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ABSTRACT. The paper is concerned with some equivalent properties of sub- and

supersolutions of second order quasilinear elliptic equations. We answer (positively) a

question arised from a paper by Kura ([4]). Namely, we show that the concepts of sub-

(super)solutions and fF-sub-(super)solutions defined in [4] are in fact equivalent.

1. Introduction

This paper is concerned with some properties of weak sub- and super-
solutions of quasilinear elliptic equations of second order. Our investigation is
motivated by a paper of Kura ([4]), in which were established several interesting
results concerning weak sub- and supersolution methods for quasilinear elliptic
equations. We study some issues raised in [4] about the equivalence of
different concepts of sub- and supersolutions and answer certain questions
asked in this paper. To have a more precise perspective of the issues discussed
here, we first present the setting of the problem and its related assumptions and
definitions. For the sake of convenience and clarity, we follow the notation
and assumptions in [4].

Let Ω c R^ be a region with smooth boundary (for example, dΩ is of
class C1; also, Ω may be unbounded). Let A : Ω x RN -»R^, B:Ωx

RΛΓ+I _^ β be Defined as in [4]. In particular, A and B are Caratheodory

functions that satisfy the following conditions (in the sequel, p denotes a
number in (l,oo) and q=p' its conjugate exponent):

(Hi) lA ̂ ai^l/oWKkoWM^r1,

for a.e. xeΩ, Vξe RN, where /0 e Lq(Ω), CQ e L^(R

(H2) (A(x,ζ)-A(x,ξ')).(ξ-ξ')>0

*This work is supported in part by a grant from the University of Missouri Research Board.

7997 Mathematical Subject Classification. 35J25, 35J60, 35J65, 35D05.

Key words and phrases. Quasilinear elliptic equation, subsolution, supersolution, ff-subsolution,

fF-supersolution.



374 Vy Khoi LE

for a.e. xeΩ, Vξ,ξ'eRN, ξ^ξ';

(H3) A(x, ξ) ξ> α(*)|f I" - l/i W| \ξΓ* - 1/2 Wl,

for a.e. xeΩ, VξeRN, where α : R^ — > R+ is a continuous function, and

We refer to [4] for more details about (H1)-(H3). Now, we recall the
definitions of sub- and supersolutions and W-sub- and PΓ-supersolutions as
presented in [4].

DEFINITION 1 A function u e Wltp(Ω) is called a subsolution (respectively,
super solution) of the equation

- div A(x, Vu\ + B(x, u, Vu) = Qin

if

B(x,u,Vu)eLloc(Ω), (2)

and

I {A(x, Vu) - Vφ + B(x, u, Vu)φ} < ̂ (respectively, > 0), (3)
JΩ

for all φ E Cg°(fl), φ > 0 in Ω.

DEFINITION 2 u is a W-subsolution (respectively, W-super solution) of
(1) if u — max{xz : ί = 1 , . . . , m} (respectively, u = πήn{ui : i = 1 , . . . , m})

for some m e N, where each uι is a subsolution (respectively, super solution) of

(1).

It is clear that if M is a subsolution (respectively, supersolution) or (1), then
u is also a FΓ-subsolution (respectively, PF-supersolution) of (1). In [4] (page
8), the author raised the question about relationships between sub-
(super)solutions and ί^-sub-(super)solutions in the other direction, namely, in
what conditions are JF-sub-(super)solutions also sub-(super)solutions. In
Proposition 1 of [4], Kura also showed an interesting property that under some
conditions on B, bounded W-subsolutions are subsolutions. In this paper,
we show (without any additional conditions) that the concepts of sub-
(super)solutions and W-sub-(super)solutions given in definitions 1 and 2 are, in
fact, equivalent; hence answer the question in [4]. The arguments are given in
the next section.
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2. Main result

We prove the following result.

THEOREM 1 u is a W-sub~(super) solution of (1) if and only if u is a sub-
(super) solution of (1).

PROOF. We prove the theorem for bounded domains Ω. The case of
unbounded Ω immediately follows. Also, we establish the result for sub-
solutions; the proof for supersolutions is similar. Without loss of generality,
we can assume m = 2 in Definition 2; the general case follows easily by
induction.

Assume u\,u2 e Wl*(Ω) satisfy (2) and (3). We show that

M = max{wι,M2} (4)

also satisfies (2) and (3). It is well-known (cf. e.g. Lemma 7.6, Theorem 7.8 of
[2]) that u e Wl*(Ω) and

on Ω\ := {x e Ω : u\ > u2}

on ΩQ := {x E Ω : u\ = u2} (5)

on Ω2 := {x e Ω : u\ < u2}.

Hence,

B(x, w, Vu) = < p"b Ul)) on Ω\

onΩ\Ωι'

Since B(x,Ui,Vui] e L^Ω) for i = 1,2, it follows that

B(x, u, Vu) = B(x, uι,Vuι)χΩl + B(x, u2, Vu2)χΩ\Ωl

Now, we check that u satisfies (3). Let φeC£(Ω), φ>0. First, we
define some auxiliary functions. We fix a function γ with the following
properties (cf. [1], [3]):

(i) } > : R ^ R , yeC°°(R)

(lϊ) γ is nondecreasing on R
(6)

(iiϊ) 0 < γ < 1

(iv) y(i) = lif t > 1, γ(f) = Oif t < 0.

We put, for n e N, t e R,

7n(t) = y(nt). (7)



376 Vy Khoi LE

Thus, yn satisfies (i)-(iii) and

yn(t) = \ Ί f t > \ / n , γn(t) = 0ift<0. (8)

Let M = max{/(/) : t e R} = max{/(f) : ί e [0, 1]} < oo. We have

ίeR. (9)

Now, by classical density results for Wl'p(Ω)(3 U2 — u\) (cf. [1]), there exists a

sequence {wn} c Cg°(R*) such that

w» - wn|δ -+ w := M2 - HI in Wl*(Ω). (10)

In particular, wn e C°°(fl). By choosing a subsequence and relabeling the

sequence {vvπ}, if necessary, we can assume from (10) that

wn — > w a.e. inί2, (11)

and

Let ^ = (1 - γn o wn)φ and ^2 = (yn ° Wn)Φ> Since γn o wn e C°°(β) and
^ e C^°(ί2), both ^ and ^2 belong to Cf(Ω). Since 0 < yrt < I,φι,φ2 > 0.

Hence, from (3) applied to u\,φλ and u^φ^ we βet (with j = 1,2)

f £ A,(x, Vuj) S£ + B(x, Uj, Vuj)φj < 0,
JΩ i—i GXi

i.e.,

and

Ω

Now, for almost all x e i22, we have w(x) > 0. It follows from (11) that there

exists HO = HQ(X) such that wn(x) > l/«, V w > «o (Indeed, choose «ι = n\(x)
such that w(x) > 2/n\. For n>n\ sufficiently large, \wn(x) — w(x)| < l/«ι,
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and thus, wn(x) — w(x) > —\/n\. Hence, WW(Λ;) > W(Λ ) — \/n\ > \/n\ > l/n.)

Therefore, by (8), γn(wn(x)) = 1 for all n large. It follows that

γn(wn(x)) -> 1 for a.e. x e Ω2. (15)

Similarly, if x e Ω\, then w(x) < 0 and wn(x) < 0 for all n large. Again, by

(8),
γn(wn(x)) —> 0 for a.e. x e Ω\. (16)

Now, adding (13) and (14), we get

0> [
Ja IΞ

+ f £>,(*, Vu2) - At(x, Vui )]γn(Wn) £
JΩ tί δx'

+ f [B(X,u2,Vu2) - B(x,uι,Vuι)}γn(wn)φ.
JΩ

Now, since B(x,U2,Vu2) — B(x,u\,Vu\) on Ω0, by (5),

f [5(x, ui, Vu2) - B(x, uι,Vuι)]yn(wn)Φ
JΩ

Q + f ) [B(x, «2, 7«2) - Λ(x, m, Vuι)]yH(wH
Oi Jί22/

Q + f ) [B(x, u2, Vu2) - B(x, MI,
QI Πsupp ̂  J Ω2 Πsupp ̂  /

Since B(x, uj, Vuj] e L1 (fli Π supp ̂ ) Π L1 (ί22 Π supp φ), 0 < yπ(wπ) < 1, and φ is
bounded, (15), (16), and the dominated convergence theorem imply that

fJΩ

-> ί [B(x,U2,Vu2) - B(x,uι,Vuι)]φ
JΩ2 Πsupp φ

= \ [
JΩ2

JΩ2Γ\s\ιppφ

JΩ2 Πsupp φ

and

[B(x,u2,Vu2)-B(x,ul,Vul)}γn(wn)φ^O.
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f [B(x,u2,JΩ
\ [B(x,u2,Vu2) - B(x,uι,Vuι)]φ.

JΩ2

(18)

Similarly, since Ai(',Vuj)eL*(Ω) and -̂ - eL°°(β), and 0 < γn(wn) < 1, one

has

lim f f^[Ai(x,Vu2)-Ai(x,Vul)}γn(wn)^
JΩ pf oxi

= l imf f +f }f^[Ai(x,Vu2)-Ai(x,
VJβi Jβ2/ fef

= f ΣμfaViti-AfaVui)]^.JΩ2 ^i oχi

n ) - (19)

Now, since

a.e. on Ω by (H2), γn(wn) > 0, and φ > 0, we get

f ΈΓ^V
y^[Ai(x^ Vu2) — AΪ(.

JΩ j^ί

JΩ £f

-MI)

(20)

Moreover, from (HI) and Holder's inequality,

fJΩ
, Vu2) - Afa Vu, )] Wn ~ W γ'n(wn)φ

N

\\A,(X,VU2) -Λι(*,
1=1 \\LP(Ω)

ll/Λ(w»)llL»(o)ll^llL«(fl)
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N

^f

i=\

-

(ll l/ol + IfoMI WΊlLy(Ω) + II l/ol + ko

1

0 > lim inf f f>, (*,
Jo £f

+ lim f ΣlMx, Vu2) - A,(x, VUl)]yn(Wn) £
JΩ i^ί ύχί

+ lim [ [B(x, «2, Vu2) - B(x, ui , Vuι)]γn(wn)φ
JΩ

f f>, (*, VU2) - Aι(x, Fm)] |£ + f
JΩ2 iΞί ύXi J

+ f V^(x>Fm)|^+ί Λ(x,«,,F
JΩ "£ι o ί̂ Jo

, «2, Vu2) - B(x, MI ,

/olljvto) + IML-(0)(INI,(fl) + ll̂ ll̂ ,,̂ )] • — M« - Ufli

(by using (9) and (12))

C2

* T
where C\, CΊ are constants independent of n.

From (20) and (21),

lim inf f y>,(jc, Ft/2) - ^(jc, F«i)]/e(w,,) ~ φ ̂  0. (22)
n^co JΩ ̂ i c ί̂

Letting n -» oo in (17), and using (18), (19) and (22), we get

[B(x,u2,Vu2)-B(x,uι,Vuι)}φ+ I \ +\ }B(x,ul,Vuι)φ
2 \JΩ2 JΩ\Ω2J
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This holds for all φ e C^(Ω), φ>Q. We have checked that (3) is satisfied for
w = max{ι/ι,W2} Theorem 1 is proved. Π

From Theorem 1, we also obtain the following equivalence criterion for L-
sub-(super)solutions and C-sub-(super)solutions. For the detailed definitions of
L- and C-sub-(super)solutions, we refer the readers to Kura's paper [4].

COROLLARY 1 ueWl^p(Ω) is an L-sub-( super) solution (respectively, C-
sub-( super) -solution) of (1) if and only if u is a sub- (super) solution of (1) and
moreover, ueLcc(Ω) (respectively, w e C

To conclude, we note that the above results immediately hold for the case
of unbounded domains. They can also be extended to the case where
AI • = AΪ(X, u,Vu) also depend on M, provided certain appropriate assumptions
and modifications are considered.
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