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Abstract. It is well known that the generalized linear mixed model is useful

for analyzing the overdispersion and correlation structure for multivariate discrete

data. In this paper, we derive an approximation of the density function for the

generalized linear mixed model. This approximation is found to satisfy the properties

of probability density function under some conditions. Therefore, this approximation

can be regarded as a class of multivariate distributions. Estimation of the parameters

in this class can be carried out by the maximum likelihood method. We give the

likelihood ratio criteria for testing several covariance structures. Several simulation

studies were also conducted for the Poisson log-normal model when the proposed

density function is regarded as an approximate likelihood of the generalized linear mixed

model.

1. Introduction

This paper is concerned with the multivariate discrete distributions for

count or binary observations. A review of multivariate discrete distributions

is given in Joe (1997). An approach for generalizing the univariate discrete

distribution to multivariate distribution has been attempted by formulating

a mixture model. For multivariate count data, Steyn (1976) proposed the

multivariate Poisson normal model by adding a random e¤ect to the mean

parameter of the Poisson distribution, but the resultant distribution ignores the

fact that the mean parameter is positive. Aitchison and Ho (1989) modified

this fault, and proposed the multivariate Poisson log-normal model. For mul-

tivariate binary data, Coull and Agresti (2000) have proposed the multivariate

Binomial logit-normal model. The generalized linear mixed model is an ex-

tension of the generalized linear model (McCullagh and Nelder, 1989), which is

generated by adding a random e¤ect to the linear predictor. This model is

useful for analyzing the overdispersion and correlations, and includes the multi-
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variate Poisson log-normal model and the multivariate Binomial logit-normal

model. Although these multivariate models are flexible, their calculations are

problematic since they all involve multidimensional integrals and their prob-

ability density functions have no closed forms. Therefore, some numerical

methods are needed in practice. It is di‰cult to apply these models to real

data analysis when the dimension of response is large, because such com-

plicated calculations are needed that the data analysis takes too much time. In

order to avoid calculating a multiple integral, many authors have proposed

approximations of the likelihood functions. Breslow and Clayton (1993) have

proposed the penalized quasi-likelihood (PQL) method and the marginal quasi-

likelihood (MQL) method. The PQL approach produces biased estimates for

the regression e¤ects and the variance component of random e¤ects. Breslow

and Lin (1995) provided a bias correction for the single variance component

model. The MQL estimating equation approach requires the first and second

order marginal moments of the responses, but those are not available under

the generalized linear mixed model. Breslow and Clayton (1993) have used an

approximation of the mean vector and a ‘‘working covariance matrix’’, as in

Zeger, Liang and Albert (1988), to construct the estimating equations for the

regression parameters. For estimating the variance component, they used a

pseudo-likelihood method proposed by Carroll and Ruppert (1982). Sutradhar

and Rao (2001) proposed the MQL estimating equation approach for both

regression and variance parameters by deriving the marginal moments up to the

fourth order. The purpose of this paper is to construct a class of multivariate

discrete distributions with an analytical probability density function for a full

likelihood analysis. In this sense, our approach di¤ers from the methods

mentioned above.

This paper is structured in the following way. In section 2, we present

several models for multivariate discrete data. In section 3, we derive an

approximation for the density, and examine its basic properties. Based on the

approximate density, we propose a new class of multivariate discrete dis-

tributions. Sections 4 and 5 present some methods for estimating and testing

the parameters. In section 6, we present some simulation studies.

2. Multivariate discrete models

This section presents several multivariate discrete models. There are

several approaches which extend the univariate discrete model to the multi-

variate version. In this section, we focus on an approach based on the mixture

model. The multivariate models reviewed in this section are connected with

the class of multivariate distributions which appears in section 3.
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2.1. Models for multivariate count data

2.1.1. Univariate models

The Poisson model and the Poisson-Gamma model are well-known models

for univariate count data. The Poisson-Gamma model is obtained as a Gamma

mixture of Poisson distribution. In fact, assume that Y given Z ¼ z has a

Poisson distribution with mean lz,

PðY ¼ yjzÞ ¼ ðlzÞy

y!
e�lz;

and z is a random e¤ect parameter having a gamma distribution with mean

1 and variance s2, whose probability density function is given by

gðz; s2Þ ¼ ðs2Þ�1=s2

Gð1=s2Þ z
1=s2�1e�z=s2

:

Then for y ¼ 0; 1; 2; . . . ,

PðY ¼ yÞ ¼
ðy

0

PðY ¼ yjzÞgðz; s2Þdz

¼ Gðyþ 1=s2Þ
y!Gð1=s2Þ

l

lþ 1=s2

� �y 1=s2

lþ 1=s2

� �1=s2

:

The resultant distribution is a negative binomial distribution.

In modeling for count data, it is important that the resultant model has

an overdispersion, which means that the variance is larger than the mean (in

the Poisson model, its variance is equal to the mean). The Poisson-Gamma

model has an overdispersion, since EðYÞ ¼ l and VarðYÞ ¼ lþ l2s2. More

generally, assume that Z is a random variable with mean mZ and variance s2
Z.

Then, we have

EðYÞ ¼ EfEðY jZÞg ¼ EðlZÞ ¼ lmZ;

VarðYÞ ¼ EfVarðY jZÞg þ VarfEðY jZÞg

¼ EðlZÞ þ VarðlZÞ ¼ lmZ þ l2s2
Z: ð2:1Þ

Hence VarðY ÞbEðY Þ such that it has equality only when Z has a degenerate

distribution. Therefore, general mixtures of the Poisson distribution have an

overdispersion relative to the Poisson distribution.

2.1.2. Multivariate Poisson model

McKendrick (1916, 1926) and Wicksell (1916) have proposed a natural

bivariate Poisson model which is expressed by ðY1;Y2Þ ¼ ðZ1 þ Z12;Z2 þ Z12Þ,
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where Z1, Z2, Z12 are independent Poisson variables with the mean parameters

y1, y2, y12, respectively. Campbell (1934) showed that the joint probability

density function is given by

PðY1 ¼ y1;Y2 ¼ y2Þ ¼ e�ðy1þy2þy12Þ y
y1

1

y1!

y
y2

2

y2!

Xminðy1;y2Þ

i¼0

i!y1
Ciy2

Ci

y12

y1y2

� �i
;

and the marginal distributions are Poissonðy1 þ y12Þ and Poissonðy2 þ y12Þ,
respectively. Then, the first two moments are given by

EðYjÞ ¼ VarðYjÞ ¼ yj þ y12; CovðY1;Y2Þ ¼ y12;

CorrðY1;Y2Þ ¼
y12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y1 þ y12

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ y12

p ðb 0Þ:

Unfortunately, this multivariate Poisson model dose not support the negative

correlation between two count variables (Holgate, 1964) and the overdispersion

on the marginal distribution. Furthermore, note that to construct a p-variate

version, 2p � 1 independent Poisson variables are needed.

2.1.3. Multivariate Poisson Log-Normal model

We consider another method of generalizing the univariate Poisson model

to the multivariate version, based on a mixture model. Steyn (1976) proposed

the multivariate Poisson normal model by assuming the multivariate normal

distribution on the Poisson mean parameters. Although this allows for rich

correlation structures, this model ignores the fact that the mean parameters are

positive. Aitchison and Ho (1989) proposed the multivariate Poisson log-

normal model, which takes into account the fact that the mean parameters are

positive.

For individual i ði ¼ 1; . . . ;NÞ and given l�
i ¼ ðl�

i1; . . . ; l
�
ipÞ

0, we assume

that yi ¼ ðYi1; . . . ;YipÞ0 is a vector of p independent Poisson random variables

with the mean parameters l�
i , and the conditional probability density function

is written by

fPðyijl�
i Þ ¼

Yp
j¼1

ðl�
ijÞ

yij

yij !
e�l �

ij : ð2:2Þ

Let log l�
i be the componentwise log transformation, i.e.,

log l�
i ¼ ðlog l�

i1; . . . ; log l�
ipÞ

0: ð2:3Þ

Then, the multivariate Poisson log-normal model is constructed by incorpo-

rating a random e¤ect into the mean parameter, such that
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log l�
i ¼ log lþ zi; ð2:4Þ

where l ¼ ðl1; . . . ; lpÞ0 denotes a p� 1 vector of fixed e¤ects, and zi ¼
ðZi1; . . . ;ZipÞ0 denotes a p� 1 vector of random e¤ects. Assume that zi’s are

independently and identically distributed as the multivariate normal distribution

with mean vector 0 and covariance matrix S. In this model, the probability

density function of yi is expressed by

f ðyi; l;SÞ ¼
ð
R p

fPðyijl�
i Þgðzi; 0;SÞdzi; ð2:5Þ

where gðzi; 0;SÞ denotes the multivariate normal density function with mean

vector 0 and covariance matrix S.

Although there is no closed-form expression of this multiple integral, its

moment can be easily obtained through the conditional expectation result and

the standard properties of the Poisson and log-normal distributions as in (2.1).

Let sij be the ði; jÞth element of S, and then the first two moments can be

written by

EðYjÞ ¼ lje
1=2sjj 1 aj; ð2:6Þ

VarðYjÞ ¼ aj þ a2
j ðesii � 1Þ; CovðYi;YjÞ ¼ aiajðesij � 1Þ; ð2:7Þ

CorrðYi;YjÞ ¼
esij � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðesii � 1 þ a�1
i Þðesjj � 1 þ a�1

j Þ
q : ð2:8Þ

From (2.6), (2.7) and (2.8), we can see that the marginal distribution has an

overdispersion relative to the Poisson distribution through the parameter sii,

and the sign of correlation between the count Yi and Yj depends on that of sij .

Since jCorrðYi;YjÞj < jCorrðezi ; ezj Þj, the range of possible correlation values is

not as wide as that of the log-normal distribution, but can be close to this

range if ai and aj are large.

We consider an alternative parameterization by shifting a mean of the

random e¤ect zi as follows,

f ðyi; l;SÞ ¼
ð
R p

fPðyijl�
i Þg zi;�

1

2
s;S

� �
dzi; ð2:9Þ

where s ¼ ðs11; . . . ; sppÞ0. Based on (2.9), the first two moments are rewritten by

EðYjÞ ¼ lj; ð2:10Þ

VarðYjÞ ¼ lj þ l2
j ðesii � 1Þ; CovðYi;YjÞ ¼ liljðesij � 1Þ; ð2:11Þ

CorrðYi;YjÞ ¼
esij � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðesii � 1 þ l�1
i Þðesjj � 1 þ l�1

j Þ
q : ð2:12Þ
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2.2. Models for multivariate binary data

2.2.1. Univariate model

Assume that Y given P ¼ p has a binomial distribution with m trials and

the success parameter p, i.e.,

PðY ¼ yjpÞ ¼ mCyp
yð1 � pÞm�y;

where mCy ¼ mðm� 1Þ . . . ðm� yÞ=y!, and p is a random variable which fol-

lows a beta distribution with two parameters a; b > 0, whose probability density

function is given by

gðp; a; bÞ ¼ 1

Bða; bÞ p
a�1ð1 � pÞb�1;

where 0 < p < 1 and Bða; bÞ ¼ GðaÞGðbÞ=Gðaþ bÞ. Then, the probability

density function of Y is expressed by

PðY ¼ yÞ ¼
ð1

0

PðY ¼ yjpÞgðp; a; bÞdp

¼ mCy

Bðyþ a;m� yþ bÞ
Bða; bÞ :

2.2.2. Multivariate Binomial Logit-Normal model

For individual i ði ¼ 1; . . . ;NÞ and given p�
i ¼ ðp�

i1; . . . ; p
�
ipÞ

0, we assume

that yi ¼ ðYi1; . . . ;YipÞ0 is distributed as a p independent binomial distribution

with an index vector mi ¼ ðmi1; . . . ;mipÞ0 and success parameter vector p�
i ,

whose conditional probability density function can be written by

fBðyijp�
i ;miÞ ¼

Yp
j¼1

mij
Cyij ðp�

ijÞ
yij ð1 � p�

ijÞ
mij�yij ;

Let logit p�
i be the componentwise logit function, i.e.,

logit p�
i ¼ log

p�
i1

1 � p�
i1

; . . . ; log
p�
ip

1 � p�
ip

 !0

: ð2:13Þ

Then the multivariate Binomial logit-normal model is expressed by incorpo-

rating a random e¤ect, such that

logit p�
i ¼ logit p þ zi; ð2:14Þ

where p ¼ ðp1; . . . ; ppÞ0 denotes a p� 1 vector of fixed e¤ects and zi is a

p� 1 vector of random e¤ects. Assume that zi’s are independently and
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identically distributed as the multivariate normal distribution with mean vector

0 and covariance matrix S. Then the probability density function of yi is

written by

f ðyi;mi; p;SÞ ¼
ð
Rp

fBðyijp�
i ;miÞgðzi; 0;SÞdzi; ð2:15Þ

where gðzi; 0;SÞ denotes the multivariate normal density function with mean

vector 0 and covariance matrix S. There are no closed-form expressions for

its moments. Coull and Agresti (2000) showed asymptotic forms for small sij
which are expressed by

EðYjÞGmjpj;

VarðYjÞGmjpjð1 � pjÞ þ ðm2
j �mjÞfpjð1 � pjÞg2sjj ;

CovðYi;YjÞGmimjpið1 � piÞpjð1 � pjÞsij; i0 j;

and

CorrðYi;YjÞGmimjpið1 � piÞpjð1 � pjÞsij

o fðm2
i �miÞsiifpið1 � piÞg2 þmipið1 � piÞ

� ðm2
j �mjÞsjjfpjð1 � pjÞg2 þmjpjð1 � pjÞg1=2:

Coull and Agresti (2000) have conducted a simulation study of various prop-

erties of the multivariate Binomial Logit-Normal distribution, and suggested

that these approximations tended to break down when sii > 0:6.

2.3. Generalized Linear Mixed Model

The GLMM (Generalized Linear Mixed Model) is an extension of the

GLM (Generalized Linear Model) with the normal random e¤ects included

in the linear predictor (see, for example, Gueorguieva, 2001). The GLMM is

constructed by two steps: (i) Conditional independent, (ii) Random e¤ects.

( i ) Conditional independent: Let yi ¼ ðYi1; . . . ;YipÞ0 denote a p� 1 obser-

vation vector and yi ¼ ðyi1; . . . ; yipÞ0 denote a p� 1 unknown parameter

vector on individual i ði ¼ 1; . . . ;NÞ. Given yi, the conditional proba-

bility density function of yi is expressed by a product of p independent

exponential family, i.e.,

fexpðyijyiÞ ¼
Yp
j¼1

exp
yijyij � bjðyijÞ

fj
þ cjðyij; fjÞ

( )
;
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where fj is a dispersion parameter and bjð�Þ, cjð�Þ are known functions

(see, e.g., Table 1). From the properties of the exponential family, the

mean vector and covariance matrix are expressed by

EðyijyiÞ ¼ mi ¼ b 0ðyiÞ; CovðyijyiÞ ¼ FVðmiÞ; ð2:16Þ

where mi ¼ ðmi1; . . . ; mipÞ
0,

b 0ðyiÞ ¼
q

qyi
bðyiÞ; bðyiÞ ¼ ðb1ðyi1Þ; . . . ; bpðyipÞÞ0;

VðmiÞ ¼ diagðv1ðmi1Þ; . . . ; vpðmipÞÞ, F ¼ diagðf1; . . . ; fpÞ and vjð�Þ is a vari-

ance function defined by vjðmijÞ ¼ b 00
j ðyijÞ (see, e.g., Table 1).

(ii) Random e¤ects: Then the GLMM is expressed by incorporating a

random e¤ect zi ¼ ðZi1; . . . ;ZipÞ0 into yi, such that

yi ¼ hðmiÞ ¼ hþ zi; zi @ i:i:d: Npð0;SÞ: ð2:17Þ

Here hðmiÞ ¼ ðh1ðmi1Þ; . . . ; hpðmipÞÞ
0 and hjð�Þ is a link function (see, e.g.,

Table 1).

Under the model (2.17), the probability density function of yi is written by

f ðyi; h;SÞ ¼
ð
R p

fexpðyijyiÞgðzi; 0;SÞdzi; ð2:18Þ

where gðzi; 0;SÞ denotes the multivariate normal density function with mean

vector 0 and covariance matrix S.

Table 1. Characterictics of some common univariate distributions in the exponential family.

Normal Poisson Binomial Gamma

Notation Nðm; s2Þ PoissonðmÞ Bðm; pÞ=m Gammaðm; nÞ
Range of y ð�y;yÞ 0; 1; 2; . . . 0; 1=m; 2=m; . . . ;m=m ð0;yÞ
f s2 1 1=m n�1

bðyÞ y2=2 ey logð1 þ eyÞ �logð�yÞ

cðy; fÞ � y2 þf logð2pfÞ
2

�log y! log nCny n logðnyÞ� log y� log GðnÞ

m ¼ EðYÞ y ey 1=ð1 þ e�yÞ �1=y

Link

function: hðmÞ
identity log logit reciprocal

Variance

function: vðmÞ
1 m mð1 � mÞ m2

* This table is from McCullagh and Nelder (1989).
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3. A class of multivariate distribution

In this section, we derive an asymptotic approximation expression for the

density function of GLMM, and show that our approximation satisfies the

properties of the probability density function. In order to avoid calculating

the multidimensional integral (2.18), many authors have proposed approx-

imations of the likelihood function. It is known that the approximate in-

ference based on such quasi-likelihood has biases (see, for example, Breslow

and Lin, 1995).

We derive an approximation of the density function (2.18) based on Taylor

expansion about the mean of the random e¤ect, zi ¼ 0 (or y ¼ h), up to the

2nd order. In the following, we drop the su‰x i for simplicity of notation.

f ðy; h;SÞ ¼ Ezf fexpðyjhþ zÞg

GEz fexpðy; hÞ þ
qfexp

qz

� �0
z¼0

zþ 1

2
z 0

q2fexp

qzqz 0

" #0
z¼0

z

( )

¼ fexpðy; hÞ þ
1

2
tr

q2fexp

qzqz 0

" #
z¼0

S

 !

¼ fexpðy; hÞ 1 þ 1

2
trðWSÞ

� �
;

where W ¼ ðwabÞ is a p� p matrix whose elements are given by

waa 1
q2

qz2
a

fexpðyjhþ zÞ
����
z¼0

¼ ya � b 0
aðhaÞ

fa

� �2

� b 00
a ðhaÞ
fa

¼ ya � ma
fa

� �2

� vaðmaÞ
fa

; ð3:1Þ

wab 1
q2

qzaqzb
fexpðyjhþ zÞ

����
z¼0

¼ ya � b 0
aðhaÞ

fa

� �
yb � b 0

bðhbÞ
fb

� �
¼ ya � ma

fa

� �
yb � mb

fb

� �
: ð3:2Þ

Let

~ff ðy; h;SÞ ¼ fexpðy; hÞ 1 þ 1

2
trðWSÞ

� �
; ð3:3Þ

where
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fexpðy; hÞ ¼
Yp
j¼1

exp
yjhj � bjðhjÞ

fj
þ cðyj; fÞ

( )
;

and W is given by (3.1) and (3.2). Then we have the following theorem.

Theorem 3.1. If S is a positive semi-definite matrix and

Xp
j¼1

1

fj
vjðmjÞsjj a 2; ð3:4Þ

then ~ff ðy; h;SÞ is a proper probability density function.

Proof. Let Eexpð�Þ denote the expectation under the exponential family

density fexpðy; hÞ, it follows EexpðwijÞ ¼ 0 from (3.1) and (3.2). Then, we have

ð
R p

~ff ðy; h;SÞdy ¼ Eexp 1 þ 1

2
trðWSÞ

� �
¼ 1 þ

Xp
a¼1

Xp
b¼1

EðwabÞsab ¼ 1:

Moreover, note that let x ¼ ðx1; . . . ; xpÞ0 and xj ¼ ðyj � mjÞ=fj ð j ¼ 1; . . . ; pÞ,
then W ¼ xx 0 � diagðv1ðm1Þ=f1; . . . ; vpðmpÞ=fpÞ. Therefore, for any y A Rp,

~ff ðy; h;SÞ ¼ fexpðy; hÞ 1 þ 1

2
trðWSÞ

� �

¼ fexpðy; hÞ 1 þ 1

2
x 0Sx�

Xp
j¼1

vjðmjÞ
fj

sjj

 !( )

b fexpðy; hÞ 1 � 1

2

Xp
j¼1

vjðmjÞ
fj

sjj

( )

This yield

~ff ðy; h;SÞb 0 ,
Xp
j¼1

1

fj
vjðmjÞsjj a 2:

From these results, ~ff ðy; h;SÞ is the proper probability density function under

the condition (3.4). r

From this theorem, we note that under the condition (3.4), ~ff ðy; h;SÞ can be

regarded as a class of multivariate density functions rather than an approximate

density function of (2.18). We denote this class of distributions by MEpðh;SÞ.
Next, we consider the first two moments of MEpðh;SÞ. Let m

ðrÞ
j ¼

EexpfðYj � mjÞ
rg for r ¼ 1; . . . ; 4. Then these moments are written by
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m
ð2Þ
j ¼ fjb

0
j ¼ fjvjðmjÞ; m

ð3Þ
j ¼ f2

j b
ð3Þ
j ; m

ð4Þ
j ¼ f3

j b
ð4Þ
j þ 3fmð2Þ

j g2; ð3:5Þ

where b
ðrÞ
j denotes the rth order derivative of bjðyjÞ with respect to yj . Using

these expressions, we obtaine the following lemma.

Lemma 3.1.

EexpftrðWSÞg ¼ 0;

EexpfðYj � mjÞ
r trðWSÞg ¼

m
ðrþ2Þ
j �m

ðrÞ
j m

ð2Þ
j

f2
j

sjj;

EexpfðYi � miÞðYj � mjÞ trðWSÞg ¼
2m

ð2Þ
i m

ð2Þ
j

fifj
sij ði0 jÞ:

Proof.

EexpftrðWSÞg ¼
Xp
a¼1

Xp
b¼1

EexpðwabÞsab;

EexpfðYj � mjÞ
r trðWSÞg ¼

Xp
a¼1

Xp
b¼1

EexpfðYj � mjÞ
r
wabgsab;

EexpfðYi � miÞðYj � mjÞ trðWSÞg ¼
Xp
a¼1

Xp
b¼1

EexpfðYi � miÞðYj � mjÞwabgsab

ði0 jÞ:

From (3.1) and (3.2),

EexpðwabÞ ¼ 0;

EexpfðYj � mjÞ
r
waag ¼ 1

f2
a

Eexp½ðYj � mjÞ
rfðYa � maÞ

2 �mð2Þ
a g�

¼
1

f2
j

ðmðrþ2Þ
j �m

ðrÞ
j m

ð2Þ
j Þ ð j ¼ aÞ;

0 ðotherwiseÞ;

8><
>:

and for a0 b,

EexpfðYj � mjÞ
r
wabg ¼ 1

fafb
EexpfðYj � mjÞ

rðYa � maÞðYb � mbÞg ¼ 0;
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EexpfðYi � miÞðYj � mjÞwabg ¼ 1

fafb
EexpfðYi � miÞðYj � mjÞðYa � maÞðYb � mbÞg

¼
1

fifj
m

ð2Þ
i m

ð2Þ
j ði ¼ a; j ¼ b or i ¼ b; j ¼ aÞ;

0 ðotherwiseÞ:

8><
>:

Summarizing these results lead to Lemma 3.1. r

Using Lemma 3.1 and (3.5), we obtaine the following theorem.

Theorem 3.2. The mean, variance and covariance of MEpðh;SÞ are

expressd as follow,

EðYjÞ ¼ mj þ
1

2
b
ð3Þ
j sjj;

VarðYjÞ ¼ fjvjðmjÞ þ vjðmjÞ
2 þ 1

2
fjb

ð4Þ
j

� �
sjj �

1

4
fbð3Þj g2s2

jj ;

CovðYi;YjÞ ¼ viðmiÞvjðmjÞsij �
1

4
b
ð3Þ
i b

ð3Þ
j siisjj :

If sjj’s are small, the variance and covariance of MEpðh;SÞ are simplified as

in the following corollary.

Corollary 3.1. For small sjj , the variance and covariance of MEpðh;SÞ
are written by

VarðYjÞG fjvjðmjÞ þ vjðmjÞ
2 þ 1

2
fjb

ð4Þ
j

� �
sjj ;

CovðYi;YjÞG viðmiÞvjðmjÞsij :

Using Theorem 3.1 and Table 1, it is easy to generalize the univariate

distribution in the exponential family to the multivariate version. The fol-

lowing examples are the Poisson and the Binomial types. These examples are

related to the multivariate Poisson log-normal distribution and the multivariate

Binomial logit-normal distribution in section 2.

Example 3.1. Poisson type:

Under the Poisson distribution, Table 1 shows mj ¼ expðhjÞ, fj ¼ 1 and

vjðmjÞ ¼ mj ¼ expðhjÞ. Let lj ¼ ehj and l ¼ ðl1; . . . ; lpÞ0, then the probability

density function of Poisson type is expressed by

~ff ðy; l;SÞ ¼ fPðy; lÞ 1 þ 1

2
trðWSÞ

� �
; fPðy; lÞ ¼

Yp
j¼1

l
yj
j

yj!
e�lj ; ð3:6Þ
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where W ¼ ðy� lÞðy� lÞ0 � diagðl1; . . . ; lpÞ, and the condition (3.4) can be

reduced to

Xp
j¼1

ljsjj a 2:

Moreover, for small sjj , the first two moments are expressed by

EðYjÞ ¼ lj 1 þ 1

2
sjj

� �
; ð3:7Þ

VarðYjÞG lj þ lj 1 þ 1

2
lj

� �
sjj ; CovðYi;YjÞG liljsij : ð3:8Þ

(3.7) and (3.8) also correspond to the approximations of the exact moments of

the multivariate Poisson log-normal distribution described in section 2. Figure 2

to 5 are the surface of (3.6) for several cases of ðl1; l2; s11; s22; s12Þ.

Example 3.2. Binomial type:

Under the Binomial distribution, Table 1 shows mj ¼ f1 þ expð�hjÞg
�1
,

fj ¼ 1=nj and vjðmjÞ ¼ mjð1 � mjÞ. Let pj ¼ mj and p ¼ ðp1; . . . ; ppÞ0, then the

probability density function of the Binomial type is expressed by

Fig. 1. The regions of count correlation and overdispersion attainable by the symmetric bivariate

poisson log-normal model.
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~ff ðy; p;m;SÞ ¼ fBðy; p;mÞ 1 þ 1

2
trðWSÞ

� �
;

where W ¼ ðy�m � pÞðy�m � pÞ0 � diagðm1p1ð1 � p1Þ; . . . ;mpppð1 � ppÞÞ,
m � p ¼ ðm1p1; . . . ;mpppÞ0, and the condition (3.4) can be reduced to

Xp
j¼1

mjpjð1 � pjÞsjj a 2:

Moreover, for small sjj , the first two moments are expressed by

Fig. 2. ðl1; l2; s11; s22; s12Þ ¼ ð5; 5; 0; 0; 0Þ.

Fig. 3. ðl1; l2; s11; s22; s12Þ ¼ ð5; 5; 0:1; 0:1; 0Þ
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EðYjÞ ¼ pj þ pjð1 � pjÞ
1

2
� pj

� �
sjj

VarðYjÞG
pjð1 � pjÞ

nj
1 þ 1

2
þ ðnj � 3Þpjð1 � pjÞ

� �
sjj

� �

CovðYi;YjÞG pið1 � piÞpjð1 � pjÞsij:

Next, we consider the improvement of approximation when (3.3) is used

as an approximation formula. If the response variables are independent, the

density function can be expressed by a product of the marginal distributions.

If sjj is small, it can be expanded by

Fig. 4. ðl1; l2; s11; s22; s12Þ ¼ ð5; 5; 0:1; 0:1; 0:1Þ

Fig. 5. ðl1; l2; s11; s22; s12Þ ¼ ð5; 5; 0:1; 0:1;�0:1Þ
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~ff ðy; h;SÞ ¼ fexpðy; hÞ
Yp
j¼1

1 þ 1

2
wjjsjj

� �

G fexpðy; hÞ 1 þ 1

2

Xp
j¼1

wjjsjj þ
1

4

Xp
i<j

wiisiiwjjsjj

( )
:

In order to improve the accuracies of the approximation near rij ¼ 0, we suggest

adding the correct term as follows:

~ff ðy; h;SÞ ¼ fexpðy; hÞ 1 þ 1

2
trðWSÞ þ 1

4

Xp
i<j

wiiwjjsiisjjrðrijÞ
( )

: ð3:9Þ

where rðrijÞ is a smooth weight function which satisfies rð0Þ ¼ 1 and rð1Þ ¼
rð�1Þ ¼ 0, for example rðrÞ ¼ 0:5f1 þ cosðrpÞg. The last term in (3.9) cor-

responds to the higher order term in the independent case. Note that (3.9)

may not be the density probability function under the condition (3.4).

4. Parameter estimation

The maximum likelihood estimation of the parameters y ¼ ðh;SÞ is com-

plicated computationally for the models described in section 2 because of the

multidimensional integrals in (2.5), (2.15) and (2.18). In previous works, some

numerical optimizations were applied. Aitchison and Ho (1989) and Coull

and Agresti (2000) used the multidimensional Gauss-Hermite quadrature for

(2.5) and (2.15), respectively. Chib and Winkelmann (2001) have applied the

Markov Chain Monte Carlo method for (2.5). Gueorguieva (2001) has pro-

posed the EM algorithm for (2.18). However, when the dimension of response

is large, these numerical optimization based methods are di‰cult to apply real

data analysis, because of enormous amounts of calculation. Therefore, as

another approach, we use the maximum likelihood estimator based on the

proposed p.d.f. (3.3) regarded as a full likelihood,

ŷy ¼ arg max
y AY

~llðyÞ; ~llðyÞ ¼
XN
i¼1

log ~ff ðyi; h;SÞ:

Note that the condition (3.4) restricts the parameter space of y as follows,

Y ¼ y j
Xp
j¼1

1

fj
vðmjÞsjj a 2

( )
:

The maximum likelihood estimator due to (3.3) can be obtained through the

numerical optimization based on the SPIDER algorithm proposed by Ohtaki

and Izumi (1999).
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5. Tests of covariance structures

Based on the type of covariance parameter S, there are a number of

interesting hypotheses. For example, in the bivariate case, y ¼ ðY1;Y2Þ0, we

are interested in the following hypotheses,

ðiÞ H0 : s12 ¼ 0; ðiiÞ H0 : s22 ¼ s12 ¼ 0; ðiiiÞ H0 : S ¼ O:

The hypothesis (i) leads to an independent univariate generalized linear

mixed model, hypothesis (iii) presents an independent generalized linear model,

and hypothesis (ii) is an intermediate hypothesis of (i) and (iii) which presents

that Y1 and Y2 are independent, are a generalized linear mixed model and a

generalized linear model, respectively. These hypotheses can be examined by

the likelihood ratio test based on (3.3),

T ¼ �2f~llðy0Þ � ~llðyÞg;

where y0 is the maximum likelihood estimator under the null hypothesis. Since

the parameter values under the null hypothesis (ii) or (iii) is on the boundary

of the parameter space, the asymptotic distribution of the likelihood ratio test

statistic is not a chi-squared distribution. Self and Liang (1987) derived the

asymptotic distribution of the likelihood ratio statistics under such a situation.

The hypotheses (ii) and (iii) correspond to Case 6 and Case 9 in Self and

Liang (1987). From their results, the asymptotic distributions under the null

hypotheses (i), (ii) and (iii) are given by

ðiÞ Pðw2
1 a xÞ;

ðiiÞ 1

2
fPðw2

1 a xÞ þ Pðw2
2 a xÞg;

ðiiiÞ 1

4
fPðw2

1 a xÞ þ 2Pðw2
2 a xÞ þ Pðw2

3 a xÞg:

respectively, where w2
k denotes the central chi-squared variable with k degrees of

freedom.

6. Simulation study

The numerical experiments are studied under two situations (simulations I

and II). In simulation I, it is assumed that the true distribution is the GLMM,

and in simulation II, it is assumed that the dataset are generated by the pro-

posed class of distribution (3.3). In each experiment, the number of repetitions

is 1,000.

Simulation I: The purpose of this simulation study is to see the tendencies

of the maximum likelihood estimator and the likelihood ratio test criterion
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when the proposed density function is regarded as an approximate density of

GLMM. It is assumed that the true model is the symmetric bivariate Poisson

log-normal model, such as

l ¼ l12; S ¼ s2fr121
0
2 þ ð1 � rÞI2g:

Tables 2, 3 and 4 give the maximum likelihood estimates of lj , sjj ð j ¼ 1; 2Þ
and r based on (3.3) under the following two cases

Case I: l ¼ 5; s2 ¼ 0:1; 0:05; r ¼ 0:0; . . . ; 0:5

Case II: l ¼ 1; s2 ¼ 0:5; r ¼ 0:0; . . . ; 0:5:

In both of cases, the sample size is 400. The parenthesized values are standard

deviations which is defined by f
PR

r¼1ðŷyr � yÞ2=Rg1=2 where y ¼
PR

r¼1 ŷyr=R, R

denotes the number of repetitions and yr denotes the maximum likelihood

estimate of l1, l2, s2
1 , s2

2 , r based on rth dataset.

Table 2 and 3 are results of MLEs based on (3.3), and Table 4 is based

on (3.9). Table 5 shows the results of the likelihood ratio tests for three

covariance structures. The column labeled ‘‘Null’’ means the actual test sizes.

The settings of the true parameters are lj ¼ 5, d ¼ 0:1; 0:3; 0:5 and r ¼ 0:0; . . . ;

0:5, where d means the index of overdispersion relative to the Poisson dis-

tribution defined by d ¼ lðes2 � 1Þ described in Aitchison and Ho (1989). In

each cell, the top, middle and bottom lines mean that the sample sizes are 50,

100 and 200.

From Tables 2, 3 and 4, it can be seen that that there are some biases for

the estimator of the variance component and instability for the estimator of the

Table 2. MLEs under the case I.

s2 r l̂l1 l̂l2 ŝs2
1 ŝs2

2 r̂r

0.1 0.0 5.044 (0.137) 5.033 (0.138) 0.083 (0.016) 0.083 (0.016) 0.022 (0.156)

0.1 5.026 (0.141) 5.038 (0.143) 0.083 (0.018) 0.084 (0.018) 0.101 (0.162)

0.2 5.039 (0.146) 5.042 (0.146) 0.083 (0.018) 0.081 (0.017) 0.193 (0.161)

0.3 5.057 (0.145) 5.051 (0.147) 0.083 (0.017) 0.081 (0.018) 0.312 (0.182)

0.4 5.055 (0.149) 5.054 (0.143) 0.080 (0.017) 0.080 (0.017) 0.421 (0.180)

0.5 5.063 (0.154) 5.060 (0.149) 0.079 (0.016) 0.079 (0.018) 0.512 (0.179)

0.05 0.0 5.017 (0.134) 5.008 (0.122) 0.049 (0.016) 0.049 (0.016) 0.020 (0.273)

0.1 4.999 (0.118) 5.001 (0.125) 0.048 (0.016) 0.048 (0.016) 0.130 (0.295)

0.2 5.015 (0.128) 5.013 (0.128) 0.049 (0.016) 0.048 (0.016) 0.220 (0.276)

0.3 5.003 (0.124) 5.012 (0.128) 0.047 (0.017) 0.048 (0.016) 0.282 (0.275)

0.4 5.019 (0.125) 5.011 (0.119) 0.047 (0.015) 0.048 (0.015) 0.396 (0.271)

0.5 5.010 (0.125) 5.007 (0.125) 0.048 (0.016) 0.048 (0.016) 0.491 (0.256)

* The number of repetitions is 1,000 and the sample size is 400.
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correlation coe‰cient, even if the sample size is large ðN ¼ 400Þ. These results

show the limits of the Poisson log-normal model (Aitchison and Ho, 1989),

which is illustrated as follows.

Under the symmetric bivariate Poisson log-normal model, the first

two moments are written by the simple expressions EðYjÞ ¼ l, VarðYjÞ ¼
lþ l2ðes2 � 1Þ, CovðY1;Y2Þ ¼ l2ðes12 � 1Þ. Then, the overdispersion on the

marginal distribution is expressed by d ¼ lðes2 � 1Þ. Using this expres-

sion and (2.8), the correlation coe‰cient of Y1 and Y2 is rewritten by

CorrðY1;Y2Þ ¼ lðes12 � 1Þ=ðd þ 1Þ. Note that the limiting values of s12 are

�s2 and s2. The correlation coe‰cient CorrðY1;Y2Þ in this model has the

following upper and lower bounds,

� ld

ðd þ lÞðd þ 1Þ aCorrðY1;Y2Þa
d

d þ 1
: ð6:1Þ

Figure 1 illustrates the interval of the correlation coe‰cient supported by the

multivariate Poisson Log-Normal model, which is the plot of d and (6.1) in the

case of l ¼ 1; 5. From Figure 1, it follows that the range of the correlation

coe‰cient supported by this model is not wide, when the mean parameters lj ’s

are not large. From Table 5, we can see that the actual test sizes are close

Table 3. MLEs under the case II.

s2 r l̂l1 l̂l2 ŝs2
1 ŝs2

2 r̂r

0.5 0.0 1.046 (0.070) 1.048 (0.075) 0.391 (0.093) 0.400 (0.094) 0.079 (0.193)

0.1 1.041 (0.069) 1.046 (0.073) 0.395 (0.097) 0.387 (0.094) 0.187 (0.210)

0.2 1.051 (0.074) 1.050 (0.079) 0.389 (0.096) 0.383 (0.096) 0.279 (0.211)

0.3 1.052 (0.079) 1.050 (0.073) 0.372 (0.088) 0.377 (0.096) 0.406 (0.198)

0.4 1.049 (0.074) 1.051 (0.077) 0.355 (0.096) 0.363 (0.096) 0.536 (0.220)

0.5 1.056 (0.072) 1.054 (0.074) 0.344 (0.091) 0.343 (0.088) 0.653 (0.220)

* The number of repetitions is 1,000 and the sample size is 400.

Table 4. MLEs with correct term under the case II.

s2 r l̂l1 l̂l2 ŝs2
1 ŝs2

2 r̂r

0.5 0.0 1.046 (0.069) 1.047 (0.077) 0.426 (0.109) 0.415 (0.097) 0.030 (0.199)

0.1 1.048 (0.073) 1.048 (0.071) 0.424 (0.096) 0.423 (0.107) 0.125 (0.198)

0.2 1.049 (0.069) 1.048 (0.077) 0.416 (0.097) 0.414 (0.100) 0.202 (0.209)

0.3 1.057 (0.076) 1.051 (0.074) 0.412 (0.098) 0.415 (0.103) 0.290 (0.193)

0.4 1.053 (0.075) 1.059 (0.073) 0.403 (0.101) 0.406 (0.102) 0.397 (0.217)

0.5 1.060 (0.077) 1.056 (0.074) 0.409 (0.110) 0.400 (0.101) 0.474 (0.241)

* The number of repetitions is 1,000 and the sample size is 400.
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to the corresponding nominal sizes in almost all cases except for the case of

hypothesis (i) and small d, and that the power of test for the correlation is

poor. It can be seen that these poor results are obtained due to the same

problem that caused the instability of the estimation of r.

Table 5. The actual test sizes and powers of the likelihood ratio tests.

r

H0 d N Null 0.0 0.1 0.2 0.3 0.4 0.5

(i) 10% 50 24.0 — 22.1 24.1 21.8 23.5 23.6

100 15.5 — 15.4 16.1 15.3 16.6 17.6

200 10.7 — 12.2 11.0 10.0 11.7 15.9

30% 50 13.1 — 13.9 14.4 15.8 17.6 19.5

100 6.2 — 7.6 9.6 12.8 17.7 20.3

200 5.8 — 6.4 9.1 14.2 25.3 35.7

50% 50 8.2 — 8.2 11.4 13.8 17.9 25.0

100 7.8 — 7.9 10.7 17.9 23.4 33.1

200 3.3 — 8.5 14.8 23.5 39.9 55.6

(ii) 10% 50 6.0 — 11.3 9.8 12.0 9.8 11.0

100 4.7 — 11.4 13.1 11.4 14.1 13.9

200 5.2 — 18.4 16.5 18.2 20.3 19.0

30% 50 7.2 — 24.2 24.8 24.5 27.8 29.6

100 5.0 — 45.0 41.2 43.3 48.7 50.4

200 4.3 — 69.1 69.3 68.7 76.7 78.8

50% 50 5.9 — 46.6 45.3 44.8 51.4 52.4

100 6.3 — 69.0 75.2 74.4 78.2 80.2

200 5.4 — 93.4 94.1 94.8 97.1 97.7

(iii) 0% 50 5.5 — — — — — —

100 5.3 — — — — — —

200 4.9 — — — — — —

10% 50 — 12.2 11.6 12.3 10.3 15.3 13.0

100 — 15.9 15.4 17.2 18.9 18.1 19.4

200 — 26.8 27.0 25.2 28.1 28.4 31.2

30% 50 — 40.4 40.4 40.8 41.4 41.4 44.4

100 — 64.1 63.7 66.9 69.5 69.6 69.8

200 — 90.6 91.4 93.5 92.6 94.0 95.3

50% 50 — 70.7 67.7 71.5 70.5 73.3 78.0

100 — 93.9 94.8 94.9 94.8 95.5 94.8

200 — 99.8 99.7 99.9 99.9 99.9 100.0

* The number of repetitions is 1,000.
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Simulation II: In this simulation, we generate the dataset from the

proposed class of distribution (3.3). The conditional distribution approach

(Johnson, 1987, Chapter 3) is used to generate a p-variate random vector from

MEðh;SÞ. The purpose is to see the numerical behavior of MLEs. It is

assumed that the true model is the Poisson type as in Example 3.1, and the

settings of the parameters are lj ¼ l ¼ 5, sjj ¼ s2 ¼ 0:05; 0:10; 0:15 ð j ¼ 1; 2Þ
and s12 ¼ �0:6s2; 0; 0:6s2. Table 6 gives the MLEs of ðl1; l2; s11; s22; s12Þ.
From Table 6, it can be seen that the performances of the MLEs are good in

Table 6. MLEs for the Poisson type.

l s2 s12 N l1 l2 s11 s22 s12

5 0.05 �0.03 50 4.981 (0.375) 4.989 (0.384) 0.053 (0.049) 0.052 (0.050) �0.033 (0.040)

100 5.003 (0.271) 4.988 (0.270) 0.051 (0.036) 0.049 (0.035) �0.032 (0.024)

200 5.015 (0.179) 4.999 (0.180) 0.049 (0.025) 0.049 (0.024) �0.030 (0.017)

0.00 50 4.971 (0.370) 4.982 (0.370) 0.051 (0.048) 0.054 (0.050) 0.000 (0.040)

100 4.999 (0.268) 5.007 (0.265) 0.050 (0.035) 0.049 (0.034) 0.001 (0.025)

200 4.996 (0.185) 5.005 (0.184) 0.049 (0.024) 0.048 (0.024) �0.001 (0.017)

0.03 50 5.001 (0.375) 5.022 (0.378) 0.050 (0.048) 0.052 (0.049) 0.035 (0.042)

100 5.006 (0.257) 5.012 (0.258) 0.049 (0.035) 0.049 (0.033) 0.030 (0.026)

200 5.004 (0.189) 5.000 (0.182) 0.049 (0.025) 0.049 (0.024) 0.031 (0.017)

0.10 �0.06 50 4.993 (0.403) 5.010 (0.417) 0.100 (0.062) 0.098 (0.062) �0.064 (0.047)

100 4.979 (0.278) 5.003 (0.276) 0.102 (0.041) 0.101 (0.039) �0.062 (0.026)

200 5.011 (0.195) 4.997 (0.186) 0.099 (0.026) 0.100 (0.028) �0.060 (0.017)

0.00 50 5.003 (0.427) 5.014 (0.416) 0.102 (0.061) 0.102 (0.063) �0.001 (0.042)

100 5.014 (0.287) 5.008 (0.292) 0.099 (0.041) 0.101 (0.040) 0.000 (0.027)

200 5.006 (0.202) 4.998 (0.201) 0.099 (0.028) 0.101 (0.028) 0.000 (0.019)

0.06 50 5.012 (0.398) 5.022 (0.384) 0.097 (0.056) 0.098 (0.056) 0.064 (0.042)

100 5.001 (0.282) 5.008 (0.274) 0.101 (0.039) 0.100 (0.041) 0.061 (0.027)

200 5.010 (0.185) 4.998 (0.192) 0.100 (0.026) 0.101 (0.026) 0.061 (0.018)

0.15 �0.09 50 4.983 (0.387) 5.000 (0.385) 0.154 (0.062) 0.155 (0.063) �0.092 (0.041)

100 5.007 (0.255) 5.010 (0.258) 0.150 (0.039) 0.151 (0.037) �0.092 (0.025)

200 5.002 (0.179) 4.993 (0.181) 0.152 (0.026) 0.150 (0.026) �0.091 (0.018)

0.00 50 5.004 (0.411) 5.012 (0.407) 0.155 (0.064) 0.150 (0.062) 0.001 (0.041)

100 5.000 (0.270) 4.999 (0.273) 0.153 (0.042) 0.150 (0.040) 0.001 (0.029)

200 4.990 (0.194) 5.000 (0.195) 0.152 (0.028) 0.151 (0.027) 0.001 (0.020)

0.09 50 4.975 (0.387) 5.025 (0.412) 0.157 (0.065) 0.158 (0.065) 0.095 (0.046)

100 5.002 (0.261) 4.993 (0.273) 0.153 (0.039) 0.149 (0.039) 0.092 (0.026)

200 4.999 (0.188) 4.997 (0.178) 0.150 (0.026) 0.151 (0.027) 0.091 (0.019)

* The number of repetitions is 1,000.
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almost all cases, except for the estimation of s12 in the case in which the sample

size is small.

From these simulation studies, we recommend using (3.3) not as the ap-

proximation, but as the density function. The advantage of our approach

is that our method needs no assumptions on the conditional distribution.

Therefore, it is possible to apply a similar approach to other conditional dis-

tributions not included in the exponential family. For example, assuming that

the conditional distribution is the Weibull distribution, a new multivariate dis-

tribution for analyzing multivariate survival data can be constructed.
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