Bipotential elliptic differential operators

Victor Anandam (Received March 31, 1997)

ABSTRACT. The classification of the second order elliptic differential operators with locally Lipschitz coefficients in a domain in R^n is considered. Using potential-theoretic techniques, it is modelled after the biharmonic classification of Riemannian manifolds.

1. Introduction

Let Ω be a domain in \mathbb{R}^n , $n \geq 2$, and $\mathscr{L}(\Omega)$ the family of all second order elliptic differential operators with locally Lipschitz coefficients in Ω . In this article, we put the elements in $\mathscr{L}(\Omega)$ into different classes depending on the existence of certain special solutions of the operators.

The classification is modelled after (and more general than) that of the Riemannian manifolds \mathcal{R} based on the existence of Green functions, biharmonic functions, biharmonic Green functions etc.

The similarity between these two classifications of $\mathcal{L}(\Omega)$ and \mathcal{R} arises from the fact that the C^2 -solutions of Lu=0 for any $L\in\mathcal{L}(\Omega)$ and the harmonic functions defined by $\Delta u=0$ in $R\in\mathcal{R}$ (where Δ is the Laplace-Beltrami operator on R) both satisfy locally the basic assumptions in the axiomatic potential theory of M. Brelot [4].

2. Preliminaries

Let $\mathscr{L}(\Omega)$ denote the family of all second order elliptic differential operators with locally Lipschitz coefficients defined on a domain Ω in $\mathbb{R}^n, n \geq 2$. Assume that the last coefficient is 0 in each $L \in \mathscr{L}(\Omega)$. Precisely, $Lu(x) = \sum_{i,j} a_{ij}(x) \frac{\partial^2 u(x)}{\partial x_i \partial x_j} + \sum_i b_i(x) \frac{\partial u(x)}{\partial x_i}$, where the a_{ij} 's are in $C^{2,\lambda}$ and the b_i 's are in $C^{1,\lambda}$; $a_{ij} = a_{ji}$; and the quadratic form $\sum_{i,j} a_{ij} \xi_i \xi_j$ is positive definite for every $x \in \Omega$.

Then the C^2 -functions u in an open set $w \subset \Omega$ for which Lu = 0 are called the L-harmonic functions in w. Such solutions satisfy the basic assumptions of

AMS Subject Classification: 31D05, 31B35.

Key words and phrases: Bipotential operators; Admissible superharmonic functions.

the Brelot axiomatic potential theory (Mme. Hervé [6], pp. 560-568), leading to the definitions of L-superharmonic functions, L-potentials associated with L in the open sets of Ω .

We also have in this context a Malgrange Approximation Lemma (A. De la Pradelle [5], p. 399); using this as in Theorem 4.2 [3], we can prove the following

LEMMA 2.1: Given a Radon measure $\mu \geq 0$ on an open set $w \subset \Omega$, and any $L \in \mathcal{L}(\Omega)$ there exists an L-superharmonic function u in w such that in a local Riesz representation μ is the measure associated with u.

NOTATIONS: 1) Given a Radon measure $\mu \ge 0$ on an open set $w \subset \Omega$, for $L \in \mathcal{L}(\Omega)$, we write $Lu = -\mu$ to denote that u is an L-superharmonic function in w generated by μ as in Lemma 2.1. (we ignore here any possible interpretation in the sense of distributions of the equation $Lu = -\mu$).

We remark that (i) u is not unique for a given μ , and (ii) if μ is a signed measure, one can find a $\delta - L$ -superharmonic function u in w such that $Lu = -\mu$ in w.

- 2) Suppose f(x) is a locally (Lebesgue) integrable function in w. Let μ be the signed measure defined by f as $d\mu(x) = f(x) dx$, dx the Lebesgue measure. If u is a δL -superharmonic function generated by μ , we write Lu = -f instead of $Lu = -\mu$.
- 3) On the other hand, instead of starting with a measure $\mu \geq 0$ in Ω as above, suppose we start with an L-superharmonic function v in Ω . Then locally v has a Riesz representation and an associated Radon measure $\mu \geq 0$ in Ω . Suppose now u is an L-superharmonic function in Ω generated by the measure μ as in Lemma 2.1. Then v = u + h where h is an L-harmonic function in Ω . Consequently, we can just as well write $Lv = -\mu$ in Ω .

REMARK. Dealing with the Laplacian operator $\Delta \in \mathcal{L}(\Omega)$, instead of writing Δ -superharmonic, Δ -potential etc., we suppress Δ and simply refer to superharmonic, potential etc.. Thus, a superharmonic function in Ω is locally Lebesgue integrable.

3. Bipotential operators

For an $L \in \mathcal{L}(\Omega)$, the domain Ω is called L-hyperbolic or L-parabolic depending on whether there exists or not an L-potential in Ω . If $L = \Delta$, we simply refer to Ω as hyperbolic or parabolic. We assume in the sequel that Ω is always hyperbolic, that is there are Δ -potentials in Ω .

DENITION 3.1. An operator $L \in \mathcal{L}(\Omega)$ is called a *bipotential operator* in Ω if there exist an L-potential q and a potential p > 0 (that is, p is a Δ -potential) in Ω such that Lq = -p.

EXAMPLES:

- 1) Δ is a bipotential operator in \mathbb{R}^n , $n \ge 5$. For, $p = 2(n-4)r^{2-n}$ and $q = r^{4-n}$ are potentials in \mathbb{R}^n such that $\Delta q = -p$.
 - 2) Since \mathbb{R}^2 is parabolic, Δ cannot be a bipotential operator in \mathbb{R}^2 .
- 3) Though \mathbb{R}^3 and \mathbb{R}^4 are hyperbolic, yet Δ is not a bipotential operator there. For $\Delta q = -p$ would imply [7] that $\int_1^\infty \int_{\partial B} \frac{\Delta q}{r^{n-2}} \, r^{n-1} \, dr \, d\sigma$ is finite, where ∂B is the unit sphere and $d\sigma$ is its surface area; this in turn would imply (since a potential majorizes mr^{2-n} , for some m > 0, near infinity) that $\int_1^\infty \frac{1}{r^{n-2}} \frac{1}{r^{n-2}} \, r^{n-1} \, dr$ is finite which is false when n = 3, 4.

PROPOSITION 3.2. Let Ω be a relatively compact domain in \mathbb{R}^n , $n \geq 2$. Then, any $L \in \mathcal{L}(\Omega_1)$, Ω_1 a domain $\supset \overline{\Omega}$, is a bipotential operator in Ω .

PROOF. Let Ω_0 be a relatively compact domain such that $\Omega_1 \supset \Omega_0 \supset \overline{\Omega}$. Then, by Lemma 2.1, there exists an L-superhamonic function q_0 in Ω_0 such that $Lq_0 = -1$ in Ω_0 .

Since $\overline{\Omega} \subset \Omega_0$, q_0 has an L-harmonic minorant in Ω ; let h_0 be the greatest L-harmonic minorant of q_0 in Ω . Then $q_1 = q_0 - h_0$ is an L-potential in Ω such that $Lq_1 = -1$ in Ω .

Now, for a nonpolar compact set K in Ω , $p = (\hat{R}_1^K)_{\Omega}$ is a potential in Ω . Let s be an L-superharmonic function in Ω such that Ls = -p; and let t be an L-superharmonic function in Ω such that Lt = -(1-p).

Then there exists an L-harmonic function h_1 in Ω such that $s+t=q_1+h_1$; since $q_1>0$, this implies that s has an L-subharmonic minorant in Ω . Let h be the greatest L-harmonic minorant of s in Ω and write q=s-h.

Then q is an L-potential in Ω such that Lq=-p. Hence L is a bipotential operator in Ω .

DEFINITION 3.3. An operator $L \in \mathcal{L}(\Omega)$ is called a *biharmonic potential* operator in Ω if there exists an L-potential q and a harmonic function h > 0 in Ω such that Lq = -h.

NOTE: The argument in the proof of Proposition 3.2 shows that a biharmonic potential operator L in Ω is a bipotential operator. But Δ which is a bipotential operator in \mathbb{R}^n , $n \geq 5$, is not a biharmonic potential operator there.

For, any positive harmonic function in \mathbb{R}^n being a constant, assume that there exists a potential q in \mathbb{R}^n such that $\Delta q = -1$. Then $\int_1^{\infty} \int_{\partial B} \frac{\Delta q}{r^{n-2}} r^{n-1} dr d\sigma$ should be finite, that is $\int_1^{\infty} r dr$ should be finite, a contradiction.

However, if Ω is a bounded domain in \mathbb{R}^n , $n \geq 2$, any operator $L \in \mathcal{L}(\Omega_1)$, Ω_1 a domain $\supset \overline{\Omega}$, is a biharmonic potential operator in Ω . For, as shown in the proof of Proposition 3.2, there exists an L-potential q_1 in Ω such that $Lq_1 = -1$.

4. Weak bipotential operators

In this section we will obtain some necessary and sufficient conditions for an operator $L \in \mathcal{L}(\Omega)$ to be a bipotential operator.

Given the local nature of the solutions of the operator L, we can apply these results in the context of Ω being a Riemannian manifold and L_0 the Laplace-Beltrami operator defined on Ω , to show that $-L_0$ is a bipotential operator if and only if the biharmonic Green potential is defined on the Riemannian manifold (Chapter VIII, Sario-Nakai-Wang-Chung [9]). Consequently, Theorem 4.4 below provides some additional characteristics of Riemannian manifolds with biharmonic Green potentials not explicitly mentioned in [9].

Actually, in this section we want to work in a more inclusive context; the definition of a bipotential operator $L \in \mathcal{L}(\Omega)$ presupposes that Ω is an L-hyperbolic domain. With a view to remove this restriction on Ω , we introduce the notion of a weak bipotential operator.

We call an L-superharmonic function u in a domain $\Omega \subset \mathbb{R}^n$ an admissible L-superharmonic function (p. 145 [1]) if u has an L-harmonic minorant outside a compact set in Ω .

DEFINITION 4.1. An operator $L \in \mathcal{L}(\Omega)$ is called a *weak bipotential operator* in Ω if there exists an admissible L-superharmonic function u and a potential p>0 in Ω such that Lu=-p in Ω .

REMARKS: 1) A bipotential operator $L \in \mathcal{L}(\Omega)$ is a weak bipotential operator. On the other hand, if Ω is an L-hyperbolic domain and if L is a weak bipotential operator in Ω , then L is actually a bipotential operator.

For, in this case suppose u is an L-superharmonic function in Ω having an L-harmonic minorant h outside a compact set. Then there exists an L-harmonic function H in Ω such that |H-h| is bounded outside a compact set (Extension Theorem 1.20 [1], originally proved by M. Nakai in [8]); consequently, u is the unique sum of an L-potential q and an L-harmonic function in Ω . Hence Lu=-p implies that Lq=-p and L is a bipotential operator in Ω .

2) From the above remark it follows that Δ cannot be a weak bipotential operator in $\mathbb{R}^n n = 3, 4$. For, \mathbb{R}^3 and \mathbb{R}^4 are hyperbolic domains where Δ is not a bipotential operator.

LEMMA 4.2. Let $L \in \mathcal{L}(\Omega)$. For a measure $\mu \geq 0$ on an open set $w \subset \Omega$, suppose there exists an admissible L-superharmonic function u in w such that $Lu = -\mu$. Then, for any measure $\lambda, 0 \leq \lambda \leq \mu$ in w, there exists an admissible L-superharmonic function v in w such that $Lv = -\lambda$.

PROOF. Let v and v_1 be L-superharmonic functions in w (Lemma 2.1) such that $Lv = -\lambda$ and $Lv_1 = -(\mu - \lambda)$.

Then $v + v_1 = u +$ (an L-harmonic function) in w.

Since u has an L-harmonic minorant outside a compact set K in w, v has an L-subharmonic minorant outside K. This implies that v is an admissible L-superharmonic function in w.

THEOREM 4.3. For $L \in \mathcal{L}(\Omega)$, the following are equivalent:

- 1) For some (or any) compact nonpolar set K in Ω (with respect to Δ , the notion of polarity being the same with respect to any L, Théorème 36.1 [6]), there exists an L-superharmonic function u in $\Omega \setminus K$, having an L-harmonic minorant in a neighbourhood of the Alexandrov point of Ω , such that $Lu = -\hat{R}_1^K$ in $\Omega \setminus K$.
 - 2) L is a weak bipotential operator in Ω .
- 3) There exist an admissible L-superharmonic function u that is not L-harmonic and a superharmonic function s > 0 in Ω such that Lu = -s.
- 4) For some (or any) $y \in \Omega$, if p_y denotes a potential with harmonic point support $\{y\}$, there exists an admissible *L*-superharmonic function q_y in Ω such that $Lq_y = -p_y$.

PROOF.

1) \Rightarrow 2): Let $Lu = -\hat{R}_1^K$ in $\Omega \backslash K$.

Let A be an outerregular compact set and w a regular domain such that $K \subset A \subset A \subset w$. (Recall the identity between the L-regular and the Δ -regular boundary points for an open set $\Omega_0 \subset \overline{\Omega}_0 \subset \Omega$).

We can assume that u is L-harmonic in a neighbourhood of $\overline{w \setminus A}$.

Then as in [2], we can find L-harmonic functions u_1 in $\Omega \setminus A$ and u_2 in w such that $u = u_1 - u_2$ in $w \setminus A$.

Then the function v equal to $u-u_1$ in $\Omega \setminus A$ and to $-u_2$ in w is an L-superharmonic function in Ω ; it is admissible also since by assumption u has an L-harmonic minorant in a neighbourhood of the Alexandrov point of Ω ; moreover, in $\Omega \setminus A$, $Lv = Lu = -\hat{R}_1^K$.

Let v_1 be an L-superharmonic function in Ω (Lemma 2.1) such that $Lv_1 = -\chi_A$ the characteristic function of A. Since v_1 has compact (harmonic) support, it is an admissible L-superharmonic function in Ω .

Thus $v+v_1$ is an admissible L-superharmonic function in Ω with the associated measure μ such that $\mu \geq \lambda$ where λ is the measure defined by $d\lambda(x) = \hat{R}_1^K(x) dx$.

Hence, by Lemma 4.2, there exists an admissible L-superharmonic function q in Ω such that $Lq = -\hat{R}_1^K$ in Ω . That is L is a weak bipotential operator in Ω .

- $2) \Rightarrow 3$): Suppose there exists an admissible L-superharmonic function q and a potential p > 0 in Ω such that Lq = -p. Then clearly q is not L-harmonic in Ω .
- 3) \Rightarrow 4): Suppose Lu = -s where u is a non L-harmonic admissible L-superharmonic function and s > 0 is superharmonic in Ω .

Now, given $y \in \Omega$, choose an outerregular compact set k in Ω such that $y \in \mathring{k}$ and consider a potential p_y with point harmonic support $\{y\}$. Then $p_y = Bp_y$ in $\Omega \setminus k$ where Bp_y is the Dirichlet solution in $\Omega \setminus k$ with boundary values p_y on ∂k and 0 at the Alexandrov point of Ω .

Note that $Bp_y \le ms$ in $\Omega \setminus k$ for some m > 0. Consequently, we can construct as in the proof of $1) \Rightarrow 2$, an admissible *L*-superharmonic function v_1 in Ω such that $Lv_1 = -Bp_y = -p_y$ in $\Omega \setminus k$.

Let v_2 be an admissible *L*-superharmonic function in Ω for which $Lv_2 = -p_{\nu}\chi_k$ in Ω .

Then, if $v = v_1 + v_2$, v is an admissible L-superharmonic function in Ω with the associated measure μ such that $\mu \ge \lambda$ where λ is the measure defined by $d\lambda(x) = p_{\nu}(x) dx$.

By Lemma 4.2, there exists an admissible L-superharmonic function q_y in Ω such that $Lq_y=-p_y$.

 $4) \Rightarrow 1$): For some y, let $Lq_y = -p_y$ in Ω where q_y is an admissible superharmonic function in Ω ; that is q_y has an L-harmonic minorant outside some compact set A in Ω .

For a compact nonpolar set K, $\hat{R}_1^K \leq (\inf_K p_y)^{-1} p_y$ in $\Omega \backslash K$. Consequently, as in Lemma 4.2, there exists an L-superharmonic function u in $\Omega \backslash K$ such that $Lu = -\hat{R}_1^K$; moreover, u has an L-harmonic minorant outside the compact set $K \cup A$.

This completes the proof of the theorem.

We have remarked earlier that if Ω is an L-hyperbolic domain, then any admissible L-superharmonic function u in Ω is the unique sum of an L-potential and an L-harmonic function and also if L is a weak bipotential operator on Ω it is actually a bipotential operator. Consequently, it is easy to deduce from Theorem 4.3 the following

THEOREM 4.4. For $L \in \mathcal{L}(\Omega)$, let Ω be an L-hyperbolic domain. Then the following are equivalent:

- 1) For some (or any) compact nonpolar set K in Ω , there exists an L-superharmonic function $u \ge 0$ in $\Omega \setminus K$ such that $Lu = -\hat{R}_1^K$ in $\Omega \setminus K$.
 - 2) L is a bipotential operator in Ω .
- 3) There exist an L-superharmonic function u > 0 and a superharmonic function s > 0 in Ω such that Lu = -s.
- 4) For some (or any) $y \in \Omega$, if p_y denotes a potential with harmonic support $\{y\}$, there exists a unique L-potential q_y in Ω such that $Lq_y = -p_y$.

COROLLARY 4.5. Let L be a bipotential operator in Ω . For $y \in \Omega$ fixed, let Ω_n be a sequence of relatively compact domains, $y \in \Omega_n$, $\overline{\Omega}_n \subset \Omega_{n+1}$, and $\Omega = \bigcup \Omega_n$. Let $p_y^{\Omega_n}$ be the potential in Ω_n with harmonic point support $\{y\}$ such that $p_y^{\Omega_n} = p_y + a$ harmonic function in Ω_n ; let $q_y^{\Omega_n}$ be the unique L-potential in Ω_n such that $Lq_y^{\Omega_n} = -p_y^{\Omega_n}$ in Ω_n . Then $\sup q_y^{\Omega_n}$ is an L-potential in Ω .

PROOF. Since L is a bipotential operator in Ω , there exists a unique L-potential q_y in Ω such that $Lq_y = -p_y$.

Since $p_y \ge p_y^{\Omega_n}$ in Ω_n , $q_y^{\Omega_n} = q_y + s_n$ in Ω_n where s_n is an L-subharmonic function in Ω_n ; since $q_y^{\Omega_n}$ is an L-potential in Ω_n and $s_n \le q_y^{\Omega_n}$, we have $s_n \le 0$ in Ω_n .

Consequently, $q_y^{\Omega_n} \leq q_y$ in Ω_n for every n.

A similar argument also shows that $q_y^{\Omega_n}$ is an increasing sequence and hence $\sup q_y^{\Omega_n}$ is an L-potential in Ω .

REMARKS. 1) The proof of the above corollary follows the construction of the biharmonic Green function on a hyperbolic Riemannian manifold (p. 300 [9]).

2) When Ω is a hyperbolic Riemannian manifold with the harmonic functions defined locally as the solutions of the Laplace-Beltrami operator, the statement (1) in Theorem 4.4 expresses the condition that the biharmonic measure of the ideal boundary of Ω is finite (p.310 [9]).

References

- [1] V. Anandam: Espaces harmoniques sans potentiel positif, Ann. Inst. Fourier, 22, 4 (1972), 97-160.
- [2] V. Anandam: Sur une propriété de la fonction harmonique, Bull. Sc. Math., 101 (1977), 255-263.
- [3] V. Anandam: Admissible superharmonic functions and associated measures, J. London Math. Soc., 19 (1979), 65-78.
- [4] M. Brelot: Axiomatique des fonctions harmoniques, Les Presses de l'Université de Montréal, 1966.
- [5] A. De la Pradelle: Approximations et caractère de quasi-analyticité dans la théorie axiomatique des fonctions harmoniques, Ann. Inst. Fourier, 17,1 (1967), 383-399.

- [6] R. M. Hervé: Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier, 12 (1962), 415-571.
- [7] Premalatha and V. Anandam: On the integral representation of superharmonic functions in \mathbb{R}^n , Acad. Royale de Belgique, LXVI (1980), 307-318.
- [8] B. Rodin and L. Sario: Principal Functions, Van Nostrand, 1968.
- [9] L. Sario, M. Nakai, C. Wang and L. O. Chung: Classification theory of Riemannian manifolds, Springer-Verlag, L.N. 605 (1977).

Department of Mathematics
College of Science
King Saud University
P.O. Box 2455, Riyadh 11451
Saudi Arabia.
(e-mail: vanandam@ksu.edu.sa)