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Asstract. The classification of the second order elliptic differential operators with
locally Lipschitz coefficients in a domain in R" is considered. Using potential-theoretic
techniques, it is modelled after the biharmonic classification of Riemannian manifolds.

1. Introduction

Let Q be a domain in R", n > 2, and £(£2) the family of all second order
elliptic differential operators with locally Lipschitz coefficients in 2. In this
article, we put the elements in £(Q) into different classes depending on the
existence of certain special solutions of the operators.

The classification is modelled after (and more general than) that of the
Riemannian manifolds # based on the existence of Green functions, bihar-
monic functions, biharmonic Green functions etc.

The similarity between these two classifications of #(£2) and £ arises from
the fact that the C2-solutions of Lu =0 for any L € #() and the harmonic
functions defined by 4u = 0 in R € # (where 4 is the Laplace-Beltrami operator
on R) both satisfy locally the basic assumptions in the axiomatic potential
theory of M. Brelot [4].

2. Preliminaries

Let #(Q) denote the family of all second order elliptic differential
operators with locally Lipschitz coefficients defined on a domain Q in
R",n>2. Assume that the last coefficient is 0 in each Le #(Q2). Pre-
. *u(x 6u( )
cisely, Lu(x) = Z a;i(x) B0, +Z bi(x) ——= o where the a;’s are in C**

and the b,’s are 1n ClA, aj = aj; and the quadratlc form Z a;i¢;¢; is positive
ij

definite for every x € Q.
Then the C2-functions u in an open set w = Q for which Lu = 0 are called
the L-harmonic functions in w. Such solutions satisfy the basic assumptions of
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the Brelot axiomatic potential theory (Mme. Hervé [6], pp. 560-568), leading to
the definitions of L-superharmonic functions, L-potentials associated with L in
the open sets of Q.

We also have in this context a Malgrange Approximation Lemma (A. De
la Pradelle [S], p. 399); using this as in Theorem 4.2 [3], we can prove the
following

LemMmA 2.1:  Given a Radon measure u > 0 on an open set w = Q, and any
L e Z(Q) there exists an L-superharmonic function u in w such that in a local
Riesz representation u is the measure associated with u.

NotaTions: 1) Given a Radon measure x > 0 on an open set w < Q, for
L e #(Q), we write Lu = —u to denote that u is an L-superharmonic function
in w generated by u as in Lemma 2.1. (we ignore here any possible inter-
pretation in the sense of distributions of the equation Lu = —u).

We remark that (i) » is not unique for a given u, and (ii) if x4 is a signed
measure, one can find a & — L-superharmonic function u# in w such that
Lu=—u in w.

2) Suppose f(x) is a locally (Lebesgue) integrable function in w. Let u
be the signed measure defined by f as du(x) =f(x)dx, dx the Lebesgue
measure. If u is a J — L-superharmonic function generated by u, we write
Lu = —f instead of Lu= —u.

3) On the other hand, instead of starting with a measure u >0 in 2 as
above, suppose we start with an L-superharmonic function v in Q. Then
locally v has a Riesz representation and an associated Radon measure x4 > 0 in
Q. Suppose now u is an L-superharmonic function in Q generated by the
measure x4 as in Lemma 2.1. Then v=u+h where A is an L-harmonic
function in 2. Consequently, we can just as well write Lv = —u in L.

ReEMARK. Dealing with the Laplacian operator 4 € #(Q), instead of
writing A4-superharmonic, 4-potential etc., we suppress 4 and simply refer to
superharmonic, potential etc.. Thus, a superharmonic function in £ is locally
Lebesgue integrable.

3. Bipotential operators

For an L e #(Q), the domain Q is called L-hyperbolic or L-parabolic
depending on whether there exists or not an L-potential in Q. If L = 4, we
simply refer to Q2 as hyperbolic or parabolic. We assume in the sequel that Q
is always hyperbolic, that is there are A-potentials in .

DENITION 3.1.  An operator L € () is called a bipotential operator in Q2
if there exist an L-potential ¢ and a potential p > 0 (that is, p is a 4-potential)
in 2 such that Lg = —p.
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EXAMPLES:
1) 4 is a bipotential operator in R”, n>5. For, p =2(n—4)r*" and
g =r*" are potentials in R” such that 4g = —p.
2) Since R? is parabolic, 4 cannot be a bipotential operator in RZ.
3) Though R® and R* are hyperbolic, yet 4 is not a bipotential
0
. a4 .
operator there. For 4g = —p would imply [7] that J J pras r"Vdrdo is
1 Jom
finite, where 0B is the unit sphere and do is its surface area; this in turn would
imply (since a potential majorizes mr>™", for some m > 0, near infinity) that
© 1 1 . . Lo
J S, R 7“1 dr is finite which is false when n = 3,4.
1 rm r-
ProPoOSITION 3.2. Let Q be a relatively compact domain in R",
n>2. Then, any L e £(2,), 21 a domain > Q, is a bipotential operator in Q.

PrOOF. Let Q) be a relatively compact domain such that Q; > Q) > Q.
Then, by Lemma 2.1, there exists an L-superhamonic function gy in Q; such
that Lgo = —1 in Q.

Since Q < Qo, go has an L-harmonic minorant in ; let k9 be the greatest
L-harmonic minorant of go in Q. Then ¢; = qo — ho is an L-potential in Q
such that Lg; = —1 in Q.

Now, for a nonpolar compact set K in 2, p= (ﬁf)g is a potential in
Q. Let s be an L-superharmonic function in £ such that Ls = —p; and let ¢ be
an L-superharmonic function in € such that Lt = —(1 —p).

Then there exists an L-harmonic function 4; in Q such that s+ ¢t = ¢ + A;;
since ¢; > 0, this implies that s has an L-subharmonic minorant in Q. Let A
be the greatest L-harmonic minorant of s in Q and write ¢ =5 — h.

Then ¢ is an L-potential in Q such that Lg=—p. Hence L is a
bipotential operator in .

DerFiNITION 3.3. An operator L e #(Q) is called a biharmonic potential
operator in Q if there exists an L-potential ¢ and a harmonic function 4 > 0 in
Q such that Lg = —h.

Note: The argument in the proof of Proposition 3.2 shows that a
biharmonic potential operator L in Q is a bipotential operator. But 4 which is
a bipotential operator in R”, n > 5, is not a biharmonic potential operator there.

For, any positive harmonic function in R" being a constant, assume
that there exists a potential g in R"” such that Ag= —1. Then

0

00
| J 29 p-ldrdo should be finite, that is J rdr should be finite, a
1 JoB 1

contradiction.
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However, if 2 is a bounded domain in R"”, n>2, any operator
Le #(2)), 21 a domain > Q, is a biharmonic potential operator in Q. For,
as shown in the proof of Proposition 3.2, there exists an L-potential ¢q; in Q2
such that Lg; = —1.

4. Weak bipotential operators

In this section we will obtain some necessary and sufficient conditions for
an operator L € #(2) to be a bipotential operator.

Given the local nature of the solutions of the operator L, we can apply
these results in the context of Q being a Riemannian manifold and L, the
Laplace-Beltrami operator defined on 2, to show that —Ly is a bipotential
operator if and only if the biharmonic Green potential is defined on the
Riemannian manifold (Chapter VIII, Sario-Nakai-Wang-Chung [9]). Con-
sequently, Theorem 4.4 below provides some additional characteristics of
Riemannian manifolds with biharmonic Green potentials not explicitly men-
tioned in [9].

Actually, in this section we want to work in a more inclusive context; the
definition of a bipotential operator L € #(€2) presupposes that Q is an L-
hyperbolic domain. With a view to remove this restriction on 2, we introduce
the notion of a weak bipotential operator.

We call an L-superharmonic function u in a domain 2 = R” an admissible
L-superharmonic function (p. 145 [1]) if # has an L-harmonic minorant outside
a compact set in Q.

DerFINITION 4.1. An operator Le #(Q) is called a weak bipotential
operator in Q if there exists an admissible L-superharmonic function u# and a
potential p > 0 in 2 such that Lu= —p in Q.

REMARKS: 1) A bipotential operator L e £ (Q) is a weak bipotential
operator. On the other hand, if Q is an L-hyperbolic domain and if L is a
weak bipotential operator in Q, then L is actually a bipotential operator.

For, in this case suppose u is an L-superharmonic function in Q having
an L-harmonic minorant 4 outside a compact set. Then there exists an L-
harmonic function H in Q2 such that |H — h| is bounded outside a compact set
(Extension Theorem 1.20 [1], originally proved by M. Nakai in [8]); con-
sequently, u is the unique sum of an L-potential ¢ and an L-harmonic function
in Q. Hence Lu = —p implies that Lg = —p and L is a bipotential operator
in Q.

2) From the above remark it follows that 4 cannot be a weak bipotential
operator in R"n = 3,4. For, R* and R* are hyperbolic domains where 4 is not
a bipotential operator.
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LeMMA 4.2. Let Le #(Q). For a measure u >0 on an open set w < Q,
suppose there exists an admissible L-superharmonic function u in w such that
Lu= —u. Then, for any measure 1,0 < A < u in w, there exists an admissible
L-superharmonic function v in w such that Lv = —A.

ProoF. Let v and v; be L-superharmonic functions in w (Lemma 2.1)
such that Lv = —4 and Lv; = —(u — 4).

Then v+ v = u+ (an L-harmonic function) in w.

Since # has an L-harmonic minorant outside a compact set K in w, v has
an L-subharmonic minorant outside K. This implies that v is an admissible
L-superharmonic function in w.

THEOREM 4.3. For L e £ (Q), the following are equivalent:

1) For some (or any) compact nonpolar set X in £ (with respect to 4,
the notion of polarity being the same with respect to any L, Théoréme 36.1 [6]),
there exists an L-superharmonic function u# in Q\K, having an L-harmonic
minorant in a neighbourhood of the Alexandrov point of £, such that
Lu=—RK in Q\K.

2) L is a weak bipotential operator in Q.

3) There exist an admissible L-superharmonic function u that is not L-
harmonic and a superharmonic function s > 0 in € such that Lu = —s.

4) For some (or any) y € Q, if p, denotes a potential with harmonic point
support {y}, there exists an admissible L-superharmonic function g, in £ such
that Lq, = —py.

Proor.

1) = 2): Let Lu=—RK in Q\K.

Let A be an outerregular compact set and w a regular domain such that
Kc AcAcw. (Recall the identity between the L-regular and the A-reqular
boundary points for an open set Qy < Qy < Q).

We can assume that u is L-harmonic in a neighbourhood of w\A.

Then as in [2], we can find L-harmonic functions #; in 2\4 and u, in w
such that ¥ =u; —u; in w\A4.

Then the function v equal to u —u; in Q\A4 and to —u, in w is an L-
superharmonic function in Q; it is admissible also since by assumption « has an
L-harmonic minorant in a neighbourhood of the Alexandrov point of €;
moreover, in Q\4, Lv = Lu= —R¥.

Let v; be an L-superharmonic function in Q (Lemma 2.1) such that
Ly, = —y 4 the characteristic fuction of 4. Since v; has compact (harmonic)
support, it is an admissible L-superharmonic function in Q.
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Thus v+v; is an admissible L-superharmonic function in 2 with the
associated measure g such that u > 1 where A is the measure defined by
dA(x) = RX(x) dx.

Hence, by Lemma 4.2, there exists an admissible L-superharmonic function
q in 2 such that Lg = —R{‘ in Q. That is L is a weak bipotential operator
in Q.

2)=>3): Suppose there exists an admissible L-superharmonic function g
and a potential p >0 in Q such that Lg = —p. Then clearly ¢ is not L-
harmonic in Q.

3)=4): Suppose Lu = —s where u is a non L-harmonic admissible L-
superharmonic function and s > 0 is superharmonic in Q.

Now, given y € Q, choose an outerregular compact set k in Q such that
y ek and consider a potential p, with point harmonic support {y}. Then
Py = Bp, in Q\k where Bp, is the Dirichlet solution in Q2\k with boundary
values p, on 0k and 0 at the Alexandrov point of Q.

Note that Bp, <ms in Q\k for some m > 0. Consequently, we can
construct as in the proof of 1) = 2), an admissible L-superharmonic function v;
in Q such that Lv; = —Bp, = —p, in Q\k.

Let v, be an admissible L-superharmonic function in 2 for which
Lv, = —pyy; in Q.

Then, if v = v; + v, v is an admissible L-superharmonic function in Q with
the associated measure u such that 4 > A where A is the measure defined by
dA(x) = py(x) dx.

By Lemma 4.2, there exists an admissible L-superharmonic function g, in
Q such that Lg, = —p,.

4)=1): For some y, let Lg, = —p, in 2 where g, is an admissible
superharmonic function in ; that is ¢, has an L-harmonic minorant outside
some compact set 4 in Q.

For a compact nonpolar set K, R¥ < (infx py)_lpy in Q\K. Con-
sequently, as in Lemma 4.2, there exists an L-superharmonic function u in Q\K
such that Lu = —RK; moreover, u has an L-harmonic minorant outside the
compact set KU A.

This completes the proof of the theorem.

We have remarked earlier that if 2 is an L-hyperbolic domain, then any
admissible L-superharmonic function u in £ is the unique sum of an L-
potential and an L-harmonic function and also if L is a weak bipotential
operator on Q it is actually a bipotential operator. Consequently, it is easy to
deduce from Theorem 4.3 the following

THEOREM 4.4. For L € £(Q), let Q be an L-hyperbolic domain. Then the
following. are equivalent:
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1) For some (or any) compact nonpolar set K in £, there exists an L-
superharmonic function u >0 in Q\K such that Lu = —RK in Q\K.

2) L is a bipotential operator in Q.

3) There exist an L-superharmonic function ¥ > 0 and a superharmonic
function s > 0 in 2 such that Lu = —s.

4) For some (or any) ye @, if p, denotes a potential with harmonic
support {y}, there exists a unique L-potential ¢, in € such that Lg, = —p,.

COROLLARY 4.5. Let L be a bipotential operator in Q. For ye€ 2 fixed,
let Q, be a sequence of relatively compact domains, y € Q,, Q, < 2,1, and
Q=UQ,. Let p)‘,’" be the potential in Q, with harmonic point support {y} such
that pf" = p, + a harmonic function in Q,; let ¢ be the unique L-potential in
Q, such that Lg? = —p$ in Q,. Then supqé is an L-potential in Q.

Proor. Since L is a bipotential operator in Q, there exists a unique L-
potential g, in  such that Lg, = —p,.

Since py, > pf" in Q,, qf" =g, + s, in Q, where s, is an L-subharmonic
function in Q,; since " is an L-potential in 2, and s, < qf", we have s, <0
in Q,.

Consequently, qf" <g, in &, for every n.

A similar argument also shows that qfﬂ is an increasing sequence and
hence sup g is an L-potential in €.

REMARKS. 1) The proof of the above corollary follows the construction of
the biharmonic Green function on a hyperbolic Riemannian manifold (p. 300

o).

2) When Q is a hyperbolic Riemannian manifold with the harmonic
functions defined locally as the solutions of the Laplace-Beltrami operator, the
statement (1) in Theorem 4.4 expresses the condition that the biharmonic
measure of the ideal boundary of @ is finite (p.310 [9]).
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