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ABSTRACT. The Poincare duality for a partial flag manifold G/P is described in terms

of the Weyl group of G. The Gysin homomorphism for natural projections between

partial flag manifolds is calculated by using it. We investigate the case of complex

flag manifolds and Grassmannians in C and show the relation to the Chern classes.

0. Introduction

Let M be an m-dimensional connected compact oriented manifold without

boundary which has the fundamental homology class μM of the orientation.

Then the Poincare duality 0>M for M is an isomorphism defined by a cap

product:

&M = μM Π: H>(M) * Hm.p(M), 0>MOL = μM Π α,

between homology and cohomology of M. Let M and N be connected

compact oriented manifolds without boundary and let / : M -+ N be a continu-

ous map. Then the Gysin homomorphism f associated to / is by definition

the homomorphism f = ^ 1 of^o0>M between their cohomology modules, i.e.,

given by the following commutative diagram:

H*(M) —4—> H*(N)

In the case that M and N are complex flag manifolds and / is a natural

projection between them, the Gysin homomorphism is investigated by many
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authors from a variety of view points. In particular J. Damon [4] determined
fι by using the higher dimensional residue symbol in the context of algebraic
geometry and T. Sugawara [13] determined β by using "integration over the
fiber" of fiber bundles in the context of algebraic topology. On the other
hand Bernstein-GeΓfand-GeΓfand [1] investigated the connection between
homology and cohomology of the flag manifold G/B where G is a complex
semisimple Lie group and B is a Borel subgroup of G, and constructed a
basis of cohomology dual to the Schubert basis of homology by introducing
a divided difference operator. In their course of study they also determined
the Poincare duality on G/B. Therefore it seems natural to determine the
Poincare duality on other partial flag manifolds G/P and calculate the Gysin
homomorphism by using it. The purpose of this paper is a report of the
results (Theorem 2.1, 2.3 and 3.2). We use the Bruhat-Schubert cell decompo-
sition and describe the homology and cohomology in terms of the Weyl
group of G.

A brief account of contents of this article: We heavily depend upon the
formalism of B.G.G. [1], so in §1 we review their formulations and results
on homology and cohomology structure of a partial flag manifold G/P and
fix the notation. In §2 we determine the Poincare duality on G/P in terms
of the Weyl group action and give a description of the Gysin homomorphism
between them. We then specify the classical case of complex flag manifolds
and Grassmannians in §3. We give their Bruhat-Schubert cell decomposition
and describe the Gysin homomorphism in terms of the Chern classes.

The author would like to express his gratitude to Professor T. Sugawara
for a kind guidance to the subject and valuable discussions.

1. Preliminaries, homology and cohomology of GjP

We begin by introducing the notation that is used throughout.
G is a connected complex reductive Lie group, that is, its Lie algebra g

is a reductive Lie algebra over C, g = c + [g, g], c is the center of g, [g, g]
is a semisimple ideal (cf. [14, 1.1.5]). We will specify G = GLn{C) in §3. We
henceforth give g an invariant non-degenerate bilinear form ( , ).

B is a fixed Borel subgroup of G.
G/B is a (full) flag manifold of G. In case of G = GLn(C) and B = the

large upper triangular matrix subgroup, G/B = Fln(C) is the manifold of full
flags in Cn.

N is the unipotent radical of B and H is a maximal algebraic torus of
G such that H a B. b, n and ί) are the Lie subalgebras of g corresponding
B, N and H respectively. Then B = HN, b = ί) + n and ϊ) is a Cartan sub-
algebra of g. ί)* = Horn (I), C) is the dual vector space of I).
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Δ — Δ(% ί)) c I)* is the root system of (g, I)). Δ+ is the set of positive

roots corresponding to n i.e. n = £ α e J + gα where gα = { I e g | [ # , ^ ] = oc(H)X

for // G ί)} is the α-root space of g.

Σ a A+ is the set of simple roots and Δ~ = — Δ+.

W = NG(H)/H is the Weyl group of (G, H) where iVG(if) is the normalizer

of H in G. FT acts on if, ί) and ί)* naturally. W is determined only by

(g, I)) or Δ and if sα: I)* -»t)* is a reflection in the hyperplane orthogonal to

OLE Δ\

sa(x) ~ X — (& α V ) α where α v = 2α/(α, α) is the coroot of α,

then (W, Σ = {SJOL eΣ}) is a Coxeter system. For each weW = NG(H)/H

the same letter w is used to denote its representative in NG(H) c= G. We

know that the triple (G, B9 NG(H)) is a Tits system (cf. [3, Ch. IV]).

/(w) is the length of we W relative to the generators Σ = {sa\<xeΣ} of

W9 that is the least number of factors in the decomposition

w = s ^ ' " S i where sf = sa. eΣ.

This expression is said to be reduced if / = *f(w).

soeW is the unique element of maximal length r in W. We have s0Σ =

-27, r = φ o ) = μ + | , sg = 1 and ^(ws0) = /(s0) - /(w) (cf. [3, Ch. VI, §1,

no. 6, Cor. 3 of Prop. 17]). Notice also r = dim n = dimc G/B.

N = SQNSQ1 is an analytic subgroup of G with Lie algebra n = £ α e j - 9«

For w G py put iVw = wiVw"1 Π JV and Aζ, = wNw'1 Π iV. Then Nw and

Λζ, are unipotent subgroups of G with Lie algebras n w = (Ad w)nΓϊn =

Σ«ewj-πj+9α a n ( l tt'w = (Ad w)τt Π it of complex dimensions /(w) and ^(s0) —

/(w) respectively. We have N = NwNή and n = n w 4- n^.

1.1 (Bruhat decomposition). Under the above notation we have the double

coset decomposition B\G/B as follows:

G = \JweW BwB (disjoint union), and hence

G/B = [jweW BwB (disjoint union),

where the notation Bw B = BwB/B c= G/B indicates the subset of the coset

space G/B. Each Bw-B is a cell of complex dimension /(w) in the space G/B,

that is
exp natural

"w—•#„— 2 -+

are onto analytic diffeomorphisms and n w ^ C'(w) is an affine space.

For proof see [3, Ch. IV], or [14, 1.2] for example. We will see later
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that in case of G = GLn(C) the Bruhat decomposition corresponds exactly to

the classical Schubert cell decomposition.

We collect elementary properties of (W9Σ) and parabolic subgroups of

(G,B,NG(H)).

1.2 LEMMA (cf. [8, 1.6], [3, Ch. VI, §1]). (W9Σ) has the following prop-

erties. For w eW, cce Σ simple,

(1) // w = s1s2'-sk (Si = sα., αf e Σ) is a reduced expression put θt =

sίs2'"Si-ι((xi) (1 < i < k). Then θt are all distinct positive roots and

{θt\ί <i<k} = A+ΠwA~.

(2) φ) = \A+ Πw' ιA'\9 and so /(w"1) = /(w)

(3) φsa) = φ) + 1 iff wα > 0
φsa) = φ) - 1 iff wα < 0

From this, d im c n w = \wA~ ΠA+\ = /(w"1) = ίf(w) follows.

For each subset θ c 21 of simple system, define

W© = <sjα e 0> = ί/ie subgroup of W generated by θ = {sa\(x e Θ},

and

Pθ = BWΘB.

Then (Wβ, Θ) is a Coxeter system with the root system A Π <Θ> where <Θ> =

Z-span of Θ in I)* and P β is a subgroup of G containing B, which is called

a (standard) parabolic subgroup. We know that the map Θ\-+Pθ is a lattice

isomorphism between the lattice 2Σ of all subsets of Σ and that of subgroups

of G which contains B, e.g. P 0 = B, PΣ= G. The coset spaces G/Pθ are

(partial) flag manifolds, which contains Grassmannians in case of G = GLn.

We also define a subset Wθ of W as follows,

α) = ί{w) + 1 for all OLSΘ)

= {w € W\wΘ a A+} (by Lemma 1.2(3)).

Then Wθ is called a minimal coset representative of W/Wθ since

1.3 LEMMA (cf. [8, 1.10] or [3, Ch. IV, §1, Exer. 3]). We have

W=WΘ x Wθ9 and hence Wθ - W/Wθ by u\-+uWθ.

Given w e W, there is a unique (u, v)eWθx Wθ such that w = uv. Their

lengths satisfy /(w) = /(w) + ί(v\ Each ueWθ is the unique element of smallest

length in the coset wWθ = uWθ.
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1.4 (Bruhat decomposition for a partial flag manifold). We have the double

coset decomposition B\G/PΘ.

G = [jweWβ BwPθ (disjoint union), and so

G/Pθ = (J w e WΘ Bw - Pθ (disjoint union)

is a cellular decomposition of the partial flag manifold G/Pθ into cells BwPθ

of dimension /(w).

SKETCH OF PROOF (cf. [14, 1.2.4.9]). Since (G, B9 NG(H)) is a Tits system,

for subsets X, Y c 0 there is a bijection ([3, Ch. IV, §2, no. 5, Remarque 2]),

WX\W/WY^PX\G/PY by

Put X = 0 and Y = θ. Then we have from the above decomposition

Wθ ~ W/Wθ 2i B\G/PΘ bywKBwP θ .

As 1.1 we know that nw2^Nw^BwPθ a G/Pθ are onto analytic diffeomor-

phisms and so BwPθ (weWθ) is a cell in the space G/Pθ of dimension

d i m c n w = *f(w). •

We recall cohomology structure of flag manifolds G/P and results of

B.G.G. [1]. Let Xw be the closure of a cell BwB in G/B, [X w ] e H*(XW9 Z)

be the fundamental cycle of the complex variety Xw of complex dimension

*f (w) and Dw e H^(G/B9 Z) be the image of [X w ] under the map induced by

the embedding Xw c G/B. In this article we treat homology and cohomology

of even dimensional only, so we write Hp and Hp instead of H2p and H2p.

Then we can write Dw e H^(yv)(G/B9 Z) (i.e. Dw e H2nw) in fact). In the same

manner for each w e Wθ, we define Dw(θ) e HJfi/Pθ, Z) for a homology class

determined by the cell BwPθ in G/Pθ. Then we have

1.5. (1) {DJvveJf} forms a free basis of the homology module

H*(G/B9 Z\ i.e. H*(G/B, Z) = ®weWZDw.

(2) The natural map p: G/B -> G/Pθ induces a epimorphism p :̂ HJfi/B, Z)

-* H+(G/PΘ, Z) such that p*Dw = 0 if wφWθ and p*Dw = Dw(θ) if weWθ.

And H*(G/Pθ9 Z) = ®weWe ZDW(Θ).

By (2) we will write simply Dw e H+(G/PΘ, Z) instead of Dw(θ) if there is no

fear of confusion.

We introduce in I) the coroot system { i ί j α e ^ } of A, i.e.

Ha = 2hJ(ot, oc)eί) where ha e ί) is given by

(ha, H) = (x(H) for all H e ϊ).
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Then sa(λ) = λ- λ(Ha)a for all λ e t)*. Let ί)z= {He I)|expG (2πiH) = 1} be

the unit lattice of G and ί)β = I ) z ® β . Then ϊ ) z contains the coroot lattice

ί), = Z-span {ffjα e 4}, I) z => I),. Let ϊ ) z = {χ e ί)*|χ(I)z) c Z}, t)£ = te® β

and ϊjj* = {χ e ί)*|χ(ί)*) c Z}. Then ίtf is the weight lattice and ψz c ^ .

Let K = Sftg) = β [ ί ) β ] be the ring of polynomial functions on ί ) β with

rational coefficients. The Weyl group acts naturally on R. Let / = Rw be

the subring of W-invariants in R, I+ = {/e/ |/(0) = 0} and J = I+R be an

ideal of R generated by I+.

We construct a homomorphism β: R -• H*(G/B, Q) as follows. First let

χ e ϊ) z. Then χ lifts to a character θ: H -> C* by 0(exp X) = exp χ(X), X e\).

We extend 0 to a character of £ by θ(hή) = θ(h\ heH9neN. Since G -• G/β

is a principal fiber bundle with structure group B, θ defines a line bundle Eχ

on G/B. We let β(χ) = cx(Ex)e H^G/B, Z) be the 1-st Chern class of EΓ

Then β is a homomorphism I)£->H1(G/JB, Z), which extends naturally to a

ring-homomorphism β:R^> H*(G/B, Q).

1.6 (A. Borel [2]). (1) The homomorphism β commutes with the actions

of W on R and H*(G/B).

(2) Ker β = J and the induced map β:R = R/J -> H*(G/B, Q) is an onto

ring-isomorphism. R = R/J is a truncated polynomial ring of finite dimension

\W\ over Q.

(3) The natural map p: G/B -• G/Pθ induces a ring-monomorphism p*:

H*(G/PΘ) -+ H*(G/B). The cohomology ring H*{G/PΘ, Q) is isomorphic to the

subring H*(G/B, Qf* = (R/J)w* of ^-invariants by p*.

B.G.G. [1] established a connection between homology and cohomology

of G/P. They introduced polynomials {PweR\weW} in such a way that

the induced set {Pw = β(PJ e R\w e W) forms a basis of R = H*(G/B) dual

to the basis {Dw\w e W) of HJ^G/B) by the natural pairing < , > of homology

and cohomology: <DW, Pu> = δwu, and determine Pw.

The polynomial Pw is constructed by the following divided difference

operator Aw. For each root α e A, we define the operator /4α: K -».R of degree

- 1 by

- f(saH))/<x(H), H G \)Q.

The J-operators have the following properties.

1.7 (cf. [1], [5] and [7]). (1) Let w = s A - s , e ^ S i = sαieΓ. //

*f(w) < I then AaiAΛ2' ΆΛι = 0. // /(w) = /, i.e. this expression of w is reduced

then the operator AaiAa2"ΆIXι depends only on w and does not depend on the
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reduced expression of w. We thus put Aw = AaιAa2 AΛχ for the reduced ex-

pression w = sγs2 "'Sh Si = sα. e Σ.

(3) zLα = -Aa, Al = 0, wA.W1 = Awa.

(4) saAa = - Aasa = A a , s a = l - otAa.

( 5 ) Aa{fg) = f(Aag) + (AJ)sag9 fgeR.

(6) AJ=0 iff sj = f

(7) AaJczJ.

From (5) and (6) Aa: R -> R is a R^-endomorphism and by (7) it induces

an endomorphism Aa (we use the same letter) of R = R/J. The homology

basis Dw e HJfl/B) viewed as a functional on the cohomology H*(G/B) = R

is described by J w as

1.8.

<Z) ?(/)> (Λ/)(0) / e K, w e W

The polynomials {Pw} which induce the dual basis of {Dw} are determined

mod J and given as follows:

1.9 ([1]). (1) Let Po = PSo e Hr{G/B, Q) be the fundamental cohomology

class of top order r = /(s0) = dim c G/B. Then

I W α = p7H (modJ),

where p = 2Σ«e j + α ί s ^flίΓ *Λe sum of the positive roots.

(2) Pw = Λw-iSoP0 /or we lK

(3) By the natural ring-monomorphism p*: H*(G/PΘ) -> H*(G/B){p*"1Pw|w G

Wθ) is the basis of H*{G/PΘ} dual to the basis {DJwe WΘ) of H*(G/PΘ).

As to (1) we put Do = DSo G Hr(G/B) for the fundamental homology class

of top order. As to (2) note that deg (^w-iSoP0) = £(SQ) — ̂ (w"1s0) = /(s0) —

(/(s0) - ^(w"1)) = ί(w) = deg Pw. From 1.5(2) and 1.9(3), we will write sim-

ply Pw G H*(G/PΘ) instead of p*"1^,. In other words we identify H*{G/PΘ)

with the subring H*{G/B)Wθ of H*(G/B) by the natural map p*. These polyno-

mials Pw have the following properties:

1.10 ([1]). (1) Let weW, α e l Then

0 i/ ^(wsα) = ί{w) + 1

i/ <f(wsα) = *f(w) - 1.
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(2) Let w, u e W9 φ) + /(u) = r. Then

if u =
0 */ t/ Φ sow.

(3) (77iί> Pomcαre duality of G/B) Let Θ> = Do Π: #*(G/£, β) rs tf^G/β, β)

ί/ie Poincare duality of the full flag manifold G/B. Then we have

We give a proof of the following, for this is a key fact in §3.

1.11 PROPOSITION ([5, Lemma 4], [7, 2.5]). The operator ASQ:R^>R is

given by

where ε(w) = ( - l) ' ( w ) = ± 1 is ί/ie sign of weW.

PROOF. First we have saΔSo = ΔSo for α e J + , hence wJSo = J S o for weW.

In fact we have AaΔSo = 0 by φ α s 0 ) = /(s0) - 1 and 1.7(2), then use 1.7(4).

Fix a reduced expression s0 = s1s2'"Sr, st = sα., αfGi7. Then we see that

4 0 = ^ « 1

o Λ 2 ° o Λ r = α Γ M l - s J o α ^ ί l - S j J o . .oα^^l-s , , ) . Ex-

panding out we have

where ί w e β ( f ) β ) is a rational function. The comparison of coefficients

in WASQ = ASo then implies that wqu = qwu9 w, ueW. Here we use the

fact that w's are linearly independent over β(ί)β), which follows from the

Dedekind theorem of the Galois extension Q(Ϊ)Q)/Q(Ϊ)Q)W We know that

4so

5o = (- l) r αΓ 1 s 1 oαJ 1 s 2 o . o α - 1 s r = (-l)r{oc1(s1ot2)'"(s1'"Sr_1(xr)}-1s0 =

( - l ) r ( Γ U ^ Γ l s o , hence qSo = ε(5 0 )(Π α e ^α)- 1 by 1.2(1). Note that

w ( Γ U ^ «) = ( " l ) ' ( w ) Π « β ^ « = β(w)Π«β^ α for w G Py by 1.2(2). We thus

obtain that ^ = ws0 qSo = ε(w)/Παe j - α. D

2. The Poincarέ duality and the Gysin homomorphism for partial flag

manifolds

In this section we shall describe the Poincare duality and the Gysin

homomorphism for partial flag manifolds G/P in terms of the Weyl group

W. For each subset θ c l o f simple roots we obtain a parabolic subgroup

Pθ = BWΘB, the partial flag manifold G/Pθ and the cellular decomposition

G/Pθ = [jweWθBw Pθ. The homology and cohomology of G/Pθ is given by

β, Q) = Θwc w QDW, H*(G/PΘ, Q) = Rw° = 0 W 6 „ . QPW.
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According to the left coset decomposition W = Wθ x Wθ, we put

so = sθsθ, sθeWθ, sθeWθ.

Then sθ is the unique element of maximal length in Wθ. In fact, if there

is an element t e Wθ such that <f(ί) > S(sθ) then ί(sθt) = S(sθ) + /(ί) > /(s β ) +

£(sθ) = /(s0) by 1.3, the uniqueness of s0 in W implies that s0 = sθsθ = s β ί ,

and hence sθ = ί. Since (Wθ, Θ) is a Weyl group of the root system A Π <©>,

s β has the same properties as s 0 for Wθ. We have ^(sβ) = \A+ Π<©>|,

sθ(Θ) = — Θ and s | = 1 for example. Similarly we know that sθ is the

unique element of maximal length in Wθ and that £(sθ) = £(s0) — έ(sθ) =

IΛ+\<6>>| = d i m c G/Pe by s* = SQS^. We put Dθ = Dsβ e H*(G/PΘ) and P β =

Psβ e H*(G/PΘ) for these top order elements of homology and cohomology.

(There will be no confusion between the notation Pθ of cohomology class

and that of parabolic subgroup.)

The Poincare duality 0>θ of the partial flag G/Pθ is defined as follows.

Since Dθ is the fundamental homology class of G/Pθ,

0>θ = Dθ Π: H*(G/PΘ, Q) * H, ( s β )_ p(G/Pβ, Q), 0<p< ί{s θ\

<&θf, g> = <Dθnf, g} = (Dθi fg\ /, geRw* = H*(G/PΘ).

The Poincare duality of G/Pθ is given by the following:

2.1 THEOREM.

We first check two points that if weWθ then also sowsθeWθ and

S(sowsθ) = φ * ) - / ( w ) . These guarantee that if PweHp(G/Pθ) then DSQWSΘ

€ Hase^p(G/Pe). Indeed if weWθ, then sowsθ(Θ)= -sow(Θ)a -s0A
+ =

— Δ~ — A+ so sowsθe Wθ by definition of Wθ, and έ(sowsθ) = /(s0) —

Next we extend 1.10(2).

2.2 LEMMA. Let w, ueWθ, φ) + ί{u) =

? if u =

PRCX)F. The fundamental cohomology class Pθ of G/Pβ is given by 1.9(2)

as

P β = P s β = ( ) o β

First let u = sowsβ. Then Pu = ^ u - i S o P 0 = 4^ w -iP 0 - W e k n o w t h a t Λ> =
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PWPSQW by 1.10(2). Applying ΔSQ to this both sides we get

Pθ = ASθP0 = ASθ(PwPSoJ.

The reduced expression of sθeWθ is of the form sθ = sίs2"'Sn where

n = S(sθ)9 Si = sΛ. with ^ e f t And so ΛSθ = ΔaιΔa2'-Δan. For any aeθ,

S(wsa) = <f(w) + 1 since weWθ, hence ΔaPw = 0 by 1.10(1). We thus obtain

1.7(5),

^(PWPMOW) = PΛ^Λ0J + (ΛΛ)(s α P S o J = PJΔapSoW)9

we iterate this and get

since /(s^w"1) =/(ws β ) =/(w" 1 ) + / ( s β ) and 1.7(2). Next let u φ sowsθ.

Then usθ φ sow9 and by 1.10(2), PwPUSθ = 0. Applying ΔSθ to both sides and

calculating as above, we obtain

0 = ΔSΘ(PWPUSΘ) = P w ^ S β P t t S β = PWPU.

Here we again use 1.7(2) and compute

ΔSθPUSθ = J ^ ^ - i ^ P o = ^M-iS oP 0 = PM>

since ^(sβ) + ^ ( S ^ M ' ^ O ) = ί(sθ) + (/(s0) - ^(s^iΓ1)) = ίf(5β) + /(s0) - S(sθ) -

/(M"1) = ί{s0) - S(u-1) = ^(M-^O). D

PROOF OF THEOREM 2.1. For weWθ we have by the choice of basis

By Lemma 2.2, the only one term u = sowsθ remains and we get &ΘPW = DSQWSΘ

as required. •

We shall describe the Gysin homomorphism between partial flag mani-

folds. For two subsets θ c Φ of simple roots Σ we have Weyl groups Wθ c

Wφ, PΓβ => Wφ, parabolic subgroups Pθ c Pφ and the natural map π between

the partial flag manifolds:

which induces naturally the homomorphisms π^: H+(G/PΘ) -> H+(G/PΦ) of

homology and π*: H*(G/PΦ) -+ H*(G/PΘ) of cohomology.

The Gysin homomorphism for π is defined by π, = ^φ1 o π,,, o ^ β :

H*(G/PΘ)^> H*(G/Pφ\ i.e. given by the following commutative diagram:
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H*(G/PΘ) — ^ - > Hp~^sθ)

I

Note that the Gysin homomorphism π, decreases the dimension of cohomology
by ί(sθ) - S(sφ) = dim c G/Pθ - dim c G/Pφ > 0. Under the above notation
we can calculate π\ as follows.

2.3 THEOREM. (1) π, operates on the basis {PJw e Wθ) of H*(G/PΘ) as

πtPw = jp.
if sowsθ φ Wφ,

(2) π, is written by the Δ-operator as

π, = ASφSθ: Rw* = H*(G/PΘ) ^Rw* = l

PRCX)F. (1) By 1.5(2) the induced homology map π^: H^(G/PΘ) -• H+(G/PΦ)
is given by, for we Wθ,

(Φ) i f w e ^ φ

if wφWφ.V^)= In :c ...j.πrΦ

Hence for Pw e H*(G/PΘ), w e Wθ, we have

π,Pw = 0>lx o π # o <?Θ(PJ = ^-i o π»φ 5 o W S

Λ « Λ i f s ows β e
[0 i

(2) First let weWθ with s otra 9eW*. Then by 1.9(2) we have

Since sθeWθ <= Wφ, we have <?(sφsθ) = ^(s*) - <f(sθ). We thus get a length
relation: ^(SφSgW^So) = f(sowsθsφ) = έ(sowsθ) + <f(sφ) (by s o

w s β 6 Ŵ * and
1.3) = φ 0 ) - /(wsβ) + φ # ) = /(s0) - /(w) - φ β ) + φ # ) = (^(s#) -
/(sβ)) + (<f(s0) - /(w)) = S{sφsθ) + <f(w~1s0). Hence by 1.7(2) we obtain

Since H*(G/PΘ) = span {Pw |we W θ } it suffices to show that if weWθ and
sowsθφ Wφ then ^S ( f S βPw = 0. Again in this case we have
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Since sowsθφWφ there is some α e Φ such that S{sowsθsa) = έ(sowsθ) — 1.

We thus have S(sowsθsφ) < S(sowsθ) + S(sφ) since sφeWφ has the reduced

expression of the form sφ = s1s2 -sm with sx = sa9 stG0 and m =

So we get ^(SφS^w'^o) = ^(sowsθsφ) < £(sowsθ) + έ(sφ) = /(50)

ί(sθ) + /(sφ) = /(s*s*) + /(w-^o). By 1.7(2) again we finally get 4 ^ * - % =

0, which implies that ASφSθPw = 0. Π

3. Complex flag manifolds and the Schubert cell decomposition

In this section we investigate the classical case that G = GLn(C) and

B = the large upper triangular matrix subgroup of G. In this case the coset

space G/B is identified with the set Fln(C) of full flags in C". We shall first

look at the cell structure of the Bruhat decomposition. Let H be the diagonal

matrix subgroup of G, ~ ( C X ) W and N be the upper triangular matrices with

all the diagonal entry 1. Let Etj denote a square matrix with (i,j)-entry 1,

all other entries being 0, Ei = Eii and D(a1,a2, ...9an) = Σi=ίaiEi denote a

diagonal matrix. Then Lie algebras of H and N are ί) = £?=i C£ f and n =

ΣiKjCEij respectively. The root system is A = {αo = x{ — xp 1 < i φj < n)

where x f e l ) * with xt(D(au . . . ,α π )) = at. The α^-root space is go = CEiy

A+ = {(xip ί <j} 3 Σ = {α, = α M + 1 = xf — x i + 1, 1 < i < n) are the set of posi-

tive roots and the set of simple roots respectively. Let M = NG(H). Then

the Weyl group is W = M/H and M is the subgroup of G comprised of all

monomial matrices which have only one non-zero entry in each row and

in each column. We see that M is isomorphic to a semidirect product

M ^ S n x / / o f the symmetric group 8 n on n letters and the diagonal subgroup

H. The isomorphism is given by S w K H r^ M, (w, /ι) -»mw/i where w =

e S B and mw is a permutation matrix with (wy,;)-entry 1 for
w 1,w2,...,wπ/

each j = 1 , 2, ..., n, all other entries being 0. We see that mwEim~ί = £ w ( i )

and if h = Z)(α1? α 2 , . . . , an) e H then mw/i is a matrix with (w^-entry dj for

1 < < n, all other entries being 0. Hence the Weyl group W is isomorphic

to £>„ and its action on i) and ί)* is a permutation of the coordinate axes:

W = M/H = 2>π and w £ f = m^ϋ^rn"1 = £ w ( i ) , w x£ = xw ( i ) for w e ί f = ©n.

Since (G = GLn,B,M) is a Tits system (cf. [3, Ch. IV, §2, no. 2]) we have

the Bruhat decomposition:

GLn(C)/B ={JweWBw'B (disjoint union).

On the other hand the identification GLn(C)/B ^ Fln(C) is given as follows.

The set Fln(C) of full flags in Cn is by definition, Fln(C) = {(Vl9 K2,..., Vn\

sequences of linear subspaces of Cn\0 <= Vί a V2 c: <= Vn = Cw, d i m c Vj=j}.

Let {βi} be the standard basis of Cn and fix a base point o — (C 1, C 2 , . . . , Cn) e
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Fln(Cn) with 0 = span {eu e2,..-, βj}. Then we have a bijection which

identifies the two spaces,

GLn(C)/B * Fln(C% = (gC\ gC\ ..., gCn).

If a matrix g eGLn(C) is written by g = (gl9 g2,'--,gn) where #,. = ges = the

7-th column vector of g then gCj = span {#1? gf2,..., #,-} = linear subspace of

Cn spanned by the first j column vectors of the matrix g. By this identification

a subset Bw B = J9mw B = Nmw 5 c GLn(C)/B corresponds to

BwB = Nmw B =

0

w,)
•B

-j

O 0

0

j.

0

*

-10
0
0

* *

*
0 *

•β

0

*

1 0 0

0

0

Hence BwB corresponds to the set of all matrices b = (bi}) with bWjJ = 1,

fey = ί>Wj>t = 0 if i > Wp k>j for each j = 1, 2, . . ., π and all other entries are

free by = *, or the flags which are made by column vectors of those ma-

trices. Since go Φ g'o in Fln(C) if gB Φ g'B in G/B, and two different matrices
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of the above form cannot transform each other by the right U-action, two

matrices which have different free parameter * correspond to different flags

in Cn. Since the topology of Fln(C) is induced from matrix topology by the

above bijection, BwB thus forms a cell in Fln(C) which is expressed by

matrices of the above form. BwB is sometimes called a Bruhat cell.

Next let Φ = Σ\{<xp} and p + q = n. Then

o
0

PΦ = BWΦB =
(GL,\ * \

V o \GLJ9

and G/Pφ = Grpq{C) = the Grassmann manifold of p-subspaces in Cn. The

identification is given by a bijection:

GLn(C)/Pφ * GrPtq(C\ gPΦ^gCp = span {gl9g2,..., gp).

We look at the cell structure of the Bruhat decomposition:

GLn(C)/Pφ =\JweWφBw Pφ (disjoint union).

First from wα, = w(x f — x i + 1 ) = x w ( / ) — xW( f+D it is easy to see that Wφ =

{weW\wΦaA+} = \w = ( l j 2 ' ' n ) G ( 5 = ^ | w < w < ... < w

Wp+i < < wn >. Therefore the Bruhat cell Bw Pφ = Nmw P φ corresponds to

Bw Pφ = Nmw'Pφ

1

O

* * *

* * *

1 * *

0 * *

0 1 *

Wί)

w2)

1

- 1

0

0

1

o 0
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*

1

0

0

*
*

0

1

*
*

0

0

0

*
* *

0
* *

0

*
*

1

0

0

span w2)

*
*

1

0

0

*
*

0
*

1

*
* i

0

0

0

*

0
|c *

0

*

1

where the above indicates a p-subspace spanned by column vectors of the
matrix. Thus the Bruhat cell BwPφ corresponds exactly to the classical
Schubert cell of the symbol (wi9 w2,..., wp) in Grpq(C):e(wί,w2,...9wp) =

WΠC1

We GrpJC)\0 c WΠC1 a WΠC2 c ••• c WΠCn = ^ dim = 0or

Now let Θ = {αp+1, α p + 2 , . . . , αw_x} = A{αi» α 2 , . . . , αp} c Φ and also let
Γ= {ocuoc2,...i(xp.1} c Φ. Then

1, dim(WΠCWi) = U dim(WΠC^ 1 ) = i - l l (cf., e.g. [11, p. 75]).

o , hence Wφ=WΓx Wθ,

and

0

We shall calculate the Gysin homomorphism π, associated to the natural

map:

We first review the cohomology structure of these spaces (cf. [2], [13,
Theorem 4.2]). For G = GLn{C) we have the unit lattice \)z= 0?=iZe f and
its dual lattice ψz = 0 ? = 1 Zxf. Soi? = β[ί) β ] = β[x 1 ? x2,..., xΠ] and / =
Rw = β[^i5 2̂> •••» «̂] = the ring of symmetric polynomials where ek is the
fe-th elementary symmetric function. Thus the cohomology ring of the full
flag manifold Fln(C) = G/B is
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where J = (el9 e2,..., en) — the ideal generated by symmetric polynomials with-

out constant term. We know that H*(G/B) has an additive basis {xα =

x" 1*! 2 *' *xίn |0 < αf < n - z, ί = 1,2,..., n}. We next see the cohomology ring

of the Grassmannian G/Pφ = GrPtq(C) as,

H*(G/PΦ) = (R/J)w* = Rw*/I+Rw*,

where ci = ei(xl9...,xp) and cj = ^(x p + 1 , . . . , xn). / + ^ * = ( e l 5 . . . , en) is an

ideal generated by symmetric polynomials in this ring. By using the generating

function for the elementary symmetric function: E(t) = Σr^oβX = Π?=i(^ + xt^

we easily see a relation: er = Yji+j=:rcicj. Hence we have

H*(G/PΦ) = Rw* = β [ C l , . . . , cp, c i , . . . , c;]/(Σ,+j- rc,c; = 0|r > 1).

We note that cf and cj are the canonical Chern classes of the tautological

bundles on the Grassmannian Grpq(C) = G/Pφ and that the above identity

is also deduced directly by algebraic topology. The ring H*(G/PΦ) is gener-

ated by c 1 ? c 2 , . . . , cp (as ring) and has an additive basis {chch cJO < k < q}.

In the same way we have for the partial flag manifold G/Pθ,

H*(G/PΘ) = Rw* = β [ x l 5 x 2 , . . . , xp9 cj, c 2 , . . . , c'q-\IJ where

J — (er — Lal<i1<i2< '<ik^PfO<k<rXiί

Xi2' " Xik

Cr-k\r ^ 1)

Moreover H*(G/PΘ) has the ring-generators {x^ x 2 , . . . , xp} and has an addi-

tive basis {xα = x^x^2 x ^ | 0 < α; < n - i, i = 1, 2,..., p}.

We recall several facts about symmetric polynomials (cf. [10] for exam-

ple). For indeterminates xί9 x2, . . ., xn let A = Z [ x l 5 x 2 , . . . , x π ]. Let er =

e r (x 1 ,x 2 , . . . ,x n ) = Σiί<i2<-<irXiixi2 'xir

 b e t h e elementary symmetric func-

tion which has the generating function (that we have already used above):

Also let hr = /ir(xi, x 2 , . . . , xπ) be the complete symmetric function with

generating function:

H(t) = Σr±oKtr = n?=i(! " tit)'1 i

The identity E(-t)H(t)= 1 implies that

for all l> 1. For α e W 1 (7V= {0, 1, 2,...}) let

^ ' Xβ ='det (x?) 6 Λ,
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where w xa = X^D^MD" ' xMn) = x w * α for w G ®n. Then aa is skew-symmet-

ric; waa = aw.a = ε(w)αα for w e ©π and for <5 = (n — 1, n — 2,..., 1, 0),

aδ = det (xΓJ) = Πi<j(Xi - XJ) = Π««^ «

is the Vandermonde determinant. For λe Nn the Schur function Sλ is defined

by a homogeneous symmetric polynomial of degree \λ\:

$λ = S λ ( x i , x 2 , >,Xn) = βA+a(*)Λ*a(*) e A .

If A G 7VΛ is a partition, i.e. Ax > λ2 > > λn > 0, let d(λ) = # {i|A| φ 0} be

the depth of λ and let A' denote the conjugate partition of λ, i.e. λj = #{1*1 ;̂ > j}.

Then the Schur function Sλ is expressed by elementary symmetric functions

er or by complete symmetric functions hr as

3.1.

Sλ = det (ΛAi-i+j)i<i,j<w = det (^;.-i+j)i<ί,j<m5

where n > d(λ) and m > d(λ').

We can now describe the Gysin homomorphisms πι for π:G/Pθ^G/Pφ =

Grpq(C) by the Schur function Sλ and by elementary symmetric functions cί9

c2, . . . , cp those are the Chern classes on Grpq(C). We thus regain results

of J. Damon [4, Cor. 2 of Theorem 1] and f. Sugawara [13, Theorem 6.2

and Cor. 6.3] in our context.

3.2 THEOREM. Keep the notation above. Let sφ = sΓsθ be the decomposi-

tion of elements of maximal length according to Wφ = WΓ x Wθ. The Gysin

homomorphism π,: H*(G/PΘ) = Rw* -> H*(G/PΦ) = RWφ for π is given as follows.

(1) For a polynomial feRWφ

where w G WΓ = S p αcίs on p variables xl9 x2, . . ., xp o/ ί/ie polynomial f In

particular π,(w/) = ε(w)π,/, w G W^Γ.

(2) For a monomial xa = x j 1 ^ 2 *' * χpp e Λ^β (α G

<5 = (p — 1, p — 2,.. ., 1, 0) G 7VP. /n particular if λ e Np is a partition,

i.e. λ1>λ2> >λp>0 then

π{(xλ+δ) = det (cλ>_i+j) = det (cλi.i+j)

where we put Cj — (—

PROOF. (1) By 2.3(2), π, = ASr since sΓ = sφsθ. Note that sΓ is the ele-

ment of maximal length in WΓ = S p and ASr acts on the first p variables
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xu . . . , xp of a polynomial in R by definition of the A -operator. Then our

assertion follows from 1.11.

(2) Since aδ(xl9...9xp) = Πi<«;<p(*ί - χj) = ΓL 4+n<r>« we know that
for a monomial xΛ (α e Np).

π,(xα) = aΛ(xu . . ., xp)/aδ(xu . . . , xp) = 5α_ a(x l 5..., xp),

by the very definition of the Schur function. Note that Sa-δ{xl9..., xp) is a

symmetric polynomial of x 1 ? . . . , xp and so it belongs to RWφ = H*(G/PΦ). We

shall express it by the Chern classes cf and cj. Now there is a partition

λ e W and we<Zp such that w α = λ Note that π,(xw α) = π^~ιxa) =

ε(w)πι(xα). We thus consider π,(;x;α) for a strict partition α = A + δ. In view

of 3.1 we know that for the last identity, it suffices to show that

hj(xί,..., xp) = ( - iy£f/(xp+1,..., xn)

in R = R/J = β [x i , . . . , xJ/(e l 5 . . . ,O since cf = ^(x^..., xp) and cj =

^.(xp+1, ...,xn). Let £1(ί) = Π f = i ( 1 + ^ ί ) a n d ^2W = Πi=P+i( 1 + x i ί ) b e

generating functions of er{xl9..., xp) and βr(xp+1,..., xΠ). Then we have

in

Let flΊίί) = f]f=1 (1 — Xfί)"1 be the generating function of hr(xί9..., xp).

Then fi^-OH^ί) = 1. Hence we obtain that Hx(t) = ^ i ( - ί ) " 1 = E2(-t) in

]> which implies our identity. •
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