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ABSTRACT. Schur’s Q-functions with reduced variables are discussed by employing a
combinatorics of strict partitions.. They are called reduced Q-functions. We give a
description of the linear relations among reduced Q-functions.

0. Introduction

Q-functions were introduced by Schur in his study of projective represen-
tations of symmetric groups. They are symmetric functions and, if we express
them in terms of the power sum symmetric functions, each coefficient essen-
tially gives the spin character of the symmetric group. This note deals with
the r-reduced Q-functions which are defined by putting p;,, =0 for j=1, 3,
S, ... in the power sum expression. When r =p is a prime number, they
play a role in p-modular projective representations of symmetric groups.

In a previous work [8] we showed that r-reduced Q-functions are weight
vectors of the basic representation of the affine Lie algebra A2 (r =2t + 1)
and chose a proper basis for each weight space.

To be more precise, let «; (resp. ;') (0 <i <t) be the simple roots (resp.
coroots) of the affine Lie algebra A% and § = 2 'b o; + «, be its fundamental
imaginary root. The irreducible representation with highest weight A, is
called the basic representation, where Aq(a;’) = d;,. The set of weights is
described by

P={wd,—nd;we W,ne N},

where W is the Weyl group. This basic representation can be realized on
the polynomial ring C[t;j > 1, odd and j# 0 (modr)]. In this realization
each r-reduced Q-function turns out to be a weight vector. We answered in
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[8] the question to which weight the given r-reduced Q-function belongs, by
using a combinatorics of strict partitions, ie., bar cores and bar quotients.
By virtue of the above result we can fully investigate the r-reduced Q-
functions themselves. The result in this note is an explicit description of the
linear relations satisfied by r-reduced Q-functions. We remark that such a
description has been obtained for r-reduced Schur functions [1,2].

1. Combinatorics of strict partitions

We first present a collection of definitions and results concerning strict
partitions and Schur’s Q-functions, mainly referring to Macdonald’s book [5].

We denote the set of all partitions of n by £, and the set of all partitions
by # A partition 4 = (44, ..., 4,) is said to be strict if A; > 1, >--> 4, >0.
We denote the set of all strict partitions of n by #% and the set of all strict
partitions by 2.

To each element A € 2 we can associate the shifted diagram S(1), which
is obtained from the ordinary Young diagram of A by shifting the i-th row
(i — 1)-positions to the right. The j-th cell in the i-th row will be called the
(i, j)-cell. Let (i,j)e S(4) and k >i. The set of cells (a, b) € S(1) is called an
(i, j)x-bar of A if it satisfies that a =i or k and b >j, and that the diagram
obtained by the removal of these cells has no two rows of equal length. Then
we have two types of (i, j),-bars: (i) if k > i, there is an (i, j),-bar only when
j=1, in which case it consists of the i-th and k-th rows, and (i) if k =i,
there is an (i, j),-bar only when j— 1# A, for a’ >i+ 1. For instance, we
illustrate (2, 2),-bar and (1, 1);-bar of 1 = (7, 5, 4, 2), which are shaded, respec-
tively:

L

The length of a bar is the number of cells it contains. A bar of length r
will be often called an r-bar. Throughout this note we always assume that
r is an odd number. ‘

A strict partition is called an r-bar core if it contains no r-bars. Given
a strict partition A we obtain another strict partition by removing an r-bar
and rearranging the rows in descending order. By repeating this process as
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long as possible we shall end up with an r-bar core A°, which is called the
r-bar core of A
For 0 <i <r— 1 we define sequences

X'(A) = {xeN; A4 =rx + i for some k}.

The r-bar quotient A1 = (A° A',..., A") (t = (r — 1)/2) is a (t + 1)-tuple of parti-
tions given by A°= X°) and A' = (X'(1)|X""'(1)) (1 <i<t) in Frobenius
notation. Note that A° is a strict partition. We remark that any r-bar core
and r-bar quotient uniquely determine a strict partition [9]. Since this is a
one-to-one correspondence, we often write (4°, A) instead of 4, e.g., Q;c, 14)(x),
etc.

We introduce the r-bar sign for strict partitions. Let H be the (i, j),-bar
of length r in 1e ## The leglength of H is defined by

Mo+ #la; 4>, >4 if k>i

b(H)={#{a;A,->/1a>i,-—r} if k=i

If the strict partition u is obtained from A by removing r-bars H;, H,, ...,
H, successively, then the r-bar sign of A relative to p is defined by

i 1) = T (= 1P

We set 0:(A) = d:(4, A°) and call it the r-bar sign of .. We should remark that
0:(A, u) does not depend on the choices of r-bars being removed in going
from 1 to u [6].

Let A, denote the graded Q-algebra of symmetric functions in countably
many independent variables x = (x;, X,,...). Among various bases of A4,
the Schur functions s,(x) (4 € #) are convenient for our purpose. Let I'yp be
the subalgebra of 4, generated by p,, p;, ps, ...;

FQ= Q[pl’ D35 Dss ]’

where p; = x{ + x{ + -+ is the j-th power sum.

Schur’s Q-functions Q,(x) (A € #) are defined by specializing to t = —1 in
the Hall-Littlewood symmetric functions Q,(x;t). This specialization implies
that Q,(x) =0 unless 1€ 2. It is known that {Q,(x); A € 2P} gives a basis
of I'y. When A= (4y,...,4;) is a strict partition and u = (d,q), ..., 4sq) for
o€ S, then we define Q,(x) = sgn(u)Q,(x), where we define sgn(u) = sgn(o).

The Q-functions are related to the power sums via the character values
of the symmetric group. An explicit expression is given as follows. Let {,(n)
(A e £2) be the value of the irreducible projective character {; of the symmet-
ric group &, at the class m = (1"3%5% ---) and set z, = [];»; m;!j% Then
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we have

Q;(x) = Y, 2MWH@TIR AL (mpTp3pse -
T

where the summation runs over all odd partitions 7 = (1%13%35%s---) of size
n, and I(A) denotes the length of the partition A.
The following formula is of importance for our purpose.

THEOREM 1.1. Let j>1 be odd and A= (4,,..., )€ FP. Then

1 G=12 , 1 !
ijl(x) = 7 i; (— 1)'Q(;.;j—i,i)(x) + EQ(;.;J)(J‘) + ; Q}.+j5,—(x)$

where (A;j — i, i) =Ay,...s Aj— 6, 0), (AJ) =4y, AJ) and & = (Ou)1 <k<i-

This is a direct consequence of [4, Theorem 2.4] by looking at the correspon-
dence between removal of strips and/or double strips [4] and that of j-bars.

2. Reduced Q-functions and their linear relations

Let I'§) = Q[p;;j =1, odd and j# 0 (modr)] and define the r-reduced
Q-function indexed by the strict partition A by

09(X) = Q20 =py=ps,= =0 € TS

PROPOSITION 2.1. Let A be a strict partition and 29 = (A% ..., ") (t=
(r — 1)/2) be the r-bar quotient of A. Then the set {QP(x); A° = &} gives a
basis of I .

To prove this proposition we need the following lemma.

LEMMA 2.2. Let V be an infinite dimensional Q-vector space with basis
{v;; Ae PP} and define v,, = sgn(o)v, for permutations o; v, =0 if L¢ SP.

(1) If we set
1 G=12 , 1 1)
Vi=V] Y Ol Y |5 X (=Dvgjoin +50an + 2, Vasie ) )s
Ae P Jj=1,0dd 2 i=1 2 i=1

then V; = Q.
(2) If we set

{wi=bz 1 1)
V=V Y 0 ¥ (5 % (—DvgmiointaOamp+ 2 Vateie, ) )
jzioaa\2 =1 2 &

ie P

then V, = I§.
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Proor. (1) There is a canonical linear surjection y from Iy to ¥; which

maps Q,;(x) to v, for Ae % The kernel of y coincides with the maximal
ideal # = (p,, p3, s, --.) because of Theorem 1.1. Since the algebra I'y/.f is
isomorphic to Q, so is V.
(2) Consider a linear surjection y: I'p — ¥, defined by y*(Q,(x)) = v, for
e PP If we set £ = (p,, Pss» Pss»--.), then by Theorem 1.1, we see that
y"(#P) = 0 and can define a linear surjection 7”: I'y/#® — V,. On the other
hand we can define a linear surjection : V, - I'§’ by n(v;) = Q9(x) for A € #2.
The composition 1o 77: I/ —» I'Y gives a linear isomorphism. Hence #
is a linear isomorphism as desired. W

PrOOF OF PROPOSITION 2.1. We give a proof only for the case r =3 in
order to avoid the too complicated notation. The general case can be shown
by similar arguments [7].

First we shall see that the set {Q{¥(x); A° = &} spans I'$¥. We introduce
a filtration on I'yY by F,I'§Y = ) I; Q03 ;0.21(x) and the associated graded

H <n

module F(I'yY):= @ F,I'§/F,_,I'§, where F_,I'$) = {0}. For any positive
n>0
odd integer j the 3-reduced Q-functions Q% (x) satisfy

1 Gi-1)2

1A
0= 3 Zi 03)35-i,5(x) + 5 Q(A 3p(x) + ;1 Q(Aslsje,-(x)

16 1(A°)
E Z, (zc (A9;j—i, i), Al)(x) + = Q(Ac (A%; j), i.l)(x) + Z ng,}.0+js,~,ll)(x)

1Al

1
) Y 0@y + Y, QG 10, a04(%).
i#0 (mod 3) i=1

If we write 09(x) = QP(x) + F,_, I'§ for |A°| = n, then we see that in F(I'g»),

1(29) 1o _ .
Z QR 104jey, 1 (%) + 5 Q().c @0y, (%) + ) O (10, j-1,,an(x) = 0

i=1
By applying Lemma 2.2 (1) it turns out that Z QQ}}Z 20.1(%) = Q03 5 a1y().

This proves that {Q(x); A° = &} spans I'§ ‘3’

By looking at the one-to-one correspondence between the strict partitions
and the tuples of r-bar cores and r-bar quotients, we see that the number
of those strict partitions A € 2, such that A° = (¥ coincides with the dimen-
sion of the subspace of homogeneous polynomials of degree n in I'§’, where
we count deg p; =j. This completes the proof. W

We shall state the linear relations satisfied by the r-reduced Q-functions.
To this end, we define two types of Littlewood-Richardson-like coefficients
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Ca, Ay ooy 4, veFP) and by, (Ae SP, pu, v e P), respectively by
0,(x) Q)= Y & ...,0.x)
ve P

PA(X)S"(X) = Z ;usv(x)’

ve P

where we set Pi(x) =27'Q,(x) for Ae ¥ 1t can be shown that &} ..,
and hj, are non-negative integers [3].

THEOREM 2.3. Let A be a strict partition, A* and 11 = (1% A%,..., A") be
its r-bar core and r-bar quotient, respectively. Then

1) 0 - ~20 1 t
QP (x) = QDM _1)Rl5 7)Y 2 UWRIg()ER0 | e 00 (),

BsVisenns Ve
where summation runs over the strict partitons v,,...,v, and p such that |u| =
[Al, u¢=4° and p° = .

Proor. Again we give a proof only for the case r = 3. For the general
case we should notice the following identity:

Pv(x(1)9 x(Z)’ srey x(t)) = Z N Exl---}.,Pll(x(l))P).Z(x(Z)) o P).t(xm),

where the summation runs over the strict partitions 4,,...,4,. Here (x,
x@, ..., x9) are t sets of variables and P,(x'V,..., x?) denotes the P-function
v
: : L
in the set of variables (x{*, x{V, ..., x{, x?, ..., x®, x9,...).
Set

Fy(x) = sgn(@)20® 1003 — 1)3165(3) 3 2700 o)t 0 ().
m

We shall prove that
GBj-1/2 I(4)

; 1
; (= 1YFy,35-i,5(x) + iF(A;sj)(x) + Zi Fii35(x)=0

for any positive odd integer j. For our purpose it is enough to show that
the coefficient of Q(¥(x) vanishes for each pe ##2 Since Corollary (3.8) in
[6] leads to

85(4, 4)

(sgn(4) sgn (%) for I=21+3je; (k=0,1, i=1,...,1(4)

) sgn(2) sgn(1°) for 1 = (4; 3j) and (4; 3j — 3j", 3j") (j' SL_2_1>

(— 1) sgn(d) sgn(A!) for 1 = (4 3j —i, i) (i < 3 2_ 1, i # 0 (mod 3)),

-
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our equation can be rewritten as follows:

1 ) -
y z 22(—1) sgn((A°%j — i, D))(— 1Y h{so,5-i,iya0

25

1 . \ 1 . _—
+ 3 i¢o<§'od N 2sgn((4; 3j — i, l)l)h‘iOu;sj—i,i)l + 5 sgn((2% j))2(— 1Yhs0, jya0

+ Z sgn((4 + 3j8i)0)(_ l)jhf‘;+3js,.)0).l + Z sgn((4 + 3j8i)1 )h‘}‘.‘l’(l+3je,~)1

=0.

Multiplying both sides by s,:(x) and taking summation over u', we see that
the equation reduces to

11 . 1
(-1 {i Z (— 1'Q20,j-i,1(X)521(x) + EQ(}.O;j)(x)Sll(x) + ; Ql°+jei(x)sll(x)}

i<j/2

+ {Z Q10(x)$314je,(X) + ; QAO(x)S(A,aj—i,i)l(x)} =0.
! ii(;(lil/gdii)

Note that there is a one-to-one correspondence between the 3j-bars in A and

the j-bars in A7 = (A° A') (a j-bar in A? means a j-bar in A° or a j-hook in

A'). Hence we have

’"(ijAO(x))Sll(x) + Q;.o(X)(ij;'x(X)) =0.

By Lemma 2.2 (3) there exists a linear isomorphism sending F,(x) to
0%¥(x) and it turns out to be the identity since Q%)(x) equals F,(x) for the
basis given in Proposition 2.1. W
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