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Liouville-Picard theorem in harmonic spaces
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ABSTRACT. An extended version of the classical Liouville-Picard theorem for the

harmonic functions in Rπ is considered in the context of bihaπnonic functions in a

Brelot harmonic space with a symmetric Green kernel.

1. Introduction

In [3] is considered a Liouville-Picard type theorem for superharmonic
functions in JRΛ, n > 2. A simple special case of this theorem shows that if
s > 0 is superharmonic in Rn, n — 3 or 4, and Δ2s > 0 then s is a constant and
this result is not true if n > 5.

Since for a superharmonic function s in a domain ω in R", n > 2, the
condition Δ2s > 0 is equivalent to saying that Δs is subharmonic <0 in ω, the
above special case can be formulated as follows: there exist p and q, potentials
> 0 in R" such that Δq = —p if and only if n >5. This shows a variation in
the study of potential theory in Rπ, n > 3, depending on n, even though
(symmetric) Green kernels can be defined in all these spaces.

In this note, we obtain some results which reflect this variation. With a
view to introduce only the essential assumptions in the proofs, we have chosen
to work in a Brelot harmonic space possessing a symmetric Green kernel [2].
Another advantage is that some of these results, proved earlier in a Riemannian
manifold [5] but not meaningful in a Riemann surface because the Laplacian is
not invariant under a parametric change, have a general validity.

2. Preliminaries

Let Ω be a Brelot harmonic space with a countable base, having potentials
> 0 and satisfying the axiom of proportionality; then, Mme. R. M. Herve has
proved that there exists a Green function G(x, y) on Ω which is assumed here
to be symmetric; it is also assumed that the constants are harmonic in Ω.
(The terms are explained in F. Y. Maeda [2], p. 35).
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Some examples of such spaces Ω are: any domain in R/1, n > 3; any
domain in R 2 whose complement is not locally polar; hyperbolic Riemannian
manifolds; and hyperbolic Riemann surfaces.

Let λ be a fixed Radon measure on Ω such that every superharmonic
function in Ω is locally Λ-integrable. For example, if Ωn is a regular
exhaustion of Ω containing a point z, that is z e Ωn c= Ωn a Ωn+\ and
Ω = [jΩn and if pPn is the harmonic measure on dΩn and if en > 0 is a
sequence of numbers, take λ = ΣenpPn. If Ω = RΛ, λ can be taken as the
Lebesque measure and if Ω is a Riemannian manifold or a Riemann surface, λ
can be taken as the volume or the surface measure.

For a given locally λ-integrable function / on Ω, if u(x) =
jG(x,y)f(y)dλ(y) is a well-defined difference of two potentials in Ω, we write
Lu = - / .

DEFINITION 2.1. Ω is said to be a bipotential space if and only if there
exist p and q, potentials > 0 is Ω such that Lq = —p.

Recall that for a given nonempty set A in Ω, Rf stands for the infimum of
all superharmonic functions s > 0 in Ω such that s > 1 on A; and Άf is its
lower semicontinuous regularization, namely Rf(x) = liminf Rf{y) for each x
in Ω. y~**

3. Characterization of bipotential spaces

Given a measure //>0 on β, we know (pp. 67-68 [2]) that u(x) =
J G(x,y)dμ(y) is a potential in Ω if W(Λ ) is finite at some point; and that is so
if μ has compact support or more generally in our context if μ(Ω) is finite.
This situation is made precise in the following theorem:

THEOREM 3.1. Given a measure μ > 0 on Ω, J G(x,y)dμ(y) is a potential
in Ω if and only if for a non-empty open set ω, J R™(y)dμ(y) is finite.

PROOF. 1) Let \R™{y)dμ(y) be finite. If k is an outerregular compact
set such that φφk^k c ω, we have JR\(y)dμ(y) < oo.

o

Fix xo G k Then G(xo,y) = BkG(xo,y) for y e Ω\k, where Buf stands for the
Dirichlet solution in Ω\k with boundary values / on δk and 0 at infinity. Let
a < G(xo,y) < b for every y e dk. Then ak\(y) < G(xo,y) < bR^(y) in Ω\k.
Hence fΩ\kG(xo,y)dμ(y) is finite for any fixed xoek

Now p(x) = jkG(x,y)dμ(y) is a potential in Ω. If x$ek had been
chosen so that p(xo) < oo, we would have j G(xo,y)dμ(y) < oo. Hence
u{x) = $ΩG(x,y)dμ(y) is a potential in Ω.

2) Conversely, suppose j G(x, y)dμ(y) is a potential. Then for an
outerregular compact set k and some XQ ek, J G(xo,y)dμ(y) < oo. Hence if
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G(xo,y)>a on dk, afΩ\kRΪ(y)dμ(y) < oo and of course $kR\(y)dμ(y) <

\k dμ(y) < oo. Thus, $ΩR\(y)dμ(y) < oo which implies $Rf[(y) dμ(y) < oo.
Writing k=ω, we have JRf dμ(y) < oo.

REMARK. The above theorem in particular states that there exists a
potential u in Ω such that Lu = - 1 , that is u{x) = J G(x,y)dλ(y), if and only
if $Rf(y)dλ(y) is finite for some nonempty open set ω. For a proof of a
related result in the context of a hyperbolic Riemannian manifold Ω, see
Theorem 4.1 [5], p. 336.

COROLLARY 3.2. (Proposition 4.7 [2]). Let μ > 0 be a measure such that
μ(Ω) is finite. Then J G(x,y)dμ(y) is a potential.

The following proposition is proved in [4] (Theorem 3.1); but the proof
there is a little involved whereas here it is obtained as a simple consequence of
the above theorem. Also included is a corollary which slightly improves on
the result that a positive harmonic function in RΛ is a constant.

PROPOSITION 3.3. Given a measure μ > 0 on Rn, n > 3, ^

is a potential if and only if Jj . ̂ x\y\ n+ dμ(y) is finite.

PROOF. 1) J j ^ \y\~n+1 dμ(y) is finite means that $R?(y)dμ(y) is finite

where ω is the unit ball.

2) Conversely let ^ dμ(y) be a potential. Then for some xo,
J\x- y\

f \y - xo\~n+2 dμ(y) is finite. Hence if R is large and \y\ > R, | ^ - x o | <

2|>>| which implies that Jj«ι^Λ \y\~n+2 dμ(y) is finite and consequently

l\y\>x\y\~n+2My) is finite.
For the following corollary, recall [1] that a superharmonic function u in

Rπ, n > 2, is said to be admissible if and only if u has a harmonic minorant
outside a compact set; and if u is admissible and μ is the measure associated
with its local Riesz representation, then Jj ^ χ \y\~n+2dμ(y) is finite for all
n > 2.

COROLLARY 3.4. Let u be an admissible superharmonic function in Rn,

n>2, such that A2u<0 and lim inf -γ-γ- > 0. Then u is a constant.
l*H°o 1*1

PROOF. Let s = -Δu. Then s is a subharmonic function > 0 in 1RΛ
Since u is admissible and since the measure associated with u in a local
Riesz representation is proportional to the measure with density -Δu,
Jbl > l \y\~n+2s(y) dy is finite. This means that if B is the unit sphere in R n and
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σn is the area of dB, J ^ §dBr~n+2s(r, w)rn~x drdw < oo. Since s is a sub-

harmonic function > 0 in Rn, we have the following inequalities:

Γ° Γ l f 1
oo > rσn\— s(r,w)dw\ dr

ir=\ \Pn JdB J
rσns(o) dr.

Jl

This is possible if and only if s(o) = 0. o being arbitrary, s = 0 in 1RΛ and

hence u is harmonic. Then the assumption on the behaviour of u at infinity

implies [3] that u is a constant.

THEOREM 3.5. Ω is a bipotential space (Definition 2.1) if and only if for a

nonempty open set w, /(^f ) dλ < oo.

PROOF. 1) Let $(R™)2dλ < oo. Choose an outerregular compact set

k, leak aw. Then \{k\)2 dλ < oo. Therefore by Theorem 3.1, u{x) =

jG(jc,j>)ivf(j>)rfΛ(>>) is a potential. Since R\ is a potential and Lu = -k\, Ω

is a bipotential space.

2) Conversely, let ί2 be a bipotential space. That is, by definition, there

exists a potential p in ί2 such that JCJ(Λ:, J>)/KJO έ/λ(>0 is a potential and hence

for a nonempty open set w, J Rγ(y)p(y)dλ(y) is finite. Choose an outer-

regular compact set k such that φφkak aw. Then for a constant

c(= min/j),p(x) > cR^ in ί2 and R* < R™. Consequently, j(Rχ)2dλ < oo and

hence j(R^)2dλ< oo.

REMARK. If Ω is a bipotential space, for any compact set e in Ω,

lΩ{R\Ϋdλ < oo. For, since ί2 is a bipotential space, there is a potential /? > 0

in Ω such that JG(JC, >>)/?(>>) rfλ(j>) is also a potential. Hence, given any

nonpolar compact set e (if e is polar, note R\ = 0), there is some jco^e such

that JG(xo,y)p(y)dλ(y) < oo. Since e is compact, there are constants a and

6 such that R{(y) <aG(xo,y) and also Rf(y) < bp(y) for all yeΩ. Con-
sequently, Jβ(i^f)2rfA< oo.

COROLLARY 3.6. Let Ω be a harmonic space with a symmetric Green

kernel G(x,y). Then Ω is a bipotential space if and only if for some (and

hence every) potential p > 0 with compact support in Ω, there exists a potential

u in Ω such that Lu— -p, that is w(x) = JG(x,y)p(y)dλ(y). In particular,

for any fixed z in a bipotential space ί2, there exists a potential «z(x) such that

PROOF. Let A be the compact (harmonic) support of p and let k be an
o

outerregular compact set such that Aakak. Since p = B^p in Ω\k, if
0 < a <p < b on dk, we have ak\ <p< bR* in Ω\k.
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1) Let Ω be a bipotential space. Then, by the Remark above,

f Rξ(y)p(y) dλ{y) < b f (tff)2 dλ(y)
JΩ\k JΩ\k

Moreover, since the potential p is locally λ-integrable,

Rϊ(y)p(y)dλ(y)< f p(y)dλ(y) <
ik

Hence, lQR\(y)p(y)dλ(y) < oo and by Theorem 3.1, \G(x,y)p(y)dλ{y) is a
potential.

2) Conversely, if J G(x,j>)/>(>0 dλ{y) is a potential, then Ω is a bipotential
space by definition.

COROLLARY 3.7. (p. 306 [5]) Let Ω be a harmonic space with a symmetric
Green kernel G(x,y). Then Ω is a bipotential space if and only if for some
(and hence every) zεΩ, Jβvκ G

2(z,y) dλ(y) < oo, where V{φ Ω) is any
neighbourhood of z.

PROOF. Since the given condition is equivalent to saying that ίΩ\k(R\)2dλ
is finite for an outerregular compact set k such that z e k, the corollary follows
from Theorem 3.5.

COROLLARY 3.8. If feL2(λ) in a bipotential space Ω, then
\G{x,y)f{y)dλ{y) is well-defined as a difference of two potentials.

PROOF. Since Ω is a bipotential space, there exists a nonempty open

set w such that J(ΛΓ)2rfλ < oo. Now ($(R»)\f\dλ)2 < ^(R^)2dλ^

($\f\2dλ\ < oo. Hence by Theorem 3.1, f G(x,y)\f(y)\dλ(y) is a potential

and the corollary follows.

REMARK. A result similar to Corollary 3.8 is proved (p. 251 [5]) in the
context of a hyperbolic Riemannian manifold satisfying a stronger condition
that it is in OQP, that is a manifold having positive quasiharmonic functions.
Corresponding to this stronger condition, we give the following definition in a
harmonic space.

DEFINITION 3.9. A harmonic space Ω is said to be a strongly bipotential
space if and only if for a nonempty open set w, $(Rγ)dλ < oo.

REMARKS. 1) In a harmonic space Ω with a symmetric Green kernel, the
following four conditions are equivalent:

a) Ω is a strongly bipotential space.
b) \G(x,y)dλ(y) is a potential in Ω.
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c) $p(y) dλ{y) < oo for any potential with a compact harmonic support
in Ω.

d) For some (and hence every) zeΩ, J G(z,y)dλ(y) is finite.
2) Since (R™)2 < R™, a strongly bipotential space is a bipotential space.

1R", n > 5, are bipotential spaces but not strongly bipotential.
3) The Riemannian manifolds in OQP, that is those having positive

quasiharmonic functions (p. 73 [5]) are examples of strongly bipotential spaces.
4) A particular form of Corollary 3.4 gives a slight extension of the

classical Liouville-Picard theorem in Rπ, namely: If u > 0 is a superharmonic
function in JRΛ, n > 3, and if Δu is a constant then u is a constant.

Corresponding to the above result one can formulate the Liouville-Picard
theorem for a harmonic space as follows: In a harmonic space with a
symmetric Green kernel, if u > 0 is a potential for which Lu is a constant, then
w = 0.

The above discussion shows that such a Liouville-Picard theorem is valid
in a harmonic space Ω if and only if Ω is not a strongly bipotential space.
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