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ABSTRACT. We study the symmetricity of the Whitehead element wM e π2np-3(S2n 1)

for an odd prime p. It is shown that wn considered as a map S2np~3 -+ S2"'1 factors

through the p-fold covering map σ: S2np~3 -*• L2np~3 only when n is a power of p,

and that wpi actually factors through σ if 0 < i < 4. This is some of an odd prime

version of the results of Randall and Lin for the projectivity of the Whitehead product

1. Introduction

Let p be a prime, and σ: S2n+1 -• L2n+1 denote the p-fold covering, where

L2n+1 = S2n+ί/Zp is the standard lens space. For any space X, an element
α e π 2 n + i P 0 is defined to be symmetric, if α considered as a map S2n+1 -+X

factors through σ: S2n+1 -> L2n+ί, that is, there exists a map g: L 2 n + 1 -» X with
α = [QO]- Mimura-Mukai-Nishida [8] have shown that all elements in the

positive dimensional stable homotopy groups of spheres are symmetric.

In this paper, we study the symmetricity of the Whitehead element wΠ e

π2np-3(S2n~1) for an odd prime p. Hence, all spaces are assumed to be

localized at an odd prime p. We recall the definition of vvΠ (cf. [3], [4]).

Let ε: C(ή) -> S2n~x be the homotopy fiber of the double suspension map

Σ2:S2n~1 ->Ω2S2n+1. It is known that C(n) is (2np - 4)-connected and

^2nP-3(C(n)) £ Zr For a generator zeπ2 n p_3(C(n)), wn is given by wΠ =

ε^(z) G π2np-3(S2n~1). Then, our results are stated as follows:

THEOREM A. // the Whitehead element wn€π2np-3{S2n~ί) is symmetric,

then n = pι for some ί > 0.

THEOREM B. The Whitehead element wpi e π2p.+i_3(S2pi~1) is symmetric for
0 < i < 4.
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Theorem A corresponds to the result of Randall [9], who shows that

the Whitehead product [/„, ιn~\ e π2π_i(Sn) is symmetric, for the prime 2, only

when n or n + 1 is a power of 2. In this case, the symmetric is refered to

as the projective. Milgram-Zvengrowski [7] have shown that [ί2 ί, ι2i~\ is pro-

jective iff i = 0, 1, 2, and Lin [6] has concluded that [*2i-i> ^ ' - l ] *s actually

projective for any i > 0. Theorem B corresponds to such solutions, but the

whole analogy with the methods in [6] does not hold in the case of odd

primes. We shall show that the cases as in Theorem B are obtainable ap-

plying the results of Cohen [1].

We prove Theorem A in §2, Theorem B in §3, and §4 is devoted to

establish a key lemma for the proof of Theorem B. Throughout the paper,

Zp denotes the cyclic group of order p and also the additive group of the

modp integers.

The authors wish to express their thanks to Professor Takao Matumoto

for his valuable suggestions.

2. Proof of Theorem A

We shall apply the following proposition in the case that X is a stunted

lens space, and the proposition is crucial also in the proof of Theorem B.

PROPOSITION 1 [4; Prop. C]. Suppose that a CW-complex X is (2n — 1)-

connected and dim X < 2np — 3. Then, for any map η : S2np~3 -• X with η^ =

0:H2np_3(S2np-3;Zp)^H2np.3(X;Zp\ the following conditions (1) and (2) are

equivalent:

(1) There exists a map K : X -• S2"'1 with wn = [_κη\9

(2) There exists a map ω: Σ2 Cη - S2n+1 with 0>n Φ 0 on H2n+1(Cω; Zp\

where Ca is the cofiber of α = η or ω and 0>n e st is the Steenrod operation

over Zp.

Let L = S°°/Zp be the infinite dimensional lens space, and La for a > 0

denote the α-skeleton of L. Then, L? = KkjΏ~γ for 0 < / < k is the stunted

lens space, and the composition of the double covering map σ: S2*"1 -• L2*"1

with the collapsing map L2*"1 -+ L2k~ι is the attaching map σ . S 2 * " 1 -+L2k~ι

of the top cell in L2k. Recall that H*(L; Zp) = ΛZp(x) ® Zp\_y] with βx = y9

where the degrees of x and y are 1 and 2 respectively and β is the Bockstein

operation. Then, we remark

LEMMA 2. wn is symmetric if and only if there exists a map K : L2n
P~3 ->

S 2"" 1 with wn = |>σ] for the attaching map σ: S 2 n p " 3 -• L2.^"3.

PROOF. The if part is clear, so we assume that wn is symmetric. Then,

by the dimensional reason, there exists a map g: L2J|^3 -• 52""1 with wn —
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For the inclusion i:S2n 1 - ^ L | ^ 1

3 , we have

because L2

2n.γ is the cofiber of a map 52""1 -• S 2"" 1 of degree p. Hence,

\_gΐ] = 0 and we have a required map K with wn = [κσ~\. Π

Now, put n = px + u for 0 < u < p\p — 1), and assume that the Whitehead

element wπeπ2,φ-3(S2 / I~1) is symmetric. We shall verify Theorem A by

inducing a contradiction from this assumption.

By applying Proposition 1 in the case of X = L2

2

np~z and using Lemma

2, we have a map ω: Σ2L2

2

n

n

p~2 -> S2n+1 with 0>n Φ 0:H2n+1(Cω; Zp)-+

H2np+1(Cω;Zp). Then, by the cofiber sequence S 2 w + 1 - Cω ^ ΣzL2

2

np~2, we

have isomorphisms H2n+ί(Cω; Zp) s Zp and H\Cω\ Zp) s i f f - 3 (L 2 ^- 2 ; Zp)

for ί > 2n + 3. We denote the generator of # 2 n + 1 ( C ω ; Zp) s Z p by α,

and identify the generator of H 2 f c + 3(Cω; Zp) for n < k < np — 1 with yk e

H2k{L\n

n

p~2\ Zp) s Zp. Then, ^"(α) = ynp~ι up to unit.

Let u = uxp
tι + • + utp

tι be the p-adic expansion of u. Thus, 0 < u( <

p - 1, ί > ίi > * > U > 0, and 0 < ux < p - 2 if tx = t. The Adem relation

gives

[U/P]

(2.1) ^ u ^ p t ( β ) = v (—ϊ)u+ici0
tn~i0li(a) for c =

»=o \ u-pi
Then,

m o

and thus

(2.2) c o^B(α) Φ 0.

On the other hand, ^ p '(α) = αp,^""'"1"""1 for some a? e Zp, and

) ^ " 1 * 0 - H e n c e '

(2.3) ^"^(a) = 0.

For l < / < [ u / p ] and some a^Z^ we have ^ ( α ) = αiy"~1+'<l'~1) and

) = ^ . , - 1 f o r ft. = /" - ι + '̂P - ! Y T h e Π j b, ψ o m o d p i f

and only if αp(n - i) + α p(φ - 1) = αp(n - i + ip - 1), where αp(fe) = XJ=0 fcj for

the p-adic expansion of an integer k = £ * = 0 kjpj. If we put i = i^p11 + • • +

imPim f° r h > ''' > Jm a s t n e P-adic expansion of i, then we have the following:
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ip-l= hph+1 + ••• + in-rf^1 + ( i m - l ) p J m + 1 + ( P - ί)pJ- + ••• + ( P - 1);

„ _ = (p< + UιP'i + ... + uιP'ι) _ ( J I P Λ + ... + imPJn,y

Hence, if αp(n - i) + αp(ip - 1) = αp(n - i + ip - 1), then t, = j m and u, = im,

and we can set u = vpb+1 + dpb and i = jpb+1 + dpb in this case for some v,

j > 0 and 0 < d < p — 1, where b — t, = _/„,. Then, we have

(P - l)\ =

+ 1

for some e, f > 0. Thus, for 1 < i < [u/p], we have

(2.4) Ci^-Wia) = 0.

(2.2)-(2.4) contradict (2.1), and we have completed the proof of Theorem A.

3. Proof of Theorem B

First, we remark that wx = 0 and that, by [10; Th. 7.1], wpeπ2p2.3(S2p~1)

is divisible by p. If wp = pw, then wp = w[gσ] for the collapsing map

q: L2p2~3 -• 5 2 p 2~ 3, and thus Theorem B trivially holds for wx and wp.

We shall show that wt for 2 < i < 4 is symmetric, by applying a method

due to Lin [6] and some results of Cohen [1], For m > 1, let B(pm) be a

spectrum whose cohomology is given by

H*(B(pm); Zp) s ^/^{χ(βε0>j)\ε +j > pm~1}

as j^-modules, where χ is the canonical anti-automorphism of s/. We may

call B(pm) the Brown-Gitler spectrum, although it is slightly different from

the original one. The existence of the spectrum B(pm) is established in [1],

and also the following is shown in [1; Ch. 4, Th. 2.1]:

PROPOSITION 3. For m > 2, there exists a stable map ζm: 2Γ2|>m~1(p2"J'"1)

Bip1"-1) -• S° with 0>pm Φ 0 : H°(Cζm; Z p ) -> ff2^-1^; Zp).

Henceforce, we assume that, for a given integer i > 0, the integers t and

s always denote

(3.1) t = 2p ί + 1 - 2 and s = 2p i + 1 - 2p i~1 - 1.

By Proposition 1, if we show that there exists a map £: Σ2VS -• S 2 p l + 1 for

2 < ΐ < 4 with &piφ0:H2pi+1(Cξ;Zp)^>H2pi+ι+1(Cξ;Zpl then we get a map

K; : L2pi+ί~3 -• S 2 ^" 1 with wpi = |>σ], which establishes Theorem B. Here, we

remark that it is enough to find the map ξ as is a stable map

(3.2) ξ: L< -»S 2 ^" 1 with ^ p l Φ 0 : if 2*'- 1(C ί; Z p ) - H2pi+i-\Cξ\ Zp\
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In fact, the suspension homomorphism IΣ2VS, 5 2 p i + 1 ] -» IΣ2NVS9 s2N+2*'-1] is
bijective for any N > 1, because C{pl + m) is (2{pi + m)p — 4)-connected for
any m > 1.

Thus, Theorem B follows from the following proposition, in which ζt is
the stable map of Proposition 3.

PROPOSITION 4. For 2 < i < 4, there exists a stable map ψ:Vs-^l
such that a stable map ξ of (3.2) is taken as the composition (Σ2pt~ιζi)ψ.

We prepare some lemmas concerning the stunted lens spaces before the
proof of Proposition 4. When a < 0 and a < b, the stunted lens space Lb

a

means a spectrum Σ~2pN L\ζN\b

a for sufficiently large N > 0 using the James
periodicity. Indeed, since the J-order of the canonical complex line bundle
over Lb~a is pK*-*)^"1)] by [5], we have only to take N satisfying N >
[(b - a)/(p - 1)] and 2p* + a > 0.

For a given i > 0 and 0 < a < b < 2p ί + 1, we define Lb to be the spectrum

sented Lb = Σ-2Mpi^L™^\χb

a. We put yj_= yMpi+ί+j e H2j{Lb; Zp) for a<
2/ < b. Define a map Φ: H*(Lb

a; Zp) - H*(Lb

a; Zp) by Φ(xεyj) = xεyj for a <
ε + 2/ < b and ε = 0 or 1. Then, it is easy to show the following lemma,
by which H*(Lb; Zp) is an unstable ^-module:

LEMMA 5. For any i > 0 and 0 < a < b < 2p ί + 1, Φ: H*(Lb

a; Zp) •
H*(Lb

a\ Z ) is an isomorphism of si-modules.
p)

p) is an isomorphism of si-modules

The following is the key lemma for the proof of Proposition 4, and
Lemma 5 is used in the proof of the lemma.

LEMMA 6. For 2 < i < 4, there exists a stable map φ : S2^"1 -• B^p1'1) Λ
L2/'1 such that φ*(l®ypi~ι)φ0.

We postpone the proof of Lemma 6 until the next section, and complete
the proof of Proposition 4 by assuming Lemma 6.

PROOF OF PROPOSITION 4. Since there is a Spainer-Whitehead duality
D:S°->L2piί AΣ-2pi+i+ίLl, we have an isomorphism {VS9 Σ'Bip*-1)} s
n^pi-iiBip1'1) A L^1"1), where t and s are the integers of (3.1). Hence,
corresponding to φ of Lemma 6, there exists a stable map φ :IJS^>
which satisfies

ψ* Φ 0 : H'iΣ'Bip^ Zp) -> HS(VS, Zp).

Thus, ^*(l) = xypl+1"pi"1"1 up to unit. Then, it also holds that

(3.3) ψ* Φ 0: H'iΣ'Btf-1); Zp) -> fT(LJ; Zp).
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In fact, by Davis [2], the equality χ ^ ^ ^ 1 ) = &PJ+-+P+I holds for any

j > 0. Then, φ*(χ(^pi~2 0>P0>^)) = βP**-2+'"+*+1ψ*(l) = y«2) up to unit,

and thus (3.3) follows. Now, we can show that ψ is the required map.

Let ξ : Vs -> S2*1"1 be the composition of φ : Vs -• Γ ^ p ' " 1 ) and Σ2pi~%:

Γ ^ p 1 " " 1 ) - ^ 2 ^ " 1 , where ζ, is the stable map of Proposition 3. Then, we

have the following commutative diagram:

H2pi~\Cξ) —^-» ξ ^

where all cohomology groups are taken with Zp-coefficients. Since Ήt(ΣsB(pi~1)\

Zp)^Zp is generated by χ(0*pi~2 - 0>p0>ίβ), Proposition 3 and (3.3) yield

&pi Φ 0: H2?-1^; Zp)-+ H2^1-1^; Zp\ and we have completed the proof.

D

4. An Adams spectral sequence

In this section, we stablish Lemma 6. Let {E«'u(pk, X)}=>πl(B(pk) A X\

for a spectrum X, be an Adams spectral sequence given as in [1]. In [1]

the spectral sequence is used in the case of X = L the infinite dimensional

lens space, but we shall apply the spectral sequence for the stunted lens spaces.

More precisely, the ϋ^-term of it is given by

EΠp\ X)=Σ Λq

u-q-j(pk) ® Hj(X; Zp\

Here, Λb

a(pk) is an algebra given as follows: Let A be the Λ-algebra, that

is, A is an associative graded algebra over Zp with generators λm of degree

2m(p — 1) — 1 for m > 1; μn of degree 2n(p — 1) for n > 0; subject to the

so-called Adem relations (see [1; Ch. 1, §1]), where we have changed the

notations and the gradings from those in [1] (λm and μn are denoted in [1]

by λm-x and μn-1 of degrees — 2m(p — 1) + 1 and — 2n(p — 1) respective-

ly). Let I(k) be the left ideal generated by {λm, μn\m < pk~\ n < p*" 1 - 1}.

Then, (A/I(k))b denotes the submodule of A/I(k) generated by the monomials

of λm or μn with length b, and Ab

a(pk) is the component of degree a in {A/I(k))b.

As a Zp-vector space, Ab(pk) has a basis formed by some admissible

monomials. Let vm = λm or μm. Then, the monomial vmi vm& of (A/I(k))b

is admissible if, for each j with 1 <j < b — 1, pnij > mj+ί + 1 or pnij > mj+1

holds according as vm. = λmj or vm. = μm. ([1; Ch. I, §1]). Then, a basis of

Ab(pk) consists of the admissible monomials vOTl vmb of degree a with mb >

p f c - 1 + 1 or pk~ι according as vmb = λmh or μm& by [1; Ch. Ill, Lemma 3.1]. As
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a result, the element which has the lowest degree in (Λ/I(k))b is μpk-bμpk-b+i
μpk-2μpk-i. Thus, we have the following:

LEMMA 7. Λb

a(pk) = 0 if a < 2(pk - pk~b).

Now, for a fixed / > 0, we put L(l9 fc) = Σ~2Mpl+1L™Pp^Xlpk for 0 < fc < /,
where M = p2(pI+1-1)/(p~1)-(i+1) _ \9 a n ( j consider the spectral sequence

£?'"(", fc) = EΠP\ L(l fc)) => πl(B(pn) A L(l, fe)).

Let (ypm)* e H2pm(L(l, k); Zp) be the element dual to ypm for 0 < m < fe. Then,
by [1; Ch. Ill, Lemma 3.5], we see that

(3.4) d1(l®(ypm)*) = 0 in E\>2pm(m,m).

By [1; Ch. Ill, Th. 4.1], there exists a stable map fk: B(pk) -+ Σ2pk~Hp~l)

1) for fc>2 such that (fk)* : H*(B(pk'1); Z i , ) ^ i f * + 2 p k " 1 ( p - 1 ) ( 5 ( / ) ; Zp) is
multiplication on the right by χ(&pkί). Put hk = fk A 1: B(pk) A L(/, fe) -•
2'2p f c l (P-i) 5 ( p fc-i) Λ L (/ 5 k ) > τ h e n > b y [ 1 ; c h i n , Lemma 3.8] and using

Lemma 5, we have

(3.5) (hUl®(ypk)*)

Also, by [1; Ch. Ill, Cor. 3.7], if q > 1 and u < q 4- 2pk, then

(3.6) (hk)m = 0: £?'M(fc, k) ̂  EJ " " 2 ^ 1 ^ - 1 ) ^ - 1, fe).

We remark that the inclusion i: L(fe — 1, fc — 1) >̂ L(fe — 1, fe) induces a coho-
mology isomorphism up to dimension 2pfc~1, and thus i^: £«»M"2ι>k"1(ι>~1)(fc —
1, fe - 1) -• f " - 2 ^ " 1 ^ - 1 ) ^ - l5 fe) is an isomorphism if u < q + 2pk and g > 1
or if (q, u) = (0,2pk). Hence, by the identification through i^ for these q
and M, (Λfc)̂  can be regarded as {hk\ : Eq/U(k9 fe) ̂  E J . " - 2 ^ " 1 ^ - ! ) ^ - l, fe - 1).
Then, applying (3.4)-(3.6), we have

LEMMA 8. 1 ® (ypk)* e Ef±2

k

pk

2(k, k) for 1 < fe < /.

PROOF. Let fe be fixed. By (3.4), 1 ®(ypm)* e E°2>
2pm(m, m) for any m

with k <m <l. Inductively, assume that, for some r with 2 < r < I — fe,
1 (x) (y*m)* G £r°'2pm(m, m) holds for any m with fc<m</ + 2 - r . Then, for
any π with fe < n < / + 2 - (r + 1), d r(l ® (y^n)*) = (hn+1)Jdr(l ® (ypn+ι)*)) = 0
by (3.5) and (3.6), and hence 1 ® (ypn)* e E?ύpn(n, n). Therefore, as for 1 ®
(ypk)*, we have dr{\ ® (ypk)*) = 0 for 1 < r < I - k + 1, which establishes the
required result. •

Now, we can complete the proof of Lemma 6. Let 2 < i < 4, and {ypl~x)*
denote the dual of ypi~ι εH2pi~\L\pi~γ\Zp). Then, applying Lemma 8 in the
case of / = i + 1 and fe = i - 1, we obtain that 1 ® (ypi~1)* e Ej 2*1" V " 1 , L2^"1).
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However, for 2 < ί < 4 and any r > 4, £r

1

 2 ^" 1 + r - 1 (p i " 1 , L\pi~ι) = 0 by Lemma
7, and hence < * r ( l ® ( j O * ) e £ ? v ~ 1 + r ~ V ~ S I i O = 0. Therefore, 1®
(y p l 1)* for 2 < i < 4 is a permanent cycle, and represents an element
[φ]eπfp,-i(B(p l"1)ΛL? |F<'1). Then, we have φ*(l <χ) j^" 1 ) Φ 0. Thus we
have completed the proof.

REMARK. In our proof of Theorem B, the condition i < 4 is necessary
only to show that dr(l ®(ypl ι)*) = 0 for any r > 4. However, it seems not
so easy to deduce whether such differentials still vanish for i > 5 or not. Also,
some formulas like those in [6; Prop. 2.4, 2.5] which are useful in the case
of p = 2 do not have straightforward analogy for odd primes.
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