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ABSTRACT. The Poincaré duality for a partial flag manifold G/P is described in terms
of the Weyl group of G. The Gysin homomorphism for natural projections between
partial flag manifolds is calculated by using it. We investigate the case of complex
flag manifolds and Grassmannians in C" and show the relation to the Chern classes.

0. Introduction

Let M be an m-dimensional connected compact oriented manifold without
boundary which has the fundamental homology class u,, of the orientation.
Then the Poincaré duality &, for M is an isomorphism defined by a cap
product:

Py = py N H*(M) 3 H,,_ (M), Py = pyNa,

between homology and cohomology of M. Let M and N be connected
compact oriented manifolds without boundary and let f: M — N be a continu-
ous map. Then the Gysin homomorphism f; associated to f is by definition
the homomorphism f; = Z3' o f, o &, between their cohomology modules, i.e.,
given by the following commutative diagram:

HYM) —L— H*©N)

Py NS

H/M) —L— H/N).

In the case that M and N are complex flag manifolds and f is a natural
projection between them, the Gysin homomorphism is investigated by many
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authors from a variety of view points. In particular J. Damon [4] determined
/i by using the higher dimensional residue symbol in the context of algebraic
geometry and T. Sugawara [13] determined f; by using “integration over the
fiber” of fiber bundles in the context of algebraic topology. On the other
hand Bernstein-Gel'fand-Gel'fand [1] investigated the connection between
homology and cohomology of the flag manifold G/B where G is a complex
semisimple Lie group and B is a Borel subgroup of G, and constructed a
basis of cohomology dual to the Schubert basis of homology by introducing
a divided difference operator. In their course of study they also determined
the Poincaré duality on G/B. Therefore it seems natural to determine the
Poincaré duality on other partial flag manifolds G/P and calculate the Gysin
homomorphism by using it. The purpose of this paper is a report of the
results (Theorem 2.1, 2.3 and 3.2). We use the Bruhat-Schubert cell decompo-
sition and describe the homology and cohomology in terms of the Weyl
group of G.

A brief account of contents of this article: We heavily depend upon the
formalism of B.G.G. [1], so in §1 we review their formulations and results
on homology and cohomology structure of a partial flag manifold G/P and
fix the notation. In §2 we determine the Poincaré duality on G/P in terms
of the Weyl group action and give a description of the Gysin homomorphism
between them. We then specify the classical case of complex flag manifolds
and Grassmannians in §3. We give their Bruhat-Schubert cell decomposition
and describe the Gysin homomorphism in terms of the Chern classes.

The author would like to express his gratitude to Professor T. Sugawara
for a kind guidance to the subject and valuable discussions.

1. Preliminaries, homology and cohomology of G/P

We begin by introducing the notation that is used throughout.

G is a connected complex reductive Lie group, that is, its Lie algebra g
is a reductive Lie algebra over C, g = ¢ + [g, g], ¢ is the center of g, [g, g]
is a semisimple ideal (cf. [14, 1.1.5]). We will specify G = GL,(C) in §3. We
henceforth give g an invariant non-degenerate bilinear form ( , ).

B is a fixed Borel subgroup of G.

G/B is a (full) flag manifold of G. In case of G = GL,(C) and B = the
large upper triangular matrix subgroup, G/B = FI,(C) is the manifold of full
flags in C".

N is the unipotent radical of B and H is a maximal algebraic torus of
G such that H < B. b, n and b are the Lie subalgebras of g corresponding
B, N and H respectively. Then B= HN, b=} + n and § is a Cartan sub-
algebra of g. b* = Hom (b, C) is the dual vector space of b.
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A4 = A(g, h) = h* is the root system of (g,h). 4™ is the set of positive
roots corresponding to n ie. n =Y ,. 4 g, where g, = {X € g|[H, X] = a(H)X
for H e b} is the a-root space of g.

X < 4% is the set of simple roots and 4~ = —4™.

W = Ng(H)/H is the Weyl group of (G, H) where Ng(H) is the normalizer
of Hin G. W acts on H, h and h* naturally. W is determined only by
(g,h) or 4 and if s,: h* - h* is a reflection in the hyperplane orthogonal to
xed4a:

S0 =x—(x o) where a¥ = 2a/(, o) is the coroot of a,

then (W, % = {s,Jae X}) is a Coxeter system. For each we W = Ng(H)/H
the same letter w is used to denote its representative in Ng(H) = G. We
know that the triple (G, B, Ng(H)) is a Tits system (cf. [3, Ch. IV]).

¢(w) is the length of we W relative to the generators 5 = {s,JeeZ} of
W, that is the least number of factors in the decomposition

W =5,;5,"""5 where s; = s, € 2.

This expression is said to be reduced if | = £(w).

So € W is the unique element of maximal length r in W. We have 5,2 =
—2Z, r="~{(so) =|4"|, s53=1 and £(ws,) = £(so) — (W) (cf. [3, Ch. VI, §1,
no. 6, Cor. 3 of Prop. 17]). Notice also r = dim n = dim . G/B.

N =s,Nsy! is an analytic subgroup of G with Lie algebra n =Y, , g,
For weW put N,=wNw'NN and N,=wNw'NN. Then N, and
N,, are unipotent subgroups of G with Lie algebras n, =(Adw)iiNn =
Y aewa-na+ 8, and 1, =(Ad wyinNn of complex dimensions £(w) and #(s,) —
Z(w) respectively. We have N = N,N,, and n =n,, + n,.

1.1 (Bruhat decomposition). Under the above notation we have the double
coset decomposition B\G/B as follows:

G =Jwew BWwB (disjoint union), and hence
G/B=\)yew Bw*B (disjoint union),

where the notation Bw-B = BwB/B = G/B indicates the subset of the coset
space G/B. Each Bw-B is a cell of complex dimension £(w) in the space G/B,
that is

exp natural
n,— N,—— N,w-B=Nw-B=Bw-Bc G/B
are onto analytic diffeomorphisms and n,, ~ C’™ is an affine space.

For proof see [3, Ch. IV], or [14, 1.2] for example. We will see later
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that in case of G = GL,(C) the Bruhat decomposition corresponds exactly to
the classical Schubert cell decomposition.

We collect elementary properties of (W, £) and parabolic subgroups of
(Gs Ba NG(H))

1.2 Lemma (cf. [8, 1.6], [3, Ch. VL, §1]). (W, %) has the following prop-
erties. For we W, a e X simple,

(1) If w=s15"5 (5;=5,,0,€2X) is a reduced expression put 6, =
51837 8i—1(¢;) (1 <i<k). Then 6, are all distinct positive roots and

{61 <i<k}=4"Nwd".

2 Zw)=14*Nwt47|, and so £(wt) = £(w)
3) f(wsy) =¢w)+ 1 iff wa >0
fwsy) =¢(w)— 1 iff wa<0

From this, dimcn, = |lwd™ N4*| =£(w™!) = £(w) follows.
For each subset ® = X' of simple system, define

We = {s,la € @) = the subgroup of W generated by 6 = {s,|o. € 6},
and
Po = BW,B.

Then (Ws, 6) is a Coxeter system with the root system 4N <{@) where (O) =
Z-span of @ in h* and Py is a subgroup of G containing B, which is called
a (standard) parabolic subgroup. We know that the map @+ Py is a lattice
isomorphism between the lattice 2% of all subsets of X and that of subgroups
of G which contains B, e.g. Py=B, Py=G. The coset spaces G/Po are
(partial) flag manifolds, which contains Grassmannians in case of G = GL,,.
We also define a subset W® of W as follows,

We={we W|{(ws,) =£(w) + 1 for all a €O}
={we Wiwl < 4*} (by Lemma 1.2(3)).
Then W€ is called a minimal coset representative of W/Wg since
1.3 LemmA (cf. [8, 1.10] or [3, Ch. IV, §1, Exer. 3]). We have
W=W®x Wy, and hence W~ W/Wg by ur>uWs.

Given we W, there is a unique (u,v)e W8 x Wy such that w=uv. Their
lengths satisfy £(w) = £(u) + £/(v). Each ue W is the unique element of smallest
length in the coset wWg = uWs.
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1.4 (Bruhat decomposition for a partial flag manifold). We have the double
coset decomposition B\G/Py.

G = Jwewe BWPg (disjoint union),  and so
G/P¢ =\ wecwe Bw- Py (disjoint union)

is a cellular decomposition of the partial flag manifold G/Pg into cells Bw- Pg
of dimension ¢(w).

SKETCH OF PROOF (cf. [14, 1.2.4.9]). Since (G, B, N5(H)) is a Tits system,
for subsets X, Y < @ there is a bijection ([3, Ch. IV, §2, no. 5, Remarque 2]),

Wi \W/Wy = Px\G/Py by WywW, +— PywPy.
Put X = and Y =6. Then we have from the above decomposition
W€ ~ W/Wg = B\G/Pg by w— BwPg.

As 1.1 we know that n, 3 N,, 5 Bw: Pg = G/Pg are onto analytic diffeomor-
phisms and so Bw-Pg (we W) is a cell in the space G/Pg of dimension
dimen, =74(w). O

We recall cohomology structure of flag manifolds G/P and results of
B.G.G. [1]. Let X, be the closure of a cell Bw-B in G/B, [X,]€ H(X,, Z)
be the fundamental cycle of the complex variety X, of complex dimension
¢(w) and D, € H(G/B, Z) be the image of [X,,] under the map induced by
the embedding X,, < G/B. In this article we treat homology and cohomology
of even dimensional only, so we write H, and H” instead of H,, and H?”.
Then we can write D, € H,,,(G/B, Z) (i.e. D, € H,,,, in fact). In the same
manner for each we W®, we define D,(0) € H,(G/Pg, Z) for a homology class
determined by the cell Bw: Pg in G/Py. Then we have

1.5. (1) {D,lwe W} forms a free basis of the homology module
HG/B, Z), i.e. H(G/B, Z) = P, .w ZD,,.

(2) The natural map p: G/B — G/Pg induces a epimorphism p,: H (G/B, Z)
— H,(G/Pg, Z) such that p,D,=0 if w¢ W€ and p,D, =D, (O) if we W°.
And H,(G/Pg, Z) = @, cwe ZD,,(0).

By (2) we will write simply D, € H,(G/Pg, Z) instead of D,(0) if there is no
fear of confusion.
We introduce in b the coroot system {H,|a € 4} of 4, ie.

H,=2h,/(a,a) €} where h, el is given by
(h,, H) = a(H) for all Heb.
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Then s,(4) = 4 — A(H,)a for all Aebh*. Let h, = {H eblexps (2niH) =1} be
the unit lattice of G and hy=h,® Q. Then b, contains the coroot lattice
by = Z-span {H,Jae 4}, hz>b,. Let b= {xeb*lx(bs) = Z}, hbp=H%®Q
and b} = {y e b*|x(b}) = Z}. Then b} is the weight lattice and h% < bh.

Let R = S(hp) = Q[bo] be the ring of polynomial functions on b, with
rational coefficients. The Weyl group acts naturally on R. Let I = R¥ be
the subring of W-invariants in R, I* = {feI|f(0)=0} and J=1I'R be an
ideal of R generated by I*.

We construct a homomorphism f: R - H*(G/B, Q) as follows. First let
x€b%. Then y lifts to a character 6: H - C* by O(exp X) = exp x(X), X €}.
We extend 6 to a character of B by 6(hn) = 6(h), he H, ne N. Since G - G/B
is a principal fiber bundle with structure group B, 0 defines a line bundle E,
on G/B. We let B(x) =c,(E,) e H'(G/B, Z) be the 1-st Chern class of E,.
Then B is a homomorphism b% — H'(G/B, Z), which extends naturally to a
ring-homomorphism §: R - H*(G/B, Q).

1.6 (A. Borel [2]). (1) The homomorphism B commutes with the actions
of W on R and H*(G/B).

(2) Ker B =J and the induced map B: R = R/J - H*(G/B, Q) is an onto
ring-isomorphism. R = R/J is a truncated polynomial ring of finite dimension
|W| over Q.

(3) The natural map p: G/B— G/Pg induces a ring-monomorphism p*:
H*(G/Pg) » H*(G/B). The cohomology ring H*(G/Pg, Q) is isomorphic to the
subring H*(G/B, Q)"¢ = (R/J)¥e of Wg-invariants by p*.

B.G.G. [1] established a connection between homology and cohomology
of G/P. They introduced polynomials {P, € R|lwe W} in such a way that
the induced set {P, = B(P,) € R|lwe W} forms a basis of R = H*(G/B) dual
to the basis {D,|w e W} of H,(G/B) by the natural pairing { , ) of homology
and cohomology: {D,, P,> =4,,, and determine P,

The polynomial P, is constructed by the following divided difference
operator 4,,. For each root a € 4, we define the operator 4,: R — R of degree
—1 by

Aaf = (f - s,,f)/ot, ie.
(4.f)(H) = (f(H) — f(s,H))/a(H),  Heb,.
The 4-operators have the following properties.

L7 (cf. [11, [5] and [7]). (1) Let w=s.5,"""s5€ W, 5; =35, el If
¢(w) <l then 4, 4,,"--4, =0. If £(w)=1, ie. this expression of w is reduced
then the operator 4, 4,, - 4,, depends only on w and does not depend on the
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reduced expression of w. We thus put A, = A, 4,," " 4, for the reduced ex-
pression W =S.5,"""S;, §; =5, € 2.

0 4os ={AW i o) =)+

0 if Z(wu)<{(w)+£w)

) 4_,= —4,, 42=0, wA,w™' = 4,,.

4) s, d,= —d,s,=4,, s,=1—ad,.

(5) 4u.f9) = f(4.9) + (4.f)s.9, f, g€ R

6) 4.f=0iff s,f=Ff.

7 4,J<J.

From (5) and (6) 4,: R — R is a R"-endomorphism and by (7) it induces
an endomorphism 4, (we use the same letter) of R = R/J. The homology
basis D, € H,(G/B) viewed as a functional on the cohomology H*(G/B) = R
is described by 4,, as

1.8.
<Dy, B(f)> =(4,f)0), feR weW.

The polynomials {P, } which induce the dual basis of {D, } are determined
mod J and given as follows:

19 ([1]). (1) Let P, = P, € H'(G/B, Q) be the fundamental cohomology
class of top order r = £(sy) = dim¢c G/B. Then

Po =W ]aesra=p"/r! (mod J),
where p =% .4+ is half the sum of the positive roots.
)] P,=4,.,P, for weW.

(3) By the natural ring-monomorphism p*: H*(G/Pg) - H*(G/B){ p* P, |we
W€} is the basis of H*(G/P¢} dual to the basis {D,|we W®} of H,(G/Pe).

As to (1) we put D, = D, € H,(G/B) for the fundamental homology class
of top order. As to (2) note that deg (4,1, Py) = £(so) — £Wsg) = £(so) —
(Z(s9) — Z(Ww™)) = £(w) = deg P,. From 1.5(2) and 1.9(3), we will write sim-
ply P, e H¥G/Py) instead of p* 'P,. In other words we identify H*(G/Pg)
with the subring H*(G/B)¥e of H*(G/B) by the natural map p*. These polyno-
mials P, have the following properties:

1.10 ([1]). (1) Let we W, o€ X. Then

_fo if £(ws,) =¢(w)+ 1
A4.P = {Pm‘ if £(ws,)=¢(w)— 1.
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(2) Let w, ueW, £{(W)+£(u)=r. Then

P, if u=sow
PP =
why {0 if u#sow.
(3) (The Poincaré duality of G/B) Let # = D,N: H*(G/B, Q) = H,(G/B, Q)
be the Poincaré duality of the full flag manifold G/B. Then we have

PP, =D,

We give a proof of the following, for this is a key fact in §3.

1.11 ProrposITION ([5, Lemma 4], [7, 2.5]). The operator A,:R—R is
given by

Asof = ch—W S(W)wf/naeA+ a, fG R,
where g(w) = (—1)’™ = +1 is the sign of we W.

ProoF. First we have s,4, = 4, for a € 4%, hence w4, = 4, for we W.
In fact we have 4,4, =0 by /(s,s0) = £(so) — 1 and 1.7(2), then use 1.7(4).
Fix a reduced expression s, =s;5,°'"s,, §;=5,, ;€ 2. Then we see that
4yy = Ay 04,004, = ay'(l—s)oaz’(l—s)o0a(1—s5,) Ex-

panding out we have

Aso = ZweW qu

where g, € Q(hp) is a rational function. The comparison of coefficients
in wd, =4, then implies that wq, =gq,,, w, ueW. Here we use the
fact that w’s are linearly independent over Q(he), which follows from the
Dedekind theorem of the Galois extension Q(ho)/Q(ho)”. We know that
4syS0 = (— Iyaylsyoaztsy o oots, = (=1 {ay(s1005) (517 8,-10,)} '5o =
(—1Y([Tacsr®)7'so, hence gy, = &(so)([[acsr®™ by 12(1). Note that
W([ Jacsr @ = (=) []acs @ = eW)[Jacsr @ for we W by 1.2(2. We thus
obtain that g, = wsy*q,, = ¢W)/[ [esr . O

2. The Poincaré duality and the Gysin homomorphism for partial flag
manifolds

In this section we shall describe the Poincaré duality and the Gysin
homomorphism for partial flag manifolds G/P in terms of the Weyl group
W. For each subset ® = X' of simple roots we obtain a parabolic subgroup
Pg = BWgB, the partial flag manifold G/Pg and the cellular decomposition
G/Pg = |J,cwe Bw* Pg. The homology and cohomology of G/Pg is given by

H,(G/Po, O) = @yecwo QD,,  H*(G/Ps, Q) = R"o = @D, . wo QP,.
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According to the left coset decomposition W = W€ x Wy, we put
So=5%g, s%eWS, s € We.

Then sg is the unique element of maximal length in Wy. In fact, if there
is an element t € Wy such that £(t) > £(se) then £(s®t) = £(s®) + £(t) > £(s®) +
£(s¢) = £(so) by 1.3, the uniqueness of s, in W implies that s, = s%s¢ = 51,
and hence sg =t. Since (Wy, 6) is a Weyl group of the root system 4N (@),
s¢ has the same properties as s, for We. We have Z(sg) = |47 N{O)|,
5¢(@)= —O and s3 =1 for example. Similarly we know that s® is the
unique element of maximal length in W® and that /(s®) = £(s,) — Z(s¢) =
|4*\(O@)| = dim¢ G/Pg by s€ = sos¢. We put Dg = D € H,(G/Py) and Py =
Po € H¥(G/Pg) for these top order elements of homology and cohomology.
(There will be no confusion between the notation Py of cohomology class
and that of parabolic subgroup.)

The Poincaré duality 2, of the partial flag G/Py is defined as follows.
Since Dy is the fundamental homology class of G/Pg,

Pe = Do N: H?(G/Po, Q) 3 Hy0)-,(G/Po, @), 0 <p<{(s°),
(Pof, 9> =<DeNf, 9> =<Dp, fg>,  f, g€ R"e = H¥G/Py).
The Poincaré duality of G/Pg is given by the following:
2.1 THEOREM.
PeP, =D, weW®°

We first check two points that if we W® then also sowsge W€ and
£(sowsg) = £(s®) — £(w). These guarantee that if P, e HP(G/Pg) then Dyws,
€ Hy)-,(G/Pg). Indeed if we W, then s,wsg(@) = —sow(0) = —sod* =
—A" =A% s0 sowsge W? by definition of W, and Z(sowsg) = £(so) —
£(Wse) = £(s0) — (£ (W) + £(s6)) = (£(s0) — £(56)) — £(W) = £(s°) — £(w) by 1.3.

Next we extend 1.10(2).

2.2 LEMMA. Let w, ue W, £(w) + £(u) = £(s®). Then

PP, = Pg lf U= SyWsg,
0 if u##sowse.

Proor. The fundamental cohomology class Pg of G/Pg is given by 1.9(2)
as

Pg = PSB = A(se)—ISOPo = ASGPO'

First let u=sowsg. Then P, = 4,., P, = 4,,,1P. We know that P, =
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P,P,, by 1.10(2). Applying 4, to this both sides we get
P6 = Asepo = Ase(Pisow)'

The reduced expression of sge Wy is of the form sg =s;s, s, where
n=~{«(se), $i=S5, With 0,€6. And so 4, =4,4,,"4,. For any a€®,
Z(ws,) = £(w) + 1 since we W¥, hence 4,P, =0 by 1.10(1). We thus obtain
1.7(5),

4,(P, Pyy) = P, (4. Fyy) + (4. P) (5, Psyu) = P (4, Py ),
we iterate this and get
Pg = Ase(Pisow) = Pw(As,_.,Psow) = Pw(Asedw'lPO) = PwAazgw‘1 o = PP,

since Z(sgw!) ={(wsg) =/(W') +£(sg) and 1.7(2). Next let u # sowsg.
Then use # sow, and by 1.10(2), PP, = 0. Applying 4, to both sides and
calculating as above, we obtain

0 = 4,,(P,P,,) = P, 4, P, = P,P,.
Here we again use 1.7(2) and compute
AsePusg = Asedsau“soPO = Au"soPO = Pu’

since £(sg) + £(seu™"'s0) = £(s¢) + (£(s0) — £(seu™")) = £(s6) + £(s0) — £(56) —
L) =£(so) — ¢ =¢('so). O

ProoF OF THEOREM 2.1. For we W€ we have by the choice of basis
WOPW = Zue weé <'¢9Pw’ Pu>Du = Zl(u)+{(w)=l(s9) <D8, PwPu>Du'

By Lemma 2.2, the only one term u = s,wsg remains and we get 5P, = D,
as required. [

oWSe

We shall describe the Gysin homomorphism between partial flag mani-
folds. For two subsets ® — @ of simple roots 2 we have Weyl groups Wy c
We, W o W?, parabolic subgroups Pg = P, and the natural map n between
the partial flag manifolds:

n: G/Pg — G/Py,

which induces naturally the homomorphisms =,: H (G/Pg) = H,(G/Py) of
homology and n*: H*(G/Py) - H*(G/Pg) of cohomology.

The Gysin homomorphism for = is defined by =, = 2;'omn, o Py:
H*(G/Pg) = H*(G/P,), i.e. given by the following commutative diagram:
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H?(G/Pg) L NN H"““‘e)'“’d’”(G/Pd,)

Z9 U %e

Hl(se)—p(G/P o) — H((se)—p(G/ Pg).

Note that the Gysin homomorphism #, decreases the dimension of cohomology
by ¢(s®) — £(s?) = dim¢ G/Pg — dim¢ G/P; > 0. Under the above notation
we can calculate =, as follows.

2.3 THEOREM. (1) m, operates on the basis {P,|lwe W®} of H*(G/Py) as

P, if sowsge W?
P, = { e we.
™l {0 if sowsg¢ W®, "€

(2) m, is written by the A-operator as
m, = 4, R" = H¥G/Pg) > R”* = H*(G/P,).

Proor. (1) By 1.5(2) the induced homology map =,: H,(G/Pg) = H,(G/Ps)
is given by, for we W,

D, (@) if weWw?

TDu(6) = {0 if we¢ we.

Hence for P, e H*(G/Pg), we W9, we have
n!Pw = ‘@l;l . TC* o ge(Pw) = g‘;l o n*(Dsowse)

_ Pa'Dygusy = Pusys,  if SoWsgEW?
0 if sowsg ¢ W2.

(2) First let we W® with s,wsge W? Then by 1.9(2) we have

T[!Pw=Pw

39-‘¢:=A

P,.

SpSeW ™ 1sg
Since sg € W < W2, we have £(s55¢) = £(s4) — £(sg). We thus get a length
relation: Z(sgSeW ™ sg) = £(SoWSeSs) = £(sSoWse) + £(5e) (by sowse € W? and
1.3) = £(so) — £(wse) + £(so) = £(so) — £(W) — £(se) + £(s4) = (£(50) —
£(5g)) + (£(sg) — £(W)) = £(54S6) + £(W™'sy,). Hence by 1.7(2) we obtain
Ayrs Py = 4, P,

SpSe W

mP, =4 Py=4

SpseW !0 SpSe

Since H*(G/Py) = span {P,|w e W®} it suffices to show that if we W¢ and

sowsg ¢ W? then 4, . P, =0. Again in this case we have
o> e 256

Ay s, Py = 44y A15 Po.
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Since sowsg ¢ W? there is some ae @ such that £(sowsgs,) = £(sowsg) — 1.
We thus have Z(sowsgSg) < £(Sowsg) + £(s) since s € W, has the reduced
expression of the form s =s,5,°"s, with s, =s, s;€® and m=/(s,).
So we get £(spseW lsy) = £(SoWseSa) < £(SqWse) + £(se) = £(so) — £ (W) —
£(se) + £(sg) = £(s456) + £(W'sp). By 1.7(2) again we finally get 4, , 4,1, =
0, which implies that 4, P, =0. O

3. Complex flag manifolds and the Schubert cell decomposition

In this section we investigate the classical case that G = GL,(C) and
B = the large upper triangular matrix subgroup of G. In this case the coset
space G/B is identified with the set FI,(C) of full flags in C". We shall first
look at the cell structure of the Bruhat decomposition. Let H be the diagonal
matrix subgroup of G, ~(C*)" and N be the upper triangular matrices with
all the diagonal entry 1. Let E; denote a square matrix with (i, j)-entry 1,
all other entries being 0, E; = E; and D(ay, ay, ..., a,) = Y 1-; ¢,E; denote a
diagonal matrix. Then Lie algebras of H and N are h=) 7, CE; and n =
Y i<;CE,; respectively. The root system is 4 = {o; =x;,—x;, 1 <i#j<n}
where x;eb* with x,(D(a,,...,a,)) =a;,. The ayroot space is g; = CEj;.
4% ={oy;, i <j} 22 ={o; = ;47 = X; — X4y, 1 <i<n} are the set of posi-
tive roots and the set of simple roots respectively. Let M = Ng(H). Then
the Weyl group is W= M/H and M is the subgroup of G comprised of all
monomial matrices which have only one non-zero entry in each row and
in each column. We see that M is isomorphic to a semidirect product
M ~ &, x H of the symmetric group €, on n letters and the diagonal subgroup
H. The isomorphism is given by S,x HX M, (w,h)—>m,h where w=
( L2,.m )e S, and m,, is a permutation matrix with (w;, j)-entry 1 for

Wi, Wa,oony W,

each j=1, 2, ..., n, all other entries being 0. We see that m, E;m;' = E,,
and if h = D(a,, a,,...,a,) € H then m,h is a matrix with (w;, j)-entry a; for
1 <j < n, all other entries being 0. Hence the Weyl group W is isomorphic
to S, and its action on b and h* is a permutation of the coordinate axes:
W=M/H=¢6, and w-E;=m,Em;' =E,; WX =x,, for weW=8,.
Since (G = GL,, B, M) is a Tits system (cf. [3, Ch. IV, §2, no. 2]) we have
the Bruhat decomposition:

GL,(C)/B=\),.wBw-B (disjoint union).

On the other hand the identification GL,(C)/B = FI,(C) is given as follows.
The set FI,(C) of full flags in C" is by definition, FI,(C)= {(V}, V5..., V),
sequences of linear subspaces of C"|0c V, c V, - c ¥, = C", dim¢ V, =j}.
Let {e;} be the standard basis of C" and fix a base point 0 = (C*, C?,...,C") e
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Fl(C™ with C’=span {e,,e,,..
identifies the two spaces,

GL,(C)/B 3 Fl,(C),

.,¢;}. Then we have a bijection which

gB—go = (gC*, gC?, ..., gC".

If a matrix g € GL,(C) is written by g = (g4, 9,,...,g,) Where g; = ge; = the
j-th column vector of g then gC’ = span {g,,9,, ..., g;} = linear subspace of
C" spanned by the first j column vectors of the matrix g. By this identification
a subset Bw*B = Bm,, B = Nm,,- B < GL,(C)/B corresponds to

d
(1 N - N
1 *
1
Bw-B=Nm,-B= ‘B
w) 1
() 1 (0]
- IJ - 7
d
, . ) (« w
* * *
* *
* *
B * *
w;) 1 0 *
o 0 *
. 0 P - *J
d d
([ * ) [ * A
* *
= g oc Fl(C)
* *
w;) 10 0 w;) 10 0
0 0 (0] 0
L 0 J L 0 J

Hence Bw'B corresponds to the set of all matrices b = (b;) with b, ;=1,
bj=1b,,,=0if i>w, k>j for each j=1, 2, ..., n and all other entries are
free b; =%, or the flags which are made by column vectors of those ma-
trices. Since go # g’'o in FI,(C) if gB # ¢g'B in G/B, and two different matrices
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of the above form cannot transform each other by the right B-action, two
matrices which have different free parameter * correspond to different flags
in C". Since the topology of FI,(C) is induced from matrix topology by the
above bijection, Bw-B thus forms a cell in FI,(C) which is expressed by
matrices of the above form. Bw-B is sometimes called a Bruhat cell.

Next let & = X\{a,} and p+ gq=n. Then

S

W¢=6,,x6,,=< =7 g) P,,=BW,,,B=<G(I)"’ G;, >
q q

and G/P, = Gr, ,(C) = the Grassmann manifold of p-subspaces in C". The
identification is given by a bijection:

GLn(C)/Pd»" 3 Grp.q(c)’ gP¢Hng = §pan {gl, g2s--+» gp}'
We look at the cell structure of the Bruhat decomposition:
GL,(C)/Py=)yeweBw- P, (disjoint union).

First from wo; = W(X; — X;41) = X, — Xwg+1y it iS €asy to see that W=
1,2,...,n
Wi, Wa, ooy Wy,

{WGWIW¢CA+} = {W = ( >66"=W|W1<W2<"'<Wp,
Wpiy < - <w,p. Therefore the Bruhat cell Bw: Py = Nm,, - P4 corresponds to

BW'P¢=wa'P¢

(1 N - 1 N
1 o 1
1 * wy) | 1
= w,) | —1 Py
0 (0] 1
1 w,) | —1
- 1) - 14
(% % * * |1 1 ( A
* k% * 1 =
1 % x % x * *
0% % * x
= (01 % *
*
* 1
0 1 o *
L 1, L J
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(% % * * |1 A (
* k * *
X %k ¥k *x
* k ok *
100 0
w)[100 0
0% x x 0 * * *
=1010 0 ‘P
. °>SPA L ylo1o0 o
* 1 *
o 1 ) o
1 w,) 1
- J < J
< Gr,, ,(C),

where the above indicates a p-subspace spanned by column vectors of the
matrix. Thus the Bruhat cell Bw-P, corresponds exactly to the classical
Schubert cell of the symbol (w;,w,,...,w,) in Gr, (C): e(wy, w,, ..., w,) =

{WeGrM(C)IOC WNC'c WNC?*c--c WNC"=W, dim—v‘?—/ﬁrg—_l= 0 or
1, dim (WNC™) =i, dim (WNC* ) =i— 1} (cf, e.g. [11, p. 75)).

Now let @ = {011, 0pi2, ..y 0y} = Z\{0;, &3,...,2,} = P and also let
I'={a;,a,...,0,;} =@ Then

1 o S,| 0
W9=6q=<0” S ), Wr=6p=< 0" 7 ), hence Wy = Wy x W,
q q
( )
%* %*
and Pg = 0 . * c Pg.
*
§ 0 *

We shall calculate the Gysin homomorphism =, associated to the natural
map:

. G/P@ b d G/P¢ = Grp,q(C).

We first review the cohomology structure of these spaces (cf. [2], [13,
Theorem 4.2]). For G = GL,(C) we have the unit lattice b = @, Ze; and
its dual lattice b% =P}, Zx;. So R = Qo] = Q[x,,x,,...,X,] and I =
RY = Q[e;, e, ...,e,] = the ring of symmetric polynomials where e, is the
k-th elementary symmetric function. Thus the cohomology ring of the full
flag manifold FI,(C)= G/B is
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H*(G/B) = Q[xy, ..., x,1/J

where J = (e, e,, ..., e,) = the ideal generated by symmetric polynomials with-
out constant term. We know that H*(G/B) has an additive basis {x* =
xPxgroox0<eo;<n—i,i=12,...,n}. We next see the cohomology ring
of the Grassmannian G/P, = Gr, ,(C) as,

H*(G/P,) = (R/J)¥® = R¥+/I*R¥s,
RW¢ = Q[x]epxeq = Q[c1’ Casenny Cps CII’ C,Z’ LR C;]9

where ¢; = ei(x;,...,x,) and ¢} =e(x,41,...,X,). I'R¥2=(ey,...,¢,) is an
ideal generated by symmetric polynomials in this ring. By using the generating
function for the elementary symmetric function: E(f) = Y ,50e,t" = [ [1=; (1 + x;t),
we easily see a relation: e, =) ;,j-,c;c;, Hence we have

H*(G/P‘P) = EW¢ = Q[CI’ (R Cp’ Clla AR ] c;]/(2i+j=rcicjf = Olr 2 1)'

We note that ¢; and c; are the canonical Chern classes of the tautological
bundles on the Grassmannian Gr, (C)= G/P, and that the above identity
is also deduced directly by algebraic topology. The ring H*(G/P,) is gener-
ated by ¢y, ¢, ..., ¢, (as ring) and has an additive basis {c;c; -*-¢; |0 <k < q}.
In the same way we have for the partial flag manifold G/Pg,

H*(G/Pg) = R"o = Q[x,, X, ..., Xp, €}, Chy ..., c,]/J  where
J=(e,= Zlsil<i2<-~-<ik5p.Osksrxilxi2'”xikcr,—k'r > 1)

Moreover H*(G/Pg) has the ring-generators {x,, X, ..., x,} and has an addi-
tive basis {x* = x{'x3> - xppl0<a;<n—i,i=12,...,p}

We recall several facts about symmetric polynomials (cf. [10] for exam-
ple). For indeterminates x,, x,, ..., x, let A = Z[x,, x,,...,x,]. Let e, =
(X1, Xa, ooy Xp) = D, <iy<o<i, Xi, Xi, " %;, DE the elementary symmetric func-
tion which has the generating function (that we have already used above):

E(t) = Zrzo ert’ = 1_1?=1 (1 + xit)‘

Also let h, = h/(x,,x,,...,x,) be the complete symmetric function with
generating function:

HO) =Y, soht" =[]l (1 — x;0)™! in A[[£]].
The identity E(—t)H(tf) = 1 implies that
Lo(=1Yeh_, =h —eh_y +eh_y + -+ (—1) e, =0,
for all I>1. For aeN" (N={0,1,2,...}) let

a, = aa(xl’ X35 c00s xn) = Zwe 6,.8(W)w'xa = det (x;'zj) € A’
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where w-Xx® = xji1)Xu2s) Xuiw = X" ® for we S,. Then a, is skew-symmet-
ric;, w-a, = a,,., = ¢Ww)a, for we S, and for 6=m—-1,n—-2,...,1,0),

a; = det (x} ) = I]i<j(xi —x;) = Hae4+ o
is the Vandermonde determinant. For 4 € N" the Schur function S; is defined
by a homogeneous symmetric polynomial of degree |A|:

Si=81(x15 X3, -5 X,) = a45(x)/a5(x) € A.

If Ae N* is a partition, ie. Ay, >4, >->41,>0, let d(A) = #{i|A; #0} be
the depth of A and let A’ denote the conjugate partition of 4, ie. 4} = #{i|4; > j}.
Then the Schur function S, is expressed by elementary symmetric functions
e, or by complete symmetric functions h, as

3.1

S). = det (h}.,-—-i+j)1 <i,j<sn = det (eA;—Hj)l <i,j<m>
where n > d(A) and m > d(1).
We can now describe the Gysin homomorphisms n, for n:G/Pg—G/Pg=
Gr, ,(C) by the Schur function S; and by elementary symmetric functions c,,
€z, ..., ¢, those are the Chern classes on Gr, ,(C). We thus regain results

of J. Damon [4, Cor. 2 of Theorem 1] and T. Sugawara [13, Theorem 6.2
and Cor. 6.3] in our context.

3.2 THEOREM. Keep the notation above. ILet sy = s;sg be the decomposi-
tion of elements of maximal length according to Wy = Wy x Wg. The Gysin
homomorphism n,: H¥(G/Pg) = R¥e — H¥(G/P,) = R¥* for n is given as follows.

(1) For a polynomial f € R%

nf =41 = Ywew, W [ ]1ci<jep(x: — X)),

where w e Wy = &, acts on p variables x,, x,, ..., x, of the polynomial f. In
particular m(wf) = ew)m, f, we Wr.
(2) For a monomial x* = x{1x3++-x% € R"e (a € NP),

Ty (x%) = Sp-5(X1, .05 Xp)

where d=(p—1,p—2,...,1,0)e N?. In particular if A€ NP is a partition,
ie. Ay =24, >24,20 then

m(x**?) = det (cy;—i4;) = det (C3,—i45)
where we put ¢; = (—1Yc].

PrOOF. (1) By 2.3(2), m, = 4, _since s = s45¢. Note that s, is the ele-
ment of maximal length in W= &, and 4, acts on the first p variables
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Xy, ..., X, of a polynomial in R by definition of the A-operator. Then our
assertion follows from 1.11.

(2) Since as(xy, ..., x,) = [1<i<j<p i = X)) = [ e 4+a¢ry® We know that
for a monomial x* (x € NP),

T(X%) = ay(Xy, ..., X,)/a5(Xy, ..., Xp) = Sy—s(Xy, ..., Xp),

by the very definition of the Schur function. Note that S,_5(x4,...,x,) is a
symmetric polynomial of x;, ..., x, and so it belongs to R%e = H¥(G/P;). We
shall express it by the Chern classes ¢; and c¢;. Now there is a partition
AeNP and we S, such that w-a =1 Note that m(x*®) =m(w 'x*) =
e(w)m(x*). We thus consider m,(x*) for a strict partition a = A + 4. In view
of 3.1 we know that for the last identity, it suffices to show that

hi(xy, ..., x,) = (—1Vej(Xpr1s ... Xp)

in R = R/J = Q[xy,...,x,)/(ey, ..., e,) since ¢; = efxy,...,x,) and ¢ =
ef(Xp41, --»%n). Let Ej(®) =[] (1 + x;2) and E,(8) = [[l=p+1 (1 + xit) be
generating functions of e,(x;,...,x,) and e/(x,,...,x,). Then we have

E\(DE,() = E(t) = Y,z06t"=1  in (R[t].

Let H,(t)=]]% (1 —x;)™* be the generating function of h,(xy,...,X,).
Then E,(—t)H,(f) = 1. Hence we obtain that H,(t) = E,(—t)™! = E,(—1t) in
(R/N)[[t]], which implies our identity. []
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