# Symmetricity of the Whitehead element 

Dedicated to Professor Teiichi Kobayashi on his 60th birthday

Mitsunori Imaoka* and Yusuke Kawamoto<br>(Received February 14, 1996)


#### Abstract

We study the symmetricity of the Whitehead element $w_{n} \in \pi_{2 n p-3}\left(S^{2 n-1}\right)$ for an odd prime $p$. It is shown that $w_{n}$ considered as a map $S^{2 n p-3} \rightarrow S^{2 n-1}$ factors through the $p$-fold covering map $\sigma: S^{2 n p-3} \rightarrow L^{2 n p-3}$ only when $n$ is a power of $p$, and that $w_{p^{i}}$ actually factors through $\sigma$ if $0 \leq i \leq 4$. This is some of an odd prime version of the results of Randall and Lin for the projectivity of the Whitehead product $\left[l_{2 n-1}, l_{2 n-1}\right] \in \pi_{4 n-3}\left(S^{2 n-1}\right)$.


## 1. Introduction

Let $p$ be a prime, and $\sigma: S^{2 n+1} \rightarrow L^{2 n+1}$ denote the $p$-fold covering, where $L^{2 n+1}=S^{2 n+1} / Z_{p}$ is the standard lens space. For any space $X$, an element $\alpha \in \pi_{2 n+1}(X)$ is defined to be symmetric, if $\alpha$ considered as a map $S^{2 n+1} \rightarrow X$ factors through $\sigma: S^{2 n+1} \rightarrow L^{2 n+1}$, that is, there exists a map $g: L^{2 n+1} \rightarrow X$ with $\alpha=[g \sigma]$. Mimura-Mukai-Nishida [8] have shown that all elements in the positive dimensional stable homotopy groups of spheres are symmetric.

In this paper, we study the symmetricity of the Whitehead element $w_{n} \in$ $\pi_{2 n p-3}\left(S^{2 n-1}\right)$ for an odd prime $p$. Hence, all spaces are assumed to be localized at an odd prime $p$. We recall the definition of $w_{n}$ (cf. [3], [4]). Let $\varepsilon: C(n) \rightarrow S^{2 n-1}$ be the homotopy fiber of the double suspension map $\Sigma^{2}: S^{2 n-1} \rightarrow \Omega^{2} S^{2 n+1}$. It is known that $C(n)$ is $(2 n p-4)$-connected and $\pi_{2 n p-3}(C(n)) \cong \boldsymbol{Z}_{p}$. For a generator $z \in \pi_{2 n p-3}(C(n)), w_{n}$ is given by $w_{n}=$ $\varepsilon_{*}(z) \in \pi_{2 n p-3}\left(S^{2 n-1}\right)$. Then, our results are stated as follows:

Theorem A. If the Whitehead element $w_{n} \in \pi_{2 n p-3}\left(S^{2 n-1}\right)$ is symmetric, then $n=p^{i}$ for some $i \geq 0$.

Theorem B. The Whitehead element $w_{p^{i}} \in \pi_{2 p^{i+1-3}}\left(S^{2 p^{i-1}}\right)$ is symmetric for $0 \leq i \leq 4$.

[^0]Theorem A corresponds to the result of Randall [9], who shows that the Whitehead product $\left[l_{n}, l_{n}\right] \in \pi_{2 n-1}\left(S^{n}\right)$ is symmetric, for the prime 2 , only when $n$ or $n+1$ is a power of 2 . In this case, the symmetric is refered to as the projective. Milgram-Zvengrowski [7] have shown that $\left[l_{2 i}, l_{2^{i}}\right]$ is projective iff $i=0,1,2$, and $\operatorname{Lin}[6]$ has concluded that $\left[l_{2^{i-1}}, l_{2^{i-1}}\right]$ is actually projective for any $i>0$. Theorem B corresponds to such solutions, but the whole analogy with the methods in [6] does not hold in the case of odd primes. We shall show that the cases as in Theorem B are obtainable applying the results of Cohen [1].

We prove Theorem A in $\S 2$, Theorem B in $\S 3$, and $\S 4$ is devoted to establish a key lemma for the proof of Theorem B. Throughout the paper, $Z_{p}$ denotes the cyclic group of order $p$ and also the additive group of the $\bmod p$ integers.

The authors wish to express their thanks to Professor Takao Matumoto for his valuable suggestions.

## 2. Proof of Theorem $\mathbf{A}$

We shall apply the following proposition in the case that $X$ is a stunted lens space, and the proposition is crucial also in the proof of Theorem B.

Proposition 1 [4; Prop. C]. Suppose that a CW-complex $X$ is $(2 n-1)$ connected and $\operatorname{dim} X \leq 2 n p-3$. Then, for any map $\eta: S^{2 n p-3} \rightarrow X$ with $\eta_{*}=$ $0: H_{2 n p-3}\left(S^{2 n p-3} ; Z_{p}\right) \rightarrow H_{2 n p-3}\left(X ; Z_{p}\right)$, the following conditions (1) and (2) are equivalent:
(1) There exists a map $\kappa: X \rightarrow S^{2 n-1}$ with $w_{n}=[\kappa \eta]$;
(2) There exists a map $\omega: \Sigma^{2} C_{\eta} \rightarrow S^{2 n+1}$ with $\mathscr{P}^{n} \neq 0$ on $H^{2 n+1}\left(C_{\omega} ; Z_{p}\right)$, where $C_{\alpha}$ is the cofiber of $\alpha=\eta$ or $\omega$ and $\mathscr{P}^{n} \in \mathscr{A}$ is the Steenrod operation over $\boldsymbol{Z}_{p}$.

Let $L=S^{\infty} / Z_{p}$ be the infinite dimensional lens space, and $L^{a}$ for $a \geq 0$ denote the $a$-skeleton of $L$. Then, $L_{l}^{k}=K^{k} / L^{l-1}$ for $0<l \leq k$ is the stunted lens space, and the composition of the double covering map $\sigma: S^{2 k-1} \rightarrow L^{2 k-1}$ with the collapsing map $L^{2 k-1} \rightarrow L_{l}^{2 k-1}$ is the attaching map $\sigma: S^{2 k-1} \rightarrow L_{l}^{2 k-1}$ of the top cell in $L_{l}^{2 k}$. Recall that $H^{*}\left(L ; Z_{p}\right)=\Lambda_{Z_{p}}(x) \otimes Z_{p}[y]$ with $\beta x=y$, where the degrees of $x$ and $y$ are 1 and 2 respectively and $\beta$ is the Bockstein operation. Then, we remark

Lemma 2. $w_{n}$ is symmetric if and only if there exists a map $\kappa: L_{2 n}^{2 n p-3} \rightarrow$ $S^{2 n-1}$ with $w_{n}=[\kappa \sigma]$ for the attaching map $\sigma: S^{2 n p-3} \rightarrow L_{2 n}^{2 n p-3}$.

Proof. The if part is clear, so we assume that $w_{n}$ is symmetric. Then, by the dimensional reason, there exists a map $g: L_{2 n-1}^{2 n p-3} \rightarrow S^{2 n-1}$ with $w_{n}=$
[gб]. For the inclusion $i: S^{2 n-1} \rightarrow L_{2 n-1}^{2 n p-3}$, we have $p[g i]=0 \in \pi_{2 n-1}\left(S^{2 n-1}\right)$, because $L_{2 n-1}^{2 n}$ is the cofiber of a map $S^{2 n-1} \rightarrow S^{2 n-1}$ of degree $p$. Hence, $[g i]=0$ and we have a required map $\kappa$ with $w_{n}=[\kappa \sigma]$.

Now, put $n=p^{t}+u$ for $0<u<p^{t}(p-1)$, and assume that the Whitehead element $w_{n} \in \pi_{2 n p-3}\left(S^{2 n-1}\right)$ is symmetric. We shall verify Theorem A by inducing a contradiction from this assumption.

By applying Proposition 1 in the case of $X=L_{2 n}^{2 n p-3}$ and using Lemma 2, we have a map $\omega: \Sigma^{2} L_{2 n}^{2 n p-2} \rightarrow S^{2 n+1}$ with $\mathscr{P}^{n} \neq 0: H^{2 n+1}\left(C_{\omega} ; \boldsymbol{Z}_{p}\right) \rightarrow$ $H^{2 n p+1}\left(C_{\omega} ; Z_{p}\right)$. Then, by the cofiber sequence $S^{2 n+1} \rightarrow C_{\omega} \rightarrow \Sigma^{3} L_{2 n}^{2 n p-2}$, we have isomorphisms $H^{2 n+1}\left(C_{\omega} ; Z_{p}\right) \cong Z_{p}$ and $H^{i}\left(C_{\omega} ; Z_{p}\right) \cong H^{i-3}\left(L_{2 n}^{2 n p-2} ; Z_{p}\right)$ for $i \geq 2 n+3$. We denote the generator of $H^{2 n+1}\left(C_{\omega} ; \boldsymbol{Z}_{p}\right) \cong \boldsymbol{Z}_{p}$ by $a$, and identify the generator of $H^{2 k+3}\left(C_{\omega} ; \boldsymbol{Z}_{p}\right)$ for $n \leq k \leq n p-1$ with $y^{k} \in$ $H^{2 k}\left(L_{2 n}^{2 n p-2} ; \boldsymbol{Z}_{p}\right) \cong \boldsymbol{Z}_{p}$. Then, $\mathscr{P}^{n}(a) \equiv y^{n p-1}$ up to unit.

Let $u=u_{1} p^{t_{1}}+\cdots+u_{i} p^{t_{i}}$ be the $p$-adic expansion of $u$. Thus, $0<u_{i} \leq$ $p-1, t \geq t_{1}>\cdots>t_{l} \geq 0$, and $0<u_{1} \leq p-2$ if $t_{1}=t$. The Adem relation gives

$$
\begin{equation*}
\mathscr{P}^{u} \mathscr{P P}^{t}(a)=\sum_{i=0}^{[u / p]}(-1)^{u+i} c_{i} \mathscr{P}^{n-i} \mathscr{P}^{i}(a) \quad \text { for } c_{i}=\binom{(p-1)\left(p^{t}-i\right)-1}{u-p i} . \tag{2.1}
\end{equation*}
$$

Then,

$$
\begin{aligned}
c_{0} & =\binom{(p-1) p^{t}-1}{u} \\
& =\binom{(p-2) p^{t}+(p-1) p^{t-1}+\cdots+(p-1) p+(p-1)}{u_{1} p^{t_{1}}+\cdots+u_{l} p^{t_{1}}} \not \equiv 0 \quad \bmod p
\end{aligned}
$$

and thus

$$
\begin{equation*}
c_{0} \mathscr{P}^{n}(a) \neq 0 \tag{2.2}
\end{equation*}
$$

On the other hand, $\mathscr{P}^{p^{t}}(a)=a_{p^{t}} y^{p^{t+1}+u-1}$ for some $a_{p^{t}} \in Z_{p}$, and $\mathscr{P}^{u}\left(y^{p^{t+1}+u-1}\right)=$ $\binom{p^{t+1}+u-1}{u} y^{n p-1}=0$. Hence,

$$
\begin{equation*}
\mathscr{P}^{u} \mathscr{P P}^{t}(a)=0 . \tag{2.3}
\end{equation*}
$$

For $1 \leq i \leq[u / p]$ and some $a_{i} \in Z_{p}$, we have $\mathscr{P}^{i}(a)=a_{i} y^{n-1+i(p-1)}$ and $\mathscr{P}^{n-i}\left(y^{n-1+i(p-1)}\right)=b_{i} y^{n p-1}$ for $b_{i}=\binom{n-i+i p-1}{n-i}$. Then, $b_{i} \neq 0 \bmod p$ if and only if $\alpha_{p}(n-i)+\alpha_{p}(i p-1)=\alpha_{p}(n-i+i p-1)$, where $\alpha_{p}(k)=\sum_{j=0}^{h} k_{j}$ for the $p$-adic expansion of an integer $k=\sum_{j=0}^{h} k_{j} p^{j}$. If we put $i=i_{1} p^{j_{1}}+\cdots+$ $i_{m} p^{j_{m}}$ for $j_{1}>\cdots>j_{m}$ as the $p$-adic expansion of $i$, then we have the following:

$$
\begin{aligned}
i p-1 & =i_{1} p^{j_{1}+1}+\cdots+i_{m-1} p^{j_{m-1}+1}+\left(i_{m}-1\right) p^{j_{m}+1}+(p-1) p^{j_{m}}+\cdots+(p-1) \\
n-i & =\left(p^{t}+u_{1} p^{t_{1}}+\cdots+u_{l} p^{t_{l}}\right)-\left(i_{1} p^{j_{1}}+\cdots+i_{m} p^{j_{m}}\right)
\end{aligned}
$$

Hence, if $\alpha_{p}(n-i)+\alpha_{p}(i p-1)=\alpha_{p}(n-i+i p-1)$, then $t_{l}=j_{m}$ and $u_{l}=i_{m}$, and we can set $u=v p^{b+1}+d p^{b}$ and $i=j p^{b+1}+d p^{b}$ in this case for some $v$, $j>0$ and $0<d \leq p-1$, where $b=t_{l}=j_{m}$. Then, we have

$$
c_{i} \equiv\binom{e p^{b+1}+(d-1) p^{b}+(p-1) p^{b-1}+\cdots+(p-1)}{f p^{b+1}+d p^{b}} \equiv 0 \bmod p
$$

for some $e, f>0$. Thus, for $1 \leq i \leq[u / p]$, we have

$$
\begin{equation*}
c_{i} \mathscr{P}^{n-i} \mathscr{P}^{i}(a)=0 . \tag{2.4}
\end{equation*}
$$

(2.2)-(2.4) contradict (2.1), and we have completed the proof of Theorem A.

## 3. Proof of Theorem B

First, we remark that $w_{1}=0$ and that, by [10; Th. 7.1], $w_{p} \in \pi_{2 p^{2-3}}\left(S^{2 p-1}\right)$ is divisible by $p$. If $w_{p}=p w$, then $w_{p}=w[q \sigma]$ for the collapsing map $q: L^{2 p^{2}-3} \rightarrow S^{2 p^{2}-3}$, and thus Theorem B trivially holds for $w_{1}$ and $w_{p}$.

We shall show that $w_{i}$ for $2 \leq i \leq 4$ is symmetric, by applying a method due to Lin [6] and some results of Cohen [1]. For $m \geq 1$, let $B\left(p^{m}\right)$ be a spectrum whose cohomology is given by

$$
H^{*}\left(B\left(p^{m}\right) ; Z_{p}\right) \cong \mathscr{A} / \mathscr{A}\left\{\chi\left(\beta^{\varepsilon} \mathscr{P}^{j}\right) \mid \varepsilon+j>p^{m-1}\right\}
$$

as $\mathscr{A}$-modules, where $\chi$ is the canonical anti-automorphism of $\mathscr{A}$. We may call $B\left(p^{m}\right)$ the Brown-Gitler spectrum, although it is slightly different from the original one. The existence of the spectrum $B\left(p^{m}\right)$ is established in [1], and also the following is shown in [1; Ch. 4, Th. 2.1]:

Proposition 3. For $m \geq 2$, there exists a stable map $\zeta_{m}: \Sigma^{2 p^{m-1}\left(p^{2}-p-1\right)}$ $B\left(p^{m-1}\right) \rightarrow S^{0}$ with $\mathscr{P}^{p^{m}} \neq 0: H^{0}\left(C_{\zeta_{m}} ; Z_{p}\right) \rightarrow H^{2 p^{m}(p-1)}\left(C_{\zeta_{m}} ; Z_{p}\right)$.

Henceforce, we assume that, for a given integer $i>0$, the integers $t$ and $s$ always denote

$$
\begin{equation*}
t=2 p^{i+1}-2 \quad \text { and } \quad s=2 p^{i+1}-2 p^{i-1}-1 \tag{3.1}
\end{equation*}
$$

By Proposition 1, if we show that there exists a map $\xi: \Sigma^{2} L_{s}^{t} \rightarrow S^{2 p^{i+1}}$ for $2 \leq i \leq 4$ with $\mathscr{P} p^{i} \neq 0: H^{2 p^{i+1}}\left(C_{\xi} ; Z_{p}\right) \rightarrow H^{2 p^{i+1}+1}\left(C_{\xi} ; Z_{p}\right)$, then we get a map $\kappa: L_{s}^{2 p^{i+1}-3} \rightarrow S^{2 p^{i-1}}$ with $w_{p^{i}}=[\kappa \sigma]$, which establishes Theorem B. Here, we remark that it is enough to find the map $\xi$ as is a stable map

$$
\begin{equation*}
\xi: L_{s}^{t} \rightarrow S^{2 p^{i-1}} \quad \text { with } \quad \mathscr{P} p^{i} \neq 0: H^{2 p^{i-1}}\left(C_{\xi} ; Z_{p}\right) \rightarrow H^{2 p^{i+1}-1}\left(C_{\xi} ; Z_{p}\right) \tag{3.2}
\end{equation*}
$$

In fact, the suspension homomorphism [ $\left.\Sigma^{2} L_{s}^{t}, S^{2 p^{i+1}}\right] \rightarrow\left[\Sigma^{2 N} L_{s}^{t}, S^{2 N+2 p^{i-1}}\right]$ is bijective for any $N \geq 1$, because $C\left(p^{i}+m\right)$ is $\left(2\left(p^{i}+m\right) p-4\right)$-connected for any $m \geq 1$.

Thus, Theorem B follows from the following proposition, in which $\zeta_{i}$ is the stable map of Proposition 3.

Proposition 4. For $2 \leq i \leq 4$, there exists a stable map $\psi: L_{s}^{t} \rightarrow \Sigma^{s} B\left(p^{i-1}\right)$ such that a stable map $\xi$ of (3.2) is taken as the composition $\left(\Sigma^{2 p^{i-1}} \zeta_{i}\right) \psi$.

We prepare some lemmas concerning the stunted lens spaces before the proof of Proposition 4. When $a<0$ and $a \leq b$, the stunted lens space $L_{a}^{b}$ means a spectrum $\Sigma^{-2 p^{N}} L_{2 p^{v}+a}^{2 p^{N+b}}$ for sufficiently large $N>0$ using the James periodicity. Indeed, since the $J$-order of the canonical complex line bundle over $L^{b-a}$ is $p^{[(b-a) /(p-1)]}$ by [5], we have only to take $N$ satisfying $N \geq$ $[(b-a) /(p-1)]$ and $2 p^{N}+a>0$.

For a given $i>0$ and $0<a<b \leq 2 p^{i+1}$, we define $\bar{L}_{a}^{b}$ to be the spectrum $\Sigma^{2 p^{i+1}} L_{-2 p^{i+1}+a^{.}}^{-2 p^{i+1}+b}$. Then, by taking $M=p^{2\left(p^{i+1}-1\right) /(p-1)-(i+1)}-1$, it is also represented $\bar{L}_{a}^{b}=\Sigma^{-2 M p^{i+1}} L_{2 M p^{i+1+a}}^{2 M p^{i+1}}$. We put $\bar{y}^{j}=y^{M p^{i+1+j}} \in H^{2 j}\left(\bar{L}_{a}^{b} ; Z_{p}\right)$ for $a \leq$ $2 j \leq b$. Define a map $\Phi: H^{*}\left(L_{a}^{b} ; \boldsymbol{Z}_{p}\right) \rightarrow H^{*}\left(\bar{L}_{a}^{b} ; \boldsymbol{Z}_{p}\right)$ by $\Phi\left(x^{\varepsilon} y^{j}\right)=x^{\varepsilon} \bar{y}^{j}$ for $a \leq$ $\varepsilon+2 j \leq b$ and $\varepsilon=0$ or 1 . Then, it is easy to show the following lemma, by which $H^{*}\left(\bar{L}_{a}^{b} ; \boldsymbol{Z}_{p}\right)$ is an unstable $\mathscr{A}$-module:

Lemma 5. For any $i>0$ and $0<a<b \leq 2 p^{i+1}, \Phi: H^{*}\left(L_{a}^{b} ; Z_{p}\right) \rightarrow$ $H^{*}\left(\bar{L}_{a}^{b} ; \boldsymbol{Z}_{p}\right)$ is an isomorphism of $\mathscr{A}$-modules.

The following is the key lemma for the proof of Proposition 4, and Lemma 5 is used in the proof of the lemma.

Lemma 6. For $2 \leq i \leq 4$, there exists a stable map $\varphi: S^{2 p^{i-1}} \rightarrow B\left(p^{i-1}\right) \wedge$ $\bar{L}_{1}^{2 p^{i-1}}$ such that $\varphi^{*}\left(1 \otimes \bar{y}^{p^{i-1}}\right) \neq 0$.

We postpone the proof of Lemma 6 until the next section, and complete the proof of Proposition 4 by assuming Lemma 6.

Proof of Proposition 4. Since there is a Spainer-Whitehead duality $D: S^{0} \rightarrow \bar{L}_{1}^{2 p^{i-1}} \wedge \Sigma^{-2 p^{i+1}+1} L_{s}^{t}$, we have an isomorphism $\left\{L_{s}^{t}, \Sigma^{s} B\left(p^{i-1}\right)\right\} \cong$ $\pi_{2 p^{i-1}}^{S}\left(B\left(p^{i-1}\right) \wedge \bar{L}_{1}^{2 p^{i-1}}\right)$, where $t$ and $s$ are the integers of (3.1). Hence, corresponding to $\varphi$ of Lemma 6, there exists a stable map $\psi: L_{s}^{t} \rightarrow \Sigma^{s} B\left(p^{i-1}\right)$ which satisfies

$$
\psi^{*} \neq 0: H^{s}\left(\Sigma^{s} B\left(p^{i-1}\right) ; Z_{p}\right) \rightarrow H^{s}\left(L_{s}^{t}, Z_{p}\right) .
$$

Thus, $\psi^{*}(1) \equiv x y^{p^{i+1}-p^{i-1}-1}$ up to unit. Then, it also holds that

$$
\begin{equation*}
\psi^{*} \neq 0: H^{t}\left(\Sigma^{s} B\left(p^{i-1}\right) ; Z_{p}\right) \rightarrow H^{t}\left(L_{s}^{t} ; Z_{p}\right) . \tag{3.3}
\end{equation*}
$$

In fact, by Davis [2], the equality $\chi\left(\mathscr{P}^{p^{j}} \cdots \mathscr{P}^{p} \mathscr{P}^{1}\right)=\mathscr{P}^{p^{j+\cdots+p+1}}$ holds for any $j \geq 0$. Then, $\psi^{*}\left(\chi\left(\mathscr{P}^{p^{i-2}} \cdots \mathscr{P}^{P} \mathscr{P}^{1} \beta\right)\right)=\beta \mathscr{P}^{p^{i-2}+\cdots+p^{+1}} \psi^{*}(1) \equiv y^{(t / 2)}$ up to unit, and thus (3.3) follows. Now, we can show that $\psi$ is the required map.

Let $\xi: L_{s}^{t} \rightarrow S^{2 p^{i-1}}$ be the composition of $\psi: L_{s}^{t} \rightarrow \Sigma^{s} B\left(p^{i-1}\right)$ and $\Sigma^{2 p^{i-1}} \zeta_{i}$ : $\Sigma^{s} B\left(p^{i-1}\right) \rightarrow S^{2 p^{i-1}}$, where $\zeta_{i}$ is the stable map of Proposition 3. Then, we have the following commutative diagram:

where all cohomology groups are taken with $Z_{p}$-coefficients. Since $H^{t}\left(\Sigma^{s} B\left(p^{i-1}\right)\right.$; $\left.Z_{p}\right) \cong Z_{p}$ is generated by $\chi\left(\mathscr{P}^{P^{i-2}} \cdots \mathscr{P P}^{P} \mathscr{P}^{1} \beta\right)$, Proposition 3 and (3.3) yield $\mathscr{P} p^{i} \neq 0: H^{2 p^{i-1}}\left(C_{\xi} ; Z_{p}\right) \rightarrow H^{2 p^{i+1}-1}\left(C_{\xi} ; Z_{p}\right)$, and we have completed the proof.

## 4. An Adams spectral sequence

In this section, we stablish Lemma 6. Let $\left\{E_{r}^{q, u}\left(p^{k}, X\right)\right\} \Rightarrow \pi_{*}^{S}\left(B\left(p^{k}\right) \wedge X\right)$, for a spectrum $X$, be an Adams spectral sequence given as in [1]. In [1] the spectral sequence is used in the case of $X=L$ the infinite dimensional lens space, but we shall apply the spectral sequence for the stunted lens spaces.

More precisely, the $E_{1}$-term of it is given by

$$
E_{1}^{q, u}\left(p^{k}, X\right)=\sum_{j \geq 0} \Lambda_{u-q-j}^{q}\left(p^{k}\right) \otimes H_{j}\left(X ; Z_{p}\right)
$$

Here, $\Lambda_{a}^{b}\left(p^{k}\right)$ is an algebra given as follows: Let $\Lambda$ be the $\Lambda$-algebra, that is, $\Lambda$ is an associative graded algebra over $\boldsymbol{Z}_{p}$ with generators $\lambda_{m}$ of degree $2 m(p-1)-1$ for $m \geq 1 ; \mu_{n}$ of degree $2 n(p-1)$ for $n \geq 0$; subject to the so-called Adem relations (see [1; Ch. 1, §1]), where we have changed the notations and the gradings from those in [1] ( $\lambda_{m}$ and $\mu_{n}$ are denoted in [1] by $\lambda_{m-1}$ and $\mu_{n-1}$ of degrees $-2 m(p-1)+1$ and $-2 n(p-1)$ respectively). Let $I(k)$ be the left ideal generated by $\left\{\lambda_{m}, \mu_{n} \mid m \leq p^{k-1}, n \leq p^{k-1}-1\right\}$. Then, $(\Lambda / I(k))^{b}$ denotes the submodule of $\Lambda / I(k)$ generated by the monomials of $\lambda_{m}$ or $\mu_{n}$ with length $b$, and $\Lambda_{a}^{b}\left(p^{k}\right)$ is the component of degree $a$ in $(\Lambda / I(k))^{b}$.

As a $Z_{p}$-vector space, $\Lambda_{a}^{b}\left(p^{k}\right)$ has a basis formed by some admissible monomials. Let $v_{m}=\lambda_{m}$ or $\mu_{m}$. Then, the monomial $v_{m_{1}} \cdots v_{m_{b}}$ of $(\Lambda / I(k))^{b}$ is admissible if, for each $j$ with $1 \leq j \leq b-1, p m_{j} \geq m_{j+1}+1$ or $p m_{j} \geq m_{j+1}$ holds according as $v_{m_{j}}=\lambda_{m_{j}}$ or $v_{m_{j}}=\mu_{m_{j}}$ ([1; Ch. I, §1]). Then, a basis of $\Lambda_{a}^{b}\left(p^{k}\right)$ consists of the admissible monomials $v_{m_{1}} \cdots v_{m_{b}}$ of degree $a$ with $m_{b} \geq$ $p^{k-1}+1$ or $p^{k-1}$ according as $v_{m_{b}}=\lambda_{m_{b}}$ or $\mu_{m_{b}}$ by [1; Ch. III, Lemma 3.1]. As
a result, the element which has the lowest degree in $(\Lambda / I(k))^{b}$ is $\mu_{p^{k-b}} \mu_{p^{k-b+1}} \cdots$ $\mu_{p^{k-2}} \mu_{p^{k-1}}$. Thus, we have the following:

Lemma 7. $\quad \Lambda_{a}^{b}\left(p^{k}\right)=0$ if $a<2\left(p^{k}-p^{k-b}\right)$.
Now, for a fixed $l \geq 0$, we put $L(l, k)=\Sigma^{-2 M p^{l+1}} L_{2 M p^{l+1}+1}^{2 M p^{l+1}}$ for $0 \leq k \leq l$, where $M=p^{2\left(p^{l+1}-1\right) /(p-1)-(l+1)}-1$, and consider the spectral sequence

$$
E_{r}^{q, u}(n, k)=E_{r}^{q, u}\left(p^{n}, L(l, k)\right) \Rightarrow \pi_{*}^{S}\left(B\left(p^{n}\right) \wedge L(l, k)\right) .
$$

Let $\left(y^{p^{m}}\right)^{*} \in H_{2 p^{m}}\left(L(l, k) ; \boldsymbol{Z}_{p}\right)$ be the element dual to $\bar{y}^{p^{m}}$ for $0 \leq m \leq k$. Then, by [1; Ch. III, Lemma 3.5], we see that

$$
\begin{equation*}
d_{1}\left(1 \otimes\left(y^{p^{m}}\right)^{*}\right)=0 \quad \text { in } \quad E_{1}^{1,2 p^{m}}(m, m) . \tag{3.4}
\end{equation*}
$$

By [1; Ch. III, Th. 4.1], there exists a stable map $f_{k}: B\left(p^{k}\right) \rightarrow \Sigma^{2 p^{k-1}(p-1)}$ $B\left(p^{k-1}\right)$ for $k \geq 2$ such that $\left(f_{k}\right)^{*}: H^{*}\left(B\left(p^{k-1}\right) ; Z_{p}\right) \rightarrow H^{*+2 p^{k-1}(p-1)}\left(B\left(p^{k}\right) ; Z_{p}\right)$ is multiplication on the right by $\chi\left(\mathscr{P}^{p^{k-1}}\right)$. Put $h_{k}=f_{k} \wedge 1: B\left(p^{k}\right) \wedge L(l, k) \rightarrow$ $\Sigma^{2 p^{k-1}(p-1)} B\left(p^{k-1}\right) \wedge L(l, k)$. Then, by [1; Ch. III, Lemma 3.8] and using Lemma 5, we have

$$
\begin{equation*}
\left(h_{k}\right)_{*}\left(1 \otimes\left(y^{p^{k}}\right)^{*}\right)=\left(1 \otimes\left(y^{p^{k-1}}\right)^{*}\right) . \tag{3.5}
\end{equation*}
$$

Also, by [1; Ch. III, Cor. 3.7], if $q \geq 1$ and $u<q+2 p^{k}$, then

$$
\begin{equation*}
\left(h_{k}\right)_{*}=0: E_{1}^{q, u}(k, k) \rightarrow E_{1}^{q, u-2 p^{k-1}(p-1)}(k-1, k) . \tag{3.6}
\end{equation*}
$$

We remark that the inclusion $i: L(k-1, k-1) \rightarrow L(k-1, k)$ induces a cohomology isomorphism up to dimension $2 p^{k-1}$, and thus $i_{*}: E_{r}^{q, u-2 p^{k-1}(p-1)}(k-$ $1, k-1) \rightarrow E_{r}^{q, u-2 p^{k-1}(p-1)}(k-1, k)$ is an isomorphism if $u<q+2 p^{k}$ and $q \geq 1$ or if $(q, u)=\left(0,2 p^{k}\right)$. Hence, by the identification through $i_{*}$ for these $q$ and $u,\left(h_{k}\right)_{*}$ can be regarded as $\left(h_{k}\right)_{*}: E_{r}^{q, u}(k, k) \rightarrow E_{r}^{q, u-2 p^{k-1}(p-1)}(k-1, k-1)$. Then, applying (3.4)-(3.6), we have

Lemma 8. $\quad 1 \otimes\left(y^{p^{k}}\right)^{*} \in E_{l-k+2}^{0,2 p^{k}}(k, k)$ for $1 \leq k \leq l$.
Proof. Let $k$ be fixed. By (3.4), $1 \otimes\left(y^{p^{m}}\right)^{*} \in E_{2}^{0,2 p^{m}}(m, m)$ for any $m$ with $k \leq m \leq l$. Inductively, assume that, for some $r$ with $2 \leq r \leq l-k$, $1 \otimes\left(y^{p^{m}}\right)^{*} \in E_{r}^{0,2 p^{m}}(m, m)$ holds for any $m$ with $k \leq m \leq l+2-r$. Then, for any $n$ with $k \leq n \leq l+2-(r+1), d_{r}\left(1 \otimes\left(y^{p^{n}}\right)^{*}\right)=\left(h_{n+1}\right)_{*}\left(d_{r}\left(1 \otimes\left(y^{p^{n+1}}\right)^{*}\right)\right)=0$ by (3.5) and (3.6), and hence $1 \otimes\left(y^{p^{n}}\right)^{*} \in E_{r+1}^{0,2 p^{n}}(n, n)$. Therefore, as for $1 \otimes$ $\left(y^{p^{k}}\right)^{*}$, we have $d_{r}\left(1 \otimes\left(y^{p^{k}}\right)^{*}\right)=0$ for $1 \leq r \leq l-k+1$, which establishes the required result.

Now, we can complete the proof of Lemma 6. Let $2 \leq i \leq 4$, and $\left(y^{p^{i-1}}\right)^{*}$ denote the dual of $\bar{y}^{p^{i-1}} \in H^{2 p^{i-1}}\left(\bar{L}_{1}^{2 p^{i-1}} ; \boldsymbol{Z}_{p}\right)$. Then, applying Lemma 8 in the case of $l=i+1$ and $k=i-1$, we obtain that $1 \otimes\left(y^{p^{i-1}}\right)^{*} \in E_{4}^{0,2 p^{i-1}}\left(p^{i-1}, \bar{L}_{1}^{2 p^{i-1}}\right)$.
 7 , and hence $d_{r}\left(1 \otimes\left(y^{p^{i-1}}\right)^{*}\right) \in E_{r}^{r, 2 p^{i-1}+r-1}\left(p^{i-1}, \bar{L}_{1}^{2 p^{i-1}}\right)=0$. Therefore, $1 \otimes$ $\left(y^{p^{i-1}}\right)^{*}$ for $2 \leq i \leq 4$ is a permanent cycle, and represents an element $[\varphi] \in \pi_{2 p^{i-1}}^{S}\left(B\left(p^{i-1}\right) \wedge \bar{L}_{1}^{2 p^{i-1}}\right)$. Then, we have $\varphi^{*}\left(1 \otimes \bar{y}^{p^{i-1}}\right) \neq 0$. Thus we have completed the proof.

Remark. In our proof of Theorem B , the condition $i \leq 4$ is necessary only to show that $d_{r}\left(1 \otimes\left(y^{p^{i-1}}\right)^{*}\right)=0$ for any $r \geq 4$. However, it seems not so easy to deduce whether such differentials still vanish for $i \geq 5$ or not. Also, some formulas like those in [6; Prop. 2.4, 2.5] which are useful in the case of $p=2$ do not have straightforward analogy for odd primes.

## References

[1] R. L. Cohen, Odd primary infinite families in stable homotopy theory, Memoirs. A. M. S. 242 (1981).
[2] D. M. Davis, The antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 44 (1974), 135-228.
[3] B. Gray, Unstable families related to the image of $J$, Cambridge Philos. Soc. Proc. 96 (1984), 95-113.
[4] Y. Hemmi and Y. Kawamoto, Decomposability of the mod p-Whitehead element, Hiroshima. Math. J. 26 (1996), 623-633.
[5] T. Kambe, H. Matsunaga and H. Toda, A note on stunted lens space, J. Math. Kyoto Univ. 5 (1966), 143-149.
[6] W. H. Lin, The Whitehead squares $\left[l_{2^{i-1}}, l_{2^{i-1}}\right] \in \pi_{2^{i+1-3}}\left(S^{2^{t-1}}\right)$ are projective, Topology 34 (1995), 411-422.
[7] R. J. Milgram and P. Zvengrowski, Even Whitehead squares are not projective, Can J. Math. 29 (1977), 957-962.
[8] M. Mimura, J. Mukai and G. Nishida, Representing elements of stable homotopy groups by symmetric maps, Osaka. J. Math. 11 (1974), 105-111.
[9] D. Randall, Projectivity of the Whitehead squares, Proc. Amer. Math. Soc. 40 (1973), 606-611.
[10] H. Toda, On iterated suspensions I, J. Math. Kyoto Univ., 5 (1965), 87-142.

> Department of Mathematics Education
> Faculty of Education
> Hiroshima University,
> Higashi-Hiroshima 739, Japan
> e-mail: imaoka@ipc.hiroshima-u.ac.jp
> Department of Mathematics
> Faculty of Science
> Hiroshima University,
> Higashi-Hiroshima 739, Japan
> e-mail: r7m05@math.sci.hiroshima-u.ac.jp


[^0]:    1991 Mathematics Subject Classification. Primary 55Q15, secondary 55S10
    Key words and phrases. Whitehead element, symmetric, lens space

    * Partially supported by Grant-Aid for Scientific Research, No. 07404002

