"“’rfn)-

THEOREM 4. For o in THEOREM 1 and for any (P,, P,,---,P,) satisfying
(2.6),
(J) M'—dl'n (K(Pl, P2"",Pm)) = M-dim (K(P19 P29""Pm)) = a.

3. Proofs
For the proof of THEOREM 1, the result of THEOREM 3 (I) is needed.
Therefore we will prove THEOREM 3 (I) at first. Put

R, = {[0y, @3,,0,]; (@1, ©3,-,0,)E{L, 2,--;m}"}, #= U &,
: n=1

The following two propositions are proved under more general conditions
[8]. ProrosITION 3.1 can be proved in accordance with Billingsley’s method
[1]. In this paper, we will give a brief proof of ProprosiTION 3.2 for readers’
convenience.

PROPOSITION 3.1. Assume that u is a positive finite Borel measure on RN
such that

u([wls w2>"'awn])>0 for any ((01, CUZ,"',Q)"). (31)

If E = K with u*(E) > 0 satisfies
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2 < lim inf B H[@1, @2 0D) L log (u([@1, @305 0]) _
o log(|[wr, g, 0,d)) = log (I[@y, @z, @,]1)

for any N2 [w,, wy,--,w,]€E, then
a < H-dim (E) < b,
where u* is the outer measure induced from the measure L.

PROPOSITION 3.2. Assume that p is a positive finite Borel measure on RY
satisfying the condition (3.1). If

a <tim inf 2020 Q20 0u) gy g HIOL @3 00))
e [[wl,wz,"',wn]l n=o |[(01, w29"',wn]|

hold for any N2, [w;, ®,, -+,w,)€E, then there exists a positive constant L
depending only on N, X, A = 1/min;r; > 1 such that

b™'A7°L™'u*(E) < H*(E) < a™ ' u*(E).
PRrOOF OF PRrOPOSITION 3.2. For p >0, ¢ >0, set
E,,={xe€E;(a—¢|RP<u(R)<(b+¢|R|° or [R| > Ap
for any ReZ such that xeR}.

Firstly we prove the lefthand side inequality of the proposition. Put

C=yX)/|IXI", L= (Q)"QyC ™! and Qy = n%N/I‘(N/2 +1). Then 0 < L<
o0, since 0 < Ay(X)< oo. For a given Uc R and the integer n with
A" < |U| <A™"*1, UnK can be covered by R’s less than L such that Re %,
AT"<|R|<A7"*'. For any y >0, (0 <)p’ <p, let {U;}; be a p’-covering of
E,. such that H).(E,,) > Y ,|U}J® —y. Then we can find {R;}™, = # such

that
m; <L, R;nE, #9, UnNE,, < U7, Ry,
ATYUI <Ryl < AUl for any i, j.
Then

YIR,PP < ALY |U)* < PL(HL(E, ) + 7).

iJj i
By the definition of E,, and |R;;| < Ap, we have u(R;) < (b + ¢)|R;;|° for any
i, j. Therefore we have the following estimate

APLHYE) +y) > LH%(E, ) +7) = Y IR,
i,j
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>(b+e " Y uRy) = (b + &) u*(E,,)
ij

By letting y ] 0, we have
(b + &) 'u*(E,,) < P’LH%E).
Since u* is an outer measure and E, .1 E as p |0, we have
(b + &)~ 'u*(E) < ’LH’(E).

Since ¢ > 0 is arbitrary, we have the lefthand side inequality.
Secondly we prove the righthand side inequality. For y >0, (0 <)p’ < p,
we can find {R;}; = # such that
|Ri|<p/’ E CUiRia RlnRJ=0(l 7é.])a RinEp,t:;éG’

p.e =

0 <Y uR) — p*(E, ) <.

Since (a — ¢)|R;|° < u(R)) by the definition of E,. and |R;| < Ap,

W*(E) 2 u*(E,.) = Y p(R) —
2(@— Y IR ~ 72 (a— OHY(E,) — 7.

By letting p’, y | 0, we have
HY(E,.) < (a — &) ' u*(E).
Therefore we have the righthand side inequality. [

Proor oF THEOREM 3 (I). By the definition of K(P,, P,,---, P,,), for all
(wy, @,,-++) such that N2, [w,, w3, -+, 0,1 K(Py, P,,-+-, P,),

lim log V(P.,Pz,--~,P,,,)([w1, Wy, e, 0,]) — T ?:1 Ni(w, n)log P;
n= e logl[wl,wz,---,w"]l nmeo :"=1Ni(w’ n)logri
_ i, P;log P;
i, P;logr,

Since v, p,, ..., P, (K(Py, Py,---,P,)) = 1, we have
i, P;log P

H-d]m(K(P1, P2"",Pm))= m
i=1 Pilogr;

for any (P,, P,,-++,P,)

M < a and the equality holds if and

by PropoSITION 3.1. Since <2
i, Pilogr,
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only if P,=rf, i=1,2,---,m, we have (I). [

PrOPOSITION 3.3. Assume that (P,, P,,---,P,) satisfies (2.6). Put
H'dlm(K(Pl’ PZ""9Pm))=ﬂ(P1’ PZ""’Pm)' For 60=(601, wz"")e{l, 2a"’,m}Na
set

d,(w) = v(Pl,Pz,-..,pm)([a)l, Wy, ,])
n |[wl’ wZ,...’wn]lﬂ(Pl,Pz,...,Pm)

and define
N ,-((D, n) _

Pi=1, 2,---,m}.
n

B= {(p(w); lirzl__soglp d,(w) = oo, lim

Then we see that
(@ v, pye,pyB) =1 unless (Py, Py,--,Pp) = (r{, 15,--+,1%),
(b)) HP(B) =0 unless (Py, Py,--,P,) = (r%, 1%,---,1%).

PrROOF OF (a). Put P=vp, p, .. p.,° @, B= PPy, Py,---,P,) and X, (w) =

log—™, then {X,} is independent, identically distributed random variables

r‘“ m
.., On . m Pl .
with respect to P. Since f = ’m;ngP‘ by (I), we see that
i=1 Pi logr;

Ep[X,]= Y P,logP;—logrf)=0.

i=1

By the uniqueness of a, P; = rf for i = 1, 2,---,m if and only if (P, P,,-+,P,) =
%, r%,---,r%). Since (P,, P,,---,P,) # (r5,1r5%,---,r%) by the assumption, we
have

0<Ep[XZ] = ), Pi(log P, —logrf)* < co.
i=1

Since log d,(w) = Z;’= , X (), by the law of iterated logarithm [2], we see that
Ve, Pa,oer by ({0 (0) 5 lim sup log d,(w) = w0})=1.
This implies v, p,,...py(B)=1. O
ProoF oF (b). Put

‘@n(n) = {[601, 0)2,"‘,0)”]; dn(w) >n, W= (Cl)l, COZ,“')G{I, 2,"',m}N}a ,@(1’) =
U, #,(m). Then we can choose {R}}; for any p >0 and n > 0, such that

B< U:R], IRl < p, RIERM), Vp,,ps,-,p,n(RD > n|RIIP, RINR] =0 (i #j).

By the definition of H?, we have



On loosely self-similar sets

535
B 18 1 1
H(B) < Z |R1)f < ;Z Vpr, Py py(RD<—  for any p>0.

Therefore, by letting n — oo, we see

HiB)=0  for any p >0.
This implies H/(B)=0. O

Now we prove THEOREM 1.

ProoF oF THEOREM 1. (B) is clear from PrRoOPOSITION 3.3. Let o be the
positive number which satisfies ) /- | r#=1. Let us assume that (P, P,,---, P,,)
=(r%, 1%,--,r%). Then we have for all we{l,2,---,m}N and neN,

m aNi(w,n)
i=17i
m

_ =|X|™
. r?Nl(m,n) IXlaz

v(ri‘,r‘;p",rfn)([wl’ Wpyeet ,wn]) —

a 3.2)
I[wlﬁw2s"'awn]| (
Since vy s ... 2\ ([@1, @3,-+, ®,]) > 0 for any w,, w,,*:-,®w,, n by the condition
(2.6), the condition (3.1) of ProposiTION 3.2 is satisfied. Therefore by
PRrOPOSITION 3.2, we have

AT Lyl X *Vya bs, ... =) (B) < HYK N B) < | X |*Vz s ... = (B) (3.3)
for any Borel set B < K. Therefore we have THEOREM 1 (A). [

PROOF OF THEOREM 2. By the definition of K(P,, P,,---, P,,), we see that
K(P,, P,,---,P,) is a Borel set for any (P,, P,,---, P,).

Since
Vips, Py Py (KN K (], 15,00, 10)) = 0,
we see (E) H*(K\ K(r4, r5,---,r%)) = 0 by (3.3). Since H* is an outer measure,
H*(K(r], r3,--,rm)) < HY(K)

< HYK(rf, 13, 1) + H(K\K (4, 3,--,17)  (34)
= H(K(r}, r3,,7))-
Therefore we have (D) H*(K) = H*(K(r{, r%,--+,7%)). On the other hand, by
(3:3) and vie s .. o) (K(r], 15,-, 1)) = 1, we see that (F) 0 < H*(K(r§, r5,:--,7%)
<oo. Therefore together with (D), we have (G) H-dim (K)=H-dim (K (r}, 1%, ---,
rm)=o 0O

(I) has been already proved and (C) is clear from THEOREM 3 (G).
Therefore we have to prove only (H) and (J).

ProoF OF THEOREM 3 (H). Suppose that {P;,}7r,, k=1,2,3,--- is a
sequence of probability vectors such that
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0<Pyu<l, ) Py=1, kILm Pip=r1i, P Poiors P # (15, 15,0-5,170).
i=1 ®
Then by (I), we see
a > H-dim (K\ K(r{, r3,-,r)) = H-dim (K(Py &, P3,4>""*, Ppn,i))

_ Z;"=1 P;log P;
Y, Pilogr,

for any k. Letting k — oo, we have
o = H-dim (K \ K(r§, r%,---,1%)).
Therefore we have (H). [

Finally, we will prove THEOREM 4 (J). It is showed by the next proposi-
tion.
PROPOSITION 3.4. Assume that M is a Borel subset of K and u is a
positive finite Borel measure on RY. Put ™ = {ReR; A""<|R| < i "}
and

R R
C,(a, n) = min al ), C,(a, n) = ax al ).
Re®™,RnM+@ |R|* Re®™,RnM# 0 |R|°'
If
u( U R) = u(RY)  for all neN (3.5
Re®™,RAM# @
and
llm log (Cl(a’ n)) — hm log (Cz(a’ n)) - 0’
n— oo n n— oo n

(3.6)

then we have

M-dim (M) = M-dim (M) = o.

PrOOF OF ProposiTION 3.4. For any ¢>0, we can find n such that
AT"<e< A" Let {U}, be an e-covering of M such that #{U;} = N,(M).
Here N, (M) = ming, #{U;; M = {J; U,, |U;| < ¢}. Then there exists a positive
constant L' not depending on ¢ > 0 such that

1 <#{R:,eR”; R,;nU, #@, UnM = U,;R};, RIi,NR},; #0 (j#j)} <L

for any i. Therefore we have
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L'7'NF(M) < N,(M) < N7(M)
where N#*(M) = ming, #{R;; M < U;R;, [R;| <&, R;e#}. Since

RN N
R agp e MR
maXxgzm, Ram =0 K(R) MiNg.gm, ras+a H(R)

by (3.5), we see by (3.7) that
u(RMAT2L' ~1C5 Yo, n)A™ < N,(M) < u(RM)C[ (o, n)A*".
By (3.6), we have

log (N,(M)) _ _
el0  Jogl/e

This implies that
M-dim (M) = M-dim (M) = a.

ProOF OF THEOREM 4 (J). In Proposition 3.4, put M = K(P,, P,,---

and p=v4e,z .. .. Then we see by (3.2) that
Cile m) = €, m) = |X| 7™,

Therefore we can easily see that u= vy, .. .« and M = K(P,, P,,

satisfy the conditions (3.5) and (3.6). Therefore we have

M-dim (M) = M-dim (M) =« for any (P,, P,, -+, P,,).

4. Examples

537

(3.7

ExaMmpLE 4.1. Let us define two sequences of contraction maps {@;;,...; }
and {Y;,;,....,} for (iy, iz, i)e{l, 2}", n=1,2,---. Put X =[0, 1]>. Suppose

that
?is wi: X—>Xa i= 1’ 2’

1 1
(pl =¢1:(x, )’)—’<—x,§}’),
1 2
<pz:(x,y)-+< x+

3
: )
37 733Y)
1 21 2
L (x, X+, -y+= )
Yo (x y)—><3x 3037 3>
Then define
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Diyiy-rin = Pins
lpi.. n= la
lpiliZ"'in = ?i, i1 =1,n>2
‘//i,. ii=2,n>2

Put

e o]
K(p =N U @iy ° Qi 000 (piliz-ui,.(X)a

n=1 (i1,i2, ,in)e{1,2}"

[e o)

Kw =N U 'ph ° Wiliz Qcrro ¢i1iz---i,.(X)'

n=1 (i1,i2, ,in)e{1,2}"

Then we see that K, is Cantor’s ternary set C on [0, 1] and K, = {(x, f(x));
xeC}. Here f:[0, 1] [0, 1] such that

{0 osx<1/2
f(x)"{ 1/2<x<1.

By the THEOREM 1, H-dim (K,) = H-dim (K,) = log 2/log 3 = a, and H® on K,
(resp. K,) the (3, 3)-Bernoulli measure on K, (resp. K,) are absolutely
continuous to each other.

In fact, for any Borel set B,

&y

H*(BnK,) = f e (o),

1,
H*BnK,) = J Iy, (@) + Iy, (@) - 22 )dv'é_%)(co),
B
where 1, is the indicator function of 4, [1], = ¥, (X) and [2], = ¥,(X). v(”’l 1
2’3
and W, | denote (3, 3)-Bernoulli measure on K, and K,, respectively. That
. 33 .. ? .
is to say, H* and "Z,L are coincident but H* and "?’1,1 are not coincident up
to constant. * e
ExAMPLE 4.2. Let f:[0, 1] > R be a Lipschitz continuous function such

that
Ifx)—f()I<Q|x—yl for any x, ye[0,1] and f(0)=0 (4.1)

with some positive constant Q. Now we will construct a Cantor set on
{(x, f(x)); xe[0, 1]} by our method. Put X =[0, 1] x [— Q, Q]. Define a
sequence of functions {@, ;,...;.; (i}, i5,--,i,)€{1, 2}", n =1, 2,---} such that for
any iy, iy, yip N,

Oiyigein: X > X
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B> P i’ (5 )= (/34 T eli)/¥, /3 + /(. oti)/3)
where ¢: {1, 2} > {0, 2} such that ¢(1) =0, ¢(2) =2. Then we can see that
[@i,i50i,(X) — @iigerin W = % [x — y| for any x, yeX and iy, i,,,i, N
Put

)
K= U @i, © Piyin ©°00° Py (X)-
n=1 (i1,i2,***,in)e{1,2}"
Then we see that K = {(x, f(x)); xeC}, where C is Cantor’s ternary set,
H-dim (K) = log2/log3 (=) and that by THEOREM 1, H* and Vs are
absolutely continuous to each other on K. Furthermore if f is differentiable
on (0, 1), then we can easily see that

La
H*(BnK) =J 1 + (f" o m(w))?)? dv(l,l)(w) for any Borel set B < K.

B

4.2)

Here = is the projection, that is, z((x, y)) = x.

For any Cantor set C' = [0, 1] constructed by Hutchinson or our method,
we can construct {(x, f(x)); xeC’'} by using our method and have a similar
formula to (4.2).
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