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ABSTRACT. We give a simultaneous study of 4-Radon-Nikodym sets and A-Pettis sets
for nonempty bounded subsets 4 of Banach spaces with comparable characterizations of
these two classes of sets by various properties, using certain weak*-measurable functions.

1. Introduction

Throughout this paper X denotes an arbitrary real Banach space; X *, X**
and B(X) are its topological dual space, bidual space and closed unit ball,
respectively. For weak*-compact subsets of dual Banach spaces, we have two
notions of Pettis sets and Radon-Nikodym sets (RN sets in brief), which are
generalizations of weak*-compact convex sets with the weak Radon-Nikodym
property and the Radon-Nikodym property, respectively. The RN sets were
defined and studied in Reynow [17] and the Pettis sets in Talagrand [21].
Succeedingly, Fitzpatrick [4] defined the notion of separably related sets in
X* as a generalization of RN sets. On the other hand, Bator and Lewis [2]
defined the K-weak precompactness as a generalization of weak precompactness.
In this paper, in order to analyze these notions in a unified manner, we give
attention to a continuity property of certain maps, and redefine two notions;
They are generalizations of Pettis sets and norm-fragmented sets (cf. [7]).

DermiTiON 1. Let 4 be a bounded subset of X and K a weak*-compact
(not necessarily convex) subset of X*. Then

(1) K is said to be an A-Pettis set if every weak*-compact subset D of K
has the following property ().
(¥) For every x** e A* (the weak*-closure of 4 in X**) and every &> 0,
there exists a weak*-open subset U such that UND # ¢ and O(x**|UND)
(=sup{(u*,x™) : u* e UN D} —inf{(v*,x**) : v* € UN D}, the oscillation of x™*
on UND) <e.
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(2) K is said to be an A-RN set if every weak*-compact subset D of K
has the following property (k).

(+x) For every ¢ > 0, there exists a weak*-open subset U such that UND # ¢
and diamy(UND) (=sup{qs(u* —v*):u*,v* € UND}, the g, -diameter of
UND) <e.

Here ¢4 is the seminorm given by ¢,4(x*) = sup |(x, x*)| for every x* € X *.

xeAd

A B(X)-Pettis (resp. B(X)-RN) set is nothing but a Pettis (resp. RN)
set. We have called an 4-RN set an A-fragmented set in [13].

Now, in a series of our papers [9], [10], [11] and [12] (resp. [13]), we have
studied the notion of K-weakly precompact set A (resp. A-fragmented set K)
which is equivalent to say that K is an A-Pettis set (resp. 4-Radon-Nikodym
set). In order to see various properties of these sets, we used there certain
K-valued weak*-measurable functions constructed in the case where A4 is a
non-K-weakly precompact set or K is a non-A-fragmented set.

In this paper, by following the same ideas of the use of K-valued weak*-
measurable functions, we wish to study A-Pettis sets K and 4-RN sets K in a
unified manner, seeing them in parallel and comparison. Then we obtain some
new characterizations of these sets, and clarify that there are many points in
which these two notions for sets are similar and yet subtly different. A similar
type research has been done by Riddle and Uhl [18] in the case where 4 =
B(X) and K = B(X*). Thus the results are also concerned with Pettis sets and
RN sets in dual Banach spaces, and weakly precompact sets and GSP sets in
Banach spaces. So this study has an aspect of the reconsideration of results in
[9], [11], [12], [13] and so on.

The paper is organized as follows. In §2, we give notation, definitions
and preliminary results. In §3, we recall the construction of certain K-valued
weak*-measurable functions following [9] and [11]. In §4, we present basic
functions to study A-Pettis sets K and A-RN sets K from our point of view,
which contain informations to recognize not only the similarity but also the
subtle difference between these two notions. As its consequence, in §5, we give
a study of their similarity and difference in various aspects, such as geometric,
operator theoretic, measure theoretic or convex analytic one. In §6, by an
appropriate choice of the sets A and K, we present various characterizations of
RN sets, GSP sets, Pettis sets and weakly precompact sets as a convenient
summary.

2. Definitions and preliminary results

In the following, notation and terminology, unless otherwise stated, are as
in [10] and [11]. The triple (1, 4,1) refers to the Lebesgue measure space on
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I (=[0,1]), A" to the sets in A with positive measure, L to L(I,4,/) and L,
to L (I,4,2). For each Ee A", denote A(E) = {yz/MF):F < E,FeA"}.
For each ge L,, and E € A", ess-O(g|E) denotes the essential oscillation of g
(as a function) on E. We always understand that [ is endowed with 4 and A.
If f:1— X* is a bounded weak*-measurable function, we obtain a bounded
linear operator Sy : X — Lo, (resp. Ty : X — L;) given by Sy(x) = xof (resp.
Ty(x) = xof) for every x € X, where (xof)(t) = (x, f(¢)) for every te I. The
dual operator of Ty is denoted by Ty (: L, — X*). Define a vector measure
oy (associated with such a function f): 4 — X by oy (E) = T/ (yg) for every
EeA. Then

(v, 2y(E)) = me(r))cu(r)

for every xe X and E € 4. When a vector measure o : 4 — X* satisfies that
a(E) = T/ (xg) for every E e A, we say that it has the weak*-density f. Let
{O(n,i) :n=0,1,...;i=0,...,2" — 1} be a system of open intervals in I given
by O(n,i) = (i/2",(i+ 1)/2") for every (n,i).

If g: X — R is a continuous convex function, we define Dg(x, y) by

Dy(x,y) =lim{g(x +1y) —g(x)}/t  for x,yeX

provided that this limit exists; g is Gateaux differentiable at x € X if Dg(x, y)
exists for every ye X. Further, we recall some notions concerning differ-
entiability.

DerINITION 2 (cf. [3] and [16]). Let g: X — R be a continuous convex
function and A a bounded subset of X. Then

(1) The subdifferential of g, denoted by dg, is the set valued map from X
to X* defined by:

0g(x) = {x" e X" :g(y) —g(x) = (y —x,x") for every ye X}.

(2) The subdifferential map dg : X — 2(X*) (power set of X*) is said to
be A-continuous at x € X if for every ¢ > 0 there exists a neighborhood V of x
such that diam,(dg(V)) <e. Here dg(V) = J{dg(y):ye V}.

(3) ([1]). g is said to be A-differentiable at x e X if there exists an
x* e X* such that

lim {Sup [(g(x +1y) —g(x))/t — (y,X*)I} =0.

t—0+ yed

Needless to say, B(X)-differentiability at x is equivalent to Frechet dif-
ferentiability at x.
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(4) g is said to be A-uniformly Gateaux differentiable at x € X if Dg(x, y)
exists uniformly in y e 4.

Note that dg(x) is a nonempty weak*-compact convex subset of X* for
every x€ X, and g is Gateaux differentiable at x e X if and only if g is
{y, —y}-differentiable at x € X for every y € X. In order to analyse 4-RN sets
and A-Pettis sets from our view-point, let us turn our attention to the special
continuous convex functions defined as follows.

DerFINITION 3. Let H be a nonempty bounded subset of X*. Then the
continuous convex function ¢y associated with H is defined by

cr(x) = sup (x,x7)
x*eH

for each x e X, and called the support function of H ([16]).

The convexity and the continuity of such functions cy are clear, and the
following is well-known.

PrOPOSITION 1. Let Y be a closed linear subspace of X and K a weak*-
compact subset of X*. Let j:Y — X be the inclusion operator and j* its dual
operator. Then, for every nonempty subset H of K, cy: Y — R satisfies that
Ocy(y) =co*(j*(K)) (the weak*-closed convex hull of j*(K)) for every ye Y.
In particular, if Y = X, then dcy(x) = co*(K) for every x e X.

Let us recall a fact useful to check the A-uniform Gateaux differentiability
of continuous convex functions.

PrOPOSITION 2. Let g: X — R be a continuous convex function and A a
bounded subset of X. Then

(1) g is A-uniformly Gateaux differentiable at x e X if and only if ¢
satisfies that

i,ilg{s,‘?j(g(x +1y) +glx—1y) - 29(X))/t} =0.

(2) g is B(X)-uniformly Gateaux differentiable at x € X if and only if g is
Frechet differentiable at x € X.

In order to see geometric properties of A-RN sets and A-Pettis sets, we
recall

DEerFINITION 4 (cf. [4] and [2]). (1) Let K be a bounded subset of X*. A
weak*-open slice of K is a set of the form:
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z*eK

S(x,¢,K) = {x* €K : (x,x*)> sup(x,z*) — c}

where x e X and ¢ > 0.

(2) Let A be a bounded subset of X and K a bounded subset of X*.
Then the set K is said to be A-weak*-dentable if K has weak*-open slices of
arbitrarily small ¢4-diameter. And the set K is said to be weak*-A*-dentable if
for every ¢ > 0 and x™* € A*, there exists a weak*-open slice S of K such that
O(x™|8) < e.

Note that for any bounded subset D of X*, diam,(D) = sup{O(x|D) :
xe A} and O(x**|D) < diamy (D) for every x** € A*. So, A-RN sets are A-
Pettis sets. B(X)-weak*-dentability (resp. weak*-B(X**)-dentability) is simply
called the weak*-dentability (resp. weak*-scalar-dentability). To see the
relation between geometric properties and operator theoretic properties of
A-Pettis sets, we recall

DEerFINITION 5 ([11]). Let K be a bounded convex subset of X* and 4 a
bounded subset of X**. Then the set K is said to be A-weak*-strongly regular
if for every ¢ >0 and every nonempty convex subset D of K, there exist
positive numbers oy, ...,®, whose sum is one and weak*-open slices Sy, ..., S,
of D such that

sup O(x**|2fx, ,) ( sup Za, x*1S)) )

x*eAd x**eA

If A = B(X), this set is simply called weak*-strongly regular.

Before introducing the notions of the 4-Radon-Nikodym property (4-RNP
in brief) and the A*-weak Radon-Nikodym property (4*-WRNP in brief), we
define A-strong measurability and A*-Pettis integrability for X *-valued func-
tions as follows.

DEerINITION 6 (cf. [10] and [13]). (1) Let f: I — X* be a function and 4 a
bounded subset of X. Then f is said to be A-strongly measurable if f has the
following two conditions.

(a) fis weak*-measurable.

(b) For every ¢ >0 and E e A", there exists a set Fe A" with F c E
such that diam,(f(F)) < e.

(2) Let f:1— X* be a weak*-measurable function and 4 a bounded
subset of X. Then fis said to have the A-strongly measurable decomposability
if there exists an A-strongly measurable function g : I — X* such that f — g is
weak*-scalarly null (that is, (x, f(t) —g(¢)) =0 Z-a.e. on I for every x € X).
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(3) Let f:I— X* be a bounded weak*-measurable function and 4 a
bounded subset of X. Then f is said to be A*-Pettis integrable if f has the
following two conditions.

(a) For every x* e A%, x* of € L.

(b) For each E € 4, it holds that

(T (1) = JE(x**,f(t))di(t)

for every x** e A*.

(4) Let f:1I— X* be a bounded weak*-measurable function and 4 a
bounded subset of X. Then f is said to have the A*-Pettis decomposability
(resp. A*-measurable decomposability) if there exists a 4*-Pettis integrable (resp.
A*-measurable) function g: 7 — X* such that f —g is weak*-scalarly null.

Setting 4 = B(X) in Definition 6, we have the usual notion of strong
measurability and Pettis integrability for X *-valued bounded functions. Define
the A-RNP and the A*-WRNP for weak*-compact convex subsets of X* as
follows.

DerFmiTioN 7. Let A be a bounded subset of X and K a weak*-compact
convex subset of X*. Then

(1) K is said to have the A-RNP if for any vector measure o: 4 — X*
for which «(E) € A(E) - K for every E € A, there exists an A-strongly mea-
surable function f:1 — K such that a(E) = T/ (xz) for every E € A (that is,
any such vector measure o« has an A-strongly measurable weak*-density f
valued in K).

(2) K is said to have the A*-WRNP if for any vector measure o : 4 — X*
for which «(E) € A(E) - K for every E € A, there exists a A*-Pettis integrable
function f': I — K such that a(E) = T/ (x) for every E € 4 (that is, any such
vector measure o has a A*-Pettis integrable weak*-density f valued in K).

Concerning notions stated in Definitions 5, 6 and 7, we have the following
result. For the proof, see [9], [10], [13] and [14].

ProposITION 3. (1) Let K be a weak*-compact convex subset of X*. Then
the B(X)-RNP (resp. B(X**)-WRNP) for K coincides the (usual) RNP (resp.
WRNP) for K

(2) Let f:I— X* be a bounded weak*-measurable function and A a
bounded subset of X. Suppose that the set T0* (T} (4(E))) is A-weak*-dentable
(resp. weak*-A*-dentable) for every E e A". Then f has the A-strongly mea-
surable decomposability (resp. A*-Pettis decomposability).

(3) Let K be a weak*-compact convex subset of X* and A a bounded
subset of X. Then, for every weak*-measurable function f :1 — K and every
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E e A", the set Co*(T7(4(E))) is A-weak*-dentable (resp. weak*-A*-dentable) if
and only if K has the A-RNP (resp. A*-WRNP).

In order to characterize 4-RN sets and A-Pettis sets in terms of operators
Sy X — L, we need the following two notions concerning subsets of L.
These notions act similarly in each case.

DeriNITION 8 ([20] and [6]). Let M be a subset of L.

(1) The set M is said to be equimeasurable if for every ¢ > 0 there exists a
set EcA with A(E) >1—¢ such that {fyz:f €M} is a relatively norm
compact subset of L.

(2) The set M is said to be a set of small oscillation with respect to X if for
every ¢ > 0 there exists a positive measurable partition (= {Ej,...,E,}) of I
such that

Z} ) ess-O(f|E;) <

for every fe M.

Concerning bounded linear operators Sy : X — L, (resp. Ty : X — L)
associated with A-strongly (resp. A4*-) measurable functions f, we note the
following result, part of which has appeared in [9], [11] and [13].

PROPOSITION 4. Let A be a bounded subset of X.

(1) Suppose that f:1— X* is a bounded weak*-measurable function
having the A-strongly measurable decomposability. Then S;(A) is equimeasu-
rable in L., and

int | 4740~ o ()20 = 0.

(2) Suppose that f:I1— X* is a bounded weak*-measurable function
having the A*-measurable decomposability. Then Ty(A) is relatively norm
compact in Ly, and

nz xeAd

1nf{sup |(x, T} (r,,))|} =0
(Here 1, denotes the n-th Rademacher function on I).

Proor. (1) For the proof of equimeasurability of the set Sy(4), refer to
that of Proposition 3 in [13].
In order to prove the latter part, we first show that

inf | a0 =i (0)d2() =0
nzl)g
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for the special case that Sy(A4) is relatively norm compact in L. The proof is
easily given as follows by a standard and routine argument. Let &> 0. Since
Sy(A) is relatively norm compact in L, there exists xi,...,x, € 4 such that

Sp(4) Q{g €Lyt lg—xof] <e/3).

Denoting the usual conditional expectation operator with respect to A, by E,
(= E(:]4,)), we have that ||xofy|| = ||[E.(xof)|| < |[x of] for every x € X and
every n 21 and ||E,(xof) —xof]; =0 (n— c0) for each x € X by the well-
known martingale theorem in L;. So, there exists a natural number m such
that if n > m, then

1<isp

JI{ sup |(xi £, (1) ﬁ7+1(f))|}di(t) <é/3.

Let xe€ A4 and let x; be such that |[xof —xjof| <e&/3. Then, if n>m, we
have that for every xe 4 and every tel,

(6, £ (8) = a1 (1)
= [(x = 25, Su(0) = funn ()] + Sup (X0, /(1) = S ()]

Sisp

= Eu(x = x5) o Sl + (1w [(x = x5) o f1 + sup [(xis £(2) = frsa (1)

I<i<p

<2¢/34 sup |(xi, f,(£) — fur1(D))]-

1<ip

Thus we get that 1r>1t; Jraa(f,,(1) = fus1 (2))dA(2) = 0.

Next let us consider the general case that Sy(4) is equimeasurable in L.
Let ¢ > 0. Then there exists E € A such that A(I\E) < ¢ and {xo fyp:x€ A}
is relatively norm compact in L,,. Let g=fyg. Then, by the special case
above, we have that

inf | ¢.4(9n(1) — gui1(2))dA(1) = 0.

nzl Jr

Then the routine calculation easily deduces that

inf [qA(fn(l) — far1(2))dA(1) = 0.

Thus the proof of the statement (1) is completed.
(2) The former part of the statement (2) follows immediately from a deep



Generalized Radon-Nikodym sets and generalized Pettis sets 79

result due to Fremlin (Theorem 2F in [5]) and the latter part has been shown in
the proof of Theorem in [9].
Consequently, the proof of Proposition 4 is completed.

Finally, for a given nonempty bounded subset 4 of X, we define slightly
new types of tree structures in X* associated with 4 as follows.

DrrFINITION 9. A system {x*(n,i):n=0,1,...;i=0,...,2" — 1} in X* is
called a tree if x*(n,i) ={x*(n+1,2i) +x*(n+1,2i+1)}/2 for n=0,1,...
and i=0,...,2" — 1.

Let 0 > 0. Then a tree {x*(n,i):n=0,1,...;i=0,...,2" =1} in X* is
called an A-d-tree if q4(x*(n+1,2i) —x*(n+1,2i+1)) > 25 for n=0,1,...
and i=0,...,2" — 1. A tree {x*(n,i):n=0,1,...;i=0,...,2" — 1} is called
an A-separated o-tree if there exists a sequence {x,},-; in A4 such that for
n=0,1,...and i=0,...,2" -1 -

(Xpg1, x" (n+1,20) = x"(n+1,2i + 1)) > 20.

In this case, we say that the tree is separated by {x,},>,. A B(X)-0-tree (resp.
B(X)-separated J-tree) is simply called a o-tree (resp. separated o-tree).

Note that a tree {x*(n,i):n=20,1,...;i=0,...,2" — 1} is an A-5-tree if
and only if there exists a (double) sequence {x(n,i):n=0,1,...;i=0,...,
2" — 1} in A such that for n=0,1,... and i=0,...,2" — 1,

(x(n, i), x*(n+1,2i) = x*(n+ 1,2i + 1)) > 20.

Further we note that for every bounded weak*-measurable function f:71 —
X*, we get a system {2"0/(I(n,i)):n=0,1,...;i=0,...,2" — 1} which is a
tree in X*. In the following, this is called a tree associated with f. Clearly,
all the elements of this tree are contained in 7 (4(1)).

3. A first step for constructing certain weak*-measurable functions

For the sake of necessity and importance, we must recall the construction
of certain weak*-measurable functions according to [9] (or [11]).

Let D be a weak*-compact subset of X*. Suppose that there exists
a system {V(n,i):n=0,1,...;i=0,...,2" — 1} of nonempty weak*-closed
subsets of D such that V(n+1,20)UV(n+1,2i+ 1) c V(n,i) and V(n+ 1,2i)
NVin+1,2i+1)=¢ for n=0,1,... and i=0,...,2" —1. Then, if we
put 4, = J{V(n,2i+1):i=0,...,2"' =1} and B, = | J{V(n,2i) : i =0, ...,
271 —1} for every n=1, (A, By),>, is an independent sequence (cf. [19])
of pairs of weak*-closed subsets of D. Then I = ﬂnZI(An UB,) is a
nonempty weak*-compact subset of D, since (4,, B,),, is independent. Now,
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define y : I’ — 2(N) (Cantor space, with its usual compact metric topology) by
Y(x*)={j:4;5x*} € Z2(N). Then y is a continuous surjection and so we
have a Radon probability measure y on I" such that ¥/(y) = v (the normalized
Haar measure if we identify 2(N) with {0,1}") and {uoy :ue L (2(N),
2y} =L(I,%,y), where X, (resp. 2,) is the family of all v (resp. y)-
measurable subsets of #(N) (resp. I'). Consider a function 7:2(N)— 1

defined by t(J)=>.1/2/ for every Je#(N). Then 7 is a continuous
jeJ

surjection such that t(v) =4 and {vot:velL;}=L(#(N),~2,,v). Then,

making use of the lifting theory, we have a weak*-measurable function k : I —

I'(= D) such that

(a) p(fok)(t)=1(k(2)) for every f € C(I') and every t€l,

(b) JEf(k(f))dﬂu(f) = J(x7)dy(x)

Jl//‘(f‘(E))
for every Ee€A and every feC(I). Here p is a lifting of L.
Further  t(y(y) =24, U (' (0(mn,2i)):0<i<2"' —1} =I'NB,,
Uy 'z (0(m,2i +1))) : 0= i<2"! — 1} =I'N A4, (with respect to y) for
n=1,2,..., and it also holds that v '(z7'(O(n,2i))) = V(n,2i) and
Y N (O0m,2i 4+ 1)) € V(n,2i+1) for n=1,2,... and i=0,..., 2" —1.
Hence we easily get that this function k : I — D satisfies the followings:

|, stetopann =] FO)dy(x)
O(n,2i) Y (7 1(0(n, 2i))
- £ )dy(x)
I'NV(n,2i)
and
| oo =] )
O(n,2i+1) v (7 1(0(n, 2i+1)))
_ S ) (x)
TN V(n,2i+1)

for feC(I), n=1,2,... and i=0,...,2""' — 1. This function k plays a
very important role in the development of our argument in this paper,
especially, in §4.

4. Basic functions associated with non-4-RN sets or non-A-Pettis sets

The main result of this section is Proposition 5 which makes it possible to
analyze 4-RN sets and A4-Pettis sets simultaneously. As far as we know, we
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have never seen Proposition 5 in the literature. The main statements are (Q)
of (i) and (S) of (ii). As a result, we are able to see their similarity and subtle
difference in many sides. Comparing the statements (Ry) and (R;) in (ii), (R)
has more information than (Ry). But, (Rg) usually provides us with imfor-
mation enough to analyze the property of A-Pettis sets.

PROPOSITION 5. Let D be a weak™*-compact subset of X* and A a bounded
subset of X.

(i) Suppose that there exists an ¢>0 such that diam,(UND) > ¢
whenever U is a weak*-open subset with U N D # ¢ (that is, D does not have the
property (xx) in Definition 1). Then the following statements hold.

(P) There exist a system {x(n,i):n=0,1,...;i=0,...,2" =1} in A and
a system {V(n,i):n=0,1,...;i=0,...,2" = 1} of nonempty weak*-closed
subsets of D such that

(1) Vin+1,200UV(n+1,2i+1) < V(n,i),

(2) x*eV(mn+1,2) and y*eV(n+1,2i+1) imply (x(n,i),x*—y*)=¢
for n=0,1,... and i =0,...,2" — 1.

(Q) In view of (P), we have a weak*-measurable function g:1— D
satisfying the following properties:

(1) The set ©*(T,;(A(E))) is not A-weak*-dentable for every E e A*.
(2) The tree associated with g is an A-O-tree for some postive number o.
(3)inf [ 4.4(94(0) — gusr (0)dA(0) > 0

(4) The set Sy(A) is not equimeasurable in L.

(5) The function g does not have the A-strongly measurable decompos-

ability.

(6) The vector measure oy has no A-strongly measurable weak*-density.

(7) There exists a sequence {y,},~, in A such that Ocg is nowhere Y-
continuwous in Y, where G=g(I), ¥ ={y,:n=1} and Y denotes the closed
linear span of V.

(8) There exists a sequence {y,},>, in A such that cg is nowhere ¥-
uniformly Gateaux differentiable in Y. -

(9) The function cg is nowhere A-differentiable in X if A = —A.

(i) Suppose that there exist an element a** € A* and an ¢ >0 such that
O(a™*|UN D) > ¢ whenever U is a weak*-open subset with UN D # ¢ (that is, D
does not have the property (%) in Definition 1). Then the following statements
hold.

(Ro) There exist a sequence {x,},~, in A and a system {W(n,i):n=0,
l,...;i=0,...,2" — 1} of nonempty weak*-closed subsets of D such that

(1) Wh+1,20UWn+1,2i+1) c W(n,i),

(2) x*eWm+1,2i) and y* € Wn+1,2i+ 1) imply (x,41,x* —y*) =¢
for n=0,1,... and i=0,...,2" — 1.
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(R1) (A stronger form of (Ry)) There exist a weak*-compact subset L of
D, a real number r and a sequence {a,},~, in A such that putting G, =
{x*€L: (an,x*) <r} and H, = {x* € L: (ay,x*) = r+¢}, then (Gu, Hy) 51 is
an independent sequence of pairs of weak*-closed subsets of L.

(S) In view of (Rg), we have a weak*-measurable function h:I1 — D
satisfying the following properties:

(1) The set co*(T,;(A(E))) is not A-weak*-strongly regular for every
Eed".

(2) The tree associated with h is an A-separated J-tree (separated by
{xn},=1) for some positive number o.

(3 inf < sup[[xohy, —xo0hypll; ¢ = | inf < sup|(x, T (ra))| ¢ > 0.
nz1 | yveqy nzl | xed
(

Ny

5) The function h does not have the A*-Pettis decomposability.

(6) The vector measure w, has no A*-Pettis integrable weak*-density.

(7) For every subsequence {Xyu)}rsy 0f {Xu},1, Ocm is nowhere ®-
continuous in Z, where H = h(I), @ = {x,4) : k =2 1} and Z denotes the closed
linear span of {x, :n = 1}.

(8) For every subsequence {Xyu)ti>1 of {Xn},>1, cu is nowhere ®-
uniformly Gateaux differentiable in Z.

)
) The set Sy(A) is not a set of small oscillation with respect to .
)

—~

Proor. (I) For the proof of (P) of (i), refer to that of Proposition 4 in
[13].

(IT) Let us prove the statement (Rg) of (ii). This also can be proved by
an argument analogous to (I). In virtue of the assumption, there exist an
element a** € A* and a positive number ¢ such that O(a**|U N D) > ¢ whenever
U is a nonempty weak*-open subset with UND # ¢. Let U(0,0) = X.
Suppose that for some positive integer k,{U(n,i):n=0,1,...,k;i=0,...,
2% —1} and {x,},<, <, have already been defined so that properties (a), (b) and
(c) hold. o

(@) U(n,i)ND#¢ for n=0,1,....,k and i =0,...,2F 1,

(b) (Un+1,20)ND)U(Un+1,2i+1)ND)c Um,i)ND for n=0,
l,....k—1and i=0,...,251 -1,

() x*eUm+1,20)ND and yp*eUm+1,2i+1)ND imply (xu41,
x*—y*)=efor n=0,1,...k—1and i=0,...,2F1 — 1,

Then, by assumption, we have O(a**|U(k,i)N D) > ¢ for i =0,...,2% — 1, and
hence, for every such i there exist elements x*(k + 1,2i) and x*(k+1,2i + 1)
of U(k,i)N D such that (x*(k+1,2i) — x*(k+1,2i+1),a**) > e Since A4 is
weak*-dense in 4*, we can choose an element x;,; € 4 such that for every i
with 0 i <2K— 1, (xpp1,x*(k+1,2i) —x*(k+1,2i + 1)) >&. Take a pos-
itive number o such that (xgyi,x*(k+1,2i)) —x*(k+1,2i+1)) >e+J for
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every i with 0 <i<2Kk—1, and let U(k+1,2i) = {z* € U(k,i) : (Xp1,2*) >
(Xpq1,x"(k+1,20)) =0/2} and Uk +1,2i+1) ={z* € U(k,i) : (xp41,2") <
(xkp1,x*(k+1,2i + 1)) +6/2} for every i with 0 <i <2k — 1. Then they are
nonempty weak*-open subsets with U(k + 1,i) N D # ¢ for every i with 0 <i <
2k+1 1. Furthermore, we easily get that x* e U(k+1,2/))ND and y*e
U(k+1,2i+1)ND imply (x5.1,x* —y*) = ¢ for every i with 0 <i < 2K —1.
Hence, letting W (n,i) = w* — cl(U(n,i) N D), we have desired systems {x,},>,
and {W(n,i):n=0,1,...;i=0,...,2" — 1}. -

Concerning the statement (R;) of (ii), a more strict argument (that is, Odell
and Rosenthal’s one in Lemmas 2 and 3 of [15]) yields this assertion.

(II) (Construction of functions) In order to prove the statement (Q) of
(i) (resp. (S) of (ii)), take I'y = (),5,(4,sUB,) (resp. I'y =) .,(C.aUDy,)),
where A, = J{V(n,2i+1):i=0,...,2" 1 =1} (resp. C, = (J{W(n,2i+1):
i=0,...,2""—1}) and B, =J{V(n,2i):i=0,...,2""1 =1} (resp. D, =
({W(n,2i):i=0,...,2""' —1}). Then, by the result in §3, we have a
weak*-measurable function ¢ (resp. 4): I — D such that

@) p(fog)(t) =f(9(1)) (resp. p(f oh)(t) =f(h())) for every f e C(I')
(resp. C(I,)) and every tel,

(b) IE (@A) = [y 1y SV () (resp. [y S(R()dAE) =
fooerie >dyz< >>
for every E € A and every f € C(I'y) (resp. C(I»)). Here y; (resp. y,) is the
function defined by y,(x*) (resp. ¥,(x*)) ={j:4;3x*} (resp. {j: C;ax*}) e
P(N) for each x* eI’} (resp. I';) and y, (resp. y,) is the Radon probab-
ility measure on I'y (resp. I'») such that y,(y,) (resp. ¥,(y,)) = v as stated in
§3.

(IV) We intend to show that this function g (resp. /) has all properties
(1) ~(9) in (Q) of (i) (resp. (1) ~ (8) in (S) of (ii)). To this end, we note the
following fact used repeatedly to show such properties of g and /.

LemMA 1 (Lemma 2 in [8]). Let Ey,...,E, be arbitrary members of A*.
Then there exist a natural number p and a finite collection {iy,...,i,} of non-
negative integers such that

) 0<2-41,...,2 0, <27 =1,

(2 ) Both ExNO(p,2-ix) and ExNO(p,2-ix+1) are in A" for
k=1,.

In the following, let a(n,i) (resp. c¢(n,i))=inf{(x(n,i),x*):x*€
V(n+1,2i)} (resp. inf{(x,:+1,x*) : x* € W(n+1,2i)}) and b(n,i) (resp. d(n,i))
=sup{(x(n,i),x*) : x* e V(n+ 1,2i + 1)} (resp. sup{(x,1,x*):x* e Wn+1,
2i+1)}) for every (m,i). Then it holds that a(n,i) — b(n,i) (resp. c(n,i)—
d(n,i)) Z ¢ for all (n,i).
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(1) In order to prove the property (1) of g, take E€ A", and let B=
p(E). Consider the set M, =<co*(7,(4(B))) (=co*(7,(4(E)))), and take any
weak*-open slice S(x,c, M,). Then we have by the same argument as in the
proof of the implication (c) = (d) of Theorem in [9] that

S(X, C, M[,) = {X* € Mq : (X7X*) > Sup(xag(l)) - C}.

teB

Let By = {s el:(x,g(s)) > sup(x,g(r)) — c}. Then Bye A", and g(By) =
teB

M,, which is easily proved by the separation theorem. Hence, in virtue of
Lemma 1, there exist a natural number p and a non-negative integer k such
that 0 < 2k <2” — 1 and both ByNO(p,2k) and ByN O(p,2k + 1) are in A™.
Let {x(n,i):n=0,1,...;i=0,...,2" — 1} be the system in A4 obtained in
(P) of (i). Then it follows from the remark after Definition 4 that
diam4(S(x, ¢, My)) = O(x(p — 1,k) | S(x,¢,M,)). Further, setting F = ByN
O(p,2k) and G = ByNO(p,2k + 1), we easily know that both T, (x)/A(F)
and T, (xs)/A(G) are in S(x,c,My). Hence we have that

diam 4 (S(x, ¢, My)) = O(x(p — 1,k) | S(x, ¢, My))
— L k), Ty (xp)/AH(F)) = (x(p = 1,k), T (x6)/ 1(G))

2 (x

(p
JF —1,k),9( ))di(l)}/i(F) - {JG(x(p - l,k),g(z))dg(t)}/g(g)

{
{J l p—=1,k),x )dyl(X*)}/i(F)

- {J L e Lk»x*)dm(x*)}/ﬂ»((f)
v (771(0)
zalp—1,k)—blp—1,k)=¢

by virtue of the fact stated in §3. Hence the set €0*(7, (4(E)) is not A-weak*-
dentable.

In order to prove the property (1) of h, take EeA", and
B =p(E). Consider the set M, =co*(7, (4(B))) (=co* (T, (4(E)))), and take
any positive numbers ay,...,®, whose sum is one and any weak*-open slices
St,..., Sy of Mj. Let S, = S(zy,cn, My) for each n with 1 <n < p. Then, by
the same argument as above, we have a finite collection {B,...,B,} of A"
such that A(B,) = M) for each n with 1 <n <p. In virtue of Lemma 1,
there exist a natural number ¢ and a finite collection {ij,...,i,} of non-
negative integers such that 0<2-i, <27—1, B,N0(q,2-i,) (=F,)eA"
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and B,NO(q,2-i,+1) (=G,)eAt for n=1,...,p. Then we know that
for every n with 1 <n <p, both T;(xg)/A(F,) and T, (xg,)/A(G,) are in
S(zn, cn, My) (=S,). Hence we have that

) P
sup0<x| Zoc,,Sn> > O(xq| Z%&)
xed n=1 n=1

)4 )4
= o 0050 = Y o (g, Ty (25, JA(F) = T (x6,)/ H(Gn))-
n=1 n=1

Further, it holds that for every » with 1 <n <p

(xg, Ty (xr, )/ A(Fn) = Ty (6,)/ 4(Gn))

-{ || Gatnao}sae - {L"m,h(r))di(t)}/m»
:{jll <&mmmwﬂpﬂn>
by (2N ()

_ {J ) (xq,x*>dy2<x*>}/i<Gn>
vy (71(Gy)

=zclq—1,i,)—d(g—1,i,) = e.
Thus we get that

P P
sup0<x|2anSn> = Zocn “e=e.
n=1 n=1

xed

Hence we have that co”(7,(4(E))) is not A-weak*-strongly regular.
(2) Since it holds that

J, Ga(gn() — guir (0)dA(1)  (resp. (x, T ()

2l

= 3 4u(2(0(n,20) — 3,(O(n, 2i + 1))
=0

271—1_1
<resp. > (x,04(0(n, 20)) — (O, 2i + 1)))),
i=0

(which can be easily shown by a straightfoward calculation), the same
argument as in Remark 1 of [13] easily deduces the properties (2) and (3) of g
and A.
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(3) In order to prove the property (4) of g, assume that S,(4) is
equimeasurable. Then, by virtue of the statement (1) in Proposition 4, this
contradicts the property (3) of g. Thus the property (4) of g holds. Next, in
order to prove the property (5) (resp. (6)), assume that g has the A-strongly
measurable decomposability (resp. o, has an A-strongly measurable weak*-
density). Then we know in each case that S,(A) is equimeasurable, which is a
contradiction. Thus the properties (5) and (6) of g hold.

In order to prove the property (4) of /, assume that S;(A) is a set of small
oscillation with respect to 4. Then we easily get the relative norm compactness
of T)(A4) in L; by making use of the well-known fact: a bounded subset H of
L, is relatively norm compact if and only if for every ¢ > 0 there is a finite
measurable partition /7 of I such that ||/ — E(f[2)||, <e for each /'€ H (Here
X is the g-algebra generated by 7). But, this contradicts the property (3) of 4,
in virtue of the statement (2) in Proposition 4. Further, properties (5) and (6)
of h follow immediately by an argument similar to the case of g.

(4) Let us prove the properties (7), (8) and (9) of g. Let {y,},~, be a
sequence defined by y, = x(m,i) for n = 2" + i with m = 0,1,... and i =0, ...,
2m—1. Let dcg: Y — 2(Y*) and take any point y of Y. Consider a family
of weak*-open slices of M, (=¢To"(j*(T,(4(I)))): {S(»,e/3n,My):n=1}.
Then we have that for every n

S(y,e/3n, M,) = {y* eM,:(y,y*)> sup (y,z%) —£/3n}

z*eM,

_ {y* e M, : (3 y%) > esssup(i(y). g() — e/zn}

={y"eMy:(y,y") > cc(y) —¢/3n}.

So, letting E, = {re1: (j(),9(t)) > cc(y) — ¢/3n}, we know that E, € A" and
J (g(E,)) = S(»,¢/3n, M,) for every n. Hence, in virtue of Lemma 1 (and its
proof in [8]), there exist a strictly increasing sequence {p,},-; of natural
numbers and a sequence {i,},-, of non-negative integers such that 0 <2-i, <
20— 1, E,NO(p,,2-iy) e AT and E,NO(p,,2-in+1)e A" for every n=1.
Let F,=E,NO(p,,2-i,) and G,=E,NO(p,,2-i,+1), and define u) =
J Ty (xp,/A(F))) and vy = (T, (xg,/A(Gy))) for every n = 1. Then we have
by the same argument as in [13] that for every n

(@) (7)) > caly) —o/3n and (,07) > ca(y) — &/3n,

() (zn,uf —v}) = ¢ (Here, z, = x(p, — 1,iy), and so, {z,},>, is a sub-
sequence of {yn}n21)> )

(©) cg(y+zn/n) = (y+zo/nu) and cg(y — zo/n) 2 (¥ — za/n,0}).
Now, making use of these properties, let us show that dcg is not ¥-continuous
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at y. To this end, take a; € dcg(y + z,/n) and b} € dcg(y — z./n) for every
n = 1. Then, by the property of subdifferential, (a), (b) and (c) we get that for
every n

(Zn/naan - b*) = CG(y + Zn/n) + cG(y - Zn/n) -2 CG(y)
> (y+za/nu,) + (v = za/n0,) = {(y,u, +v,) +2¢/3n}
= (zy,u, —v,)/n—2¢/3n = ¢/3n (that is, (z,,a, —b,) =¢/3).

whence, Jdcg is not Y-continuous at y. Further, since it follows from
this inequality that {cg(y + z,/n) + co(y —zn/n) —2-cc(y)}/(1/n) > /3 for
every n, c¢g is not ¥Y-uniformly Gateaux differentiable at y by virtue of the
statement (1) of Proposition 2. Finally, to show the property (9) of g, assume
that there exists a point x € X such that ¢ is A-differentiable at x, and let x*
be its A-differential. Well, since 4 = —A4, by a slight modification of the
argument above, we have sequences {w,},~, in 4 and {«}},., in X* such that
for every n = 1, (x,u)) > cg(x) —¢/3n, (Wi, uh —x*) z¢/2 and cg(x + w,/n) =
(x+wy/n,u’). Then we have that for every n =1,

cg(x+ wy/n) — cg(x) — (wy/n, x")
> (x+wy/nu;) —{(x,u;) +¢/3n} — (w,/n,x*)
= (Wa/n,u;, —x*) —&/3n > ¢/6n.

But, this is contradictory to that x* is an A-differential of ¢g at x. Hence we
complete the proof of properties (7), (8) and (9) of g.

(5) In order to prove the properties (7) and (8) of h, take any sub-
sequence {X,)}i>; Of {xu},>; and any point z of Z, and set y, = x,) for
every k. Then, by the same argument as in the proof of Theorem in [12] and
(4), taking an adequate subsequence {yi;};=, Oof {¥i}i=), we get that
(Vkpy»ai = b}) z &/3 for af € dcy(z + yi(y/i) and b € Ocy(z — yi(;)/i), whence
dcy is not @-continuous at z.  Further, since it holds that {cy(z + yi)/i) +
cn(z = Y /i) —2-en(2)}/(1/i) > ¢/3 for every i, ¢y is not @-uniformly
Gateaux differentiable at z. Thus the proof of this part is completed.

Consequently, the proof of Proposition 5 is completed.

REMARK 1. We easily know that the property (1) of g also can be stated
as follows: c0*(7,(4(E))) has the following property (P*) for every E'e AT,

(P*) There exists an # > 0 such that for any positive number a;,..., o,
whose sum is one and any weak*-open slices Si,...,S, of co*(7,(4(E))), it
holds that

\/

Z oj - diam 4 (S;) =
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Moreover we have that

sup0<x|Zoc, ) supZocj o(x|S)) = Zoc, {supO x|S)}

xeA

= Z(lj . diamA (S/)
j=1

Thus the property (1) of /& can be regarded as a stronger one corresponding to
that of g.

REMARK 2. Note that the properties (5) and (6) concerning the function
h constructed above are proved by invoking a deep result due to Fremlin
noted above. However, in stead of the function A, making use of a weak*-
measurable function k:7 — D whose existence can be guaranteed by the
statement (R;) in (ii), we can directly prove without using Fremlin’s result that
k does not have the A4*-measurable decomposability (for further details of this
result, refer to [9]). That is, without invoking Fremlin’s result, we are able to
know the existence of weak*-measurable functions & having such properties (5)
and (6) of /.

5. The similarity and difference between A-RIN sets and A-Pettis sets in
various aspects

In this section, a parallel study of 4-RN sets and A4-Pettis sets is presented
as the following series of propositions. Their similarity and difference in
various aspects are fully indicated from our view-point. In each proposition,
the statement (2) is a companion of the statement (1). Their proofs are given
later in Theorems 1 and 2 with the help of results in preceding sections.

(I) Dentability and strong regularity.

PROPOSITION 6. Let A be a bounded subset of X and K a weak*-compact
subset of X*. Then

(1) K is an A-RN set if and only if for every weak*-measurable function
f:I— K and every E € A", &* (T} (A(E))) is A-weak*-dentable.

(2) K is an A-Pettis set if and only if for every weak*-measurable function
f:I— K and every Ee€ A", Co* (T (A(E))) is weak*-A*-dentable.

PrOPOSITION 7. Let A be a bounded subset of X and K a weak*-compact
subset of X*. Then

(1) K is an A-RN set if and only if for every weak*-measurable function
f:I—K and every Ec A", C Co* (T (A(E))) has the following property (Py).
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(P1) For every positive number n, there exist positive numbers oy, ..., 0,
whose sum is one and weak*-open slices Sy, ..., S, of C0* (T} (4(E))) such that

n
ZOCJ' . dlal’l’lA(S]) <n.
J=1

(2) K is an A-Pettis set if and only if for every weak*-measurable
function f:I — K and every E e A, CO* (T (A(E))) has the following property
(Py).

(Py) For every positive number n, there exist positive numbers oy, ..., 0,
whose sum is one and weak*-open slices Si, ..., S, of C0*(T;(4(E))) such that

n
diam (Z og,S,) <1.
=1

PrOPOSITION 8. Let A be a bounded subset of X and K a weak*-compact
subset of X*. Then

(1) K is an A-RN set if and only if c0*(K) is convex subset-A-weak*-
dentable (that is, for every nonempty convex subset C of c0*(K) and any positive
number n, there exists a weak*-open slice S of C such that diam,(S) < 7).

(2) K is an A-Pettis set if and only if c0*(K) is A-weak*-strongly regular.

(II) Trees and martingales.

PrROPOSITION 9.  Let A be a bounded subset of X and K a weak*-compact
subset of X*. Then

(1) K is an A-RN set if and only if for every weak*-measurable function
f: 1 — K, the tree associated with f is not an A-O-tree.

(2) K is an A-Pettis set if and only if for every weak*-measurable function
f: 1 — K, the tree associated with f is not an A-separated o-tree.

ProOPOSITION 10. Let A be a bounded subset of X and K a weak*-compact
subset of X*. Then

(1) K is an A-RN set if and only if for every weak*-measurable function
f:1I— K, it holds that

i | aa (0 ~fur ()il 0.

n=1

(2) K is an A-Pettis set if and only if for every weak*-measurable function
: I — K, it holds that
f

nx=1

inf{sup Ixofy — xofn+l|1} =0.
xeA
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(2) K is an A-Pettis set if and only if for every weak*-measurable function
f:1I— K, it holds that

inf{sup [(x, Tf*(r,,))} =0.

nzl xed

(III) Operators into L.

ProposITION 11.  Let A be a bounded subset of X and K a weak™*-compact
subset of X*. Then

(1) K is an A-RN set if and only if for every weak*-measurable function
f 1 —¢co"(K), Sf(A) is equimeasurable in L.

(2) K is an A-Pettis set if and only if for every weak*-measurable function
f i1 —¢co"(K), S(A) is a set of small oscillation with respect to A.

(IV) Radon-Nikodym properties.

ProOPOSITION 12.  Let A be a bounded subset of X and K a weak*-compact
subset of X*. Then

(1) K is an A-RN set if and only if c0*(K) has the A-RNP.

(2) K is an A-Pettis set if and only if co*(K) has the A*-WRNP.

(V) Differentiability of support functions.

PropPOSITION 13.  Let A be a bounded subset of X and K a weak*-compact
subset of X*.

(1) The following statements are equivalent.

() K is an A-RN set.

(b) For every nonempty subset G of K and every sequence {x,},~, in A,
there exists a dense Gs-subset W of Y (the closed linear span _of Y=
{xy :n = 1}) such that cg is Y-uniformly Gateaux differentiable at each y e W.

(c) For every nonempty subset G of K and every sequence {x,},, in
A, there exists a point y of Y such that cg is Y-uniformly Gateaux diﬁ‘eren;iable
at y.

(2) The following statements are equivalent.

(a) K is an A-Pettis set.

(b) For every nonempty subset H of K and every sequence {x,},~, in A,
there exist a dense Gy-subset W of 'Y and a subsequence {x,(};>, of _{xn},@1
such that cy is ®-uniformly Gateaux differentiable at each y e W (Here, @ =
{xn(k) :k g 1})

(c) For every nonempty subset H of K and every sequence {x,},~, in A,
there exist a point y of Y and a subsequence { X, }r>y of {Xn}, > such that cy
is @-uniformly Gateaux differentiable at y.
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In order to show the equivalence of 4A-RN sets stated in Propositions
6~13, we have only to show the following Theorem 1 by combining with
Proposition 5.

THEOREM 1. Let A be a bounded subset of X and K a weak*-compact
subset of X*. Then the following statements are equivalent.

(a) K is an A-RN set.
(b) co*(K) is an A-RN set.

(c) Every nonempty weak*-compact convex subset of 0*(K) is A-weak*-
dentable.

(d) ©0*(K) is convex subset-A-weak*-dentable.

(e) For every weak*-measurable function f:I— co*(K) and every
Ee A", @ (Tf(A(E))) is A-weak*-dentable.

(f)  For every weak*-measurable function f:1— K and every E € A",
Co*(T7(A(E))) has the property (Py).

(g) co*(K) has the A-RNP.

(h) For every weak*-measurable function f :I — co*(K), Sf(A) is equi-
measurable in L.

(i) For every weak*-measurable function f :I — To*(K), it holds that

inf [ 47,0~ o (0)dile) =0
nzl ]y

(j) For every weak*-measurable function [ :I — K, the tree associated
with f is not an A-O-tree.

(k) For every nonempty subset G of K and every sequence {x,},~, in A,
there exists a dense Gy-subset W of Y such that cg is W-uniformly Gateaux
differentiable at each ye W.

(I)  For every nonempty subset G of K and every sequence {x,},, in A, there
exists a point y of Y such that cg is ¥-uniformly Gateaux diﬁ”erential;le aty.

Assume further that A = —A. Then each of above statements is equivalent
to

(m) For every nonempty subset G of K, there exists a dense Gs-subset V of
X such that cg is A-differentiable at each xe V.

We are going to prove that (a)= (b)= (c)=(d)=(e)= (f) =
€)= (@=Mb)=>0=0=@) ©=k=[10=@) ad ()= (m) =
The main point in Theorem 1 is that implications (a) = (b) = (c), (f) =
(€)= (g), (1) = (a), () = (a) and (m) = (a).

(a),
(a).
(a),

=
=

PrOOF OF THEOREM 1. (a) = (b) = (c). This has been proved in [13].

()= (d). Let C be a convex subset of co*(K) and D = the weak*-
closure of C. Then, D being A-weak*-dentable, D has weak*-open slices of
arbitrary small g,4-diameter, and so does C.
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(d) = (e) = (f). This is trivial.

(f) = (a). This has been stated in Remark 1 (cf. the former part of (1) of
(IV) in the proof of Proposition 5).

() = (g). This follows from the statement (3) of Proposition 3.

(g) = (h) = (i). This follows from the statement (1) of Proposition 4.

(i) = (j). The same argument as in (2) of (IV) of the proof of Prop-
osition 5 deduces this result.

(j)= (a). This follows from Proposition 5.

(c) = (k). For every nonempty subset G of K and every sequence {x,},=
in A, dcg(y) = co*(j*(K)) for every y € Y by virtue of Proposition 1. So, the
same argument as in Theorem 3.14 and Proposition 3.15 of [4] deduces that cg
is aco(¥) (the absolutely convex hull of ¥)-differentiable at each y in a dense
Gs-subset W of Y, whence (k) holds.

(k) = (). This is trivial.

() = (m). This is the same as in the proof of the implication (c) = (k).

() = (a). This follows from Proposition 5.

(m) = (a). This follows from Proposition 5.

On the other hand, in order to show the equivalence of A4-Pettis sets stated
in Propositions 6~13, we have only to show the following Theorem 2 by
combining with Proposition 5.

THEOREM 2. Let A be a bounded subset of X and K a weak*-compact
subset of X*. Then the following statements are equivalent.

(a) K is an A-Pettis set.
(b) ©0*(K) is an A-Pettis set.

(c) Every nonempty weak*-compact convex subset of c0*(K) is weak*-A*-
dentable.

(d) For every weak*-measurable function f:I — co*(K) and every
E e A%, &* (T} (A(E))) is weak*-A*-dentable.

(e) co*(K) is A-weak*-strongly regular.

(f)  For every weak*-measurable function f:1— K and every E € A",
co* (T (A(E))) has the property (Py).

(g) co*(K) has the A*-WRNP.

(h) For every weak*-measurable function f : 1 — c0*(K), Sf(A) is a set of
small oscillation with respect to A.

(i) For every weak*-measurable function f :I — co*(K), it holds that

inf{sup|xofn —x0fn+1|1} =0.
nzl xeq

(j) For every weak*-measurable function f :1 — co*(K), it holds that
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nzl{yes

1nf{sup |(x, T} (rn))} =0.

(k) For every weak*-measurable function f:1— K, the tree associated
with f is not an A-separated o-tree.

(I) For every nonempty subset H of K and every sequence {x,},~, in A,
there exist a dense Gs-subset W of Y and a subsequence {Xu)};>1 of_{x,,},@1
such that cy is @-uniformly Gateaux differentiable at each ye W.

(m) For every nonempty subset H of K and every sequence {x,},=, in A,
there exist a point y of Y and a subsequence { Xy }r>y of {Xn}, > such that cy
is @-uniformly Gateaux differentiable at y.

We are going to prove that (a) = (b) = (c) = (d) = (g) = (a), (j) = (e) =
)=mh =0{0= ()= (k) = (@)= (i) and (a) = (1) = (m) = (a). The main
point in Theorem 2 is that implications (a) = (b)= (c), (d)= (g) = (a),
(j) = (e), (f) = (h), (k)= (a) = (1) and (m) = (a). Now we make use of the
fact (F): K is an A-Pettis set if and only if 4 is K-weakly precompact (that is,
every sequence {x,},- in 4 has a pointwise convergent subsequence {X,u)}>
on K). This is regarded as a special case of the well-known result in the
theory of pointwise compactness in the space of universally measurable
functions, which we state as Lemma 2 for the convenience of the readers. This
also gives equivalent conditions on Pettis sets.

LemmA 2. Let Z be a compact Hausdorff space, F a uniformly bounded
subset of C(Z) (the Banach space of real-valued continuous functions on Z).
Then the following statements about F are equivalent.

(a) Every sequence {f,},~, in F has a pointwise convergent subsequence
{fay Yez1 on Z.

(b) For every f €1, (pointwise convergence topology)-closure of 7, every
closed subset D of Z and every & > 0, there exists an open subset U such that
UND # & and O(f|UND) < e.

(c) For every f et,-closure of F, f is universally measurable on Z.

Now, let us prove Theorem 2.

PrOOF OF THEOREM 2. (a)=-(b). Since it easily follows that 4 is K-
weakly precompact if and only if 4 is co*(K)-weakly precompact, we can get
this implication, by virtue of the fact (F) above.

(b) = (c). This can be shown by the same argument as in (iii) of the
proof of Theorem in [9].

()= (d). This is trivial.

(d) = (g). This has been proved in Corollary 2 of [10].

(g) = (a). This follows from Proposition 5 (or, Remark 2).

(j)= (e). This has been proved in Proposition 5 of [11].
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(e) = (f). This is trivial.

(f) = (h). This can be shown by the almost same argument as in (i) of
the proof of Proposition 5 of [11].

(h) = (i). Suppose that (h) holds. Then Ty(A4) is relatively norm
compact in L; and so, (i) follows from Lemma 2 in [11].

(i) = (j). This follows from Lemma 1 in [11] (cf. the statement (3) of (S)
in Proposition 5).

(j)= (k). This also follows from Lemma 1 in [11].

(k) = (a). This follows from Proposition 5.

(a) = (i). Suppose that (a) holds. Then A4 is co*(K)-weakly precompact,
and so, by the dominated convergence theorem, 7,(A4) is relatively norm
compact in L; and hence, (i) follows from Lemma 2 in [11].

(a) = (1). In view of Lemma 2, this has been shown in Theorem of [12].

(I) = (m). This is trivial.

(m) = (a). This follows from Proposition 5.

6. RN sets, GSP sets, Pettis sets and weakly precompact sets

Before closing the paper, let us collect results which can be obtained
immediately as corollaries to Theorems 1 and 2. These are concerned with
RN sets, GSP sets, Pettis sets or weakly precompact sets.

First, letting 4 = B(X) in Theorem 1, we have:

CoOROLLARY 1 (Characterizations of RN sets). Let K be a weak*-compact
subset of X*. Then the following statements are equivalent.

() K is a RN sets.

(b) Every nonempty weak*-compact convex subset of c0*(K) is weak*-
dentable.

(c) For every weak*-measurable function f:1— K and every E € A",
Co*(T7(A(E))) is weak*-dentable.

(d) co*(K) has the RNP.

(e) For every weak*-measurable function f :1 —co*(K), Sp(B(X)) is
equimeasurable in L.

(f) For every weak*-measurable function f :I — co*(K), it holds that

nx1

i | 1,0 ~fur (020 =

(g) For every weak*-measurable function f :1 — K, the tree associated
with f is not a o-tree.

(h) For every nonempty subset G of K and every bounded sequence
{xn},=1, there exists a dense Gs-subset W of Y such that cg is ¥-uniformly
Gateaux differentiable at each y e W.
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(i) For every nonempty subset G of K, there exists a dense Gs-subset V of
X such that cg is Frechet differentiable at each xe V.

Letting K = B(X*) in Theorem 1, we have:

COROLLARY 2 (Characterizations of GSP sets). Let A be a bounded subset
of X. Then the following statements are equivalent.

(@) B(X*) is an A-RN set.
(b)  Every nonempty weak*-compact convex subset of X* is A-weak*-dentable.

(c) For every bounded weak*-measurable function f:1— X* and every
Ee A", @ (T (A(E))) is A-weak*-dentable.

(d) B(X*) has the A-RNP.

(e) For every bounded weak*-measurable function f :I — X*, Sy(A) is
equimeasurable in L.

(f) A4 is a GSP set.

(g) For every bounded weak*-measurable function f :1 — X*, it holds that

inf [ a0~ o (0)aile) =
nzl )y

(h) For every bounded weak*-measurable function f :1— X*, the tree
associated with f is not an A-O-tree.

(i) For every nonempty bounded subset G of X* and every sequence
{xn},= in A, there exists a dense Gs-subset W of Y such that cg is ¥Y-uniformly
Gateaux differentiable at each y e W.

Letting A = B(X) in Theorem 2, we have:

CoROLLARY 3 (Characterization of Pettis sets). Let K be a weak™*-compact
subset of X*. Then the following statements are equivalent.

(a) K is a Pettis set.

(b) Every nonempty weak*-compact convex subset of €0*(K) is weak*-
scalarly-dentable.

(c) For every weak*-measurable function f:I— co0*(K) and every
Eea", Co*(T7(A(E))) is weak*-scalarly-dentable.

(d) Every nonempty convex subset of ¢0*(K) is weak*-strongly regular.

(e) ©co*(K) has the WRNP.

(£) For every weak*-measurable function [ :I — co0*(K), Sy(B(X)) is a
set of small oscillation with respect to A.

(g) For every weak*-measurable function f :I1 — co*(K), it holds that

nzl | xeB(X)

inf{ sup [lxofy — xo |}( inf |, fn+1|p> =0,

Here || - ||p denotes the Pettis-norm.
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(h) For every weak*-measurable function f :I1 — co*(K), it holds that
inf || T/} =0.
inf | 7 (r)l = 0

(i) For every weak*-measurable function f:I — K, the tree associated
with [ is not a separated O-tree.

(j) For every nonempty subset H of K and every bounded sequence {x,},>1,
there exist a dense Gs-subset W of Y and a subsequence {X,u)};>1 of {xn},;Zl
such that cy is ®-uniformly Gateaux differentiable at each y e W.

Finally, letting K = B(X*) in Theorem 2, we have:

CoOROLLARY 4 (Characterizations of weakly precompact sets). Let A be a
bounded subset of X. Then the following statements are equivalent.

(a) A is weakly precompact.

(b)  Every nonempty weak*-compact convex subset of X* is weak*-A*-
dentable.

(c) For every bounded weak*-measurable function f:1— X* and every
E e AY, &' (T} (A(E))) is weak*-A*-dentable.

(d) Every nonempty bounded convex subset of X* is A-weak*-strongly
regular.

(e) B(X*) has the A*-WRNP.

(f) For every bounded weak*-measurable function f:1 — X*, S¢(A) is a
set of small oscillation with respect to A.

(g) For every bounded weak™*-measurable function f : 1 — X*, it holds that

inf{sup [ xofy—x Ofn+1|1} =0.
A

nzl | xe

(h)  For every bounded weak*-measurable function f : 1 — X*, it holds that

éi‘fl{i‘jﬁ |(x, Tf*(rn))} =0.
(i) For every bounded weak*-measurable function f:1— X*, the tree
associated with f is not an A-separated o-tree.
(j) For every nonempty bounded subset H of X* and every sequence
{Xn}, =1 in A, there exist a dense Gs-subset W of Y and a subsequence {X)}; >
of {xn},>; such that cy is P-uniformly Gateaux differentiable at each y e W.
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