HIROSHIMA MATH. J.
27 (1997), 221-228

Symmetricity of the Whitehead element

Dedicated to Professor Teiichi Kobayashi on his 60th birthday

Mitsunori IMAOKA* and Yusuke KAawaMoOTO
(Received February 14, 1996)

ABSTRACT. We study the symmetricity of the Whitehead element w, € m,,,-5(S*"™")
for an odd prime p. It is shown that w, considered as a map S2""~3 — §2""! factors
through the p-fold covering map o:S2"7~3 — L2"~3 only when n is a power of p,
and that wy, actually factors through ¢ if 0 <i<4. This is some of an odd prime
version of the results of Randall and Lin for the projectivity of the Whitehead product

[t2n-15 t2n-1] € Tgp-3(S%"71).

1. Introduction

Let p be a prime, and ¢:S?"*! - L2"*! denote the p-fold covering, where
L2+ = §2*1/Z  is the standard lens space. For any space X, an element
o € My,41(X) is defined to be symmetric, if « considered as a map S*"*!' - X
factors through o :§2"*! — L2"*!, that is, there exists a map g: L*"*' - X with
o = [go]. Mimura-Mukai-Nishida [8] have shown that all elements in the
positive dimensional stable homotopy groups of spheres are symmetric.

In this paper, we study the symmetricity of the Whitehead element w, €
Tomp-3(S?"7') for an odd prime p. Hence, all spaces are assumed to be
localized at an odd prime p. We recall the definition of w, (cf. [3], [4]).
Let &:C(n)—> S?>""! be the homotopy fiber of the double suspension map
22:8%"71 5 Q282" 1t is known that C(n) is (2np — 4)-connected and
Tonp-3(C(n)) = Z,. For a generator ze m,,,_3(C(n)), w, is given by w,=
€4(2) € Tpp,-3(S*"™"). Then, our results are stated as follows:

THEOREM A. If the Whitehead element w, € m,,,_3(S*"™") is symmetric,
then n=p' for some i > 0.

THEOREM B. The Whitehead element w,: € n2p1+1_3(82”“1) is symmetric for
0<i<4.
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Theorem A corresponds to the result of Randall [9], who shows that
the Whitehead product [3,,1,] € ,,-,(S") is symmetric, for the prime 2, only
when n or n+ 1 is a power of 2. In this case, the symmetric is refered to
as the projective. Milgram-Zvengrowski [7] have shown that [1,,1,:] is pro-
jective iff i=0, 1, 2, and Lin [6] has concluded that [i1,:_,,1,:_;] is actually
projective for any i >0. Theorem B corresponds to such solutions, but the
whole analogy with the methods in [6] does not hold in the case of odd
primes. We shall show that the cases as in Theorem B are obtainable ap-
plying the results of Cohen [1].

We prove Theorem A in §2, Theorem B in §3, and §4 is devoted to
establish a key lemma for the proof of Theorem B. Throughout the paper,
Z, denotes the cyclic group of order p and also the additive group of the
mod p integers.

The authors wish to express their thanks to Professor Takao Matumoto
for his valuable suggestions.

2. Proof of Theorem A

We shall apply the following proposition in the case that X is a stunted
lens space, and the proposition is crucial also in the proof of Theorem B.

ProprosITION 1 [4; Prop. C]. Suppose that a CW-complex X is (2n — 1)-
connected and dim X < 2np — 3. Then, for any map n:S*"*7* - X with n, =
0: H,,,-3(5*"""3; Z,) > H,,,-3(X; Z,), the following conditions (1) and (2) are
equivalent:

(1) There exists a map k: X — S** with w, = [kn];

(2) There exists a map w:Z*C,— S**! with #" #0 on H***'(C,; Z,),
where C, is the cofiber of a =n or w and P" € of is the Steenrod operation
over Z,.

Let L = S*/Z, be the infinite dimensional lens space, and L* for a >0
denote the a-skeleton of L. Then, L¥ = K*/L'™! for 0 <<k is the stunted
lens space, and the composition of the double covering map o : S~ ! — L1
with the collapsing map L*™! — L?*"! is the attaching map o:§%*"! —» L1
of the top cell in Lf* Recall that H*(L; Z,) = A (x) ® Z,[y] with fx =y,
where the degrees of x and y are 1 and 2 respectively and f is the Bockstein
operation. Then, we remark

LEMMA 2. w, is symmetric if and only if there exists a map i:L3"P™3 -
§2"71 with w, = [ke] for the attaching map o :S*"P~3 — L3nP~3,

PrOOF. The if part is clear, so we assume that w, is symmetric. Then,

by the dimensional reason, there exists a map g:L3"773 - §?"! with w, =
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[go]. For the inclusion i:S?"! — L2"73, we have p[gi] = 0 € np,_(S%"7Y),
because L32"_, is the cofiber of a map S?"!— §2""! of degree p. Hence,
[gi] =0 and we have a required map x with w, =[xc]. O

Now, put n = p* + u for 0 < u < p*(p — 1), and assume that the Whitehead
element w, € m,,,-3(S*""!) is symmetric. We shall verify Theorem A by
inducing a contradiction from this assumption.

By applying Proposition 1 in the case of X = L2"»"3 and using Lemma
2, we have a map w:X2L3P"2- 8§21 with 2" #0:H*™'(C,; Z,) -
H?""*1(C,; Z,). Then, by the cofiber sequence S***!'—C,— Z3L%P™2, we
have isomorphisms H?*"*(C,; Z,)~ Z, and H(C,; Z,)~ H'" 3 (L3*"* Z,)
for i>2n+3. We denote the generator of H***(C,;Z,)~Z, by a,
and identify the generator of H**3(C,; Z,) for n<k<np—1 with y*e
H*(L%w~%Z,)~ Z,. Then, 2"a)= y"™" up to unit.

Let u = u,p' + --- + u;p" be the p-adic expansion of u. Thus, 0 <u; <
p—1Lt>t;>>t,2>0,and O<u, <p—2if t; =t The Adem relation
gives

Q1) PPH@)= S ()PP @  for ¢ = ((,, D= = 1).
=0 u — pi

Then,

¢ = ((p - llp‘ - 1)

—_ t — 1pt? _ -1
=((p Qp'+(p )11 + +(I: Dp + (p )>$0 mod p,
ulp 1 + e + ulp 1
and thus
(2.2) coP"(a) # 0.

On the other hand, #%(a) = a,.y”"'**! for some a, € Z,, and P*(y*"'** 1) =

t+1 -1
(p‘ -:lu ) y"»~1 = 0. Hence,

2.3) PP*(a) = 0.

n—1+i(p—1)

For 1<i<[u/p] and some a,€Z, we have 2'(a)=a;y and

Pri(ynIHeD) — pmpl for b — (" - ’n+ P l). Then, b,#0modp if
—1
and only if a,(n — i) + a,(ip — 1) = a,(n — i + ip — 1), where a,(k) = ) I_o k; for
the p-adic expansion of an integer k =Y "_,k;p’. If we put i =ip/* + -+ +
i,,p’= for j; > -+ > j,, as the p-adic expansion of i, then we have the following:
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ip—1=iph™ 4o+ iy pI ™ 4 (i — D™+ (p— Dpim 4+ (p — 1;
n—i=(p"+up" + -+ wup") = (p" + o + inp™).
Hence, if a,(n—i)+ a,(ip—1)=a,n—i+ip—1), then t;=j, and w, =i,

and we can set u = vp®*! + dp® and i = jp®*! + dp® in this case for some v,
j>0and 0<d<p-—1, where b =t, =j,. Then, we have

6= (epb“ +@= D+ (p—Dp* -+ (= 1)

P+ dp )EO mod p

for some e, f>0. Thus, for 1 <i< [u/p], we have
24 PP (a) = 0.
(2.2)-(2.4) contradict (2.1), and we have completed the proof of Theorem A.

3. Proof of Theorem B

First, we remark that w, = 0 and that, by [10; Th. 7.1], w, € 7, ,2_3(S**")
is divisible by p. If w,=pw, then w,=w[qo] for the collapsing map
q:L*°73 - §?"*~3 and thus Theorem B trivially holds for w, and w,.

We shall show that w; for 2 <i <4 is symmetric, by applying a method
due to Lin [6] and some results of Cohen [1]. For m > 1, let B(p™) be a
spectrum whose cohomology is given by

H*B(p™);, Z,) = o[ {x(B°P))|e +j > p™'}

as &/-modules, where y is the canonical anti-automorphism of /. We may
call B(p™) the Brown-Gitler spectrum, although it is slightly different from
the original one. The existence of the spectrum B(p™) is established in [1],
and also the following is shown in [1; Ch. 4, Th. 2.1]:

PROPOSITION 3. For m > 2, there exists a stable map (, : P '@*~p~1)
B(p™1) - S° with PP" £ 0: H(C, ; Z,) - H*"0™V(C, ; Z,).

Henceforce, we assume that, for a given integer i > 0, the integers ¢t and
s always denote

(3.1 t=2p"*' -2 and s=2pt' —2p"1 1.

By Proposition 1, if we show that there exists a map ¢:X2L!— S?*'*! for
2<i<4 with 27 #£0: H*"*(Cy; Z,) » H**"'*!(C,; Z,), then we get a map
Kk: L2735 §2P71 with w, = [ko], which establishes Theorem B. Here, we
remark that it is enough to find the map ¢ as is a stable map

(32) &:Li-S*"'  with 2P #0:H?*"'(Cy Z,) » H*¥"'"1(Cy; Z,).



Symmetricity of the Whitehead element 225

In fact, the suspension homomorphism [X2L!, §27'*1] » [Z2NL!, §2N+2r'-1] g
bijective for any N > 1, because C(p'+ m) is (2(p' + m)p — 4)-connected for
any m > 1.

Thus, Theorem B follows from the following proposition, in which {; is
the stable map of Proposition 3.

PROPOSITION 4.  For 2 < i < 4, there exists a stable map y : L' - X*B(p*™!)
such that a stable map & of (3.2) is taken as the composition (Z37'~1()y.

We prepare some lemmas concerning the stunted lens spaces before the
proof of Proposition 4. When a <0 and a <b, the stunted lens space L}
means a spectrum X 27"L2Z** for sufficiently large N >0 using the James
periodicity. Indeed, since the J-order of the canonical complex line bundle
over LP™® is pl®~a/te~1] by [5], we have only to take N satisfying N >
[(b—a)/p—1)] and 2p" +a > 0.

For a given i >0 and 0 < a < b < 2p'*!, we define L? to be the spectrum
T2 720t Then, by taking M = p2@*' D= D=G+D _ 1 it js also repre-

2pitar i+1 +1 i 14 iT
sented L= X 2MP™'[2MPT0 We put j/ = yMP"'* e HY(LE; Z,) for a <
2j <b. Define a map &: H¥(L:; Z,) » H*(L?; Z,) by &(x*y’) = x*y/ for a <
e+2<b and ¢=0 or 1. Then, it is easy to show the following lemma,

by which H*(L}; Z,) is an unstable &/-module:

LEMMA 5. For any i > 0 and 0 < a < b < 2p'*', &:HXL: Z,)~>
H*(L%; Z,) is an isomorphism of sf-modules.

The following is the key lemma for the proof of Proposition 4, and
Lemma 5 is used in the proof of the lemma.

LEMMA 6. For 2 <i <4, there exists a stable map ¢ :S**"' - B(p'™!) A
L2*™" such that ¢*(1 ® y*") #0.

We postpone the proof of Lemma 6 until the next section, and complete
the proof of Proposition 4 by assuming Lemma 6.

PrROOF OF PROPOSITION 4. Since there is a Spainer-Whitehead duality
D:S°— L3 A Z72P"'*1[! we have an isomorphism {L!, Z*B(p'™)}
n3,-1(B(p'™!) A L}""), where t and s are the integers of (3.1). Hence,
corresponding to ¢ of Lemma 6, there exists a stable map y : L. - Z*B(p'™?)
which satisfies

Y* #0:H(Z*B(p''), Z,) > H*(L}, Z,,).
Thus, Y*(1) = xy?"'"P"'~1 up to unit. Then, it also holds that

(3.3) y* #0: H(Z*B(p'™), Z,) » H'(L; Z,).
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In fact, by Davis [2], the equality y(#?--- PPP!) = PP+ +PH holds for any
j=0. Then, Y*(x(P? - PPPB)) = pPP 7+ +PHyx1) = y¥» up to unit,
and thus (3.3) follows. Now, we can show that y is the required map.

Let ¢: L. — S?7'~! be the composition of ¥ : L, - Z*B(p'~') and Z?/'71¢;:
ZSB(p'~') - 8?71 where {; is the stable map of Proposition 3. Then, we
have the following commutative diagram:

HP-1(Z291C,) ., H¥P"'71(Z2P1C,) «——— H'Z*B(p'™))
= Vad

H2pi—1(C§) __‘?L H2pi+1—1(C€) T H'(L;),
where all cohomology groups are taken with Z,-coefficients. Since H'(Z*B(p'™");
Z,)=Z, is generated by x(PP77 - PPPLB), Proposition 3 and (3.3) yield
PP £ 0: H*'"Y(Cy; Z,) > H**"'71(C,; Z,), and we have completed the proof.
O

4. An Adams spectral sequence

In this section, we stablish Lemma 6. Let {E®*(p*, X)} = n3(B(p*) A X),
for a spectrum X, be an Adams spectral sequence given as in [1]. In [1]
the spectral sequence is used in the case of X = L the infinite dimensional
lens space, but we shall apply the spectral sequence for the stunted lens spaces.
More precisely, the E,-term of it is given by

E$*(p*, X) = ,-Zb Al (P ® H{(X; Z,).

Here, A5(p*) is an algebra given as follows: Let A be the A-algebra, that
is, A4 is an associative graded algebra over Z, with generators 4, of degree
2m(p— 1) —1 for m>1; u, of degree 2n(p — 1) for n > 0; subject to the
so-called Adem relations (see [1; Ch. 1, §1]), where we have changed the
notations and the gradings from those in [1] (4, and u, are denoted in [1]
by A,-, and u,_, of degrees —2m(p — 1)+ 1 and —2n(p — 1) respective-
ly). Let I(k) be the left ideal generated by {A,, u,/m <p* ', n<p**—1}.
Then, (A4/I(k))* denotes the submodule of A/I(k) generated by the monomials
of 4, or pu, with length b, and A5(p*) is the component of degree a in (4/I(k))’.
As a Z,vector space, A5(p*) has a basis formed by some admissible
monomials. Let v, =4, or u,. Then, the monomial v, v, of (4/I(k))’
is admissible if, for each j with 1 <j<b—1, pm;>m;., +1 or pm; > m;,,
holds according as v, = 4, or v, =, ([1; Ch. I, §1]). Then, a basis of
A%(p*) consists of the admissible monomials v, ‘-, of degree a with m, >
p*~* + 1 or p*! according as v, = 4,, or g, by [1; Ch. III, Lemma 3.1]. As
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a result, the element which has the lowest degree in (A/I(k))® is fhye-s phpe-pei "
Upe-2fipe-1.  Thus, we have the following:

LemMMA 7. A5(p*) =0 if a < 2(p* — p*™).

Now, for a fixed I >0, we put L(l, k) = Z-2MP L2MP0 27" for 0 <k <1,
where M = p2@"'~D/e=D=0+1 _ 1" and consider the spectral sequence

EP*(n, k) = EF*(p", L(l, k)) = n3(B(p") A L(, K)).

Let (y*")* € Hypm(L(l, k); Z,) be the element dual to 3*™ for 0 <m < k. Then,
by [1; Ch. III, Lemma 3.5], we see that

(34 d;1®(y")*) =0 in E}2P"(m, m).

By [1; Ch. III, Th. 4.1], there exists a stable map f,: B(p*) —» Z2P<'®-1
B(p*™') for k > 2 such that (f,)*: H¥B(p*™*); Z,) > H****"'*~1)(B(p*); Z,) is
multiplication on the right by x(?”"). Put h, = f, A 1: B(p*) A L(l, k) -
22U B(p*1) A L(I, k). Then, by [1; Ch. III, Lemma 3.8] and using
Lemma 5, we have

(3.9 ()1 ® (y7)%) = (1 @ (y*7)*).
Also, by [1; Ch. III, Cor. 3.7], if ¢>1 and u < q + 2p*, then
(3.6) (), = 0: E9¥(k, k) — E*~ 2P 0=k _ 1, k),

We remark that the inclusion i: L(k — 1,k — 1) - L(k — 1, k) induces a coho-
mology isomorphism up to dimension 2p*~!, and thus i, : E&*" 2P (P~ (g —
1,k —1)— E®*~2P'"®0~Y(k _ 1, k) is an isomorphism if u < g + 2p* and ¢ > 1
or if (q,u) =(0,2p*). Hence, by the identification through i, for these g
and u, (h,), can be regarded as (h), : E**(k, k) - E&*~2P"'@~D(k — 1, k — 1).
Then, applying (3.4)-(3.6), we have

LeMMa 8. 1® (yP)* € EQ225(k, k) for 1 <k <.

Proor. Let k be fixed. By (3.4), 1® (y*")* € E3**"(m,m) for any m
with k <m <1 Inductively, assume that, for some r with 2 <r<I[—k,
1 ® (yP")* € E®?""(m, m) holds for any m with k <m <1+ 2 —r. Then, for
any n with k<n<I+2—(+1), 4,1 (")* = (h,+1),d,(1 R (y*")*) =0
by (3.5) and (3.6), and hence 1® (y*")* € E%;37"(n,n). Therefore, as for 1 ®
(y7)*, we have d,(1 ® (y7)¥) =0 for 1 <r <[ —k + 1, which establishes the
required result. []

Now, we can complete the proof of Lemma 6. Let 2 <i <4, and (y?"')*
denote the dual of y*"' € H**"'(L#""; Z,). Then, applying Lemma 8 in the
case of | =i+ 1 and k = i — 1, we obtain that 1 ® (y*')* € E>2#"(p'™!, L3*'™).
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However, for 2 <i<4 and any r > 4, E}??"'*~1(pi~! L?»"") = 0 by Lemma
7, and hence d,(1® (y?7')*)e Ep2P"*r1(pi=1 L2y = 0. Therefore, 1®
(y*)* for 2<i<4 is a permanent cycle, and represents an element
[¢]l € n3,i-(B(p'™) A L3*""). Then, we have ¢*(1®y”')#0. Thus we
have completed the proof.

REMARK. In our proof of Theorem B, the condition i <4 is necessary
only to show that d,(1 ® (y*"')*) =0 for any r > 4. However, it seems not
so easy to deduce whether such differentials still vanish for i > 5 or not. Also,
some formulas like those in [6; Prop. 2.4, 2.5] which are useful in the case
of p=2 do not have straightforward analogy for odd primes.
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