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ABsTRACT. Let G be a finte group. We give a short exact sequence for calculating the
group é6(X) of based G-homotopy classes of based G-self-homotopy equivalences of a
G-CW complex X under certain conditions.

0. Introduction

For a based G-space X, the set (X ) of based G-equivariant homotopy
classes of based G-equivariant self-homotopy equivalences of X forms a group
under composition of maps. In this paper, we study &s(X) for a G-CW
complex X under certain conditions. Throughout the paper, G is a finite
group and H a subgroup of G, all G-CW complexes are G-connected and have
G-fixed base points, and all G-maps and G-homotopies (denoted by ~) preserve
the base points x. For a G-map f: 4 — B between G-CW complexes, we
consider the reduced cone CA =A xI/(4Ax {1})U({x} xI), the reduced
suspension S4 = CA/A x {0} and the reduced mapping cone C; = BU; CA
obtained from the topological sum of B and CA by identifying each (a,0) e CA
with f(a) € B, where G acts trivially on I =1[0,1]. Then a G-coaction of
SA on Cy defines a map A in §1, whose restriction to Imi, yields the
homomorphism 4 : i,([SA4, B];) — éc(Cr), where i: B— Cr is the inclusion
(Lemma 1.3). This homomorphism will be used in §3. In §2 &¢(Cr) for
A=G/H* A S", the n-fold reduced suspension of G/H™", is studied. Here
G/H denotes the left coset space of G by H with action given by
g-(g'H) = (99')H for ge G and g'H € G/H, and G/H™" the topological sum
of G/H and a single point , the base point of G/H*. A homomorphism
@ x Y : E¢(Cr) — Ec(A) x Ec(B) is obtained when dimB<rn—1 and n = 2.
The image and the kernel of this homomorphism are studied in §2 and §3,
respectively. Then, a short exact sequence for calculating &g(Cy) is obtained
in Theorem 3.5. The non-equivariant case is due to Barcus and Barratt |1,
Theorem (6.1)]. In §4 we show that if n =2 then &(G/H* A S") is anti-
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isomorphic to the group U(Z(N(H)/H)) of units of the integral group ring
Z(N(H)/H) of N(H)/H, where N(H) denotes the normalizer of H in G
(Theorem 4.1). In §5 using the above anti-isomorphism and short exact
sequence, we study &z,(Cy) for each Z,-map f: Z3 A S™* — ZF A S with
n=k+3 24 (Theorem 5.11) and further calculate &z,(Cr) in the case of
k=1 (Proposition 5.16). In §6 we also study &z,(Cy) for each Zs-map
f:Zf AS"k - ZI AS" with n=2k+3 =4 (Theorem 6.6) and calculate
67,(Cr) in the case of k=1 (Proposition 6.10). We use the following
notation: [X, Y]; denotes the set of based G-homotopy classes of based
G-maps of X into Y. X*# denotes the H-stationary subspace {x e X |gx = x
for every ge H}. (Zq)k denotes the direct product of k-copies of Z,. The
same symbol will be used for a G-map and its G-homotopy class. A G-CW
complex X is called G-connected (resp. G-1-connected) if the fixed point set X #
is connected (resp. simply connected) for every subgroup H of G.

1. Preliminalies
For a G-map f: A — B between G-CW complexes we consider the se-
quence of the induced cofibering
VEN BN
where i and p are G-maps with respect to the natural G-actions. The coaction
(L.1) [:Cr— Cr v S4,

defined by collapsing the subspace 4 x {1/2} of C; = BUy CA to the base
point *, is a G-map and defines a map

(12) A [SA, Cf]G e [Cf, Cf]G

by A(x) = (1l va)l for ae[S4,Crl; where 7 denotes the folding map.
Then we have the following, which will be used in §3.

Lemma 1.3. A(a+ ) = A(0)A(B) for ae[SA,Crl; if B belongs to the
image of i, : [SA, B]; — [S4, Cflg.

Proor. If = ip’ for some B’ € [SA, B|;, then A(a)f = B by the definition
of 1. For the natural G-comultiplication /" on SA4, (! v 1)/ = (1 v I')]l. These
equalities, A(¢)f = and (I v 1)l =(1 v I')], yield

A)A(B) = v (A(x) v Ao)B) = v (Ala) v B)!
=v(1v)dvavp)(lvI)=Ai+p). q.e.d.
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2. Homomorphism ¢ x y and its image

In this section we assume that 4 = G/H* A S” with n=2 and B is a
G-CW complex; we consider the mapping cone

Cr = BU; (G/H* A e™)

of a G-map f: 4 — B. Note that G/H* A S" =\/(9;H/H* A S"), the one
point union of n-spheres with action given by g- (9;H/H") = (99:;)H/H".

Lemma 2.1. If dmB<n-—1, then i.:[B,B|;— [B,Csl; and p*:
[SA,SA4]; — [Cr,SA); are bijective.

PrOOF. Let L be a subgroup of G. Since the fixed point set CfL =
BLUs ((G/H)EYT A emt)), (CF, BY) is n-connected (cf. [8, 11, (3.9) Theorem]).
Hence i, : [B,B]; — [B,Cs]; is bijective by [2, II, (5.3) Corollary]. Also
S4 = G/H* A S"! implies that [SB,SA4];=[B,SA4];=0 by [2, 1I, (5.2)
Lemma]. Therefore, the Puppe sequence (cf. [2, IIL, (2.2)])

— (5B, 5d); 2L (54, 84), 2 [Cp, 54— [B,SA] g —
shows that p* is bijective. q.e.d.

Since the suspension S : [4, A]; — [SA4,SA] is bijective (see §4), the above
lemma allows us to define a map

(2.2) ¢ x Y : [Cp, Crlg — [4,4]g x [B, Blg

by ¢=S"'p*'p, and Y =i !i* under the assumption of Lemma 2.1.
Namely, S¢(h) and (k) are the elements uniquely determined by the G-
homotopy commutative diagram

B ¢ —2— s4

(2.3) P(h) Jh sz(h)

B — ¢ -2 sa
Therefore ¢ x Y is a homomorphism of monoids, and hence a homomorphism
(24) @ X Iﬂ : gg(Cf) — (g)G(A) X (gg(B)

of groups can be defined as the restriction of the map ¢ x ¢ in (2.2) to &6(Cr)
when dimB <n—1. From now on, we study the image of this homo-
morphism ¢ x . Let ESA = (SA), the space of free paths (not necessary
equivariant) in S4, and PSA = {0 € ESA|o(1) = x}, the space of paths in S4,
where G acts on ESA and PSA by (g-0)(t) =g-0o(t) for ge G and o € ESA
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(or PSA), and let
Qs4 L F, 4, Cr (9(x,0) = x)

be the path fibering induced from the fibering Q2SA4 — PS4 — SA by
p: Cr — SA, where G acts diagonally on F, = {(x,0) € Cr x PSA|p(x) = a(0)}.
Then a G-lifting 1 : B— F, of i : B— Cy can be defined by i(b) = (b,0.) € Fp,
where 0, denotes the constant path, 0,(z) = %,z e I.

Lemma 2.5. (i) IfdimB <n—1, then q, : [B, Fp)q — (B, Crl is bijective.
(i) If B is G-l-connected, then 1, : [A,B]; — [A, F,; is bijective.

Proor. (i) Let L be a subgroup of G. Since SAL = ((G/H):)" A
S"™ 7;(2SA%Y) =0 for all i <n—1. Therefore, the homotopy sequence

— m(254%) Lo m(FF) 25 my(CF) - miy (2545 —

of the fibering QS4" — F} — C} shows that g.:m(Fg) — m(CF) is iso-
morphic for all i <n—1 and epimorphic for i =n. Hence, if dmB <n—1,
then g, : [B,F,|; — [B,Cs]; is bijective in the same way as in [2, II, (5.4)
Theorem)].

(i) Since 4 = G/H* A S", it suffices to show that i, : 7,(B¥) — m,(F))
is isomorphic by [4, Lemma 2.1']. Let E, = {(x,0) € Cf x ESA|p(x) = 5(0)},
where G acts diagonally on E,. Then the fibering

F, 5 E, 584 (r(x,0) = a(1))

induces the isomorphism r, : m(Ef, Ff') — n;(SA™) for all i. Also, since
Cfl =B U ((G/H )#)* A emt!), Blakers-Massey Theorem implies that
pe : mi(CH, BY) — m;(SA®) is isomorphic for all i<n+1 (cf. [8, VIIL
(7.12) Theorem]). The inclusion e: Cy — E, defined by e(x) = (x,0,)) is a
G-homotopy equivalence satisfying p =re. Therefore, in particular,
(e,0), = 17" pe : a1 (CF, BY) — muy (EF ,FF) and e, : mi(CH) — m(E)) for
i=n and n+ 1 are isomorphic. Thus, the equality ei = wi gives rise to the
commutative diagram

9 i
—_— 7Tn+l(CfH) R nn+l(CfH’BH) — m,(BY) — ”n(CfH) — 0

e,l; (e,t)*lz l,l e.Jv;

) N
— 1 (EfY) — mup(EF FH) —— m(FH) —> m(EF) — 0

whose top and bottom rows are the homotopy sequences of the pairs (Cr, B)
and (Ef, F,7), respectively. This diagram shows that 1, : 7,(B¥) — 7,(F/}) is
isomorphic by the five lemma. q.e.d.
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Let ¢ x  be the homomorphism in (2.4). Then we show the following in
the same way as in the non-equivariant case due to Rutter [6, Theorem 4.6].

Lemma 2.6. If B is G-1-connected and dim B < n — 1, then the image of
@ X Y is equal to

M = {(h],hz) € g’G(A) X gg(B) |/’l2f Ifhl in [A,B]G}.

Proor. Let (h1,h;) be any element of M. Then, each G-homotopy
hyf ~ fhy allows us to construct a G-map h: Cr — Cr such that hi ~ ih; and
Ship ~ ph, that is, y(h) = hy and S¢(h) = Sh; in (2.3). Therefore, to prove
M < Im(p x ), it suffices to show that the above element 4 is a G-homotopy
equivalence. For each subgroup L of G, A and A, induce the isomorphisms
hy, : H(A% Z) — H(A%*Z) and hy, : H(B*;Z) — Hy(B%;Z) for all i
respectively. Therefore, 4 induces the isomorphism 4, :Hi(CfL;Z) —
H,»(CfL;Z) for all i by the five lemma, and hence it induces the isomor-
phism 4. : 7;(Cf) — m(Cf) for all i by Whitehead Theorem. By [2, II,
(5.5) Corollary], this shows that 4 is a G-homotopy equivalence. Thus,
M < Im(p x ). Next, let h be any element of &(Cr). Then, p.h = p*Sep(h)
by the definition of ¢, and each G-homotopy ph ~ S¢(h)p allows us to
construct a G-map h: F, — F, such that the diagram

Qs4 - F, %, ¢ -2 s4

(2.7) JQSw(h) Jix Jh J/Sw(h)

Qs4a -1 F, %, ¢ -2 s4

is G-homotopy commutative. Let :: B — F, be the G-lifting of i: B — C; in
Lemma 2.5. Then, the equality g1 =i and the commutativity of the diagrams
(2.3) and (2.7) yield
quy(h) = iy (h) ~ hi = hqi ~ qh,

and hence wj(h) ~ i by Lemma 2.5 (i). Furthermore, let 7: 4 — QS4 be a
G-map defined by 7(a)(f) = (a,1 —¢) for ae A4 and teI. Then, QSp(h)r =
tp(h). Let 7,: A — PSA be a G-homotopy defined by 7,(a)(t) = p(a,s(1 — t))
for ae4 and s,tel, and let hy: A — F, be a G-homotopy defined by
hs(a) = ((a,s),75(a)). Then this G-homotopy h; shows that if ~jr. Now,
these G-homotopies and the equality, w)(h) ~ hi, if ~ jtr and QSp(h)t = t0(h),
and the commutativity of the diagram (2.7) yield

W (h)f ~hif = hjr ~ jQSp(h)t = jrp(h) ~ if p(h).
Hence, y(h)f ~ fp(h) by Lemma 2.5 (ii). Thus, Im(p x §) = M. g.e.d.
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3. Kernel of ¢ x iy and a short exact sequence

In this section we assume that 4’ = G/H* A S"! with n 22 and B’ is a
G-CW complex; we also assume that f’': A4’ — B’ is any G-map and that
f=S8f'":4=8S4"— B=SB’. Then we have

Lemma 3.1. If B is G-1-connected, then there is an exact sequence of
groups
(S4, B], - [SA4, Cflg 2 [S4, SA] .

PROOF. An  isomorphism 7, ;(CH#, BH) = 7,1 (((G/H)™)" A 57*1)
obtained by Blakers-Massey Theorem yields an exact sequence

Trit (BT) 5 11 (CH) L5 mai ((G/H) ) A 8™,
which implies this lemma by [4, Lemma 2.1']. q.ed.

Let A be the map in (1.2) and ¢ x  the homomorphism in (2.4). Then
we have

Lemma 32, (i) Aa) =14 ap for ac[S4,Cfl;.
(i) If B is G-l-connected and dim B < n — 1, then the kernel of ¢ X Y is
isomorphic to

K = i.[S4, Blg/(SF)"[SB, Cflg.

Proor. (i) Since C; ~ SC; by the assumption f = Sf’, C; has the
natural G-comultiplication /": Cf — Cy v Cr, and [/~ (1 v p)l’ for the G-
coaction / in (1.1). Therefore, by the definition of A in (1.2),

Aa)=x(1 va)y(lvpl =1+ap.

(i) The equality of (i) and the definitions of ¢ and ¥ in (2.2) give rise to the
commutative diagram

()" 2 i
[SB,Crlg —— [84,Crls —— [Cr,Crlg —— (B, Gig

(3.3) /Hp*Jv /”l \ Tg

(S4, B], (S4,84], —2— [C;,54], (B, B,

Since the row sequence in (3.3) is an exact sequence of groups if we replace A
by p*, we have

(3.4) (1) = 1+ 7 (0) = 1 +p°[S4, Cflg = A(S4, Gflg)-
Also, (3.4), (3.3) and Lemma 3.1 yield
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Ker(p x y) = (Sp) ™' (1) NA([S4, C/]g)
= A(i,[S4, Bg).

Moreover, by (3.3) and Lemma 3.1 we have (Sf)*[SB, Cy|; < i[S4, B]; and by
Lemma 1.3 and (i) of this lemma we have a group isomorphism

A(i,[SA, Bl;) = i.[SA4, B) 5/ (Sf)*[SB, C/]4. qed.

Now Lemmas 2.6 and 3.2 give the following theorem, which is due to Barcus
and Barratt in the non-equivariant case [1, Theorem (6.1)] (cf. [5, Theorem
2.12]).

THEOREM 3.5. Let A'=G/H* A S"™' with n=2 and B' a G-CW
complex, and let f': A" — B' be a G-map. If B= SB' is G-l1-connected and
dimB <n—1, then for the mapping cone C; = BU;(G/H* A e") of the
G-map f=Sf":A=SA"— B=SB’ with the natural G-action, there is an
exact sequence of groups

0— K 85(C) 2% M —1
with
K = i.[S4,B|/(S/)"|SB,C/l;  and
M = {(h,h2) € 8G(A4) x 6c(B) | hof = fhy in [4,B]g}.

4. Anti-isomorphism: 66(G/H" A S") =~ U(Z(N(H)/H)) (n = 2)

Let G be a finite group and H a subgroup of G. Note that (G/H)" =
N(H)/H, where N(H) denotes the normalizer of H in G. Then we have

THEOREM 4.1. If n = 2, then the group 6c(G/H" A S") is anti-isomorphic
to the group U(Z(N(H)/H)) of units of the integral group ring Z(N(H)/H) of
N(H)/H.

Proor. To prove this theorem, it suffices to show that there is a ring anti-
isomorphism [G/H* A S",G/H* A S"|; =~ Z(N(H)/H). Let {g;H} be the
left decomposition of N(H) with respect to H, and let the homotopy class of
the composite of a map m : S" = H/Ht A S" — S" = g;H/H* A S" of degree
m and the inclusion of g;H/H* A S" into N(H)/H* A S" be identified
with mg;H € Z(N(H)/H). Then by [4, Corollary 2.2], the restriction to
S"=H/H" A S" and this identification yield the following isomorphism @ of
additive groups.

@ [G/H* A S",G/H" A S"; = n,(N(H)/H* A S") = Z(N(H)/H).
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Let u and v be any two elements of the set [G/H™ A S",G/H" A S"]; and
J:N(H)/H* A S" — G/H* A S" the inclusion. Since v is equivariant,
v|(g:H/H* A S") =g;H -v|(H/H" A S").
If ul(H/Ht A S") =moH +mg1H + -+ mgpH € ny(N(H)/H* A S"), then
D(vu) = vj(moH +migiH + -+ - + mygiH)
= (o|(H/H" A S"))mo + -+ + (vl(geH/H* A S™))myc
— mo(H - o|(H/H* A S™) + -+ mi(gH - of(H/H* A S™)
=moH - P(v) + - - + mygiH - (v)
= @(u) - D(v).
Thus @ is an anti-isomorphism of rings. q.e.d.

For a finite abelian group G, let n, denote the number of its elements of
order 2 and ¢ the number of its cyclic subgroups (including {e}). Then we
have the following theorem due to Higman (cf. [3, Theorem 4.1]).

THEOREM 4.2 (Higman). Let G be a finite abelian group. Then
U(ZG)= +Gx F,
where F is a free abelian group of rank (|G| +ny+1)/2 —c.
Now Theorems 4.1 and 4.2 immediately give the following.

THEOREM 4.3. Let G be a finite abelian group and H a subgroup of G. If
n=2, then

E(G/H* A 8"~ Z, x G/H x (Z)*, k= (G/H|+n+1)/2—c,

where Z, = {1, —1}, ny denotes the number of elements of order 2 and c denotes
the number of cyclic subgroups of G/H.

Let E, be the g x ¢ identity matrix and F, the g x ¢ matrix defined by

@4 Fo= (E:?—l ‘1)>

If G/H is isomorphic to the cyclic group Z, of order ¢, then &6(G/H" A S")
has the torsion subgroup Z, x Z, generated by —E,; and F,.

COROLLARY 4.5. In the above theorem, if G/H is isomorphic to the cyclic
group Z,, then

E6(G/HY A S") = Zy x Zyx (2)",  k=[q/2]+1—d(q),
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where d(q) is the number of divisors of q and the torsion subgroup Z, x Z, is
generated by —E, and F,, and, in particular,

{szzq, if §=2,3,4,6

66(G/HY A S") =
6(G/ A7) Zy x Z; x (Z)k, if qis a prime =5,

where k = (¢ —3)/2.

5. 64,(Cy) for f:ZF AS"™F S ZF AS" (n2k+324)

In this section 4 = Z3 A S"™* and B=Z§ A S" with n =k + 3 = 4; for
each Z)-map f: A — B we consider its mapping cone

(5.1) Cr = (Z3 A S")Uy (ZF A e"thtly,

Since [4, Blz, = ik (Z3 A S") = 741 (S") @ ik (S”) by [4, Lemma 2.1'],
the Z,-homotopy class f €[4, B] z, can be written as f = Sf' for some
flelZy A Sk Z3 A S™1], and

2

(5.2) f:(ﬁ 2) fi € Tuyk(S™), i=1,2.

We first calculate the group K in Theorem 3.5. By an argument similar to the
proof of Lemma 2.1 we have

(5.3) ix : [SB, B]z, — [SB, Cy|4, is epimorphic.
Let #, denote the generator of 7,,;(S") = Z,. Then by [7, Proposition 3.1]
(5.4) 1.8 f; = fillnsi for any f; € mpk(S") (n=2k+3=4).

Since  [SB, B|;, = 7ty1(S") @ mny1(S") = Z2{n,} ® Z2{n,} and similarly
(S4, 4z, = Zo{n,4} © Z2{Ny i}, (5.4) yields

(5.5) (S/)°[SB, Bl 7, = /.[S4, Al,.

Now, (5.3) and (5.5) yield

(5.6) (Sf)*[SB, Crlz, = (Sf)"i.[SB, Bz, = i. f.[SA, 4]z, = 0.

As in the proof of Lemma 3.1 we have an exact sequence of groups
[S4, 4], 2 [SA4, B, = [S4, /..

Therefore, (5.6) yields

(5.7) K =i,[SA, B), = [SA, Bl [1.IS4, 4],

= Tniki1(8") @ Tniie1 (S")/{(1m, fom), (fom, Sim) )
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where 7 =1, and {x,y} denotes the subgroup generated by x and y. We
next calculate the subgroup M of &z,(A4) X 6z,(B) in Theorem 3.5. Let
E = E, be the 2 x 2 identity matrix and F = F, the 2 x 2 matrix of order 2
defined in (4.4), and let

a=(—E,—FE), b= (F,F), c=(E,—E), and d = (E,F).
Then, by Corollary 4.5
(5.8) 6z,(A) x Ez,(B) = (Z,)* generated by a,b,c and d,
and for the presentation of Z,-homotopy class f in (5.2) we have

f(—E)=(-E)f and fF=Ff  always hold,

f=(=EYf if and only if 2f,=0 for i=1 and 2,
(5.9)

f=Ff if and only if f, = f,

f=(=F)f if and only if f;=—/,.

Now by Theorem 3.5, (5.8) and (5.9) we have

(Z,)*  if fi#fo, fi# —f, and 2f, #0 for i=1 or 2,
(Z,)  if f,#f, and 2f, =0 for i=1 and 2,
(5100 M= (Z,)> if fi=f, and f; # —f>,
(22" if fi# f, and fi =~/
(Z,)* otherwise.

Consequently by Theorem 3.5 we have

THEOREM 5.11. If n =k + 3 = 4, then for each Zy-map f : Z§ A Stk
Z$ A S", its Zy-homotopy class f € [Z3 A S™*,ZT A S"|, can be written as
(5.2), and for its mapping cone Cy there is an exact sequence of groups

0-K—68z,(C)—M—1
where K and M are the groups in (5.7) and (5.10) respectively.

Using this theorem, we further calculate the group &z,(Cr) for k =1.
Since the group 7,+1(S”) in (5.2) is isomorphic to Z, generated by 7, for each
Z,-map f : A — B its Z,-homotopy class f € [4, B) z, can be written as

t
f=<s’7 ’7>, n= "My s,t=0,1.
m sy

Also, since the group m,4,(S") in (5.7) is isomorphic to Z, generated by 7,4, 1,
the group K in (5.7) is trivial when s # ¢, and hence by Theorem 5.11 and
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(5.10)
(5.12) 65,(Cr) = (Z2))  if s#¢t.

We now assume that s =¢=0. Then the group K is isomorphic to Z, @ Z;,
and hence Theorem 5.11 and (5.10) yield the exact sequence of groups

(5.13) 0— Z,® Z — 62,(C) 2% (2))'—1,

where (5.8) shows that the right-hand group (Z,)* is generated by a,b, ¢ and d.
Furthermore, since Cy ~ (Z5 A S") v (Z A S"™2) by (5.1), the right inverse
o:(Zy)" - 67,(Cr) of the homomorphism ¢ X y can be given by

ola) = —E, a(b)=(§ 1‘;) a(C)=<_0E g) a(d):(f; g)

Therefore, (5.13) is a split extension, and hence &z,(Cs) is isomorphic to
the semi-direct product (Z, ® Z,) % (Z,)*. Furthermore, for 52 = Hullys1 WE

define
’72 0 0 ’72
P= =
(0 ﬂz)’ ¢ (712 0)’
E P E Q
P“_(o E) Q“-(o E)

Then, P4 and Q4 generate A(Z, @ Z;) by the definition of 4, and hence &z, (Cr)
is generated by o(a),a(b),o(c),o(d), P4 and Q4. Thus, we have

(5.14)

(5.15) 62,(Cr) = Dy x (Z2)°  if s=1=0,

where the direct factor D4 is the dihedral group of order 8, and (Z)® is
generated by o(a),o(b) and a(c). If s=1¢=1, then the group K is isomorphic
to Z, by (5.7) and the group M is isomorphic to (Z;)* by (5.10). Therefore,
by (5.12), (5.15) and Theorem 5.11 we have

PROPOSITION 5.16. If n=4, then for each Zy-map f:ZF n S™! —
Z3 A S", its Zy-homotopy class f € [Z3 A S"T,Z} A S"), can be written as

sy
= ) = Hn» 7t=011a
/ (tn sn) R

and for its mapping cone Cy, we have

(Z,)° if s#t

gZZ(Cf):{D“x(Zz)E; if s=t=0.
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If s=1t=1, then there is an exact sequence of groups

0= Zy — 62,(Cr) — (Z2)* — 1.

6. &2,(Cy)for f:ZEAS"K S ZFAS" (n2k+324)

We take A=Z; A S"* and B=Z7 A S" with n = k+3 24, where
Z,=1Z¢/Z5. Since [4,B], = mpk(S") ® mnik(S"), each Zg-homotopy class
Zg

f €[4, Bl can be written as f = Sf’ for some f' € [Z{ A S™F=1, ZT A S™1,,

and
Hh L h L ”h S

61) f= (

( LA G oA

Let K be the group in Theorem 3.5. Then, as in §5 we have
(62) K= nn+k+l(Sn) ® nn+k+l(Sn)/{(fl”n+k’f2'7n+k)a (f2’7n+k7 fl'7n+k)}'

We calculate the subgroup M of &z,(A4) x 6z,(B) in Theorem 3.5. Let E,; be
the g x ¢ identity matrix and F,; the g x ¢ matrix of order g defined in (4.4),
and let

a = (F6,F2), b= (—E5, —Ez), Cc = (E6, —Ez) and d= (EG,Fz)‘

), frem(SY,  i=1,2.

Then by Corollary 4.5
(6.3) 6z,(A) X Ez,(B) = Zg X (Z,)*® generated by a,b,c and d,

and
f(—E¢) = (—Ey)f and fFs = F,f always hold,

f=(-E)f if and only if 2f;=0 for i=1 and 2,
f=Ef if and only if f; = f5,
f=(FR)f if and only if f,=—/,
for fin (6.1). Now by Theorem 3.5, (6.3) and (6.4) we have
(6.5)

(6.4)

Zyx(Z))* it fi#f, fi#—f and 2f, #0 for i=1 or 2,
Z3x(Zz)3 if fi#f, and 2f;=0 fori=1 and 2,

Z3x (Z,)®  if fi=1, and f; # —f>,

Z3x (Z,)  if fi#f, and f, = —f,,

Zy % (Z,)* otherwise.

<
IR

Consequently by Theorem 3.5 we have
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THEOREM 6.6. If n=k+3 =4, then for each Zg-map f: Z{ A S™F —
Z3 A S", its Ze-homotopy class f € [Z§ A S"™*,ZF A S"|,. can be written as
(6.1), and for its mapping cone Cy there is an exact sequence of groups

0—-K— &z,(Cr) > M — 1
where K and M are the groups in (6.2) and (6.5) respectively.

We further calculate the group &z,(Cy) for k=1. Since the group
Ttu+1(S™) in (6.1) is isomorphic to Z, generated by 7#,, we have f, = s, f, = 1,
n=mn, with s,=0,1 in (6.1). Also, since the group m,2(S") in (6.2) is
isomorphic to Z, generated by #,7,,, the group K in (6.2) is trivial when s # ¢,
and hence by Theorem 6.6 and (6.5)

(6.7) €2,(Cr) = Zy x (Z,)°  if s#¢.

We now assume that s = ¢ =0. Then the group K is isomorphic to Z, @ Z,,
and hence Theorem 6.6 and (6.5) yield the exact sequence of groups

6.8 0 Zy® Zy — &, (C) 2 Zo x (2,)) — 1,
+(Cr

where (6.3) shows that the right-hand group Zs x (22)3 is generated by a,b,c
and d. Furthermore, since Cr =~ (Z3 A S") v (Z} A S"2), the right inverse
0:Zs % (Z)* — 67,(Cr) of the homomorphism ¢ x ¥ can be given by

E 0
a(a>=<02 F6>, o(b) = —Es,

—EZ 0 Fz 0
0(0)=<0 E6>’ a(d)=(0 Es)’

where F, is the matrix in (4.4). Therefore, the sequence (6.8) is a split
extension, and hence &z,(Cy) = (Z, @ Z3) X (Zs x (Z,)%). Let Pg and Qg
be 8 x 8 matrices defined by

Piy=(P P P), 01.=(Q Q0 0,

E, Py, E; O
PS = ) Q8 = )
0 Eg 0 E6

where P and Q are the 2 x 2 matrices in (5.14). Then, Py and Qg generate
MZ,®Z,) by the definition of A, and hence &%,(Cr) is generated by
a(a),a(b),o(c),a(d),Ps and Qs. Thus, we have

(6.9) 62,(Cr) = Dy x Zg x (Z2)*  if s=1=0,
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where the direct factor Zg x (Z,) is generated by o(a),s(b) and o(c). If
s =1t=1, then the group K is isomorphic to Z, by (6.2) and the group M is
isomorphic to Z3 x (Z,)* by (6.5). Therefore, by (6.7), (6.9) and Theorem 6.6
we have

PROPOSITION 6.10. If n=4, then for each Zg-map f:Z& A S™ —
Z3 A S", its Zs-homotopy class f € [Z{ A S"™!,Z3 A S™|,, can be written as

t t t
f:<s’7 nosn o tmo sy '7)’ — S1=01,
tm sn tn s tn s

and for its mapping cone Cy we have

gz(C)Z Z3X(Z2)3 ifs;ét
o D4><Z3><(Zz)3 l'fS———t=0.

If s=1t=1, then there is an exact sequence of groups

0— Z) — &2,(Cr) — Z3 x (Z2)* — 1.
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