HIROSHIMA MATH. J.
29 (1999), 281-293

A holomorphic structure on a homogeneous space of the
diffeomorphism group of a circle

Hideo Doi

(Received February 15, 1995)
(Revised August 18, 1998)

Asstract. We consider a holomorphic structure on a homogenous space of the
diffeomorphism group of a circle using the theory of quasiconformal mappings.

Introduction

The geometric quantization provides interesting pictures of infinite di-
mensional homogeneous spaces of the Fréchet Lie group Diff* S! of orien-
tation preserving diffeomorphisms of a circle [5], [11], [18]. From the structure
of the Lie algebra of Diff*+S', it follows that T'\Diff+ S' and PSU(1,1)\
Diff+ S' have invariant almost complex structures formally satisfying the
integrability condition. This naturally leads to a question whether 7'\ Diff * S!
and PSU(1,1)\Diff* S! are homogeneous complex manifolds in a usual sense
or not (cf. [13], [16]). In contrast with a finite dimensional Lie group or its
loop group, the Lie group Diff*S' has no analytic structure and the expo-
nential mapping cannot be a local isomorphism around the origin (cf. [12]).
In order to overcome the undesirable property H. Omori introduced the
concept of IHL-Lie groups and developed the infinite dimensional differential
geometry [14], [15]. As he pointed out, the Frobenius theorem does not hold
in the category of Fréchet manifolds in general. Thus in this paper we take a
direct approach, that is to say, we construct a holomorphic coordinate system,
which is closely related to the analytic realization of Diff* S'/T' by A. A.
Kirillov [10]. Our construction is based on the theory of quasiconformal
mappings. Especially the variational formula by L. V. Ahlfors and L. Bers for
the solutions of the Beltrami equation enables us to analyze the differential of a
coordinate map.

In §1 using the inverse function theorem of Nash and Moser, we consider
a smooth structure of the homogeneous space. In §2 as preliminaries,
we review basic methods to solve the Beltrami equation and derive some
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formulas. In §3 we shall prove that T'\Diff+ S! is diffeomorphic to an open
submanifold of the Fréchet space {f € C*(S!,C); f(e?) =3, fre™} and
that the action of Diff+ S! is holomorphic with respect to the natural complex
structure. Via the projection: T'\Diff*S' — PSU(1,1)\Diff * S' we also
show that PSU(1,1)\Diff* S is a homogeneous complex Fréchet manifold.
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1. The smooth structure

Let G be a Lie group and H its closed Lie subgroup. Let U be a
neighborhood of the unit element in G and set Uy = UN H. We assume that
there exists a regular submanifold B = G such that B- B~! < U and a mapping
Uyn x B — G induced by the multiplication (4,b) — h - b is an open embedding.
Let hje H and b;e B (i=1,2). If hy-by = hy - b,, then

hy'hy = byby' e UgN(B- B™') = {1}.

Hence the canonical projection: B — H\G is open and injective. Then we
can define a smooth structure on the quotient space H\G with the action of G.

Elements of PSU(1,1) act on S! as linear fractional transformations.
Thus PSU(1,1) can be regarded as a closed Lie subgroup of Diff*S'. For

V= {v e C™(S',R); 0(0) = v(e) =", u,,e"""},
we define a smooth map ¢ : ¥V — C®(S',S!) by
!/,(U)(eiﬁ) — ei(0+v(6))
and we consider a neighborhood B of 0 e V such that y(B) < Diff * S'.

LemMa 1.1. Let ¥Y(h,b) =hoy(b) for he PSU(1,1) and be B. Then
¥ :PSU(1,1) x B— Diff * S' gives a diffeomorphism of a neighborhood of
- (1,0) in PSU(1,1) x B onto a neighborhood of 1 in Diff* S'.

Proor. The Fréchet manifold Diff+ S' is modeled on C*(S',R) by
definition. Since the tangent bundle of S! is trivial, we can identify the
tangent bundle of Diff * S! with Diff + S' x C*(S',R). Let ¥, denote the
differential of ¥ at (h,b) € PSU(1,1) x B. Then for ve V¥, a tangent vector
Yonp)(0,0) = 0,¥(h,b+ tv)|,_, is computed by

—id, log h(e"O+0O+ @)y = _i((dglogh) o (b)) - v.
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For X (o, f) = (; g) esu(l, 1),

¥, b) (R X (2, B),0) = (0:exp tX (e, B)) © g|,—g = 2 Im (e + ),

where g = ¥(h,b) and R; is the right translation on PSU(1,1). By associ-
ating (X(a,f),v) esu(l,1) x ¥V with a function:

S'3e” — 2Im(x+ fe ) + v(e®) R,

we identify su(1,1) x ¥ with the tangent space C*(S!,R) hereafter. For he
PSU(1,1), be B, aeiR,B e C, we define smooth functions on S! as follows:

n(h,b) = —i(dglogh) o Y(b),
8(h,b) = 1/n(h,b) — 1,
e(h,bya, B) = 2 Im (o + fe=0)5(h, b)(0) + 2 Im (B(g — e~) /n(h, b)(6).
We set for f e C°(S!,R)
Fy(f) = f +&(h, b, a, B)

with

2n 2n
a=i J f(0)do/4n, B= ij f(0)e®do/2x.
0 0

Then F (f) € C*(S',R) implies that f e C*(S!,R). Under the identifica-
tion above of tangent vectors, we have

Y5 (f) = n(h,b)Fyb(f)

for f € C*(S',R). Moreover if a neighborhood U x B of (1,0) € PSU(1,1) x
V is sufficiently small, we may assume that

Fh,b : COO(SlvR) - COO(SI’R)
is bijective for all (h,b)e U x B. Let ||§|,=sup > o<, |0kg| for pe

C*(S',R). Then

Eno(N)ln < call 1l
with constants ¢, independent of f (n=0,1,2,...). That is to say, Fj, is a
tame linear map [9]. Because a composition of tame maps is also tame [9,

Theorem 2.1.6], we see that W, 5 (f) = n(h,b)Fy5(f) is a smooth tame map:
U x Bx C®(S',R) —» C*(S',R). We have also

AN < I1Fn o (Ol + leCh, by o B)llw < 11En,s(F)lla + cull fllos
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where ¢, is a constant dependent on U,B and n. If U x B is so small that
¢y < 1/2, then [|flly < 2|[F(f)lly- Therefore

1f1ln < (1 + 26 )1F ()

Hence the family of inverses (Fy )" : U x Bx C*(S',R) — C*(S",R) is
tame From this and [9, Theorem 3.1.1] it follows that the family of inverses
! shp)  UXBX C*(S',R) — C*(S!,R) is a smooth tame map. Thus the
inverse function theorem [9, Theorem III. 1.1.1] implies that ¥ is locally
invertible and each local inverse ¥~! is a smooth tame map.

We now see that PSU(1,1)\Diff * S! is a smooth Fréchet manifold. Also
the same argument shows that T!'\Diff* S! is a smooth Fréchet manifold,
where T'! denotes the subgroup of Diff* S! consisting of rotations.

2. The quasiconformal mappings

To begin with, we review the formulas by L. V. Ahlfors and L. Bers [4]
(cf. [3]). Let £ denote the whole plane. We consider the operators:

(Po)@) =35, [ 00 (525~ )t

(Tg)(z) = 2L7zzJ —(()_Tg)(z)dédc (the Cauchy principal value).

Then P and T are well-defined on L,(£2) and that the relations:
0;(Pg) =g and 0:(Pg) =Tg

hold in the distributional sense, where 0, and 0; denote the usual differential
operators }(0x — idy) and % (0 +id,) with the standard coordinate z = x + iy
of €, respectively [4, Lemma 3] (cf. [3, Chapter V]). Let C, denote the
operator norm of T on L,(£2). Then

limC, =1

p—2
[4, Lemma 4] (cf. [3, Chapter V, Section D]). Following [4], we introduce the
Banach space B, of functions w, defined on the whole plane, which satisfy a
global Holder condition of order 1 —2/p, which vanish at the origin, and
whose generalized derivatives 0, and 0;w exist and belong to L,(£2). The
norm is defined by

lo(z1) — o(22)|

e lo:0ll, + |9zl
1 — <2

ool 5, = sup
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If 6eL,(R) and pe L, () with ||u||,C, < 1, then the inhomogeneous Bel-
trami equation

(2.1) 030 = no,w + o

has a unique solution w(u,0) € B, [4, Theorem 1]. Using T,(g) = T(ug) for

geLy(Q2), we set g=3_,.,T;To. Then the solution above is given by
w(19) = P(ug + o)

[4, Theorem 4, Proof]. Furthermore the following lemma is an immediate
consequence of the variational formula [4, Theorem 2].

LemMMma 2.2, If p, € Lo (22) and o, € Ly(R2) are smooth functions of a real
parameter t and if ||p|,Cp <1, then w, =w(p,0:)€ B, is also a smooth
function of t. Moreover its derivative is given by

6,60, = 60(/1,, 5,/1, “q: + 610'[).

Let ue L, (R2) with ||ul|, <1. A continuous solution of the Beltrami
equation

az'f =M 6zf

is said to be u-conformal if 0, f is locally of class L,. Assume that ue L, (Q)
has compact support and ||y||,,C, < 1. Then we define f# by

ff=z+o(uun),

which is a unique solution of 0;f = ud,f with f(0) =0 and 0,f — 1 € L(2)
for some g > 2 [4, Theorem 4]. In particular, f# is a u-conformal mapping.
Moreover f# is a homeomorphism of the whole plane onto itself [4, Lemma 8].

COROLLARY 2.3. Let K = Q2 be a closure of a bounded domain with the
smooth boundary. Let p€ Ly (82) with support u < K and ||ul||,Cp < 1. Let
U be an open subset of Q\{0}. If the restriction u|UNK is smooth, then f* K
is also smooth on UNK.

Proor. Take a smooth one-parameter family ¢, of diffeomorphisms of £
such that ¢,(K) = K and support ¢, = U. We set
U= (0:0, + pog, '@)/(62% +uog-0.9,).
Then
0:(f*o0) = 0:(f* 0 p,).

Also we have f“o0¢,(0) =0 and 0,(f“og,)—1e€ Lq(Q). Therefore f# o ¢, =
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f%. Hence f*og, e B, is a smooth function of r by Lemma 2.2. In par-
ticular, for ze Q, f“(p,(z)) depends smoothly on .

LeMMA 2.4. Let v and p € Ly (R2) with a compact support. Let 0 <k <1
satisfy kCp < 1 for some p > 3. Assume that ||v|| ., ||tll., |V + 4l < & and set

(B e
’1_(1—ﬁ(v+u> 6—f_> o

If Al <k, then
= ot

PrROOF. Let p = f*o f*. Then 0;p/0,0 = v+ pu. From [4, Lemma 10],
it follows that d,¢ is locally of class L, with r= p?/(2p—2) > 2. Since
0;0(u, 1) = 0 near co and 0,(u, u) € L,(22) with p > 2, we see that w(u, u), =
0(1/|z*) as z — 0. Therefore 8,9 = (3.f* o f*)- 0,f* = 1+0(1/|2|*) as z —
co. Hence 0,0 — 1€ L,(R2). The lemma now follows from the uniqueness
theorem for the solutions of the Beltrami equation.

LeMMA 2.5. Let K = Q be a closure of a bounded domain with the C'-
boundary. Let v € L, (R2) with supportv < K satisfy ||v||, <1 and ||v||,C, < 1
for some p > 3. Assume that the restriction v|K is of class C' around a point
me K. Then the Jacobian Jf" does not vanish at m.

Proor. Set ¢ =(f")"' and A= (-v-0,/"/0,f )op. Then ¢=f*¢
L,(R2) by Lemma 2.4. Since ¢(f"(z)) =z, we have

2:1*(z) 0.f7(2) (M(f”(Z))) _ (1>
o:1"(2) 0:1"(2) ) \o:z0(f"(2)) 0/

Therefore  Jf(z) - 0.0(f*(2)) = 0:"(z). Also  Jf¥ =|0.f")* —|o:/")* =
(1 —v*)|é.f*)>. Hence, for an open subset U < £,

j BsplPdxdy = | 10:0(7* @)PT £ (2)dxdy
() JU

= | [0.f"1P(Jf") Pdxdy
JU

=| (=P Plo.f*)* Pdxdy.
JU

Thus we see that
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(2.6) J 0./ 1> dxdy < .
U

We now take a coordinate system (U, x;,x;) around m € K such that x;(m) =0
(i=1,2). Assume that Jf"(m) =0, then d,f"(m) = d:f"(m) =0. In view of
Corollary 2.3, we have an expansion d,f" = a;x) + ayx; + o(|x1| + |x2|) with
complex constants a; (i = 1,2). But this contradicts (2.6) for 2 — p < —1.

LeMMA 2.7. Let K < 2 be a closure of a bounded domain with the smooth
boundary. Let ue L, () with support uc K and |ul|, <1. If plK is
smooth, then f*|0K is a smooth embedding.

Proor. Fix p >3 and 0 < x < 1 satisfying kC, < 1. Taking an integer
N = ||ull o /x(1 — ||,ul|§o), we set v=pu/N. Then f’|0K is a smooth embedding
by Corollary 2.3 and Lemma 2.5. For an integer n < N, we assume that
f™|0K is a smooth embedding, and we set

— v .azfnv o nvy—1
A—(I—nv(n-{-l)v Ezf—"”) A

Then we see that f*|f™(dK) is smooth because 4 is smooth and ||4]|, < k.
Thus [V = f2o f™ is also a smooth embedding of 9K.

LEmMMA 2.8. Let K = Q be a closure of a bounded domain with the smooth
boundary. Then

ue fr
is a smooth mapping: {pe C*(K,C); sup|u| <1} —» C®(K,C).
Proor. Let .#™*={ue C"*K,C); sup|ul <1} with 0 < a <1, where
C"*(K,C) is the Banach space of functions of class C" in K whose partial

derivatives of order n satisfy a Holder condition with an exponent o« (cf. [17]).
We set

V= {f e C"he(K, C); J i(c—)dc =0forVze IntK}.
xl—z
In this setting, C. J. Earle shows that there exist neighborhoods of zero Vy < V
and Uy = #™* such that a mapping Vp — Up:

feo:f/(1+0.f)
is diffeomorphic [6, Theorem 1, Proof]. Because w(u,u) = P(uq+ u) with
q4=7 psoT,;Tpand V= P(C"*(K,C)), we see that if e .#™ is sufficiently
small, then w(u,u) € Vop. Therefore in view of Lemma 2.4, we see that the
mapping #™* — C"t1%(K,C) is smooth.
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3. The invariant holomorphic structures

Let F denote a closed subspace:

{w e C*(S',C); p(e”) =) p,e™, 9, € C}

n<0
of the Fréchet space C*(S!,C). We also regard ¢(e) =3, _(9,e™ € F as
a holomorphic function ¢(z) =3, _(9,z" on Dy, ={ze;|z| > 1}. We in-
troduce here a smooth submanifold of C*(S!,C), which plays an important
role in our construction of a holomorphic coordinate system of Diff * S!. Let
& denote the set consisting of injective holomorphic functions f on D, which
satisfy the following conditions;
(i) f has a form z+ ¢(z) with pe F,
(ii) f|0Dy is an embedding,
(iii) 0¢ f(Do).
Then & can be identified with an open submanifold of F.

Let Dy = {z e Q;|z| <1}. For g e Diff * S', we take a homeomorphism §
of Dy satisfying § =g on 0Dy and §(0) =0. Moreover we assume that § is
differentiable almost everywhere and smooth on some collar neighborhood of
0Dy. Let measurable functions A and u satisfy

(3.1) §*|dz|* = Aldz + pdz)|*.

Putting u =0 on 2\Dy, we obtain u € L, (2) with ||y, <1. Let f* be the
u-conformal mapping such that f#(0)=0 and 0,f*— 1€ L,(R) for some
p>2. We set

go=f"og' and gy = f¥|Ds.
Then Lemma 2.7 with (3.1) implies that

(3.2)  gie C®(Dy) (i =0, ) is injective and holomorphic on Int D;,
90(0) =0, g € F and doogd = 9w OnaD():Sl,

Assume that g/ € C®(D;,C), i = 0, oo satisfy (3.2) for g € Diff* S'. From
gl ogl, =g=g5'ogw on S, it follows that g’ o g3l = gjogy' on go(S?).
Because g/ og;! is holomorphic on g;(D;) (i = 0,0), we have a holomorphic
automorphism 1 of Q such that

llgi(D;) =gjog;'  (i=0,00).

Since gjogy'(0)=0 and g’ ogil(z)=z+ao+ai/z+ay/z*+---, we see
that 1(z) =z. Thus g/ =g¢; (i=0,00). In particular, g, is independent of
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the choice of §. For these reasons, we call the pair (go,ge) in (3.2) LU-
decomposition of g € Diff * S.

Let (hg,h) and (go,go) be the LU-decomposition for 4 and g € Diff * S!,
respectively. We now assume that i, = go,. Then hj' o go is a holomorphic
automorphism of Dy and h;'ogg(0)=0. Hence hog ! =hylogoe T =
{z € C;|z| = 1} (the group of rotations). By virture of this, we can define an
injection @ : T'\Diff * S' — & by

¢(g) =gowo
with the LU-decomposition (go,gs) of g € Diff * S'.
LEMMA 3.2. @ is a smooth mapping between the Fréchet manifolds.

Proor. Let us fix 6 € C*(R, |0, 1]) such that =0 on (—o0,1/3] and 6 =
1 on [2/3,00). Let ge Diff*S!. Since R is the universal covering space
of S'=R/2nZ, we can take y € Diff* R satisfying e”®) = g(e®). For ee
C®(R,R) satisfying &(@+2n) =¢(d) and do(y+¢) >0, we define ¢(c) €
Dij?"’ Dy by

(p(g)(rew) — rei(é(r)(y(0)+e(0))+(l—(5(r))6), (rei9 e DO)

Then we can regard ¢(-) as a smooth mapping from a neighborhood U of 1 €
Diff* S! into Diff * Dy.

Let (ds)2 = a(dx)? + 2bdxdy + ¢(dy)* be a smooth Riemannian metric
on Dy with a standard real coordinate system z = x +iy. If we set (ds)® =
Aldz + pdz|?, then we have the following formulas;

A_a-l—c+2\/ac—b2
= 2 ,
_a—c+2ib

K=""a

Hence, setting
p(e)"\dz|* = Ae)ldz + u(e)dz?,

we obtain a smooth mapping u(-) from the neighborhood U to # =
{ue C*®(Dy,C); suplu| < 1}. Therefore in view of Lemma 2.8, we see that
the mapping: U — &% defined by

e (e%g),, = f*9|Du

is smooth. Since ¢(e)(e®) = e g(e®), the mapping ®(eg) = [*®)|D,, is
also smooth.
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Let f € # and let K be a compact subset of Q with a smooth boundary
0K = f(S"). Taking a diffeomorphism

f:Dy— K  with flJoDp = f and f(0)=0,

we define pe.# by f*|dz|* = Aldz + pudz|>. Then we have a unique -
conformal diffeomorphism W# : Dy — Dy such that W#(0) = 0 and W#(1) =1
[4, Theorem 4] (cf. [6, Theorem 2]). We now set

go=fo(WH,
g=4gy ofIS'=wHs'.

By definition, we see that go is holomorphic and that g e Diff* S!. Also
(90, f) is the LU-composition for g and so that we have @(g) = f. Therefore
the mapping: [+~ g from # to T'\Diff+ S' is the inverse of ®.

LemMa 3.4. &7 is smooth.

PROOF. As in the proof of Lemma 3.3, we may assume that the extension
f e f from # to C*°(Dy,C) is locally smooth. Then the mapping: F — A
defined by

fu  with f*|dz|? = Aldz + pdz|?
is also locally smooth. Hence [6, Theorem 2] implies that the mapping u +—

WH from M to C®(Dy,C) is smooth, with the composition method as in our
proof of Lemma 2.8.

TueOREM 3.5. T!\Diff * S! is a homogeneous complex Fréchet manifold.

ProoF. We identify C*(S! R) with the Lie algebra of Diff*S!. Let
m={ve C*(S,C); v(e?) =Y, . ovne™, 0 =v_p} = C*(S",R). Then mis
identified with the tangent space at the origin of T'\Diff*S'. Let J be an
invariant almost complex structure on T1\Diff * S' whose (1,0)-tangent vectors
are involutive. We set

mt = {ve C*(S',C); v(e") = Zvnei"(’} cm®grC

n>0

and m™ =m*. Then Jjm™ = +i. We now choose Jlm~ =i. Lemmas 3.3-
4 imply that @ : T'\Diff * S! — # is a diffeomorphism. Hence, if we prove
that

®,y(RyJv) = i®,y(Rpv)  forge Diff *S' and vem”,

where R, denotes the right translation, then the proof is complete.
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Let z = re® be the polar coordinates on Q. For measurable functions A,
p >0 and g, if it holds that (dr)* + (prd)? = Aldz + udz|*, then

(3.6) u(re®) = (1 = p)/(1 + p).

Let geDifftS' and yeDiff TR satisfy g(e?)=e"%. For ve
C*(S',R), we set x,(0) =0+t-v(f) and y,=y,oye C°(R,R). Thus we
define a smooth 1-parameter family g, € Diff * S! by

gr = el = et o g.

In addition we extend g, to a homeomorphisms §, of Dy as g,(re) =
rg.(e®). Setting §*|dz|* = A|dz + pu,dz|*, we have

g0~ — 90/t 1 - 69;1,

i6
w(re”) = 5 G0,

by (3.6). In view of Lemma 2.4, we write f* = f% o f# with u = u,|,_,. We
also introduce two functions v and é on Dj as follows;

rel®) — _2p20 dp(v o y)
v(re") 2e 0+ 0m)?
(re) = <——| 73 ;) (!

Then a direct calculation shows that d,u,|,_, = v(re®) and d,&,|,_, = 6(re®) (cf.
[4, Lemma 21]). From [4, Theorem 2] it follows that

o g L _1 1
0tf*|1=0 = @(0,0) = P6 = 2mi J|Cl<1 2¢) (C - C)dCdC

Since the Jacobian of u-conformal mapping f* is (1 — |u|?)|0.f K2, after a
change of variables, we have

! 2 1 1 -
b I R G e

Let § = §,|,—o and & =g 1(¢) with { =re®. Setting Y = f#o0§!, we see that
the integral above equals

-1 B B . | )
7Jm<1 W (0))2:*( l(c)y( ) 307 (8)rdidd.

v - A2 v(©)

Since 8,§(re”) = 1e=®e®) (1 + 85y(0)) and yY(z) is holomorphic on |z| < 1, we
have
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0:/"(§71(0)) = 5 0:0(0)e De(1 + dgy(y™(6)))-
Since dgv = dg(voy) oyl -dpy~!, we have
d90(0)
(14 dgy(y(6)))*007~1(6)

V7 (0)) = =220
Therefore

Do) =3[ n(O)0(0)e™

1 1
v() - f*(2) ¥
Putting v =e™ with n>0, we see that the integral is zero, because
Y() — f*(z) #0 for |z| = 1 and () = Y, { +¥p¢% + --- with Y, #0. Hence
&.,(R,.v) is a linear combination of v,e™ with n < 0.
We would like to close this paper by discussing a holomorphic structure of
PSU(1,1)\Diff* S*.

LEMMA 3.7. Let (go,9d«) be the LU-decomposition for g € Diff * S'. Let
oe PSU(1,1). Then ®(cog) = ®(g) — goo o '(0).
1

) rdrd0.

ProoF. Note that g, =gpog=gooog ' oagog. We set

hy=gooa~' —gooa'(0),

he =g —gooa '(0).

Then h,, € M, hyooog = hy and hy is holomorphic. Hence the uniqueness
of the LU-decomposition implies that @(cog) = hy.

We define a smooth mapping n: # — C®(S!,C) by

ZH o+ i)z /2 H o bzt )2

Let (go,g«) be the LU-decomposition for g € Diff * S!. Take & > 0 such that
{z € Q;|z| < &} = go(Dy) and set

U={he H; lirg) |®(h) — D(g9)| < &/2}.
Then for g1,9 € U,

n(g1) =n(g2) <= gog1 =¢g» for some o € PSU(1,1).

Hence

no®: PSU(1,1)\Diff * S — {qo e C*(8',Q); p(e) = Z(p,,e""”}

n<0

is a local diffeomorphism. Thus we have proved
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TueoreM 3.6. PSU(1,1)\Diff * S! is a homogeneous complex manifold

such that the canonical projection:

T'\Diff* S' — PSU(1,1)\Diff + S!

is holomorphic.
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