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Liouville-Picard theorem in harmonic spaces
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ABsTRACT. An extended version of the classical Liouville-Picard theorem for the
harmonic functions in R” is considered in the context of biharmonic functions in a
Brelot harmonic space with a symmetric Green kernel.

1. Introduction

In [3] is considered a Liouville-Picard type theorem for superharmonic
functions in R”, n>2. A simple special case of this theorem shows that if
s > 0 is superharmonic in R”, n = 3 or 4, and 4%s > 0 then s is a constant and
this result is not true if n > 5.

Since for a superharmonic function s in a domain @ in R", n > 2, the
condition 4%s > 0 is equivalent to saying that As is subharmonic <0 in , the
above special case can be formulated as follows: there exist p and ¢, potentials
> 0 in R” such that 4g = —p if and only if n >5. This shows a variation in
the study of potential theory in R”, n >3, depending on n, even though
(symmetric) Green kernels can be defined in all these spaces.

In this note, we obtain some results which reflect this variation. With a
view to introduce only the essential assumptions in the proofs, we have chosen
to work in a Brelot harmonic space possessing a symmetric Green kernel [2].
Another advantage is that some of these results, proved earlier in a Riemannian
manifold [5] but not meaningful in a Riemann surface because the Laplacian is
not invariant under a parametric change, have a general validity.

2. Preliminaries

Let 2 be a Brelot harmonic space with a countable base, having potentials
> 0 and satisfying the axiom of proportionality; then, Mme. R. M. Hervé has
proved that there exists a Green function G(x,y) on 2 which is assumed here
to be symmetric; it is also assumed that the constants are harmonic in .
(The terms are explained in F. Y. Maeda [2], p. 35).
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Some examples of such spaces 2 are: any domain in R”, n > 3; any
domain in IR? whose complement is not locally polar; hyperbolic Riemannian
manifolds; and hyperbolic Riemann surfaces.

Let 1 be a fixed Radon measure on Q such that every superharmonic
function in Q is locally A-integrable. For example, if 2, is a regular
exhaustion of Q containing a point z, that is z€Q, cQ, < Q,,; and
Q= ()2, and if p? is the harmonic measure on 0%, and if e, >0 is a
sequence of numbers, take 1= Ee,,pf". If Q=1R" A can be taken as the
Lebesque measure and if 2 is a Riemannian manifold or a Riemann surface, 4
can be taken as the volume or the surface measure.

For a given locally A-integrable function f on £, if u(x)=
JG(x,y)f(y)dA(y) is a well-defined difference of two potentials in 2, we write
Lu=—f.

DerFiNITION 2.1, Q is said to be a bipotential space if and only if there
exist p and g, potentials > 0 is £ such that Lg = —p.

Recall that for a given nonempty set 4 in 2, R{! stands for the infimum of
all superharmonic functions s > 0 in Q such that s >1 on 4; and f!f’ is its
lower semicontinuous regularization, namely Rj!(x) = lim inf R{!(y) for each x
N y—x
in Q.

3. Characterization of bipotential spaces

Given a measure £ >0 on 2, we know (pp. 67-68 [2]) that u(x) =
[ G(x,y) du(y) is a potential in 2 if u(x) is finite at some point; and that is so
if x4 has compact support or more generally in our context if x(€) is finite.
This situation is made precise in the following theorem:

THEOREM 3.1. Given a measure >0 on Q, [ G(x,y)du(y) is a potential
in Q if and only if for a non-empty open set w, [ RP(y)du(y) is finite.

Proor. 1) Let [R?(y)du(y) be finite. If k is an outerregular compact
set such that ¢ # k< k c w, we have [ RE(y) du(y) < .

Fix xo € k. Then G(x0,y) = BxG(xo,y) for y € Q\k, where Bif stands for the
Dirichlet solution in 2\k with boundary values f on 0k and 0 at infinity. Let
a < G(xo,y) < b for every y € dk. Then aR¥(y) < G(xo, y) < bR¥(y) in Q\k.
Hence fn\k G(xo,y )d,u( y) is finite for any fixed xo ek .

Now p(x) = [, G(x,y)du(y) is a potential in Q. If xoek had been
chosen so that p(xp) < co, we would have [G(xo,y)du(y) < oo. Hence
u(x) = [, G(x,y)du(y) is a potential in Q.

2) Conversely, suppose [ G(x,y)du( y) is a potential. Then for an
outerregular compact set k and some x, € k, J G(x0,y)du(y) < . Hence if
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G(x0,y) 2a on ok, a [y, R¥(y)du(y) < oo and of course fk RE(y)du(y) <

Ji du(y) < 0. Thus, [, Rf(y)du(y) < oo which implies ij () du(y) < oo.
Writing k = @, we have JR® du(y) < .

ReMARK. The above theorem in particular states that there exists a
potential ¥ in © such that Lu = —1, that is u(x) = [ G(x,y) dA(p), if and only
if IR{"( y)d A(y) is finite for some nonempty open set w. For a proof of a
related result in the context of a hyperbolic Riemannian manifold Q, see
Theorem 4.1 [5], p. 336.

CoROLLARY 3.2. (Proposition 4.7 [2]). Let u > 0 be a measure such that
u(2) is finite. Then [G(x,y)du(y) is a potential.

The following proposition is proved in [4] (Theorem 3.1); but the proof
there is a little involved whereas here it is obtained as a simple consequence of
the above theorem. Also included is a corollary which slightly improves on
the result that a positive harmonic function in IR” is a constant.

1
———du(y)

ProrosITION 3.3. Given a measure u >0 on R", n > 3, J| |
x—y

is a potential if and only if Ilyl sl " du(y) is finite.

ProoF. 1) [, |2 du(y) is finite means that [ R?(y)du(y) is finite
where w is the unit ball.

2) Conversely let Jﬁ du(y) be a potential. Then for some xy,
[ly- xo| ™ du(y) is finite. yHence if R is large and |y|> R, |y —xo| <
2|y| which implies that [, ¢yl “™24du(y) is finite and consequently
Sz I ™2 du(y) is finite.

For the following corollary, recall [1] that a superharmonic function u in
R", n > 2, is said to be admissible if and only if # has a harmonic minorant
outside a compact set; and if » is admissible and u is the measure associated
with its local Riesz representation, then |, | y| " du(y) is finite for all
n>2.

CoROLLARY 3.4. Let u be an admissible superharmonic function in R”,

n > 2, such that A*u <0 and |lllm mf—l(l—) >0. Then u is a constant.
x| — 00 X
ProoF. Let s=—Adu. Then s is a subharmonic function >0 in R".
Since u is admissible and since the measure associated with # in a local
Riesz representation is proportional to the measure with density —Au,
II 1 | y|‘"+2s( y)dy is finite. This means that if B is the unit sphere in R” and
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on is the area of 9B, [2 [,zr " s(r,w)r"'drdw < 0. Since s is a sub-
harmonic function >0 in R"”, we have the following inequalities:

® 1
00 >J roy, [—J s(r,w) dw] dr
1 On JoB

o0
ZJ ro,s(o) dr.
1
This is possible if and only if s(o) =0. o being arbitrary, s=0 in R” and
hence u is harmonic. Then the assumption on the behaviour of u at infinity
implies [3] that » is a constant.

THEOREM 3.5. R is a bipotential space (Definition 2.1) if and only if for a
nonempty open set w, [(R} )2dA < .

Proor. 1) Let [(R} )2dA < . Choose an outerregular compact set
k, kckcw. Then f(f({‘)zdl< o0. Therefore by Theorem 3.1, u(x)=
[ G(x, y)R¥(y)dA(p) is a potential. Since RY is a potential and Lu = —R¥, Q
is a bipotential space.

2) Conversely, let £ be a bipotential space. That is, by definition, there
exists a potential p in Q such that [ G(x,y)p(y)dA(y) is a potential and hence
for a nonempty open set w, [R}(y)p(y)dA(y) is finite. Choose an outer-
regular compact set k such that ¢ # kckcw. Then for a constant
(= mkinp), p(x) = cRF in Q and RF < R}. Consequently, I(R{‘)Zdl < oo and

hence f(RO{‘)zdl < 0.

ReMark. If ©Q is a bipotential space, for any compact set e in £,
fg(f{f)z dA < . For, since 2 is a bipotential space, there is a potential p > 0
in 2 such that [G(x,y)p(y)dA(y) is also a potential. Hence, given any
nonpolar compact set e (if e is polar, note f!f = (), there is some xg€e such
that [ G(xo,y)p(y)dA(y) < co. Since e is compact, there are constants a and
b such that Rf(y) < aG(xo,y) and also Rf(y) <bp(y) for all ye 2. Con-
sequently, [,(Rf)*dA < co.

COROLLARY 3.6. Let £ be a harmonic space with a symmetric Green
kernel G(x,y). Then Q is a bipotential space if and only if for some (and
hence every) potential p > 0 with compact support in Q, there exists a potential
u in Q such that Lu = —p, that is u(x) = [ G(x,y)p(y)dA(y). In particular,
for any fixed z in a bipotential space €2, there exists a potential u,(x) such that
Lu,(x) = —G(z,x).

PrOOF. Let 4 be the compact (harmcgnic) support of p and let £ be an
outerregular compact set such that 4 ck< k. Since p= Byp in Q\k, if
0<a<p<b on dk, we have aR¥ < p <bRf in Q\k.
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1) Let 2 be a bipotential space. Then, by the Remark above,
|| Rowmam sb| @2 a) <.
Q\k Q\k
Moreover, since the potential p is locally A-integrable,

LﬂwmmﬂmsLﬂwam<w.

Hence, [, R¥(y)p(y)dA(y) < oo and by Theorem 3.1, [ G(x,y)p(y)dA(y) is a
potential.

2) Conversely, if [ G(x,y)p(y)dA(y) is a potential, then £ is a bipotential
space by definition.

CoROLLARY 3.7. (p. 306 [5]) Let Q be a harmonic space with a symmetric
Green kernel G(x,y). Then Q is a bipotential space if and only if for some
(and hence every) ze Q, fa\V G*(z,y)dA(y) < o, where V(# Q) is any
neighbourhood of z.

Proor. Since the given condition is equivalent to sa(}ying that fg\k (R¥ )2 dA
is finite for an outerregular compact set k such that z € k, the corollary follows
from Theorem 3.5.

CoroLLARY 3.8. If feL?(A) in a bipotential space £, then
[ G(x,y)f(y)dA(y) is well-defined as a difference of two potentials.

Proor. Since Q is a bipotential space, there exists a nonempty open

st w such that [(RY)’dA<oco. Now ([(RY)If]d3)* < (J(R})*d2)-

f]flzdi < co. Hence by Theorem 3.1, [G(x,y)|f(y)|dA(y) is a potential
and the corollary follows.

REMARK. A result similar to Corollary 3.8 is proved (p. 251 [5]) in the
context of a hyperbolic Riemannian manifold satisfying a stronger condition
that it is in OQP, that is a manifold having positive quasiharmonic functions.
Corresponding to this stronger condition, we give the following definition in a
harmonic space.

DEerFINITION 3.9. A harmonic space €2 is said to be a strongly bipotential
space if and only if for a nonempty open set w, I(R{”) dl < 0.

ReMARKS. 1) In a harmonic space 2 with a symmetric Green kernel, the
following four conditions are equivalent:

a) £ is a strongly bipotential space.

b) [G(x,y)dA(y) is a potential in Q.
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¢) [p(y)di(y) < co for any potential with a compact harmonic support
in Q.

d) For some (and hence every) ze 2, [G(z,y)dA(y) is finite.

2) Since (R} )2 < Ry, a strongly bipotential space is a bipotential space.
R", n > 5, are bipotential spaces but not strongly bipotential.

3) The Riemannian manifolds in OQP, that is those having positive
quasiharmonic functions (p. 73 [5]) are examples of strongly bipotential spaces.

4) A particular form of Corollary 3.4 gives a slight extension of the
classical Liouville-Picard theorem in R”, namely: If u > 0 is a superharmonic
function in R”, n > 3, and if Au is a constant then u is a constant.

Corresponding to the above result one can formulate the Liouville-Picard
theorem for a harmonic space as follows: In a harmonic space with a
symmetric Green kernel, if ¥ > 0 is a potential for which Lu is a constant, then
u=0.

The above discussion shows that such a Liouville-Picard theorem is valid
in a harmonic space 2 if and only if Q2 is not a strongly bipotential space.
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