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ABSTRACT. We prove Tonge's random Clarkson inequalities given for Lp in a general-

ized setting, where the unknown absolute constant appearing in his original inequalities

is taken to be 1. As a corollary these inequalities for fairly many other Banach

spaces such as Lp(Lq\ WP(Ω) and cp, etc. are immediately obtained.

Introduction

In connection with generalized Clarkson's inequalities (Kato [5]; see also

the recent book [10]), a high-dimensional version of Clarkson-Boas-Koskela-

type inequalities (cf. [3], [2], [8]), Tonge [12] presented random Clarkson

inequalities for Lp.

In this article we prove the random Clarkson inequalities for a Banach

space satisfying (p, p')-Clarkson's inequality (1 ^ p ^ 2); further the unknown

absolute constant included in Tonge's original inequalities is replaced here by

one. This enables us to obtain these inequalities for fairly many other Banach

spaces, e.g., L4-valued Lp-spaces Lp(Lq)9 Sobolev spaces Wp

k(Ω) and the spaces

cp of p-Schatten class operators, etc (cf. [2], [4], [6], [9]; see also [10]).

In what follows, let p\ q\ ... denote the conjugate exponents of p, q9

Let us first recall the generalized Clarkson inequalities: Let An = (εfJ )

be the Littlewood matrices, that is,

GENERALIZED CLARKSON'S INEQUALITIES (Kato [5], Theorem 1; cf. [12],

[11], [10]). Let 1 < p < oo and 1 ^ r, s ^ oo. Then, for an arbitrary positive
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integer n and all fl9 f2, ..., f2neLp,

f 2" 2^ s } 1,

(GCI)

where

1/r

c(r, s; p) =

— H min ( - , — I if min (p, p ') ̂  r ^ oo,

1 ^ s ^ m a x (p, p ') ,

: if 1 ^ r ^ min (p, p r ) ,

Ί if s; ^ r ^ oo,

max (p, p') ^ s ^ oo.

The constant c(r, s; p) is well expressed visually in the following unit
squares with axes 1/r (horizontal) and 1/s (vertical):

1/r' + 1/s

-w

1/r'

1/s

\

c(r, s; p)

1/P

1/r' + 1/s
-1/p

1/r'

1/s

\

2 < p < o o

Tonge's random Clarkson inequalities are stated as

RANDOM CLARKSON INEQUALITIES (Tonge [12], Theorem 3). Let 1 ^ p,
r, 5 ̂  oo. Let n be an arbitrary positive integer and let A = (α^ ) be an n x n
matrix whose coefficients are independent indentically distributed random vari-
ables taking the values ± 1 with equal probability. Then, E denoting mathe-
matical expectation, for any fl9 /2, ..., fn in Lp(μ),

(RCI) Σ aυfj
s\l/s

SKncir'SiP)[ X
l/r

where c(r9 s; p) is as in (GCI) and K is a positive absolute constant.
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We now present the random Clarkson inequalities in a generalized setting;

here it is worth stating that the absolute constant K in (RCI) can be

removed:

THEOREM. Let 1 ^ p ^ 2 and 1 ^ r, s ^ oo. Let n be an arbitrary positive

integer and let A = (a^) be an n x n matrix whose coefficients are independent

identically distributed random variables taking the values + 1 with equal probabil-

ity. Let X be a Banach space which satisfies (p, p')-Clarkson's inequality

(CIP) ( | |x + y\\p> + | |x - y\\p')llp> ύ

Then, for any xί9 x2, ..., xn in X,

(RCI*)

where

\\p)1/p)1/p.

n

Σ
n

V n
7 = 1

£
l/r

c(r, s; p) =

1 1 1
if (i) p ^ r ^ oo, 1 ^ s ^ p\

if (ϋ) 1 ^ r S P, 1 ^ s ^ r\

if (iii) s' ^ r ^ oo, s ^ oo.

For the proof we need the following recent result of the authors [7]:

LEMMA (Kato and Takahashi [7], Theorem 1). Let 1 < p g 2. Then, a

Banach space X satisfies (p, p')-Clarkson's inequality (CIp) if and only if X

satisfies the type p inequality

(Tip) Us Σ
1

, =+l
Σ en

1/P

(Vx1,x2,...,xI16X)

for any n.

PROOF OF THEOREM. Let 1 < p ^ 2. Let us first prove (RCI*) for the

case (r, s) = (p, p'), i.e.,

(RCI*)
ί = l

By Lemma, we have
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n

Σ θjχj

9'\1/P'

for each i. Hence, we obtain

E ί Σ %*/

'/PΊ 1/P'

We next show that for any t with 1 < t < p ^ 2,

t'\l/t' / n \l/ί

(RCI*) •(ί
To see this, we have only to note that the inequality (CIp) follows

(CIt) (||x + y\\tf + ||x - yf)1^ ^ 2^'(||jci|f + WyV)1*

for 1 < t < p 5; 2 (the above argument works for ί instead of p). Indeed, put
θ = p'/tf (0<θ< 1). Then clearly

(2) Mx = Hyli: If (JO —•

and by (CIp)

(note that equality is attained in (CIp) by putting y = 0). Hence, by interpola-

tion (cf. [1], Theorems 5.1.2, 4.2.1 and 4.1.2) we have

\\AX: lf{X) -+ lf,(X)\\ g M\-'MΘ

2 = 21/J',

which implies the inequality (CIr).

We now proceed in the proof of the whole part of (RCI*): (i) Let

p S r ^ oo, 1 ^ s ^ p'. Then, by (TIp) or (1), for each i
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/ n P'\I/P'

Consequently,

Σ aijXjΣ
s\l/s / n n Λ

[ Γ / n \l/r )Sηi/s

«{« i / p- i / r(Σ: II^II-J \\l/r

(ii) Let 1 ̂  r ^ p and 1 ̂  s ^ r'. Then, by (RCI*) with t = r,

E Σ
/=!

^
ι\l/« r'\l/r'

l/r

(iii) Let s' ^ r ^ oo and p' ^ s ^ oo. Then, by (RCI*) with ί = s',

)i

/ π \l/r

^ « 1 / Γ | .Σ ii^ irj .

In the case where p = 1, the inequalities (CIJ and (RCI*) are both valid

for any Banach space. (Indeed, (CIJ is equivalent to (2); for (RCI*) use the

argument in the proof of the case (i).) This completes the proof.

REMARKS, (i) A Banach space X satisfies (p, p^-Clarkson's inequality

(CIP) if and only if its dual space X' does. (This is easy to see; cf. [7],

Theorem 3.)
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(ii) The inequalities (RCI*), stated for 1 ^ p ^ 2, include Tonge's original

inequalities (RCI) for the cases 1 ^ p ^ 2 and 2 ^ p ^ oo unifyingly. Indeed,

if 1 ^ p ^ 2, L p satisfies (CIP) ([3]) and if 2 ^ p ^ oo, Lp = (L^)' satisfies

(CV) ([3]; or by (i)).

COROLLARY, (i) Let 1 ^ p ^ oo and to ί = min {p, p'}. Then, in the

space lp(Lp) (Lp-valued lp-space; in particular Lp), Wp(Ω) and cp, the random

Clarkson inequalities (RCI*) hold with the constant c(r, s; t).

(ii) Let 1 ^ p, q ^ oo and let t = min {p,p',q,q'}. Then, the random

Clarkson inequalities (RCI*) hold in Lp(Lq) with the constant c(r, s; t).

Indeed, the spaces in (i) resp. Lp(Lq) in (ii) satisfy (CIt) for t = min {p, p'}

([2], [6]; [4], [6]; [9]) resp. for t = min {p, p', q, q'} ([2], [6]).

For further examples of Banach spaces satisfying Clarkson's inquality

(CIp), and hence (RCI*), we refer the reader to [10].
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