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ABSTRACT. Schur's β-functions with reduced variables are discussed by employing a

combinatorics of strict partitions. They are called reduced Q-functions. We give a

description of the linear relations among reduced β-functions.

0. Introduction

β-functions were introduced by Schur in his study of projective represen-
tations of symmetric groups. They are symmetric functions and, if we express
them in terms of the power sum symmetric functions, each coefficient essen-
tially gives the spin character of the symmetric group. This note deals with
the r-reduced β-functions which are defined by putting pjr = 0 for j = 1, 3,
5, ... in the power sum expression. When r = p is a prime number, they
play a role in p-modular projective representations of symmetric groups.

In a previous work [8] we showed that r-reduced β-functions are weight
vectors of the basic representation of the aίfine Lie algebra A*}} (r = 2t + 1)
and chose a proper basis for each weight space.

To be more precise, let αf (resp. α f

v) (0 < i < t) be the simple roots (resp.
coroots) of the affine Lie algebra A(£ and δ = 2^jloα ί + α, be its fundamental
imaginary root. The irreducible representation with highest weight A0 is
called the basic representation, where Λ0(α£

v) = δi0. The set of weights is
described by

p = {wΛ0 -nδ',weW,ne N},

where W is the Weyl group. This basic representation can be realized on
the polynomial ring C[tj'9j> 1, odd and JΦQ (mod r)]. In this realization
each r-reduced β-function turns out to be a weight vector. We answered in
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[8] the question to which weight the given r-reduced β-function belongs, by
using a combinatorics of strict partitions, i.e., bar cores and bar quotients.

By virtue of the above result we can fully investigate the r-reduced Q-
functions themselves. The result in this note is an explicit description of the

linear relations satisfied by r-reduced β-functions. We remark that such a
description has been obtained for r-reduced Schur functions [1, 2].

1. Combinatorics of strict partitions

We first present a collection of definitions and results concerning strict
partitions and Schur's g-functions, mainly referring to Macdonald's book [5].

We denote the set of all partitions of n by ̂  and the set of all partitions

by .̂ A partition λ = (λl9..., Λ,/) is said to be strict if λ1 > λ2 > > λl > 0.
We denote the set of all strict partitions of n by Sf9n and the set of all strict
partitions by £f&.

To each element λ e tfgP we can associate the shifted diagram S(λ), which
is obtained from the ordinary Young diagram of λ by shifting the i-th row
(i — Impositions to the right. The j'-th cell in the i-th row will be called the
(U)-cell. Let (i,;) ε S(λ) and k > i. The set of cells (α, b) ε S(λ) is called an
(ij)k-bar of λ if it satisfies that a = i or k and b >;, and that the diagram
obtained by the removal of these cells has no two rows of equal length. Then

we have two types of (/,j)k-bars: (i) if k > i, there is an (i,7')k-bar only when
7 = 1, in which case it consists of the i-th and fe-th rows, and (ii) if k = i,
there is an (i,7')k-bar only when j — 1 φ λa. for a' > i + 1. For instance, we
illustrate (2, 2)2-bar and (1, l)3-bar of λ = (7, 5, 4, 2), which are shaded, respec-
tively:

The length of a bar is the number of cells it contains. A bar of length r
will be often called an r-bar. Throughout this note we always assume that
r is an odd number.

A strict partition is called an r-bar core if it contains no r-bars. Given
a strict partition λ we obtain another strict partition by removing an r-bar
and rearranging the rows in descending order. By repeating this process as
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long as possible we shall end up with an r-bar core λ€
9 which is called the

r-bar core of λ.
For 0 < i < r — 1 we define sequences

Xl(λ) = {x e N; λk = rx + i for some k}.

The r-bar quotient λq = (A°, A 1 , . . . , λ') (t = (r - l)/2) is a (ί + l)-tuple of parti-
tions given by λ° = X°(λ) and λ1 = (X\λ)\Xr-\λ)) (\<i< t) in Frobenius
notation. Note that λ° is a strict partition. We remark that any r-bar core
and r-bar quotient uniquely determine a strict partition [9]. Since this is a
one-to-one correspondence, we often write (λc, λq) instead of λ, e.g., Q(λctλq}(x)9

etc.
We introduce the r-bar sign for strict partitions. Let H be the (ΐ,y')fc-bar

of length r in λ e £f0>. The leglength of H is defined by

λ*+ #{fl;*ι >*->**} if k>i

#{a;λi>λa>λi-r} if k = i.

If the strict partition μ is obtained from λ by removing r-bars Hί9 H2, ...,
//4 successively, then the r-bar sign of λ relative to μ is defined by

We set δf(λ) = δf(λ, λc) and call it the r-bar sign of λ. We should remark that
δf(λ, μ) does not depend on the choices of r-bars being removed in going
from λ to μ [6].

Let A Q denote the graded β-algebra of symmetric functions in countably
many independent variables x = ( x ί 9 x2, ...). Among various bases of AQ,
the Schur functions sλ(x) (λ e &) are convenient for our purpose. Let ΓQ be
the subalgebra of ΛQ generated by pί9 /?3, p5, ...

where PJ f = x{ H- x{ + is the j-th power sum.
Schur's β-functions Qλ(x) (λ e 0*) are defined by specializing to t = — 1 in

the Hall-Littlewood symmetric functions Qλ(x; t). This specialization implies
that Qλ(x) = 0 unless λ e SS9. It is known that {Qλ(x)ι λ e ¥&} gives a basis
of ΓQ. When λ = (λi9...9λl) is a strict partition and μ = (Aσ(1), ..., λσ(l)) for
σ e Sj, then we define Qμ(x) = sgn(μ)βλ(x), where we define sgn(μ) = sgn(σ).

The β-functions are related to the power sums via the character values
of the symmetric group. An explicit expression is given as follows. Let ζλ(π)
(λ e y0*n) be the value of the irreducible projective character ζλ of the symmet-
ric group Sπ at the class π = (Iπι3π35π5 •••) and set ^π = Πj>ιπjΆ τhen
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we have

Qλ(x) = X 2'«™«>+1^ VCΛπ)PΪ'P?PS' ,
π

where the summation runs over all odd partitions π = (Iπι3π35πs •••) of size

n, and l(λ) denotes the length of the partition λ.

The following formula is of importance for our purpose.

THEOREM 1.1. Let 7 > 1 be odd and λ = (λl9...9 λt) e PP. Then

1 α-υ/2 ι i
= ϊ Σ (~ lyβu -i.oM + όβ<A;/>(*) + Σ QWV

; 7 - i, i) = (A l 9 ..., ^,7 - i, i), (A; 7) = (λl9...9λl9j) and et = ( f̂c

This is a direct consequence of [4, Theorem 2.4] by looking at the correspon-

dence between removal of strips and/or double strips [4] and that of 7*-bars.

2. Reduced (^-functions and their linear relations

Let Γ$ = Q[pj'9j > 1, odd and 7* ̂  0 (mod r)] and define the r-reduced

Q-function indexed by the strict partition λ by

PROPOSITION 2.1. Let λ be a strict partition and λq = (λ°9 ..., Xf) (t =

(r - l)/2) be the r-bar quotient of λ. Then the set {β(

λ

r)(x); λ° = 0} gives a

basis of Γjp.

To prove this proposition we need the following lemma.

LEMMA 2.2. Let V be an infinite dimensional Q-vector space with basis

[vλ\ λ e £fέP} and define vλσ = sgn(σ)ι?Λ for permutations σ; vλ = 0 if λ φ

(1) If we set

\ C/-D/2 1
Σ Q Σ U Σ (-lίV^o + ^

\7>l,odd

then V1 ^ Q.

(2) // we set

\ to'-1)/2 1
Σ e Σ U Σ (-DV^.O+Λ^Λ

then Vr^Γ%\
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PROOF. (1) There is a canonical linear surjection y from ΓQ to V± which

maps βA(x) to vλ for λ e £f&. The kernel of y coincides with the maximal

ideal «/ = (Pι,p3,p5,. ••) because of Theorem 1.1. Since the algebra ΓQ/S is

isomorphic to β, so is Ft.

(2) Consider a linear surjection y(r):ΓQ^Vr defined by y(r\Qλ(x)) = vλ for

λe^^. If we set e/(r) = (pr,p3r,p5r,...), then by Theorem 1.1, we see that

y(r)(J(r}) = 0 and can define a linear surjection y(r): ΓQ/J(r) -*• J^. On the other

hand we can define a linear surjection η: Vr -> Γ%} by η(vλ) = β Γ^x) for λ e ^0*.

The composition η o γ(r): ΓQ/J(r} ->• Γ^Γ) gives a linear isomorphism. Hence η

is a linear isomorphism as desired.

PROOF OF PROPOSITION 2.1. We give a proof only for the case r = 3 in

order to avoid the too complicated notation. The general case can be shown

by similar arguments [7].

First we shall see that the set (β(

Λ

3)(x); λ° = 0} spans Γg\ We introduce

a filtration on Γ£3) by FnΓg} = Y QQ($,iw)(x) and the associated graded

module F(Γg}):= ®FnΓ^}IFn^Γ^\ where F^Γ^ = {0}. For any positive
π>0

odd integer j the 3-reduced β-functions β(

Λ

3)(x) satisfy

l(λ)

Σ

_1 0 'y ) / 2

0(3) 10(3)
2 ί=ι . 2 ' ^

1 /(A 1 )
1 ^ η(3) o , y Q(3) ^ sχ\

If we write β(

A

3)(x) = β(

Λ

3)(x) + F^Γg* for |A°| = n, then we see that in

ί(A°) _ i _ i α-υ/2 _
Σ 6^.Aθ+J.l.Ai)W + ^6{?.(Aθ;Λ.Ai)W + ̂  Σ β}

By applying Lemma 2.2 (1) it turns out that £ ββgU°,Ai)M = βδί λ 0,Ai>W
Λ°ey^

This proves that (β(

A

3)(x); 1° = 0} spans Γ^3).

By looking at the one-to-one correspondence between the strict partitions

and the tuples of r-bar cores and r-bar quotients, we see that the number

of those strict partitions λ e &&„ such that λ° = 0 coincides with the dimen-

sion of the subspace of homogeneous polynomials of degree n in Γfa\ where

we count deg p, = j. This completes the proof.

We shall state the linear relations satisfied by the r-reduced β-functions.

To this end, we define two types of Littlewood-Richardson-like coefficients
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λ^-λt (λl9...,λt,ve^0>) and h\μ (λ e Se», μ, v e 9\ respectively by

Qιί(x) ~Qιt(x) = Σ ^..A tβvW,
ve 5̂

where we set Pλ(x) = 2~l(λ}Qλ(x) for λe^^. It can be shown that cJr..At

and hv

λμ are non-negative integers [3].

THEOREM 2.3. Lei λ be a strict partition, λc and λq = (A°, A1, ..., A') be

lίs r-ftαr core and r-fcar quotient, respectively. Then

μ . V i ..... vt

where summation runs over the strict partitons vl9...,vt and μ such that \μ\ =

|A|, μc = Ac and μ° = 0.

PROOF. Again we give a proof only for the case r = 3. For the general

case we should notice the following identity:

P (γ(l) γ(2) v(ί)\ _ V Λ V P (\-W\P (γ(2)\ P (γW\rv(x ,x , . . . ,x j — 2^ cλί' λt^λl(
χ )rλ2\

x ) ^λt(x j,
λι,...,λ t

where the summation runs over the strict partitions λ ί9...9λt. Here (x(1),

x(2), . . . , x(ί)) are t sets of variables and Pv(x(1), ..., x(ί)) denotes the P-function

in the set of variables (x<£\ x(

2

υ, . . . , y%\ x(

2

2), . . . , x(/>, x§>, . . .).

Set

We shall prove that

(3/-D/2 1 i(λ)
Σ (- l)T(λ;3,_M)(x) + -F(λ;3j)(x) + Σ
i=l ^ i=l

for any positive odd integer j. For our purpose it is enough to show that

the coefficient of <2^3)(x) vanishes for each μ e ίf&. Since Corollary (3.8) in

[6] leads to

sgn(A) sgn(lk) for A = A + 3/β, (fc = 0, 1, i = 1, . . . , /(A))

sgn(A) sgn(A°) for A = (A; 3/) and (A; 3; - 3/, 3/) f/ < J-

(- 1)1 sgn(A) sgnίA1) for A = (A; 3/ - i, 0 ̂  < ̂ ^ , i ̂  0 (mod 3)Y
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our equation can be rewritten as follows:

i X 22(-l)'sgn((A0;7-i,i))(-iy*iio iy_ l f ( )A,
ί<JI2

2 sgn(μ; 3/ - i, OMΛS^w-to + τ sgn((λ°; j))2(- iX*fii

Σ ssn((A

i

= o.

Multiplying both sides by sμι(x) and taking summation over μ1, we see that
the equation reduces to

(-ΪX'U Σ (-lyβμO j-i.oMM*) + ^Q<;10;/>(X)MX) + Σ QAO+^MMXU
I2 i<//2 ^ i }

Aθ(Φ(λ,3;-U)'(*)f = 0.
J

Note that there is a one-to-one correspondence between the Sj-bars in λ and
the 7-bars in λ9 = (A°, λ1) (a j-bar in Aq means a -bar in A° or a -hook in
A1). Hence we have

-(PjβAθ(x))sAι(x) + βΛθW(P, S A^W) = 0.

By Lemma 2.2 (3) there exists a linear isomorphism sending Fλ(x) to
β(

λ

3)(x) and it turns out to be the identity since Q(

λ

3)(x) equals Fλ(x) for the
basis given in Proposition 2.1.
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