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AsstracT. This paper proves the existence of a new family of nontrivial homo-
topy elements in the stable homotopy of spheres which is of degree
2(p—1)(p" +3p> +3p+3)—7 and is represented by b,_1goy; in the EZ"‘-term of the
Adams spectral sequence, where p > 7 is a prime and n > 4. In the course of proof, a
new family of homotopy elements in x, V(1) which is represented by b,_1go in the
E;’* V(1)-term of the Adams spectral sequence is detected.

1. Introduction

Let A be the mod p Steenrod algebra and S the sphere spectrum localized
at an odd prime p. To determine the stable homotopy groups of spheres 7,.S
is one of the central problems in homotopy theory. One of the main tools to
reach it is the Adams spectral sequence (ASS) E;' = Ext§(Z,,Z,) = n,—S,
where the E5'-term is the cohomology of 4. If a family of generators x; in
E>* converges nontrivially in the ASS, then we get a family of homotopy
elements f; in #,S and we say that f; is represented by x; € E;* and has
filtration s in the ASS. So far, not so many families of homotopy elements in
n,S have been detected. For example, a family {, ;€ myngyq3S for n>2
which has filtration 3 and is represented by hgb,_| € Exti’p ""+"(Zp, Z,) has been
detected in [2], where ¢ =2(p —1). The main purpose of this paper is to
detect a new family of homotopy elements in z,.S which has filtration 7 in the
ASS.

From (3], Ext};*(Zp,Zp) has Z,-base consisting of ag € Ext};l(Zp,Z,,),
hie Extz’p'q(Zp,Zp) for all i >0 and Exti’*(Zp,Zp) has Z,-base consisting of
o, aé, aoh; (i>0),9; (i=0), ki (i=0), b; (i=0), and hihj (j=zi+2,i=0)
whose internal degree are 2g + 1, 2, pig + 1, pitiq + 2piq, 2p'tq + p'q, pitlq
and p'q+ p/q respectively. From [1] p.110 table 8.1, there is a generator
3 € Extj’(3p o +1)‘I(Zp,Zl,) whose name in [1] is 4g123. Our main result is the
following theorem.
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THEOREM I: Let p > 7, n> 4, then the product

n 2
bn_1907; #0 € Extl”’ il +p+l)q(zp’ Zy)

and it converges in the ASS to a nontrivial element in Ty 3p24pi1)g-75 Of
order p.

The above family of homotopy elements in 7,S is constructed based on a
family of homotopy elements in x, ¥’(1), the stable homotopy groups of Toda-
Smith spectrum V(1).

The spectrum V(1) is closely related to S and is defined as follows. Let
M be the Moore spectrum modulo a prime p > 5 given by the cofibration

(1.1) stsmL zs

Let a: 29M — M be the Adams map and K be its cofibre given by the
cofibration

(1.2) Mm-S kD sy

where ¢ = 2(p — 1). This spectrum which we briefly write as K is known to be
the Toda-Smith spectrum V(1). Theorem I will be proved based on the
following result.

THEOREM II: Let p > 5, n > 2, then
b,,_lgo € Extj,p"q+pq+2q(H*K, Zp),

the reduction of b,_19o eEth’pnqﬂ’q‘qu(Zp,Zp), converges in the ASS to a
nontrivial homotopy element in Tyngypgi24-4K.

From [2], there is {,_; € Mpngsq-3S for n>2 which is represented by
hoby_1 eExti”’"”“Lq(Zp,Zp). By using {,_; as a geometric input and some
properties of K studied in [7], we will detect an element { | € [ZP"9T9~*K, K]
satisfying

7'C = ijj'(¢u_1 Alx) modulo higher filtration

Moreover, we will show that ("Bi'i € mpngipg+24-4K is a nontrivial element
of filtration 4 represented by b,_1go € Extj"’ TP (K, Z,), where fe
[Z(P+14K K] is the known uv,-periodicity element (cf. [7] p.426). This is a
sketch of construction in the proof of Theorem II given in section 3.

Let V(2) be the cofibre of g: £P*MK — K and y e [Z?P* 7)1y (2), V(2)]
be the v3-periodicity element for p > 7 (cf. [7] p.426). Reduct the element
¢ \Bilien,K to mV(2) and compose with 73 e [Z3P*+PtDay(2) V(2)],
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moreover, we pinch this resulting map to the top cell of V(2), then we get
an element in 7yng,3(p24p4+1)g-78 Which will be shown to be represented by
bn_190y3 € Ext;’* (Zy,Z,) in the ASS. This is a sketch of construction in the
proof of Theorem I given in section 3. Note that the b,_;goy;-element
obtained in Theorem I is an indecomposable element in 7z,S, i.e. it is not a
composition of elements in =z,S of lower filtration, because b,_; and
go € Ext>*(Z,,Z,) are known to die in the ASS.

After giving some preliminaries on Ext groups of lower dimensional in
section 2, the proof of the main theorems will be given in section 3.

2. Some preliminaries on Ext groups

In this section, we will prove some results on Ext groups of lower
dimension which will be used in the proofs of the main theorems.

PROPOSITION 2.1: Let p>5, n>2, then

(1) Ext}(Z,,Z,) =0 for t=p"q, p'q+q+r (r=0,1), and p"q+2q+r
(r=0,2) and alb,_1 # 0 € Exty?""**(Z,,Z,).

2) ExtyP"t2tl (7 7)) = Z,{osbn_1} with oy € Ext5¥1(Z,,Z,)
Exty? 17944 (Z,, Z,) = Zp{bu_190}

(3) Extj(Z,,Z,) =0 for s<5, t= —1,-2,-3(mod q) except for p=>5,
s=5and t=5 (mod 8).

Proor. From [11], we have a quotient chain complex (C**,d) of the
cobar complex of 4 whose cohomology is isomorphic to Ext}*(Z,,Z,) (not an
algebra isomorphism!) and as a vector space over Z,

C** = E(hmilm > 0,i = 0) @ P(bmi|lm > 0,i > 0) ® P(a,|n > 0)

where E is the exterior algebra and P the polynomial algebra, A ;, by, a, are
represented in the cobar complex by

hmi = [é";:] e C17(Pi+m_l+pi+'"‘2+...+pi)q
b"li = [é(p_l)pilépi] e CZ,(Pi+"'+pi+’”‘l+...+pi+1)q
) m m
an = [1a] € CHPT 4P g ]

To prove (1), observe the following internal degree mod p"q for 1 <i < n,
nz2,

Al = p'q (mod p"q)

1611l = p'q (mod p"q)
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Iasia]l = (P2 +---+p" g (modp"q), i<s+i—-2<n
lbsiztll = (PH' +--- +p)g (modp"q), i<s+i—-2<n
laiwill = (" +p ' +---+1)g+1 (modp"q)

At degree t = p"q + mq + r with m,r < p, C** has no generator which has
factors consisting of the above elements, because such generator will have
internal degree (c,—1p" '+ -+ c1p + co)q + d(mod p"q) with some ¢; # 0
(1<ig<n-—1), where 0<c¢;<p, s=0,...,n—1, 0<d <4. Exclude the
above factors and factors with internal degree > p"g, we can easily show that

CHr'a =, CHIteI=(, CH'IU =
4,p"g+g+] _ 4.p"q+2+2 _
CHP'tatl = Z {by y1hipao}, CHPYHY2 = Z {hy hyparao}

But computing the coboundary in the cobar complex we have

a Y0 (B) Jpletr i ) = 30 (B) Joi e
A& [rr|ra] + [&] 1m0l — [&F |E1Iromi]) = —2[&7 |&|wola] — [&F |€11€170/ 7]
— & |&} Ivolwo]
Take the quotient of the above equality in C** we have
dbyp-1a1 = by n_1h10a0, dhyna? = —2h zhipaoar
Similarly we have
C¥'*2 = Z,{alhy .} CHP"12 = Z,{alby 51}

It is obvious that a2hy, is represented by a2h, in Exti’*(Zp,Zp), SO
dathy, =0, and (1) is proved.
By a similar method we can check that

4,p"q+2g+1 __ 4,p" 2q _
CHPariatt = Z {by p1hpar}, CHPIPIYN = Z, (b n_1h1oh2o}
3,p"q+2g+1 _ 3,0"q+pa+2q _
CHPariatt = Z {hy phoar}, CHPUPIYA = Z (hy b ohyp}

However, the known generators A,a; and h,go in Exti’*(Zp,Zp) are represented
respectively by hl,nh1,0a1 and h|ynh1,oh2’o in C3’*, thus d(hl,nhl,oal) =0,
d(hy,nh10h20) =0 and so (2) is proved.

To prove (3), observe the following internal degree mod ¢,

1Am,ll = O(mod ), [|bmill =0 (mod g), ||as|| = 1 (mod g)
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Similarly, look at the following exact sequence

2 ExtP"4(2,, Z,) & Ext} I H' M, Z,) 1 Ext?'1Y(Z,,2,) &

induced by (1.1). The left group is zero for r =2 (cf. [3]) and has unique
generator a2h, for r=3 (cf. [1] table 8.1) which satisfies i.(a2h,) =
i,p«(aohy) = 0, then imi, = 0. The right group has unique generator aph, and
aoby—1 for r=2 and 3 respectively which satisfies p.(aohs) =a3h, #0e
Ext}?'%(Z,,2Z,) (cf. [1]) and p.(aobn_1) = a3bn_1 # 0 € Ext3?9%(Z,, Z,) (cf.
Prop. 2.1(1)), then imj, =0 and so the middle group is zero for r=2,3. It
follows from the following exact sequence

0 = Bxt’”" " (H* M, Z,) 1 Ext?" " (H* M, H* M) 5 Ext?" " (H* M, Z,) = 0
induced by (1.1) that Ext;’”"'”l(H*M,H*M) =0 for r=2,3.

(2) Consider the following exact sequence

B Ext'1%%(z,,2,) L ExtP (2, B M) 5 ExtP (2, 2,) D

induced by (1.1). The left group is zero for r =2 (cf. [3]) and has unique
generator a2h, for r=3 (cf. [1] table 8.1) which satisfies j*(agh,) =
Jj*p*(aoh,) = 0, then imj* = 0. The right group has unique generator aph, and
aoby—1 for r=2 and 3 respectively which satisfy p*(aoh,) = a2h, # 0 and
p*(aohp-1) = agb,,_l # 0 then imi* =0 and so the middle group is zero for
r=2,3.

Similarly, look at the following exact sequence

2, Ext"*(z,,2,) L Bxt}?"(Z,, H* M) 5 Ext'?"9(Z,, Z,) &

induced by (1.1). The left group is zero for r =1 and has unique generator
aphy for r = 2 which satisfies j*(aph,) = j*p*(hn) = 0, then imj* = 0. The right
group has unique generator A, and b,_; for r =1 and 2 respectively which
satisfies p*(h,) = aph, #0 € Exti”’"q“(Zp,Zp) and p*(bp—1) = aphy—1 #0 €
Ext}”"%"'(Z,,Z,) then imi* =0 and the result follows. QE.D.

PROPOSITION 2.4: Let p>=5, n>2, then

(1) Ext2?9(H*M,H*M) = Z,{b,.\}  and  Ext}’""""(H*M H*'M)=
Zp{0u(bn_1)}, where a,: Ext2P"I(H*M,H* M) — Ext3?"" 7 (H* M, H* M)
is the boundary homomorphism induced by a:> ! M — M.

(2) Exty”"(H*M,H*M) = Z,{h,} and ExtZ?" M (H* M, H* M) =
Zp{ax(hn)}.

Proor. (1) Consider the following exact sequence

0 = Ext3”" " (H*M, Z,) 5 Ext2?" (1" M, H* M) 5 Bxt3”(H* M, Z,) 5
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then when 1= —1,-2,-3,C*% is spanned by generators with at least g — 1,
q—2,9-3 factors of a;’s, so s=q—3>=5, (3) is proved. Q.E.D.

PROPOSITION 2.2: Let p>17, n >4, then the product

bu_1goys #0 € Ext7,p"q+3(p2+p+l)q( Z,,2,),

where y; = ho 123 € Ext3 Gr? +2p+1)q(Z V4 )

hisha1h3 0.

whose representative in C** s

Proor. The related internal degree ¢t = p"q+ 3(p?+p+ 1)q is divisible
by g, then C%(s=6,7) is spanned by generators which has no factor a;’s.
Since t =3g (mod pq), ||hnil| =0 (mod pq), ||bni-1|| =0 (modpg) (n,i>0),
then C*(s =6,7) must be spanned by generators which has factor h;oh;ohi o
(i<j<k). Comparing ||hiohjohrp| modulo p"g, we have i=1, j=2,
k=3. Exclude this factor h;ohjohyo, the other factor is in C*=32"4+(r*+Pka
and we can easily check that C3?"7+(2P*+p)q — Zy{h\,nh1 2021 }, CHP et +p)e =
Zp{b1n-1h12h21}. So we have

COP 3P 4 — Zp{h1,nh1 22, 1h1 oo oh3 0}
CTP Pt pta - Zp{b1,n-1h12h21h10h2oh30}

Moreover, by computing modulo mixed words, we can check that h,goy; €
Ext$? g 3(p ) M(Z,,Z,) and b,_1goy; € Ext}? g3+ M(Z,,2,) are repre-
sented respectwely by hy,nh12h21h10h20h3 0 and by n—1h12h21h10h2ph30. So
d(COP"3(r*+p+03) = 0 and b,_1goys # 0 € Ext ;2" ez 7y QED.

PROPOSITION 2.3: Let p>5,n> 2, then

(1) Ext?"""Y(H*M, Z,) = 0, Ext’}? 'I+2(H M,Z,)=0 and ExtP""'(H*M,
H*M) =0 for r=2,3.

2) Ext”"Y(Z,,H*M) =0 for r=2,3 and Ext}"(Z, H*M)=0 for
r=1,2.

Proor. (1) Consider the following exact sequence

B gxtP"tY(z,, Z,) & Bxt}P I (H' M, Z,) 5 ExtP"(2,, Z,) 2

induced by (1.1). The left group has unique generator agh, and aopb,—; for
r=2 and 3 respectively (cf. [3] and [1] table 8.1) which satisfies i.(aph,) =
iwpe(hn) =0, i(aobn-1) = ips(bp—1) =0, then imi, =0. The right group is
zero for r = 3 (cf. [1] table 8.1) and has unique generator b,_; for r = 2 which
satisfies p,(bp—1) = aobp-1 #0 € Exti’p "qH(Z,,,Z,,), then im j, =0 and so the
middle group is zero.
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induced by (1.1). The left group is zero by Prop.2.3.(1), the right group has
unique generator i,(b,—) since Ext A"’ "UZ,,2Z,) = p{b,, 1} and Ext?"7'(z,,
Z,)=0 for r=1,2 (cf. [3]) and p* =0 since Ext}?"7"'(H*M, Z) 0 by
Prop.2.3 (1), then the middle group has unique generator b,_, such that
i*(bn—1) = ix(bp-1).
Look at the following exact sequence

By pxtdr'ettl(z, z,) & ExP Y H M, Z,) 2 ExtP1M(2Z,,Z,) B

induced by (1.1). The left group is zero and the right group has unique
generator Agb,_1 = jio.ix(by—1) by [1] table 8.1, so the middle group has unique
generator a.i.(b,—1). Consider the exact sequence

Ext3?" 7MY (H* M, Z,) N Ext}?" M H M) D Ext}”" M (H*M, Z,) =0

induced by (1.1). As stated above, the right group has unique generator
uis(bp-1). Moreover, p*ouic(bp-1) = dp*(bp-1) = uds(aobn-1) =
%uiups(bn-1) = 0, that is to say, the right p* =0. So, Ext; e q+”+1(H M,H*M)
has unique generator o,(b,_;) such that i*a,(bn_1) = i*a*(bp_1) = tuis(bn_1)
since Ext}”"?*"*2(H*M,Z,) =0 by the fact that Ext}?" "+q+'(Z Z,) =0 for
r=1,2 (cf 1.

(2) Consider the following exact sequence

0 = Bxt}?""(Z,, Z,) 5 ExtyP" " (H* M, Z,) 15 Ext}7"(Z,, Z,) &
induced by (1.1). The left group is zero and the right group has unique
generator h, (cf. [3]) which satisfies p,(h,) = aoh, # 0 € Ext3?""'(Z,, Z,), then
Ext;”" 7" (H*M,Z,) = 0. 1t follows from the exact sequence

0 = Ext\”" " (H*M, Z,) T Ext}?" (0" M, H* M) 5 Ext}?(H* M, Z,) =5
induced by (1.1) that Ext”"?(H*M,H*M) has unique generator k, so that
i*(h ) = iy (hn ) e Exty”"Y(H*M,Z,), where the right p*=0 since
Ext2”""* (H*M, Z,) = 0 by Prop.2.3 (1).

Look at the following exact sequence

Ext2P10t (7 7)) B Ext2P T (1 M, Z,) D Bxt3P(Z,,2,) B
induced by (1.1). The left group is zero and the right group has unique
generator hohy, = jiouis(hy) (cf. [3]), then Ext3?" " (H* M, Z,) = Z,{ai. (hn)}.
It follows from the exact sequence

Ex‘f{pnﬁqﬂ(H*M v Zp )LExtz’P"q+q+1(H* M, H*M) ﬂ,Eth,p"q+q+1(H* M.z, =0

induced by (1.1) that Exty 2P q+"+l(H M,H*M) has unique generator
. (hy) such that i*o,(h,) = i*a*(hy) = ouis(hy) € Ext2?" 7Y (H*M, Z,) since
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Ext;?"9"*2(H*M, Z,) = 0 by the fact that Ext;”" "1V (Z,,Z,) = 0 for r = 1,2
(cf. [3]). QE.D.

PROPOSITION 2.5: Let p>5,n>2, then

(1) Ext}P"""(H*K,Z,) = 0,Ext>? "ate-l (H*M,H*K) = 0 and Ext};?"7*(Z,,
H K) Zp{(i7")’ (hobn—1)}. ,

(2) For by_1g0 € Ext}?" P24 (7. 7 (i"i), (bu_190) # 0 € ExtiP"TPI 24 (H*K,
Zy,).

Proor. (1) Consider the following exact sequence

Ext?" (MM, Z,) 5 BxtP T (HYK, Z,) B Bxt P (H M, Z,)

induced by (1.2). The left group is zero since Ext}?9*9%"(Z,,Z,)=0 for
r=2,3 (cf. [1]) and the right group is zero by Prop.2.3.(1), then the middle
group is zero.
For the second result, we first show that Ext}”“*"'(H*M,H*M) =
Z,{()" (i), oz*( bn1)} and j*i.(azbn_1) # 0 € Exty?9™(H* M, H*M), where
arbn_1 € Exty 4pq+ +](Z,,,Z ) is the generator in Prop.2.1.(2).
Look at the followmg exact sequence

P2 ExPH(H M, Z,) L Bxt3P T (H M H M) & Bxt P (H M, Z,)
induced by (1.2). The left group has unique generator i,(hobn—1) =
Lyfu Oy (bn—l) since EXti‘pnq-"q(Zp?Zp) = Zp{hobn-—l} and Ext}/ q+q_1(ZP7ZP) =0
for r = 2,3 (cf. [3] [1]) and the right group is zero since Ext;? **"(Z,,Z,) =0
for r=—1,—2, then the middle group has unique generator j*i.(hob,—1) =

()" (§) 4 (B-1).
By the following exact sequence

0 = Ext}?"1*(z,,7,) & Ext}?" vt (7, 7,) = Ext4P" 74T (H M, Z,
A pr£p A D

induced by (1.1) we know that i,(0b,—1) #0 € Extj’pnq‘Lz"“(H*M ,Zp), where
the left group is zero by [1] table 8.1. Moreover, by the following exact
sequence

0 = Ext3”" " 4(H* M, Z,) % Bxty?" 4 (H* M, Z,) L Bxt?" (1 M, H* M)

induced by (1.1) we have j*i,(02b,—1) # 0, where the left group is zero since
Ext}?"9t24%7 (7, 7,) = 0 for r=—1,0 (cf. [1] table 8.1).
Now observe the following exact sequence

Ext3?" 24 (1 a1, H M) YL Ex 37" (H* M, H*K)

@) @"

— Extz?" N (H M, H* M) —
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induced by (1.2). Since Ext}?"7"**"(Z,,Z,)=0 for r=0,-1 and
Ext? "tz z,,) Z,{ozh,} by [1] table 8.1 and Ext3? q*”(z,,,z,,)
(cf. [3]), then Ext A” ‘1+2"(H M ,H*M) has unique generator j*i,(azh,) satlsfylng

()% i (ohn) = (i) "o (i) *(n) = 0

since «2ijj’ = 0€[392 K, M]. So the above im(j')* =0. Moreover, the
right group has unique generator (i)*(if),o(bs—1) satisfying

o (i) (§) s ta (Bn1) = ()" (§) o %0 (Bror) = j*is(@2bn1)
# 0 € Exty?"""(H* M, H* M),

then the above o* is monic and so im(i)* =0 and we have
Ext}”""" ' (H*M,H'K) =

At last, observe the following exact sequence

G )

EXt 2,p"q— Z(ZP,H*M) 2, Ext 3,p"q+g-1 (Z H* M) Ext 3,p"q— Z(ZP,H K)

Y Exii'2(z, H* M)
induced by (1.2). Since Ext}?"97*(Z,,Z,) =0 for t=1,2 and r=2,3, then
Ext}? "q*z(Zp,H M)=0 for r=2,3 and so the above (j')* is an isomor-
phism. Moreover, Ext},?"4t4~! (ZP,Z,,) 0and Ext2?"1%9(Z,. Z,) = Z,{hoby_1}
by [1] table 8.1, then Ext}?"*"Y(Z, H* M) = Z,{j*(hob,_1)} and so
Ext}” 92 (Z,,H*K) has unique generator (jj’)*(hobn-1).

(2) This follows from Prop.2.1.(3). Q.E.D.

Let XK' be the cofibre of ai: X9S — M given by the cofibration
(2.6) PX A VRN RS 5 RS

then K’ is also the cofibre of jj’: Z~'K — X9+1S. This can be seen by the
following commutative diagram of 3 x 3 lemma in stable homotopy category

(2.7 28 —» M —— K
2IM \

/\/\

S>lK —, yetlg P, yatlg
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That is, we have a cofibration

(2.8) sk L i g Xk

From (2.7), yz = p, then the composition zy = 1g Ap: K’ 2 patig 5 K
To check this, observe that yzy = py = y(1x: Ap) and so zy = 1x» Ap + vh for
some 4 € [K’, M| and this group is zero by the following exact sequence

(au) ; g+1
&M, M) S K M) & [20S, M) =

induced by (2.6), where (ai)* is monic.

The cofibre of 1x/ Ap: K’ — K’ is K’ AM and it is also the cofibre of
aijj’: Z~'K — XM, this can be seen by the following commutative diagram of
3 x 3 lemma in stable homotopy category

(2.9) AN
zatlg K'AM

VAT

'K —— M —— K
That is, we have a cofibration

(2.10) UK sk AaML Kk

Let L be the cofibre of a; =jai: 397! § — S given by the cofibration

(2.11) zilg & S—>L—»zqs
From [7] p.434, there is A €[>, %! LAK,K] such that

(2.12) A" Alg) =i e [ KK), A =i’ (" A k).

PROPOSITION 2.13: Let p>5, n>2 then Ext2”Y(H'K',H'K)=
0, ExtVMYHK H'M)=0, ExCFMY2HK H*M)=0  and
Ext}?" q+"+2(H K',Z,) has unique generator (aobn_1)g satisfying y.(aohn-1)g =
aob,, 1eExtA’p "+1(ZP,Z ).

Proor. We first prove that Ext3”99'(Z,H'K)=0 and
Exti”’""(H*M ,H*K)=0. To check this, consider the following exact
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sequences

@)

Ext2”"(Z,, H* M) L% Ext27"-0" (z, 1K) L Ext2?" ) (Z, H* M)

2N @

Ext2? 0+ (1 g, He M) Y Bxe2?" (1 M, HK) Y Exe22"9 (1 M, H M)

induced by (1.2). The upper left group is zero by Prop.2.3 (2) and the
upper right group is also zero since Ext3”"9"47(Z,,Z,) = 0 for r = 0,1 (cf. [3]),
then the upper middle group is zero. The lower left group has unique
generator a*(h,) by Prop.2.4.(2) so that im(;')* =0. The lower right group
has unique generator b, ; by Prop.2.4.(1) satisfying oz*(E -1) #0e€
Ext}?"** (H*M,H*M), then im(i’)* = 0 and so the lower middle group is
zero. Hence, by the following exact sequence

0 = Ext2”"(H* M, H*K) 5 Ext3”"I(H*K', H*K) 5 Ext3?""1"'(Z,,H*K) =

induced by (2.6) we know that Exty 2P"(H*K' H*K) = 0.
Consider the following exact sequence

Ext}?" Y2 (H* M, H* M) 5 Ext}” M (HAK, H* M) 5 Ext )P (Z,, H* M)

induced by (2.6). The left group is zero since Ext}” 9*%*(Z, Z,)=0 for
t=1,2,3 and r =2,3 (cf. [3] and [1] table 8.1) and the right group is zero by
Prop.2.3.(2), so Ext}”"*"**(H*K',H*M) = 0 for r = 2,3.
At last, look at the following exact sequence
Ext3P"H2(H M, Z,) & ExPAHK, Z,) 5 Ex P (2, Z,) P

induced by (2.6). The left group is zero since Exti”’"q”“(Zp,Zp) =0 for
t=1,2 and the right group has unique generator apb,_; (cf. [1]) satisfying
(i), (aobn—1) = 0, then Ext}?"***(H*K’, Z,) has unique generator (@ob,_1)g:
as desired. Q.E.D.

The main theorem II will be proved by some technique processing in the
Adams resolution of certain spectra and need some more knowledge on Ext
groups. Let

2, z2%, 4, 5 2, 5§
l J l
Z72KG, > 1KG KGy=KZp

be the minimal Adams resolution of S satisfying
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(1) E; 2 KG 5 Es+1 & ZE are coﬁbratlons for all s > 0 which induce

short exact sequences 0 — H*E, 5 Hr KG; —» H*E; — 0 in Z,-cohomology.
(2) KGy is a wedge sum of Eilenberg-Maclane spectra of type KZ,.
(3) mKG, are the Ej'-terms, (bsCs-1),: mKGs—1 — mKGs are the df"-
differentials of the ASS and n,KG, =~ Ext}}(Z,,Z,). Then

arle, 32w S0, solgaw 20w
jrl;z/\lw JvElAlw J/Eo/\lw
S2KG AW SIKG AW KGoA W

is an Adams resolution of arbitrary finite spectrum W.
From [7] p.430, there is o’ € [3.97 K, K] satisfying

(2.14) o'i' = iijaij, o = ijaijj’.

It follows that ji'e" =0 and so by (2.8), «’ = x& with @ € [Y.7% K,K']
and j/x&' = iy@" = ijaijj’. So, y&' = juijj’ € [K,3.> S]. Moreover, x&'i' =

Il/

«'i’ = i'ijaij = xvijaij, then &'i’ = vijoij since [M,Y.> S] = 0. That is, we have
(2.15) ya&' = jaiji’, &'i’ = vijaij.
Let X be the cofibre of o’: 327> K — K given by the cofibration

(2.16) PXa) i G N Y e

ProPoOSITION 2.17: Let p > 5,n> 2, then

(1) There is (bp_1)' € Ext2?"Y(H*K,H*K) and (b,_1) € Ext2”{(H*K’', H*K")
such  that ('), (bn ) (J]’) (bn-1) € Ext2?"9797%(Z, H*K)  and
V(b 1) = v*(ba-1) € Extg” 77N (Z, H'K), (Ul) (bn-1)x: = (vi),(bn-1) €
Ext}”"{(H*K', Z,).

(2) Ext}F'7te- 1(H K'H*K) has unique generator (hob,, g satisfying
(i"* (hob,, 1) = Usinj*(hobn—1) and (hobn—1)g = & (bn-1)’ = (&")*(bn-1)-

(3) ExtyPete- l(H K,H*K) has umque generator (hobn_1)" = o (bp-1) =
( ") (bu-1)' satisfying j.(hobn—1)" = ix(ji")* (hoba-1) € Ext?"?*(H* M, H*K).

Proor. (1) We wuse an argument in the Adams resolution. Let
bu_1 € MpngKG, = Exti"’""(zp,Zp), then b,-1jj' = (1kg, AJj’')(bn-1 Alx) and
(bn1 Alg) € [P K,KGo AK] is a dj-cycle which represents an element
in Ext;”(H*K,H*K) and we write it as (b,_;)’. The equation b, jj’ =
(1kg, AJi")(ba-1 A 1x) implies (") (Bn-1) = ("), (Bn-1)’ € Ext3”""172(Z,, H'K).
Moreover, b,—1y = (1kg, AY)(bn-1 A lx/) € [E” 9-9-1 K',KG,) and (b,—1 Alg/) €
[E”"q K',KG, AK'] is a dy-cycle which represents an element in
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Ext?”"(H*K’,H*K’) and we write it as (b,_1),,. Then, the equation b, 1y =
(11(02 /\y)(bn—l A 11(/) and (lng A Ui)b,,_l = (bn—-l A IKI)Ui implies y*(b,,_l) =
Velbn-)g € BxGP N Z, HUK) and (0) (Ba-1)g = (00),(Bat) €
Ext;”"Y(H*K’, Z,) respectively.

(2) Consider the following exact sequence

Ext3?"#9° (H* M, H'K) % ExC3P" "' (H*K’ H'K) 25 Ext?"9%(Z,, H'K)
induced by (2.6). The left group is zero and the right group has unique
generator  (ji')*(hobn—1) by Prop.2.5. Moreover, (ai),(j")* (hobn-1) =
()" (), (i) (bn-1) = (o), (jai) (i) (ba-1)" = O € Extg?" "™ (H' M, H'K)
since ajjoiji’ = 0€ [327° K,M]. (Note: aijoij = (1/2)ija®ij = ijoijor). Then,
the middle group has unique generator (hob,-1)g: such that y,(hob,—1)k =
(") (hobn-1) = (") "} (bu-1) = (2147")" (bn-1) = (¥3")* (Bn-1) = (&) ys(bn-1)x
and so we have (hoby_1) = (&')*(bn-1)x- On the other hand, y.(hobu_1)g =
(5" (hobn-1) = (") (01)u(ba-1) = (00),(5)s(bn1)’ = pud(bu-1)’, then
(hobn-1)g = & (bs-1) asdesired.

Moreover, (')*(hobn-1)g: = (I)'(@) (bu-1)g = (@7) (but)gp =
(0gjo)” (Bn-1) = (joh)" (00). (bn-1) = visj* (hobr-).

(3) We first prove that Ext” "a-3 (Z,,H*K) =0 for r = 2,3, this can be
seen by the following exact sequence

2N

0 = Ext}P"9*772(Z, H*M) L5 Ext}F"? 3(z,,,H*K) Ext na(z, H*M) =

induced by (1.2), where both side of groups are zero since Ext”’ 9 (Zp,Zp) =0
for t =2,3,r=2,3 and Ext}”"9*"""(Z,,Z,) =0 for t =1,2,r = 2,3 (cf. [3] and
[1] table 8.1). So, from the following exact sequence

0 = Ext}”"73(Z, H*K) 5 Ext37" 7 (H*K', H*K) 5 Ext}?"*" (H*K,H*K)
Y Ext3"1-3(Z, H'K) = 0

induced by (2.8) we know that Ext>?"“**"!(H*K,H*K) has unique generator
(hobn- 1) = Xy (hobn— I)K' —x*a (bn 1) = Ot"(bn 1) Moreover, ji(hobn_l)” =
Jlall(bno1)' = (joudjj’), (buo1)’ = ix (ji")* (hobn-1), (hobn-1)" = x.(hobn-1)g =
5 (&) (o) = (@) % (bn-1)g = @) 5" (but) = (@) (bar).  QED.

3. Proof of the main theorems

We will first prove theorem II. Before proving it, we need to prove some
lemmas.

LemMa 3.1: Let p>5 and a,(h, )eExtz" "+q+1(H*M H*M) be the gen-
erator stated in Prop.2.4.(2), then Y a.(h,) # 0 €Ext; 2P (K A M, H* M)
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and it is a permanent cycle in the ASS, where : >, M — K' A M is the map in
(2.10).

ProoF. We need to prove  v,0,(h,) = (1xr AJ), W, 0u(R) £ 0 €
ExtZ”" 9" (H*K’ H*M) and this can be seen from the following exact
sequence

0 = Ext'?"1(Z,, H* M) > Ext3?"#+ (H* M, H* M) % Ext2?" " (H* K’ H* M)

induced by (2.6), where the left group is zero by Prop.2.3.(2).
___For the second result, we do work in the Adams resolution. Let
hohy € [P M KGyAM] be the dycycle which represents () €
Exti”’ "t H M H* M ), then it suffices to prove that (CoAlgranm)-
(11(62 A l//)(hoh,,) =0. _

Since the dj-cycle (lkg, Av)(hohy)i € tpngrq+1KG2 AK'  represents
U (i* 0t (Bn)) = D40uin(B) = 0, then (1gg, /\v)(h’071;,)i is a di-boundary and so we
have

(3.2) (& A1) (Akg, A v)(Fohy)ij = O.

From (2.9), there is a factorization v= (lgAjY:> M A
K’/\MM 3" K’, then from (3.2) we have (¢2 A lxam)(lka, A;//)(@z/,,)ij =
(1g, Alg Ad)f for some fe[Y P9 M E;AK'). Hence, (@ Alganm)-
(Ig, AlgAd)f =0 and (@ Alg)f =g Al Ap)fa=fH(1yAp)=0 with
e[ M,E;AK'). Thus f=(calg)g with ge [P M,
KG; AK'] and we have

(33) (52 A lK’/\M)(lKGz A I/I)(};()\il’,,)y = (52 A lK'AM)(]-KGz Alg A i)g.

It follows that (b3¢, A 1x)g = 0 since lgg, A lg: Ap =0, ie., g is a dj-cycle
which represents an element in Ext3?"4**!(H*K’,H*M). We claim that this
group has unique generator v.a.(h,), this can be seen from the following exact
sequence
@ Bx2P (HY M, H M) 2 Ex? T (HAK H M) 5 Bxth?9(Z,, HY M)
induced by (2.6), where the right group~is zero by Prop.2.3.(2) and the left
group has wunique generator o.(h,) by Prop.2.4.(2), moreover,
Ext}f “Z,,H*M) =0 (cf. Prop.2.3.2)) so that im(ai), =0. Then,
g = ¢(lkg, Av)(hoh,) modulo d,-boundary with ¢ € Z, and so (3.3) becomes

(34) (@2 Al ane)(1kg, AW) (hohn)ij = (62 A ks an) (1ka, A (Lxr A 8)0) (Boha),

where we omit the scalar ¢ € Z, which is inessential in the argument below.
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Now we will use some technique on derivations of maps between M-
module spectra. The spectra E3 AK'AM,KGy, AK' AM and KGy A M are M-
module spectra with M-module structure determined by the right M, then the
derivation d(¢; A lgram) = Ca Ad(1g ap) =0 (cf. [10] p.210 theorem 2.2) and
d(1ge, AY) = 1k, Ad(¥) =0 since d(y)e[>2> M,K'AM]=0 by the fol-
lowing exact sequence

0=[22M,sM] 5 [22 M, K’ A M] 2 [52M,K] =0

induced by (2.10). So t}_lg derivation of the left hand side of (3.4) equals
—(@ A g am)(AkG, AV)(hohy) since d(if) = —1p and d(hohy) € [P 9792 M,
KGyAM] =0 since mpngiq1 KGrAM =0 for r=2,3 by the fact that
TpngrgrrKGy = Ext3P" MY (7 7) = 0 for r=1,2,3.

Moreover, we consider the derivation of the right hand side of (3.4).
Note that KG; is an M-module spectrum with M-module action
mg,: M A KG; — KG;,ig,: Y, KG; — M AKG;. Then KG;AK' is also an M-
module spectrum with M-module action

mg, Alg: MAKGsAK' — KGsAK'
mg, Alg: ZKGsAK' — M AKGAK'
So by applying d to (3.4) we have

(3.5) (@ A Lk are) (Lkc, A W) (o)
= (@ A Lk aa)d(1xc, A Lxr A D) (1xG, A ) (hohn)
+ (52 A 11(!,\1;1)(11((;2 Alg A i)d(l[(g2 A v)(m,)

Since ,@,) is a dycycle, ie, (b3t2Aly)(hohy) =0, then
d(1gg, Av)(hohy) € [27"7H9"2 M, KG, AK'] is also a dj-cycle. To check this,
we need _ to  prove the commutativity (b3 A lg)d(lgG, AV) =
d(lKG3 A U)(b352 A lM). Note that d(l](c,'2 AD) = (mG2 A lK/)(lM Algg A v) .
(T A1p)(1kg, Afm), where m: >, M — M AM is the M-module action of
M. Then it suffices to prove the following diagram commutes up to homotopy

mG2
MAKG, —— KGy
llu /\5352 J'&Ez
m(;3
M/\KG3 —_— KG3

Consider the induced homomorphisms in Z,-cohomology. Since
mg, (i A 1kG,) = lka,, then mg (a) =1®a for any ae H'KG;. So we have
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m*63(l;352)*(a) =1® (b352)*(a) = (IM /\5352)*(1 ® a) = (IM /\5352)*”12;2((1) for
any aeH'KG,. This proves the above commutativity and so
d(1ge, Av)(hohy) € [X2P"7H9*2 M,KGy AK'] is a dy-cycle which represents an
element in Ext;”“*"*’(H*K’,H*M). However, this group is zero by
Prop.2.13., then d(1kg, Av)(hoh,) is a dj-boundary and so (3.5) becomes

(3.6) (@2 A ks aar)(1kg, AW (hohy)
= (52 A 1K’AM)d(1KGz Alg A i)(lKGz /\U)(/;()‘il;)

Recall from (3.2) we have (lgg, Av)(%)ij = (b2€1 A lgr)gy for some
g2 € [Zp"q” M,KG, AK' ] Moreover, for the same reason as stated
above, we have the commutativity d(lkg Alg AQ)(B281Alg) =
(b2ey A g aar)d(1kG Algr Ad). (Note: Here, we need only to check
g, (b2€1) = (1p Abrci)g, and this can be proved by the induced homo-
morphism in Z,-cohomology by using the fact that (j A lgg, )G, =
1kg,). Then (G2 Alx am)d(1ke, Al AD)(1ke, A v)(hoh )ij = 0 and by (3.6) we
have

(@ Ak an)(AkG, A ) (hohy)if =

By applying d to this equation, we have (¢ A 1x/ A m)(lka, /\l/l)(hohn)
since d(ijj) = —1p and d(hoh )=0,d(1xg, AY) =0,d(C2 A1k Am) = 0. Th.lS
finishes the proof of Lemma.3.1. Q.E.D.

LemMA 3.7. Let p>5 and (aohn-1)g € Ext3? " (H*K', Z,) be the
generator stated in Prop. 2.13, then this (aobn—1)g is a permanent cycle in the
ASS.

Proor. From [3] or [8] p.11 Theorem 1.2.14, we have d,(h,) = apby,-1,
where dy: E;7'? — EP"%*! is the differential of the ASS. Then, for
hn € mpngKGy = Ext"P"4(Z,,Z,), we have ih, = arf' with f’ € mpg1E3 and
E3f' = aob,_1 € npnq+1KG3 o Ext3”’""+‘(zp, Zp).

It follows that (@, A 1) (1, A i) f = 0 and (1g, A i) f' = (G2 A 1ar)g” with
di-cycle  g" € png1q1KGoAM  which  represents an element in
Ext}?" MY (H*M, Z,) = Zp{i*ou(h h.)} by the proof of Prop. 2.4., then
(IE3 Aai)f' = (¢2 Al y)(hohy)i and so by Lemma 3.1, we have

(1, AYai) f' = (82 A L r) (LkGy A W) (Bohn)i = 0

So by (2.10), (1g, Aai) f' = (1g, Aaifj’) f" with " € Apngiq43E3 AK and by
(2.6)

S =g A"+ QgAY Sy
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with f) € pngiq42E3 AK'. Tt follows that

(1xe, A1) (B3 ALk) " + (1ka, AY)(B3 ALk f3 = b3 f' = agbn_i

Since (b3 ALk) f" € Mpngiq+3KG3 AK represents (B3 Alg)f"] €
Extj;”J "t (HAK, Z,) =0 by Prop. 2.5., then (b3 A lx:)f) € Mpngiq+2KG3 AK'
must represents the generator (aobn1)gs € Exty” TTY2(H*K’, Z,). This
finishes the proof of the lemma. Q.E.D.

ProoF of THEOREM II: The relation «” = x&” in (2.14) yields an element

o€ [X ,2‘”2 S] fitting into the commutative diagram

a w u

yelg 4 g % x4 vyl 4 vk
(A I S T
Kk 5 kL ymwms 4L vk 5 YK

in which both sequences are cofibrations. Thus we have relations jj’ = ow and
&'u = zo.

For the generator (hob,_)% € Ext3”" " \(H*K',H*K), u*(hobn_1)g =
(@) (b)) = 02 (but)g)  and 2 ((baa)e) = (aobu) o €
Exti’pn‘”"”(H*K’ ,Z,) is a permanent cycle by Lemma 3.7, then u*(hobu_1)%
is also a permanent cycle in the ASS. (Note: y.z*(bn_1)x = 2*Vu(bn-1)g =
2*y*(bp-1) = p*(bn—1) = aobn—1 = y«(aobn-1)g., then we have the above equa-
tion z*(b,—1)% = (a@obn_1)g since Extj”’ ""+q+2(H*M v Zp) =0)

Therefore, (c3 A 1)(h0b,,_1)','(,u = 0, which yields a commutative diagram

Ep"q K w Zp”q x Zp"q+q—l K -z Zp"q+1 K Ep"q+1 X

f_l f_zl J(hobm)':'( lf l fa
YIUEAK EZL Bak B2 kGyak' 22 EiAk EX T Ey Ak,
by which we obtain maps j: P K L EAK and f,: 3P X —
E;AK'. By Lemma 3.7, let f: Y 4"%2 5, E, AK' denote a homotopy
element represented by (aobs—1)g, that is, (b3 A1)f = (aphn—1)g,- Therefore,
we have (b3 A1k fy = (hobp_ I)K,u = (aobp-1) g0 = (b3 A le)famoddl-
boundary.

Thus, we have (b3 A lK/)fz = (bsalg)fo + (b3cr Alg)g; with gse
32" X,KGy AK'] and f, = fa+ (2 A 1g))g3 + (@ A 1gr) f3, and so

1 a3Al

@n lKr)f =f2W =faw+ (@ A lKr)f3W+ (C2 A 1g)gaw

=fii' + @ A lg) faw + (E2 A 1k Gsw
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By (2.12), jj'4 = jijj’(j" Alx) = 0 for Ae[3.9"' LAK,K] and we obtain

(38) (53 A lKl)fZ =f_2W = (53 A lKl)f-3WZ + (€3 A 1gr)gawd

It follows that (b3é;Alg)gawd =0, ie., gywde [P 97! LAK,
KG,AK'| is a d-cycle which represents [gswd] e Ext;7' 4 (H*K,
H*L AK). This group is nonzero, but we claim that [§;wA] = 0, which can be
proved as follows.

Consider the derivation d(g;wd) e [37'7% LAK,KG, AK']. We have
d(g3wZ) = (m(;2 A lK/)(lM Ag3WZ)n_’lLAK, where (mG2 Alg): M AKG, AK' —
KG AK',iipnx: Y, LAK - M ALAK are the M-module actions of KG, A K’
and LA K respectively. In the proof of Lemma 3.1, we have the commu-
tativity (B3Ez)m(;z = mGs(lM A 5352), then (5352 A 11(/)d(ﬁ3w2) = (mc;3 Algr)-
(IM/\EgézA lKr)(lM/\g3WZ)fr_lL,\K =0, ie., d(g3w2) € [Zp"q—q LAK,
KG, AK'] is a dj-cycle.

Moreover, by the derivation formula, d(gswd) = d(gsw)4 + gsw(j” A 1)
is a dj-cycle (Note: d(4)=j"Alg by [7] p.434), then d(gw)ij' =
d(gsw)A(i" A1) (cf. (2.12)) is also a dj-cycle.

Let K, be the cofibre of a?: % M — M given by the cofibration

(39) SEMEME KRS T M

Then we also have a cofibration (cf. [7] p.422)

(3.10) DR S 3 SN AN G

satisfying i’ = ija, J'p = ojy.

Following from (b3cz A 1x/)d(gaw)i’j’ =0, we have (b3 A lg)d(Gzw) =
ga¥ with gy € [P Ky, KG3 AK'].  But gopi' = gaija = 0, then guib = gsj’
with gs € [P M, KG; AK']. So we have

(3.11) (b32 A 1k )d(Gsw) = G5/’

and (b4ts A 1g)gs = Gex = 0 (with gg € [SF"7"? M,KG4 AK')), ice., gs is a d-
cycle which represents [gs] € Ext>P"t4+2(H*K/ H*M) =0 by Prop. 2.13.
Then gs = (bscaAlg/)g; for some g;e[SP" 9772 M,KGyAK'] and (3.11)
becomes  (b3¢x A 1x)d(Gsw) = (b3 Alg)G,j' and  (b3ta A lgr)d(Gzw)d =
(b3t A 1x0)goj' A = (B3e2 A Lk)Gaiif" (" A lk) (cf. 2.12)).

Following from the conclusion that d(g;wd4) = d(gsw)4 + gaw(j" A 1k) is
a d-cycle, we have (b3¢; A 1x:)d(g3w)4 + (b322 A 1x)gsw(j” Alx) =0 and so
(bse2 A Lk)gqil' (7" A 1k) + g3w(j” Alk)) =0 and  (bsr A Lx)(Grilf’ + g3w) =
Gg(a Alg) =0 (with gg e[S P97 K, KG3AK']). It means that g,ijj’ +
gswe [P K,KG3 AK'] is a dj-cycle which represents an element in
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Ext>”"I(H*K',H*K) = 0 by Prop. 2.13. Hence, §,iji’ + gsw is a d;-boundary
and so giwAd is also a d;-boundary since jj’4 = 0. This shows the claim.

So, (3.8) becomes (a3Alg:/)fd = (a3Alg)fswd and so fA=fiwd+
(¢3 A 1g)go for some goe [SF'9% LAK,KG3AK']. Since o’: Y9 > K - K
induces zero homomorphism in Z,-cohomology, then fA(lpAd")=
fiwd(1p Ad”). Now A(1p Ao") = o4, then we have

(3.12) (@3 A g ) (hobp-) 3 d = fo"A = fA(1 L A&") = fawd(1 Ad") =0

(Note: we prove A(1p Ad”) = o4 as follows. Since (A(1pAda") —o"4)-
(" AMg) = (A" A1) — (" A) (" Alg) = jja” —a”"ij =0 by (3.9), then
(A(pad") —o"A) e (" Alg)* D292 K,K] =0 since [3297° K,K]=0 by [7)]
p. 431.)

It follows from (3.12) that there is f, € [anq—z LAK,E; AK] such that
(b3 A1) f4 = (Bobp-1)g: 4 and we have
(3.13) (B3 A lg) f4(i" Alk) = (hobu1) 5 A(i" A k) = (hobn—1)gii}

= (1ke, A v)(hobn—1 A 1a)ijj’ modulo d;-boundary
(cf. (2.12) and Prop. 2.17 (2)).

From [2], there is {,_; € Myngi4-3S which is represented by hob,_1 €
Extj"’ 7*4(Z,,2,) in the ASS. Then {,_; can be lifted to {,_; 3 € 7png+4E3 such
that doﬁ[ﬁzcn_1,3 ={,_1 and b3Cn—1,3 = hob,_1 € npnq+qKG3 ~ Eth’p q+q(Zp,Zp).

So, by (3.13) we have

(53 Alg)(1g Ax)f4(i,' Alg)=(1gA i,)(hobn__l A lM)l'j]'I + (5352 Alg)g
= (b3 Ak)(1g, A )(Lnor3 A La)if + (B3C2 A 1k)G

with §e [327"72 K,KG, AK] and
(15, AX) f4(i" A1) = (15, A)(Gnmr3 A La)i' + (E2 A 1K)G + (3 A 1K) fs
for some f5 e [3?"9' K,E4AK] and we have

(3.14) (Lg, A D) n130 (01 Alg) + (@3 ALk) fs(1 Alk) =0

From [7] p.433, there is a homotopy equivalence KAK=Kv
S LAKv Y%%K and there are multiplication u: K AK — K and injection
v: Z""'Z K — KAK satisfying u(i'inlg) = 1g, (ji' A lg)v = 1x. Now write
o = a; Alg and following (3.14) we have

(g, ALTi)p130f = (@ A L&) (15, A2')fs (up to sign)
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and

(g, A)(di'i AL g) (Cao13 A LK) (' A LK)V = (@3 A 1g) (1E, A (e A 15))(Fs A Lk)V

and

(1g Ad)(Gn13 A Lk) = (@3 A 1k) (15, A D) fg

where we write fg= (1g Au)(fsAlg)v and use u(e/ Alg) =o'y Since
J'o = aifj’, then (Lg, Aaijj’)((a-13 A 1k) = (15, A0ijj’)(@ A 1k) fg and so

(3.15) (g, A ) (Cnm13 A 1k) = (15 AT ) (@3 A 1K) f6 + (1 AJ)on1 3
with {_, ;€ [Y7"""" K,E3AK]. From (3.15),

(1xc, AJ") (B3 A 16)n 13 = (1ke, A i) (b3 A k) (Cno13 A k)
= (lke; A ") (hobn-1 A 1k)
= (1ke, AJ') (hobn-1)" + (b382 A 11) (1kG, AJ')Ga

with (1K62 AJ)G, € [21'"‘1—2 K,KGy A M| by Prop.2.17(3). Then
(B3 AK)G 1 5 = (hobnr)” + (B3T2 A 1K), + (1ke, AT')G; and gy € [P 9H71 K,
KG3 A M] is a dy-boundary since Ext3?"?*~!(H* M ,H*K) = 0 by Prop.2.5.(1).
That is, we have (b3 A 1g)()_ 13 = = (hobn- 1)” modulo d;-boundary.

Let {, = (Go@1a Alg)l, 15€ (D7 "+4-4 K K] and consider the map

' B'i € pngipgi24-4K, Where pe [PV K K] is the known vy-map (cf[7]
p426) which has filtration 1 in the ASS. Since {/ , is represented by
(hobn_1)" € Ext3”" 7YY (H*K,H*K), then (" Bi'i is represented by
(Bi')* (hobn_1)" = (Bi'i)*o! (bn_1)’ = o’ (Bi"i),bn_1 € Ext4P P12 (H*K, Z,).

Now from [10] p.219 Theorem 3.2 and [9] p.60 Theorem 5.2 we know that
the map o’fi'i € mpgi292K is nontrivial and is represented by (i'i),(go) €
Ext%7*2(H*K, Z,) up to nonzero scalar. Then

1 e Ext2(2,,Z,) &% Extiret et (1K, Z,) 0 Ext2P4(HPK, Z,)

we have o (Bi'i), (1) = (i'i),(go) € Ext3P**(H*K, Z,) up to nonzero scalar and
so (v Bi'i is represented by  o!(Bi'i),(bn-1) = (i'i),(gobn-1) # 0 €
Ext%? "+’”’+2"(H K,Z,) by Prop.2.5. Moreover, (i'i),(gobn-1) €
Exty?""P*M(H*K 7)) can not be hit by differential  since
Ext;? 1PV (H*K, Z,) = 0, ExtyP" 7P 2 (H* K, Z,) = 0 by several steps of
exact sequences induced by (1.2) (1.1) and using Prop.2.1.(3). Hence,
{n_1Bi'i € myn q+pq+2q_4K is a nontrivial map which is represented by
(i'i), (bn-190) € Exty” "+p"+2”(H K,Z,) (up to nonzero scalar) in the ASS.
QED.
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Proor of THEOREM I: Let V(2) be the cofibre of f: T(P+D9K — K given
by the cofibration

s+l g LA K5 V(2) y(pthetl g

from Theorem II, there is (, ,Bi'i € Mpngipgi24-4K which is represented by
bn_190 € ExtyPIPIY(H K 7). Let y: (P ++)4p(2) — V(2) be the v3-map
and consider the following composition (¢ = p"q + pq+ 2q — 4)

Ly Apii V() ”, 5 3(p2+p+1)qV(2) T, 53 4p+)g+(pH2)a+3 g

f:Zt

Since (] ,pi'i is represented by bs_190 € Ext} SPTPIYM(H K Z, ») which is
the 1mage of bu_1g0 € Ext), 4p quP”“Lz"(Z Z,) wunder the homomorphism
(i), : Ext3?" P94 (7, 7)) — Ext” q+pq+2”(H K,Z,), then the above f is
represented by

o T " 2
¢ = JiT,(7.)}(31'i), (bu-190) € Ext [P 43008 (7 7y

The proof of the following lemma will be postponed to the last of the
paper.

LEMMA 3.16: Let p =7, then y; = jj'jy*ii'i € myp0412p944-3S is represented
(up to nonzero scalar) by the unique generator y3;=hoi123 in
Ext3 W H24(7, 7,) in the ASS.

From Lemma 3.16 and the knowledge of Yoneda products we know that
the composition

('),

Ext}’(Z,2,) — Exty’(H*V(2), Z,)

/'-)

3 s
L B 1V (2), 7)) L ExY (2, 2,)

is a  multiplication (up to nonzero scalar) by y;=hp123€
Ext? 31’2+2"”+"(Z Z,). Hence, f € S is represented (up to nonzero scalar) by
¢ = by_190y; # 0 € Ext Tp"a+3(p*4p +1)q(Z Z,) in the ASS. Moreover, from
Prop.2.1 (3), Ext,"” e +”"Ll)"_"Ll(Z,,,Z ) =0 for r > 2, then b,_1goy; can
not be hit by dlfferentlals in the ASS and so the corresponding homotopy
element f €,S is nontrivial and of order p. This finishes the proof of
Theorem I. Q.E.D.

ProoF of Lemma 3.16: From [5] theorem 2.12, y;=jj'jy3ii'ie
M3p2g12pg+q-3S 18 represented by dod162(v3) € ExtBP BP(BP*, BP,) in the Adams-
Novikov spectral sequence, where v} e ExtBP gp(BP«,BP,V(2)) and
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Ox: Extyp gp(BP,, BP,V(k)) — Extyp 3p(BP,, BP.V(k —1)) is the boundary
homomorphism associated with the exact sequence 0 — BP,V(k—1) Y
BP.V(k—1) - BP.V(k) — 0. By a computation due to K. Shimomura, in
the cobar complex Q23BP, we have

50010,(v]) = 6@ LR 1
+h QBRI + LR + P Q)
+0@6 EQE +3E+4 )@ +2£ @]
1308 @

+ (other terms with v,).

Consider the Thom reduction map &: Exty; zpo(BP., BP.) — Ext}*(Z,, Z,).
Since &(t,) = &, and &(v,) = 0, where £, means the conjugate of &, € 4, (4, is
the dual of A4), thus modulo mixed words (cf.[11]) we have

— ey —p2
DGo10203) = V(6@ B ® 1) = 65|Z|Z] = 6hy oy 1hsg € C*
This proves the lemma. Q.E.D.

Acknowledgement: The authors would like to thank the referee for his
helpful suggestions which have shortened the proof of the main theorem.
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