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ABSTRACT. For a subset C of bidual Banach spaces, we introduce the notion of C-Pettis

integrability of Gelfand integrable functions, a general notion of Pettis integrability of

such ones. We show that a geometric property called weak*-C-dentability assures the

decomposability of bounded weak*-measurable functions taking their ranges in dual

Banach spaces into a C-Pettis integrable part and a weak* scalarly null part. Some

related results follow from this.

1. Introduction

We begin with the requisite definitions. Throughout this paper, X denotes
an arbitrary real Banach space, X* and X** its topological dual and bidual,
respectively, and B(X) the closed unit ball of X. The triple (S,Σ,μ) refers
to a complete finite measure space and Σ+ to the sets in Σ with positive μ-
measure. In the following we always assume that S is endowed with Σ and
μ. For each EεΣ+, denote ΔE = {χF/μ(F) : F c E,F eΣ+}. If C is a
subset of X**, a function / : S —» X* is said to be C-measurable if the real-
valued function (x**,f(s)) is //-measurable for each x** e C. Especially, if
C = B(X] (resp. C = B(X**)), we say that/ is weak*-measurable (resp. weakly
measurable). A function /: S —» X* is said to be weak* scalarly null if
(x,f(s)) = 0 μ-a.e. on S for every x E X. We say that a function / : 5 —» X*
is weak*-equivalent to a C-measurable function g : S —> X* if / — g is weak*
scalarly null. A weak*-measurable function / : S —> X* is called Gelfand
integrable if x of e L\(S,Σ,μ) for every x e X, where (x of)(s) = (x,f(s)) for
every s e S. If / : S —> X* is a Gelfand integrable function, by the closed
graph theorem, we then obtain a bounded linear operator 7/ : X —» L\(S,Σ,μ)
given by Tf(x) = x of for every x e X, and the dual operator of 7/ is denoted
by ΊJ(\ Ln(S,Σ,μ) -> X*). If A is a bounded subset of X, A* denotes the
weak*-closure of A in X**. If K is a subset of X*, cδ*(K) denotes the weak*-
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closed convex hull of K. For a subset C of X** and a Gelfand integrable

function/ : S —> X*, let us define C-Pettis integrability o f f as follows. This is
a generalization of Pettis integrability of such functions.

DEFINITION 1. Let C be a subset of X** and /: S -> X* a Gelfand
integrable function. Then / is called C-Pettis integrable if the following two
conditions are satisfied.

(1) For every *** e C, x** of e Lι(S,27,/ι),
(2) For each EeΣ, it holds that

for every x** e C.
Especially, if C = lίpΓ*), such a function is called Pettis integrable. That

is, a Gelfand integrable function / : S —>• A'* is called Pettis integrable if
x** o/ εL\(S, Σ,μ) for every x** e X** and moreover for each EeΣ there

exists an element x*E of ^* that satisfies

**,*£) = f (***,
j£

for every x**eX**.

Note that C-Pettis integrability of Gelfand integrable functions / is a
significant notion only when X ^ C, since it holds that (x, TJ(χE)) =
§E(x,f(s))dμ(s) for every EeΣ and x e X. So we always assume this
condition. We then define a function to be C-Pettis decomposable as follows.

DEFINITION 2. Let C be a subset of JT* and / : S -> X* a weak*-

measurable function. Then we say that / is C-Pettis decomposable if there
exist functions g and h such that g is C-Pettis integrable and h is weak* scalarly

null and / = g + h.

Now, in this paper, let us consider the following problem: Given a subset

C of X** and a bounded weak*-measurable function / : S —> X*. What
conditions assure the C-Pettis decomposability o f/? In [10] and [2], such
a type problem has been considered in the case where C = B(X**). In fact,
Talagrand has obtained a result (cf. (b) of Proposition (7-3-15) in [10] or
Theorem 3 in [2]) concerning this by making use of a measure theoretic
property, so-called the RS-property.

Here, suggested by an approach due to Girardi and Uhl [5] for a simpler
proof of the fact that dentability implies the Radon-Nikodym property, we
pay attention to a following geometric property of subsets in dual Banach
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spaces. This has been introduced in [3] and is a generalization of weak*-scalar

dentability of subsets in dual Banach spaces.

DEFINITION 3. Let AT be a bounded subset of X*. A weak* -open (resp.
weak*) slice of A' is a set of the form:

5(x, α, K) = < x* e K : (jc, jc*) > sup (jc,/) - α I

( resp. S(x, α, A') = x* e A: : (jc, **) ^ sup (*,/) - α ]
V I >*6* J /

where x e ̂  and α > 0.
Let C be a subset of JΓ**. Then the set K is said to be weak*-C-dentable

if for every ε > 0 and *** e C, there exists a weak*-open slice S(x, α, K) of AT

such that O(x**\S(x,aι,K)) (= sup{|(x**,x*) - (x**,/)| : x*,J>* e S(x,α, AT)}, the
oscillation of jc** on S(x, α,AΓ)) < ε.

If K is weak* -J?(Jf**) -deniable, then AT is said to be weak*-scalarly

deniable.

Note that the set K is weak*-C-dentable if and only if for every ε > 0 and

x** e C, there exists a weak* slice S(x,aι,K) such that O(x**|S(x,α,ΛΓ)) < ε,
since »S(x, α/2, AT) c= ^(x, α, AT) c S(x, α, AT) for every x e X and α > 0.

Further, following [4], for a bounded weak*-measurable function
f : S ̂  X* and E e Σ WQ define the weαΛ;*-ίwe of / over E, denoted by
corjf(^), to be a subset of X* given by

: μ(A) - 0}.

Then we know from Proposition 1 in [1] that cor^(E) is a nonempty weak*-
compact convex subset of X* and cotf(E) = cδ (Tf(ΔE)} for every EeΣ+.
Observing Andrews's way in [1] (or our way in [8]) carefully, we are aware that
this geometric property (weak*-C-dentability) of corftE) is an effective means
to an end. Indeed, we can show that the notion of weak*-C-dentability
presents a geometric sufficient condition insuring the C-Pettis decomposability
of bounded weak*-measurable functions taking their ranges in dual Banach
spaces. That is, we have the following Theorem, which is the main result of
our paper.

THEOREM. Let C be a subset of X**, (S, Σ, μ) a complete finite measure
space and f : S — > X* a bounded weak* -measurable function. Assume that the
set coTj (E) is weak*-C-dentable for every E e Σ+. Then f is C-Pettis
decomposable. Especially, when C = B(X**), f is Pettis decomposable if the set
cor (E) is weak*-scalurίy deniable for every E e Σ+.
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Our proof of Theorem is given by a more strict argument than in one of

the fact that (c) implies (d) in Theorem of [8]. It heavily depends on the
theory of lifting ([6]) and the exhaustion argument. §2 is devoted to the proof

of Theorem. In §3, as an application of Theorem, we give new characteri-

zations of AΓ-weakly precompact sets A (see definition in §3) in terms of A*-

Pettis decomposability.

2. Proof of Theorem

Let us recall the definition of the lifting on L00(S,Σ^μ). A lifting p of

Loo (S, Σ, μ) is a map: LOO (S, Σ, μ) — > M(S, Σ, μ) (the set of all bounded μ-
measurable functions on S) that is linear, multiplicative, positive such that

/>(!) = !, and such that /?(/) belongs to the class of / for each fe

Lao(S,Σ,μ). On (S,Σ,μ), such liftings exist and so we always take an

arbitrary, but fixed lifting p. For each E e Σ, p(χE) is the characteristic

function of a uniquely determined set belonging to Σ, which is denoted by

p(E). So we have χp^ — p(χE) for each E e Σ. The map p : Σ — > Σ thus

obtained satisfies that (1) p(E) = E, (2) p(E) = p(F) if E = F, (3) p(S) = S,

p(Φ] = Φ, (4) p(E n F) = p(E) n p(F), and (5) p(E u F) = p(E) u p(F). Here
E = F(E,Fe Σ) means that μ((E\F) u (F\E)) = 0.

Let / : S —> X* be a bounded weak*-measurable function such that

11/^)11 ^ L on S. Then, in virtue of the lifting theory, we have a weak*-

measurable function θ(f) : S -> X* such that (x,θ(f)(s)) = p(xof)(s) for

every x e X and every s e S. Note that sup(x, θ(f)(s)) = ess — sup(;c, f ( s ) ) for
seE seE

every E e Σ+ with p(E) = E, \\θ(f)(s)\\ ^ L on S and θ(f) is weak*-equivalent
to /. Hence, in order to prove Theorem, we have only to show that θ(f) is C-

Pettis integrable under the assumption that the set cor^(^) is weak*-C-dentable
for every E e Σ+. To this end, we first prove the following Lemma 1, which is

suggested by the part (iv) of proof of Theorem in [8] and whose proof is the

almost same as in it. But, for the sake of completeness, we here wish to state

the proof.

LEMMA 1. Assume the same conditions as in Theorem. Then, for every

x** e C, E e Σ+ and ε > 0, there exists an element F of Σ+ with F c: E such that

PROOF. Take x** e C, E e Σ+ and ε > 0, and set D = p(E) (e Σ+). Since

Af(= coff(D) = cδ*(7J?(Λ/)))) is weak*-C-dentable by the assumption, there
exists a weak* slice S(x, α, Λf) such that O(x**\S(x, α, M)) < ε. Then we have
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that

= x* 6 M : (x,x*) ^ sup (x,/) - α
[ >>* e M J

= < x* e M : (x, x*) ̂  sup (x, /*) - α >
(̂  ^*eΓ;(JD) J

= jx* e M : (x,x*) ^ supQ (xJ(s}}dμ(s)/μ(G] : G c D, G e 2rΛ - αj

= < x* e M : (x, x*) ^ ess — sup(x, f ( s ) } — α >
I *€/) J

- jx* e M : (x,x*) ^ sup (x, #(/)(*)) - αj
I sεD )

since p(D) = D. Set F0 - (/ e D : (x, θ(f)(ή) ^ sup(x, β(/)(j)) - α j. Then
I ίe^ J

Foe27+, since sup(x, θ(f)(s)) = ess — sup(x, θ(f)(s)). Furthermore we have
seD sεD

that θ(f)(Fo) c= Λf. Indeed, suppose that there exists an element t of FQ such
that θ(f)(t) E M. Then, by the separation theorem, there exists an element a
of X such that

(a,θ(f)(t))>β= sup(β,/)

= ess —

which is a contradiction. Thus we know that θ(f)(Fo) ci 5(x, α, M) and
so co*(0(/)(Fo)) c= 5(χ, α, M), since S(x,a,,M) is a weak*-compact convex
subset of JT*. Hence it holds that O(x**|co*((9(/)(F0))) ^ O(jc**|S(x,α,Af))
< e. Finally, letting F — F^r^E, we know that F is a desired set, as
D = p(E) = E. This completes the proof.

In virtue of Lemma 1 and the well-known exhaustion argument, we easily
have:

LEMMA 2. Assume the same conditions as in Theorem. Then, for every
x** e C, E e Σ+ and ε > 0, there exists a disjoint sequence (possibly finite)
{Fn}n^l of subsets of E, all of positive μ-measure, such that μ(E\{Jn^ i Fn) = 0
and (9(x**|co*((9(/)(FM))) < ε for every n^l.

Now we are in a position to prove Theorem.
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PROOF OF THEOREM. Set θ(f) = g and take an element x** of C. In
order to show that x** og εL\(S,Σ,μ), we have only to prove that it
is //-measurable, since g is a bounded function on S. This is easily
proved as follows. Take any positive number ε. Then, in virtue of Lemma
2, there exists a disjoint sequence {Fn}n^ l a Σ+ such that μ(S\\JΛ^ιFn)
= 0 and O(x**\cδ*(g(Fn))) < ε for every n^l. Hence, letting h(s) =
Σ^ι***(<kF>) (Here, x*neg(Fn) for every n ̂  1), we get that
|x** o g(s) - h(s)\ < ε μ-a.e. on S, since O(x** o g\Fn) = O(x**\g(Fn)) ^
O(x**\cδ*(g(Fn))) < ε for every n ̂  1. This implies the μ-measurability of
X** o g.

Next let us show that

for every x** e C and E e Σ. Take x** 6 C and E e Σ. Since this equality
clearly holds if μ(E) = 0, we may assume that E e Σ+. Let ε > 0. In virtue
of Lemma 2 there exists a disjoint sequence {En}n>λ of subsets of E, all of
positive //-measure such that μ(E\(Jn^ιEn) = 0 and O(x**\c5*(g(En))) < ε for
every n ̂  1. So, letting 0* = T*(χEn)/μ(En) for every « ̂  1, then we have that
0* e co* (g (En)), which is easily shown by the separation theorem. Further it
holds that Σn^\μ(En) a*n = T*(χE), since for every x e X and every k ^ 1

(x,g(s))dμ(s)- (x,g(s))dμ(s)
JEn JE

So we have that

On the other hand, we have by the dominated convergence theorem that

f (^g
JE

Hence we have that

"X) - ί (***,
JEa
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gΓn>! f \(*",<Q-(jr,g
JE,

ZΣ,,*! f 0(X**\c<?(g(En)))dμ(s)
JE,

Since ε is arbitrary, we have that

Thus the proof of Theorem is completed.

In virtue of Theorem, we easily have:

COROLLARY 1. In Theorem, assume further that X is separable. Then f is
C-Pettis integrable.

3. K-weakly precompact sets

Let A be a bounded subset of X and K a weak*-compact (not necessarily
convex) subset of X*. Then we say that A is K-weakly precompact if every

sequence {xn}n>\ in A has a pointwise convergent subsequence {xn(k)}k>\ on

K, (that is, for every x* e K, lim^oo(*«(&)?**) exists). In the recent paper [8],
we have made a study of A^-weakly precompact sets A and have obtained
various characterizations of such sets, which can be regarded as generalizations
and refinements of some results in [3].

Now we are going to note in the following Corollary 2 that our Theorem
also yields some more characterizations of A'-weakly precompact sets A. The
main part of this Corollary 2 is the equivalence among the statements (1), (2)
and (3) (especially, (2) implies (3)). That is, we ought to take notice that
characterizations of such sets in terms of ^Γ-Pettis decomposability can be
obtained by the medium of the notion of weak*-vί*-dentability. In Corollary
2, [0,1] is endowed with the σ-algebra of all Lebesgue measurable subsets of
[0,1] and the Lebesgue measure.

COROLLARY 2. Let A be a bounded subset of X and K a weak*-compact
subset of X*. Then the following statements about A and K are equivalent.

(1) The set A is K-weakly precompact.
(2) For every (5,27, μ) and every weak*-measurable function f : S —> K,

the set CO*(T^(AE)) is weak*-A"-deniable for every EeΣ+.
(3) For every (S,Σ,μ) and every weak*-measurable function f : S —> K, f

is A*-Pettis decomposable.
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(4) Every weak* -measurable function f : [0, 1] — > K is A* -Pettis decom-
posable.

(5) For every (S, Σ, μ) and every weak* -measurable function f : S — > K, f
is weak* -equivalent to a A* -measurable function.

(6) Every weak* -measurable function f : [0, 1] — » K is weak* -equivalent to
a A* -measurable function.

PROOF. (1)=>(2). This can be shown by the same argument as in the
corresponding part of Theorem in [8].
(2)=>(3). This immediately follows from Theorem by setting C = A*.
(3) =φ (4) =* (6) and (3) =* (5) => (6). These are clear.
(6) =>(!). This has been obtained in Theorem of [8]. Hence the Corollary 2
holds.

REMARK. We wish to note here that the implication (1) => (3) also can be
proved by the effective use of the Bourgain property. The outline of its proof
is as follows. Assume (1). Then, by the same argument as in Lemma 1 of
[7], we first know that the family { χ o θ ( f ) : x e A} has the Bourgain prop-
erty. Hence, by the same argument as in Theorem 13 of [9], θ(f) is ^4* -Pettis
integrable. So (3) holds. Furthermore, we easily get by this observation and
the argument developed in the proof of Theorems in [7] and [8] that every
statement in Corollary 2 is equivalent to each of the following statements (α),

05), (y) and (ό).
(α) For every (S, Σ, μ) and every weak*-measurable function / : S — > K,

{ χ o θ ( f ) :xeA} has the Bourgain property.
(β) For every weak*-measurable function / : [0, 1] —> K, {xo θ(f) :

x E A} has the Bourgain property.
(y) For every weak*-measurable function / : [0, 1] — » K, {x ofn : xe A,

n ^ 1} has the Bourgain property (Here fn is the usual dyadic martingale
associated with /).

(S) For every weak*-measurable function / : [0, 1] — > K,

inf < sup \\xofn - χofn+ι\\{ I = 0 (Here || \\λ denotes the Li-norm).
n*l(xeA )

In virtue of Corollary 2, we can obtain characterizations of Pettis sets,
weak Radon-Nikodym sets and weakly precompact sets (see definitions of these
notions in [8]) in terms of A* -Pettis decomposability, by varying A and K. For
instance, setting A = B(X), we have the following Corollary 3 on Pettis
sets. As the other cases are analogous, we omit statements in them.

COROLLARY 3. Let K be a weak* -compact subset of X*. Then the
following statements about K are equivalent.
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(1) The set K is a Pettis set.
(2) For every (S, Σ, μ) and every weak*-measurable function f : S —> K,

the set CO*(T^(AE)) is weak*-deniable for every EεΣ+.
(3) For every (S, Σ,μ) and every weak*-measurable function f : S —» K, f

is Pettis decomposable.
(4) Every weak*-measurable function f : [0,1] —> K is Pettis decomposable.
(5) For every (S, 27, μ) and every weak*-measurable function f : S —> K, f

is weak*-equivalent to a weakly measurable function.
(6) Every weak*-measurable function f : [0,1] —» K is weak*-equivalent to

a weakly measurable function.
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