The structure of the Hecke algebras of $GL_2(F_q)$ relative to the split torus and its normalizer

Yoshiyuki Mori (Received July 10, 2003)

ABSTRACT. Let A be the subgroup of $G = GL_2(F_q)$ consisting of diagonal matrices. We study the structure of the Hecke algebra $\mathscr{H}(G,A)$ of G relative to A. In particular, we determine the multiplication table of $\mathscr{H}(G,A)$ with respect to the standard basis. As an application, we describe the multiplication table of the Hecke algebra $\mathscr{H}(G,H)$ where H is the normalizer of A in G.

1. Introduction

The Hecke algebra $\mathcal{H}(G,A)$ of a finite group G relative to its subgroup A is a generalization of the group algebra $\mathbb{C}G$ of G, whose structure and representations are interesting mathematical objects as well as those of $\mathbb{C}G$.

In particular, the Hecke algebra $\mathcal{H}(G,A)$ plays an important role in the study of vertex-transitive graphs with vertex set G/A. In fact, such a graph is constructed by giving a certain family of double cosets of G relative to A. Moreover the adjacency matrix and its powers of such a graph are described in terms of the elements of $\mathcal{H}(G,A)$ ([3]). Therefore if one knows the multiplicative structure and irreducible characters of $\mathcal{H}(G,A)$, one can find the spectra of vertex-transitive graphs over G/A.

Let $G = GL_2(F_q)$ be the general linear group of 2×2 non-singular matrices over the finite field F_q , and let A be the subgroup of diagonal matrices of G (a split torus of G) and H be the normalizer of A in G. In our previous paper ([4]), we have considered the irreducible characters of $\mathcal{H}(G,A)$ and described the character table of it with respect to the standard basis of $\mathcal{H}(G,A)$. In the present article, we study the multiplicative structure of both $\mathcal{H}(G,A)$ and $\mathcal{H}(G,H)$. In particular we determine the multiplication tables of both $\mathcal{H}(G,A)$ and $\mathcal{H}(G,H)$ with respect to their standard basis.

The paper is organized as follows. In §2 we consider the double coset spaces $A \setminus G/A$ and $H \setminus G/H$. Using Bruhat decomposition of G, we determine a complete set \mathcal{R} of representatives of $A \setminus G/A$ in Theorem 2.1. Moreover decomposing an H double coset into A double cosets, we give a complete set of

²⁰⁰⁰ Mathematics Subject Classification. Primary 20C08.

Key words and phrases. Hecke Algebra; double coset space; multiplication table.

representatives of $H \setminus G/H$ in Theorem 2.2. Let $\operatorname{ind}(AgA)$ (resp. $\operatorname{ind}(HgH)$) be the number of left A-cosets (resp. H-cosets) in the double coset AgA (resp. HgH). Their actual values are given in Theorem 2.3.

In §3 we introduce the Hecke algebra $\mathscr{H}(G,A)$ (resp. $\mathscr{H}(G,H)$), which is defined by $\mathscr{H}(G,A) = \varepsilon \mathbf{C}G\varepsilon$ (resp. $\varepsilon'\mathbf{C}G\varepsilon'$) where ε (resp. ε') is the idempotent of $\mathbf{C}G$ given by

$$\varepsilon = |A|^{-1} \sum_{a \in A} a$$
 (resp. $\varepsilon' = |H|^{-1} \sum_{h \in H} h$).

We notice that $\mathcal{H}(G,H)$ is a subalgebra of $\mathcal{H}(G,A)$ since A is a normal subgroup of H. The elements $\varepsilon[g]=\operatorname{ind}(AgA)\varepsilon g\varepsilon$ $(g\in\mathscr{R})$ of $\mathcal{H}(G,A)$ form a linear basis \mathscr{B} of $\mathcal{H}(G,A)$, which we call the standard basis of $\mathcal{H}(G,A)$. Similarly we introduce the standard basis \mathscr{B}' of $\mathcal{H}(G,H)$. Each element of \mathscr{B}' is expressed as a linear combination of elements of \mathscr{B} in Theorem 3.1.

In §4 we describe the multiplication table of $\mathcal{H}(G,A)$ with respect to the standard basis \mathcal{B} in Theorem 4.1.

In §5 we give the multiplication table of $\mathcal{H}(G, H)$ with respect to the standard basis \mathcal{B}' of $\mathcal{H}(G, H)$, by applying Theorem 3.1 and Theorem 4.1.

2. The double coset spaces $A \setminus G/A$ and $H \setminus G/H$

Let $F = F_q$ be a finite field with q elements where q is a power of an odd prime p. Let $F^\times = F - \{0\}$ be the multiplicative group of F. Then F^\times is a cyclic group of order q-1. Let $G = GL_2(F)$ be the general linear group of 2×2 nonsingular matrices over F. The order |G| of G is known to be equal to $q(q+1)(q-1)^2$. Let A be the subgroup of G consisting of diagonal matrices, namely

$$A = \left\{ a(x,y) = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}; x,y \in F^{\times} \right\}.$$

Note that A is a split torus of G and the order |A| of A is equal to $(q-1)^2$. Let $H = N_G(A)$ be the normalizer of A in G. Then one can write

$$(2.1) H = A \cup wA = A \cup Aw$$

where w is an element of G given by

$$(2.2) w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Note that $|H| = 2(q-1)^2$ and

(2.3)
$$wa(x, y)w^{-1} = a(y, x)$$
 for $a(x, y) \in A$.

Let Z(G) be the center of G. Then

$$Z(G) = \left\{ a(x,x) = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}; x \in F^{\times} \right\},$$

so that Z(G) is contained in A and every element $a \in A$ can be written uniquely as

(2.4)
$$a = a(x, x)a(y, 1)$$
 where $x, y \in F^{\times}$.

Let U be the subgroup of G, which is defined by

$$U = \left\{ u(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}; x \in F \right\}.$$

Then one can check

(2.5)
$$a(x, y)u(z)a(x^{-1}, y^{-1}) = u(xy^{-1}z)$$
 for $x, y \in F^{\times}$ and $z \in F$,

so that A normalizes U. Let

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$$
 where $c \in F^{\times}$.

Then one can verify

(2.6)
$$g = u(ac^{-1})wu(cd(\det g)^{-1})a(c, c^{-1} \det g)$$

and therefore

(2.7)
$$G = UA \cup UwUA$$
 (Bruhat decomposition of G).

From (2.7), it follows that the coset space G/A is given by

$$G/A = \{u(x)A; x \in F\} \cup \{u(y)wu(z)A; y, z \in F\}.$$

Now we consider the double coset space $A \setminus G/A$.

Theorem 2.1. Let \mathcal{R} be the subset of G defined by

$$\mathcal{R} = \{e, w, u(1), wu(1), u(1)wu(r) \mid (r \in F)\}$$

where e is the identity matrix. Then \mathcal{R} is a complete set of representatives of $A \setminus G/A$, that is,

$$A \setminus G/A = \{AgA; g \in \mathcal{R}\}\$$

and consequently $|A \setminus G/A| = q + 4$.

PROOF. Since AgA $(g \in \mathcal{R})$ are all distinct, it is enough to see $A \setminus G/A \subset \{AgA; g \in \mathcal{R}\}$. Assume $g = u(x)a(s,t) \in UA$. Then AgA = Au(x)A. If x = 0,

then AgA = A. While if $x \neq 0$, then by (2.5) we have $u(x) = a(x,1)u(1) \cdot a(x^{-1},1)$ and hence AgA = Au(1)A. Assume $g = u(y)wu(z)a(s,t) \in UwUA$. Then AgA = Au(y)wu(z)A. If y = z = 0, then AgA = AwA. If y = 0 and $z \neq 0$, then AgA = Awu(z)A. Since $u(z) = a(z,1)u(1)a(z^{-1},1)$, it follows that AgA = Awa(z,1)u(1)A. But by (2.3) we have wa(z,1) = a(1,z)w and hence AgA = Awu(1)A. Similarly if $y \neq 0$ and z = 0, then we have AgA = Au(1)wA. Finally assume $y \neq 0$ and $z \neq 0$. Since $u(y) = a(y,1)u(1)a(y^{-1},1)$ and $a(y^{-1},1)w = wa(1,y^{-1})$, we have $Au(y)wu(z)A = Au(1)wa(1,y^{-1})u(z)A$. Using (2.5), we obtain $a(1,y^{-1})u(z) = u(yz)a(1,y^{-1})$ and hence

$$(2.8) Au(y)wu(z)A = Au(1)wu(yz)A \text{for } y, z \in F^{\times}.$$

Since $G = UA \cup UwUA$, our assertion is now clear.

Next we consider the double coset space $H \setminus G/H$.

Theorem 2.2. The double coset space $H \setminus G/H$ is given by

$$\{H, Hu(1)H, Hu(1)wu(2^{-1})H, Hu(1)wu(r)H = Hu(1)wu(1-r)H \ (r \in F')\}$$

where we put $F' = F - \{0, 1, 2^{-1}\}$ and consequently $|H \setminus G/H| = (q+3)/2$.

PROOF. Since A is a subgroup of H, it follows that HgH = HAgAH for $g \in G$. Therefore we conclude from Theorem 2.1 that $H \setminus G/H = \{HgH; g \in \mathcal{R}\}$. But by (2.1), we have

$$(2.9) HgH = AgA \cup AwgA \cup AgwA \cup AwgwA (g \in \mathcal{R}).$$

Assume g = e or w. Since $w^2 = a(-1, -1) \in Z(G)$, it follows from (2.9) that

$$(2.10) H = A \cup AwA = HwH.$$

Next assume g = u(1). Since wu(1)w = u(-1)wu(-1) by (2.6) and hence Awu(1)wA = Au(1)wu(1)A by (2.8), it follows from (2.9) that

$$(2.11) Hu(1)H = Au(1)A \cup Awu(1)A \cup Au(1)wA \cup Au(1)wu(1)A.$$

Similar argument yields that

$$(2.12) Hu(1)H = Hwu(1)H = Hu(1)wH = Hu(1)wu(1)H.$$

Finally assume g = u(1)wu(r) with $r \in F - \{0,1\}$. Then by (2.6), we have wg = u(-1)wu(r-1), $gw = u((r-1)r^{-1})wu(-r)a(r,r^{-1})$ and $wgw = u(-r(r-1)^{-1})wu(1-r)a(r-1,(r-1)^{-1})$ and hence by (2.8) AwgA = Au(1)wu(1-r)A, AgwA = Au(1)wu(1-r)A and AwgwA = Au(1)wu(r)A. Therefore we have

$$(2.13) \quad Hu(1)wu(r)H = Au(1)wu(r)A \cup Au(1)wu(1-r)A \qquad (r \in F - \{0,1\}),$$

from which we can deduce

$$(2.14) Hu(1)wu(r)H = Hu(1)wu(1-r)H \text{for } r \in F - \{0,1\}.$$

In particular if $r = 2^{-1}$, then

(2.15)
$$Hu(1)wu(2^{-1})H = Au(1)wu(2^{-1})A.$$

Thus the theorem follows from (2.10), (2.12), (2.14) and (2.15).

We denote by $\operatorname{ind}(AgA)$ (resp. $\operatorname{ind}(HgH)$) the number of left A-cosets (resp. H-cosets) in AgA (resp. HgH). Then $\operatorname{ind}(AgA) = |AgA|/|A| = |A|/|A_g|$ where $A_g = A \cap gAg^{-1}$ (resp. $\operatorname{ind}(HgH) = |HgH|/|H| = |H|/|H_g|$ where $H_g = H \cap gHg^{-1}$).

THEOREM 2.3. For the double cosets AgA given in Theorem 2.1 and HgH given in Theorem 2.2, we have

$$\operatorname{ind}(AgA) = \begin{cases} 1 & (g = e, w), \\ q - 1 & (g \in \mathcal{R} - \{e, w\}) \end{cases}$$

and

$$\operatorname{ind}(HgH) = \begin{cases} 1 & g = e, \\ 2(q-1) & g = u(1), \\ (q-1)/2 & g = u(1)wu(2^{-1}), \\ q-1 & g = u(1)wu(r) & (r \in F'). \end{cases}$$

PROOF. By simple matrix computations, we get

$$A_g = A \quad (g = e, w), \qquad A_g = Z(G) \quad (g \in \mathcal{R} - \{e, w\})$$

and

$$H_e = H, \qquad H_{u(1)} = Z(G),$$

$$H_{u(1)wu(2^{-1})} = Z(G) \cup a(1, -1)Z(G) \cup wZ(G) \cup wa(1, -1)Z(G),$$

$$H_{u(1)wu(r)} = Z(G) \cup wa((1 - r)^{-1}, r^{-1})Z(G) \qquad (r \in F').$$

This implies the theorem immediately.

3. The Hecke algebras $\mathcal{H}(G,A)$ and $\mathcal{H}(G,H)$

Let $\mathbf{C}G$ be the group algebra of G over \mathbf{C} . Let ε (resp. ε') be the idempotent of $\mathbf{C}G$, which is defined by

(3.1)
$$\varepsilon = |A|^{-1} \sum_{a \in A} a \quad (\text{resp. } \varepsilon' = |H|^{-1} \sum_{h \in H} h).$$

Then $\mathscr{H}(G,A) = \varepsilon \mathbf{C}G\varepsilon$ (resp. $\mathscr{H}(G,H) = \varepsilon' \mathbf{C}G\varepsilon'$) is a semisimple subalgebra of $\mathbf{C}G$, which we call the Hecke algebra of G relative to G (resp. G). Clearly $\mathscr{H}(G,A)$ (resp. $\mathscr{H}(G,H)$) is spanned by $\varepsilon g\varepsilon$ (resp. $\varepsilon' g\varepsilon'$) for $g\in G$ and $\varepsilon g_1\varepsilon = \varepsilon g_2\varepsilon$ (resp. $\varepsilon' g_1\varepsilon' = \varepsilon' g_2\varepsilon'$) for $g_1,g_2\in G$ if and only if G (resp. G). Put

(3.2)
$$\varepsilon[g] = \operatorname{ind}(AgA)\varepsilon g\varepsilon \qquad (\text{resp. } \varepsilon'[g] = \operatorname{ind}(HgH)\varepsilon'g\varepsilon')$$

for $g \in G$. Then it is not difficult to see ([6]) that

(3.3)
$$\varepsilon[g] = |A|^{-1} \sum_{k \in AqA} k \quad \text{(resp. } \varepsilon'[g] = |H|^{-1} \sum_{k \in HqH} k\text{)}.$$

Note that $\varepsilon[e] = \varepsilon$ (resp $\varepsilon'[e] = \varepsilon'$). Furthermore the set $\mathscr{B} = \{\varepsilon[g]; g \in \mathscr{R}\}$ is a linear basis of $\mathscr{H}(G,A)$ over \mathbb{C} by Theorem 2.1 and the set

$$\mathcal{B}' = \{\varepsilon', \varepsilon'[u(1)], \varepsilon'[u(1)wu(2^{-1})], \varepsilon'[u(1)wu(r)] = \varepsilon'[u(1)wu(1-r)] \ (r \in F')\}$$

forms a linear basis of $\mathcal{H}(G,H)$ over \mathbb{C} by Theorem 2.2. We call \mathscr{B} (resp. \mathscr{B}') the standard basis of $\mathcal{H}(G,A)$ (resp. $\mathcal{H}(G,H)$). Note that $\dim_{\mathbb{C}} \mathcal{H}(G,A) = q+4$ (resp. $\dim_{\mathbb{C}} \mathcal{H}(G,H) = (q+3)/2$).

THEOREM 3.1. The Hecke algebra $\mathcal{H}(G,H)$ is a commutative subalgebra of the Hecke algebra $\mathcal{H}(G,A)$. Moreover the standard basis elements of $\mathcal{H}(G,H)$ are expressed in terms of the standard basis elements of $\mathcal{H}(G,A)$ as follows.

(3.4)
$$\varepsilon' = 2^{-1}(\varepsilon + \varepsilon[w]),$$

(3.5)
$$\varepsilon'[u(1)] = 2^{-1}(\varepsilon[u(1)] + \varepsilon[wu(1)] + \varepsilon[u(1)w] + \varepsilon[u(1)wu(1)]),$$

(3.6)
$$\varepsilon'[u(1)wu(2^{-1})] = 2^{-1}\varepsilon[u(1)wu(2^{-1})],$$

(3.7)
$$\varepsilon'[u(1)wu(r)] = \varepsilon'[u(1)wu(1-r)] = 2^{-1}(\varepsilon[u(1)wu(r)] + \varepsilon[u(1)wu(1-r)])$$

for $r \in F'$.

PROOF. By the criterion of the commutativity of Hecke algebras ([6]), it is enough to see $Hg^{-1}H = HgH$ for $g \in G$. For that purpose, we have only to check it for g = u(1) and u(1)wu(r) $(r \in F - \{0,1\})$. Since $u(1)^{-1} = a(1,-1)u(1)a(1,-1)$ and $(u(1)wu(r))^{-1} = u(-r)wu(-1)a(-1,-1)$, it follows that $Hu(1)^{-1}H = Hu(1)H$ and $H(u(1)wu(r))^{-1}H = Hu(-r)wu(-1)H = Hu(1)wu(r)H$. Thus $\mathcal{H}(G,H)$ is commutative. Since A is a normal subgroup of H, it follows that $\varepsilon\varepsilon' = \varepsilon' = \varepsilon'\varepsilon$ and hence $\mathcal{H}(G,H)$ is a subalgebra of $\mathcal{H}(G,A)$. Applying (2.10), (2.11), (2.15) and (2.13) to (3.3), we obtain (3.4), (3.5), (3.6) and (3.7) respectively.

4. The multiplication table of $\mathcal{H}(G,A)$

The multiplication table of $\mathcal{H}(G,A)$, we mean, is the matrix

$$(\varepsilon[g]\varepsilon[h])_{(g,h)\in\mathscr{R}\times\mathscr{R}}$$

where $\{\varepsilon[g]; g \in \mathcal{R}\}$ is the standard basis of $\mathscr{H}(G, A)$.

Theorem 4.1. The Hecke algebra $\mathscr{H}(G,A)$ is not commutative and its multiplication table with respect to the standard basis $\{\varepsilon[g]; g \in \mathscr{R}\}$ is given as follows. Here we omit the contribution of $\varepsilon = \varepsilon[e]$ because it is the identity element of $\mathscr{H}(G,A)$.

$\frac{\varepsilon[w]}{\varepsilon[u(1)]}$ $\varepsilon[wu(1)]$ $\varepsilon[u(1)w]$ $\varepsilon[u(1)wu(1)]$ $\varepsilon[u(1)wu(s)] (s \in F^{\times} - \{1\})$	$\begin{array}{ccc} \varepsilon & \varepsilon [v] \\ \varepsilon [u(1)w] & (q-1)\varepsilon + \\ \varepsilon [u(1)wu(1)] & (q-1)\varepsilon [w] + \\ \varepsilon [u(1)] & \varepsilon [u(1)] \end{array}$	$+ (q-2)\varepsilon[wu(1)]$ $wu(1)] + S$ $1)w] + S$
	$\varepsilon[wu(1)]$	$\varepsilon[u(1)w]$
$\varepsilon[w]$ $\varepsilon[u(1)]$ $\varepsilon[wu(1)]$ $\varepsilon[u(1)w]$ $\varepsilon[u(1)wu(1)]$ $\varepsilon[u(1)wu(s)] (s \in F^{\times} - \{1\})$	$ \epsilon[u(1)] \\ \epsilon[u(1)wu(1)] + S \\ \epsilon[u(1)w] + S \\ (q - 1)\epsilon + (q - 2)\epsilon[u(1)] \\ (q - 1)\epsilon[w] + (q - 2)\epsilon[wu(1)] \\ \epsilon[u(1)wu(1)] + \epsilon[u(1)w] + S_{1-s} $	$(q-1)\varepsilon + (q-2)\varepsilon[u(1)wu(1)]$ $\varepsilon[wu(1)] + S$ $\varepsilon[u(1)] + S$
	$\varepsilon[u(1)wu(1)]$	$\varepsilon[u(1)wu(t)]\ (t\in F^\times-\{1\})$
$\begin{array}{c} \varepsilon[w] \\ \varepsilon[u(1)] \\ \varepsilon[wu(1)] \\ \varepsilon[u(1)w] \\ \varepsilon[u(1)wu(1)] \\ \varepsilon[u(1)wu(s)] \ (s \in F^{\times} - \{1\}) \end{array}$	$\varepsilon[u(1)w]$ $\varepsilon[wu(1)] + S$ $\varepsilon[u(1)] + S$ $(q-1)\varepsilon[w] + (q-2)\varepsilon[u(1)w]$ $(q-1)\varepsilon + (q-2)\varepsilon[u(1)wu(1)]$ $\varepsilon[u(1)] + \varepsilon[wu(1)] + S_s$	$\begin{split} \varepsilon[u(1)wu(1-t)] \\ \varepsilon[wu(1)] + \varepsilon[u(1)wu(1)] + S_t \\ \varepsilon[u(1)] + \varepsilon[u(1)w] + S_{1-t} \\ \varepsilon[wu(1)] + \varepsilon[u(1)wu(1)] + S_{1-t} \\ \varepsilon[u(1)] + \varepsilon[u(1)w] + S_t \\ E(s,t) \end{split}$

where we put

(4.1)
$$S = \sum_{x \in F - \{0, 1\}} \varepsilon[u(1)wu(x)]$$
 and $S_r = \sum_{x \in F - \{0, 1, r\}} \varepsilon[u(1)wu(x)]$ for $r \in F - \{0, 1\}$.

Moreover for $s, t \in F - \{0, 1\}$ the product $E(s, t) = \varepsilon[u(1)wu(s)]\varepsilon[u(1)wu(t)]$ is given by

$$E(s,t) = \begin{cases} (q-1)\varepsilon + (q-1)\varepsilon[w] + S(2^{-1},2^{-1}) & (t=s=2^{-1}), \\ (q-1)\varepsilon + \varepsilon[wu(1)] + \varepsilon[u(1)w] + S(s,s) & (t=s\neq 2^{-1}), \\ (q-1)\varepsilon[w] + \varepsilon[u(1)] + \varepsilon[u(1)wu(1)] + S(s,1-s) & (t=1-s\neq 2^{-1}), \\ \varepsilon[u(1)] + \varepsilon[wu(1)] + \varepsilon[u(1)w] + \varepsilon[u(1)wu(1)] + S(s,t) & (t\neq s,t\neq 1-s). \end{cases}$$

Here we set

(4.2)
$$S(s,t) = \sum_{x \in F-I} \varepsilon[u(1)wu(\psi_{s,t}(x))]$$

where $J_{s,t} = \{0, 1, s, s(1-t)^{-1}, (s-t)(1-t)^{-1}\}$ and

(4.3)
$$\psi_{s,t}(x) = (x-1)((t-1)x+s)(x-s)^{-1}$$
 for $x \in F - \{s\}$.

Before proving Theorem 4.1, we need the following lemma.

Lemma 4.2. In $\mathcal{H}(G,A)$, the following identities hold.

(4.4)
$$\varepsilon a(x,y) = \varepsilon = a(x,y)\varepsilon \quad \text{for } x,y \in F^{\times}.$$

(4.5)
$$\varepsilon u(x)\varepsilon = \varepsilon u(1)\varepsilon, \qquad \varepsilon w u(x)\varepsilon = \varepsilon w u(1)\varepsilon,$$

$$\varepsilon u(x)w\varepsilon = \varepsilon u(1)w\varepsilon$$
 for $x \in F^{\times}$.

(4.6)
$$\varepsilon u(y)wu(z)\varepsilon = \varepsilon u(1)wu(yz)\varepsilon \quad \text{for } y, z \in F^{\times}.$$

$$(4.7) \quad \varepsilon[g]\varepsilon[h] = \operatorname{ind}(AgA) \operatorname{ind}(AhA)(q-1)^{-1} \sum_{v \in F^{\times}} \varepsilon ga(y,1)h\varepsilon \qquad \text{for } g,h \in G.$$

PROOF. (4.4) is clear from the definition of ε . (4.5) and (4.6) are also obvious from the proof of Theorem 2.1. Since $\varepsilon^2 = \varepsilon$,

$$\varepsilon[g]\varepsilon[h] = \operatorname{ind}(AgA) \operatorname{ind}(AhA)\varepsilon g\varepsilon h\varepsilon.$$

By (2.4) and (3.1), we can write

$$\varepsilon = (q-1)^{-2} \sum_{x,y \in F^{\times}} a(x,x)a(y,1),$$

so that

$$\mathit{egehe} = (q-1)^{-2} \sum_{x,y \in F^\times} \mathit{ega}(x,x) a(y,1) \mathit{he}.$$

Since $a(x, x) \in Z(G)$, it follows that

$$\varepsilon g \varepsilon h \varepsilon = (q-1)^{-1} \sum_{y \in F^{\times}} \varepsilon g a(y,1) h \varepsilon.$$

Thus we obtain (4.7).

PROOF OF THEOREM 4.1. Here we will verify the last column in Table I. The products in the other part are caluculated in a similar and simpler way. Applying h = u(1)wu(t) $(t \in F - \{0, 1\})$ to (4.7) and using $\operatorname{ind}(Au(1)wu(t)A) = q - 1$, we have

$$\varepsilon[g]\varepsilon[u(1)wu(t)] = \operatorname{ind}(AgA) \sum_{y \in F^{\times}} \varepsilon ga(y,1)u(1)wu(t)\varepsilon \qquad \text{for } g \in \mathcal{R}$$

Since $a(y, 1)u(1)wu(t) = u(y)wu(ty^{-1})a(1, y)$, it follows that

(4.8)
$$\varepsilon[g]\varepsilon[u(1)wu(t)] = \operatorname{ind}(AgA) \sum_{y \in F^{\times}} \varepsilon gu(y)wu(ty^{-1})\varepsilon.$$

Case 1. g = w. Since $\operatorname{ind}(AwA) = 1$ and $wu(y)wu(ty^{-1}) = u(-y^{-1}) \cdot wu(y(t-1))a(y,y)$, it follows from (4.8) that

$$\varepsilon[w]\varepsilon[u(1)wu(t)] = \sum_{y \in F^{\times}} \varepsilon u(-y^{-1})wu(y(t-1))\varepsilon.$$

Using (4.6), we get

$$\varepsilon[w]\varepsilon[u(1)wu(t)] = \sum_{y \in F^{\times}} \varepsilon u(1)wu(1-t)\varepsilon = (q-1)\varepsilon u(1)wu(1-t)\varepsilon.$$

Since ind(Au(1)wu(1-t)A) = q - 1, we have

$$\varepsilon[w]\varepsilon[u(1)wu(t)] = \varepsilon[u(1)wu(1-t)].$$

Case 2. g = u(1). Since ind(Au(1)A) = q - 1 and $u(1)u(y)wu(ty^{-1}) = u(1 + y)wu(ty^{-1})$, it follows from (4.8) that

$$\varepsilon[u(1)]\varepsilon[u(1)wu(t)] = (q-1)\sum_{v \in F^{\times}}\varepsilon u(1+y)wu(ty^{-1})\varepsilon.$$

Replacing 1 + y by x, we get

$$\varepsilon[u(1)]\varepsilon[u(1)wu(t)] = (q-1)\varepsilon wu(-t)\varepsilon + (q-1)\sum_{x\in F^\times-\{1\}}\varepsilon u(x)wu(t(x-1)^{-1})\varepsilon.$$

Using (4.5) and (4.6), we have

$$\varepsilon[u(1)]\varepsilon[u(1)wu(t)] = (q-1)\varepsilon wu(1)\varepsilon + (q-1)\sum_{x\in F^\times-\{1\}}\varepsilon u(1)wu(tx(x-1)^{-1})\varepsilon.$$

Putting $z = tx(x-1)^{-1}$, we can deduce

$$\varepsilon[u(1)]\varepsilon[u(1)wu(t)] = (q-1)\varepsilon wu(1)\varepsilon + (q-1)\sum_{z\,\in\, F^\times-\{t\}}\varepsilon u(1)wu(z)\varepsilon.$$

Since $\operatorname{ind}(Awu(1)A) = \operatorname{ind}(Au(1)wu(z)A) = q - 1$, we get

$$\varepsilon[u(1)]\varepsilon[u(1)wu(t)] = \varepsilon[wu(1)] + \sum_{z \in F^{\times} - \{t\}} \varepsilon[u(1)wu(z)],$$

which is equal to

$$\varepsilon[u(1)]\varepsilon[u(1)wu(t)] = \varepsilon[wu(1)] + \varepsilon[u(1)wu(1)] + S_t.$$

Case 3. g = wu(1). Since ind(Awu(1)A) = q - 1 and $wu(1)u(y)wu(ty^{-1}) = wu(1+y)wu(ty^{-1})$, we have, by putting x = 1 + y,

$$\varepsilon[wu(1)]\varepsilon[u(1)wu(t)] = (q-1)\varepsilon u(-t)\varepsilon + (q-1)\sum_{x\in F^\times-\{1\}}\varepsilon wu(x)wu(t(x-1)^{-1})\varepsilon.$$

Using (4.5), $wu(x)wu(t(x-1)^{-1}) = u(-x^{-1})wu(x(tx(x-1)^{-1}-1))a(x,x^{-1})$ and (4.6), we have

$$\varepsilon[wu(1)]\varepsilon[u(1)wu(t)] = (q-1)\varepsilon u(1)\varepsilon + (q-1)\sum_{x\in F^{\times}-\{1\}}\varepsilon u(1)wu(1-tx(x-1)^{-1})\varepsilon.$$

Putting $z = 1 - tx(x-1)^{-1}$, we can deduce

$$\varepsilon[wu(1)]\varepsilon[u(1)wu(t)] = (q-1)\varepsilon u(1)\varepsilon + (q-1)\sum_{z\in F-\{1,1-t\}}\varepsilon u(1)wu(z)\varepsilon.$$

Since $\operatorname{ind}(Au(1)A) = \operatorname{ind}(Au(1)wu(z)A) = q - 1$, we obtain

$$\varepsilon[wu(1)]\varepsilon[u(1)wu(t)] = \varepsilon[u(1)] + \varepsilon[u(1)w] + \sum_{z \in F - \{0,1,1-t\}} \varepsilon[u(1)wu(z)].$$

Case 4. g = u(1)w. Since ind(Au(1)wA) = q - 1 and $u(1)wu(y)wu(ty^{-1}) = u((y-1)y^{-1})wu(y(t-1))a(y,y^{-1})$, it follows from (4.8) that

$$\begin{split} \varepsilon[u(1)w]\varepsilon[u(1)wu(t)] &= (q-1)\varepsilon wu(t-1)\varepsilon \\ &+ (q-1)\sum_{y\in F^{\times}-\{1\}}\varepsilon u((y-1)y^{-1})wu(y(t-1))\varepsilon. \end{split}$$

By (4.5) and (4.6), we obtain

$$\varepsilon[u(1)w]\varepsilon[u(1)wu(t)] = (q-1)\varepsilon wu(1)\varepsilon + (q-1)\sum_{y\in F^\times-\{1\}}\varepsilon u(1)wu((y-1)(t-1))\varepsilon.$$

Putting z = (y-1)(t-1) and using ind(Awu(1)A) = ind(Au(1)wu(z)A) = q-1, we get

$$\varepsilon[u(1)w]\varepsilon[u(1)wu(t)] = \varepsilon[wu(1)] + \sum_{z \in F^{\times} - \{1-t\}} \varepsilon[u(1)wu(z)],$$

which yields

$$\varepsilon[u(1)w]\varepsilon[u(1)wu(t)] = \varepsilon[wu(1)] + \varepsilon[u(1)wu(1)] + S_{1-t}.$$

Case 5. g = u(1)wu(1). Since $u(1)wu(1)u(y)wu(ty^{-1}) = u(1)wu(1+y)wu(ty^{-1})$ and ind(Au(1)wu(1)A) = q - 1, it follows from (4.8) that

$$\varepsilon[u(1)wu(1)]\varepsilon[u(1)wu(t)] = (q-1)\sum_{v \in F^{\times}} \varepsilon u(1)wu(1+y)wu(ty^{-1})\varepsilon.$$

Putting x = 1 + y, we have

$$\varepsilon[u(1)wu(1)]\varepsilon[u(1)wu(t)]$$

$$= (q-1)\varepsilon u(-t)\varepsilon + (q-1)\sum_{x\in F^\times-\{1\}}\varepsilon u(1)wu(x)wu(t(x-1)^{-1})\varepsilon.$$

By (4.5), $u(1)wu(x)wu(t(x-1)^{-1}) = u((x-1)x^{-1})wu(x(tx(x-1)^{-1}-1))a(x,x^{-1})$ and (4.6), we can deduce

$$\varepsilon[u(1)wu(1)]\varepsilon[u(1)wu(t)] = (q-1)\varepsilon u(1)\varepsilon + (q-1)\sum_{x\in F^\times-\{1\}}\varepsilon u(1)wu((t-1)x+1)\varepsilon.$$

Putting z = (t-1)x + 1 and using ind(Au(1)A) = ind(Au(1)wu(z)A) = q - 1, we obtain

$$\varepsilon[u(1)wu(1)]\varepsilon[u(1)wu(t)] = \varepsilon[u(1)] + \varepsilon[u(1)w] + \sum_{z \in F^{\times} - \{1, t\}} \varepsilon[u(1)wu(z)],$$

which yields

$$\varepsilon[u(1)wu(1)]\varepsilon[u(1)wu(t)] = \varepsilon[u(1)] + \varepsilon[u(1)w] + S_t.$$

Case 6. g = u(1)wu(s) $(s \in F - \{0, 1\})$. Set $E(s, t) = \varepsilon[u(1)wu(s)]\varepsilon[u(1)wu(t)]$. Since $\operatorname{ind}(Au(1)wu(s)A) = q - 1$, it follows from (4.8) that

$$E(s,t) = (q-1) \sum_{y \in F^{\times}} \varepsilon u(1) w u(s+y) w u(ty^{-1}) \varepsilon.$$

Putting x = s + y, we have

$$E(s,t) = (q-1) \sum_{x \in F - \{s\}} \varepsilon u(1) w u(x) w u(t(x-s)^{-1}) \varepsilon,$$

which equals

$$E(s,t) = (q-1)\varepsilon u((s-t)s^{-1})\varepsilon + (q-1)\sum_{x\in F^{\times}-\{s\}}\varepsilon u(1)wu(x)wu(t(x-s)^{-1})\varepsilon.$$

Since $u(1)wu(x)wu(t(x-s)^{-1}) = u((x-1)x^{-1})wu(x(tx(x-s)^{-1}-1))a(x,x^{-1}),$ it follows from (4.6) that

$$\begin{split} E(s,t) &= (q-1)\varepsilon u((s-t)s^{-1})\varepsilon + (q-1)\varepsilon w u((s+t-1)(1-s)^{-1})\varepsilon \\ &+ (q-1)\sum_{x\in F^{\times}-\{1,s\}}\varepsilon u(1)w u((x-1)(tx(x-s)^{-1}-1))\varepsilon. \end{split}$$

Since $(x-1)(tx(x-s)^{-1}-1) = \psi_{s,t}(x)$, we have

$$(4.9) \quad E(s,t) = (q-1)\varepsilon u((s-t)s^{-1})\varepsilon + (q-1)\varepsilon wu((s+t-1)(1-s)^{-1})\varepsilon + (q-1)\sum_{x\in F^{\times}-\{1,s\}}\varepsilon u(1)wu(\psi_{s,t}(x))\varepsilon.$$

If $t = s = 2^{-1}$, then (4.9) becomes

$$E(2^{-1},2^{-1}) = (q-1)\varepsilon + (q-1)\varepsilon[w] + \sum_{x \in F^{\times} - \{1,2^{-1}\}} \varepsilon[u(1)wu(\psi_{2^{-1},2^{-1}}(x))].$$

Since $J_{2^{-1},2^{-1}} = \{0,1,2^{-1}\}$, it follows that

$$E(2^{-1}, 2^{-1}) = (q - 1)\varepsilon + (q - 1)\varepsilon[w] + S(2^{-1}, 2^{-1}).$$

If $t = s \neq 2^{-1}$, then (4.9) becomes

$$E(s,s) = (q-1)\varepsilon + \varepsilon[wu(1)] + \sum_{x \in F^{\times} - \{1,s\}} \varepsilon[u(1)wu(\psi_{s,s}(x))].$$

Since $\psi_{s,s}^{-1}(0) = \{s(1-s)^{-1}\}$ and $\psi_{s,s}^{-1}(1)$ is empty, it follows that

$$E(s,s) = (q-1)\varepsilon + \varepsilon[wu(1)] + \varepsilon[u(1)w] + \sum_{x \in F^{\times} - \{1,s,s(1-s)^{-1}\}} \varepsilon[u(1)wu(\psi_{s,s}(x))],$$

which implies

$$E(s,s) = (q-1)\varepsilon + \varepsilon[wu(1)] + \varepsilon[u(1)w] + S(s,s).$$

If $t = 1 - s \neq 2^{-1}$, then (4.9) becomes

$$E(s,1-s) = \varepsilon[u(1)] + (q-1)\varepsilon[w] + \sum_{x \in F^{\times} - \{1,s\}} \varepsilon[u(1)wu(\psi_{s,1-s}(x))].$$

Since $\psi_{s,1-s}^{-1}(0)$ is empty and $\psi_{s,1-s}^{-1}(1) = \{(2s-1)s^{-1}\}$, it follows that

$$\begin{split} E(s,1-s) &= (q-1)\varepsilon[w] + \varepsilon[u(1)] + \varepsilon[u(1)wu(1)] \\ &+ \sum_{x \in F^{\times} - \{1,s,(2s-1)s^{-1}\}} \varepsilon[u(1)wu(\psi_{s,1-s}(x))], \end{split}$$

which yields

$$E(s, 1-s) = (q-1)\varepsilon[w] + \varepsilon[u(1)] + \varepsilon[u(1)wu(1)] + S(s, 1-s).$$

If $t \neq s$ and $t \neq 1 - s$, then (4.9) becomes

$$E(s,t) = \varepsilon[u(1)] + \varepsilon[wu(1)] + \sum_{x \in F^{\times} - \{1,s\}} \varepsilon[u(1)wu(\psi_{s,t}(x))].$$

Since $\psi_{s,t}^{-1}(0) = \{s(1-t)^{-1}\}\$ and $\psi_{s,t}^{-1}(1) = \{(s-t)(1-t)^{-1}\},\$ it follows that

$$E(s,t) = \varepsilon[u(1)] + \varepsilon[wu(1)] + \varepsilon[u(1)w] + \varepsilon[u(1)wu(1)] + \sum_{x \in F - J_{\tau,t}} \varepsilon[u(1)wu(\psi_{s,t}(x))],$$

which implies

$$E(s,t) = \varepsilon[u(1)] + \varepsilon[wu(1)] + \varepsilon[u(1)w] + \varepsilon[u(1)wu(1)] + S(s,t).$$

5. The multiplication table of $\mathcal{H}(G,H)$

Using the multiplication table of $\mathcal{H}(G,A)$ given in §4, we describe the multiplication table of $\mathcal{H}(G,H)$ with respect to the basis

$$\mathcal{B}' = \{\varepsilon', \varepsilon'[u(1)], \varepsilon'[u(1)wu(2^{-1})], \varepsilon'[u(1)wu(r)] = \varepsilon'[u(1)wu(1-r)] \ (r \in F')\}.$$

To start with, we need some properties of the map $\psi_{s,t}: F-\{s\} \to F$ in (4.3) and the sum S(s,t) in (4.2) where $s,t\in F-\{0,1\}$.

Lemma 5.1. Let $s, t \in F - \{0, 1\}$. Let $\psi_{s, t} : F - \{s\} \to F$ be the map defined by

$$\psi_{s,t}(x) = (x-1)((t-1)x + s)(x-s)^{-1}$$

and let S(s,t) be the sum

$$S(s,t) = \sum_{x \in F-I_{t-1}} \varepsilon[u(1)wu(\psi_{s,t}(x))]$$

where $J_{s,t} = \{0, 1, s, s(1-t)^{-1}, (s-t)(1-t)^{-1}\}$. Then we have

(5.1)
$$\psi_{1-s,1-t}(x) = \psi_{s,t}((tx+s-t)(1-t)^{-1})$$
 for $x \in F - \{1-s\}$,

(5.2)
$$\psi_{1-s,t}(x) = 1 - \psi_{s,t}(1-x) \quad \text{for } x \in F - \{1-s\},$$

$$(5.3) S(1-s, 1-t) = S(s,t),$$

(5.4)
$$S(s, 1-t) = S(1-s, t) = \sum_{x \in F^{\times} - J_{s, t}} \varepsilon[u(1)wu(1-\psi_{s, t}(x))].$$

PROOF. (5.1) and (5.2) are proved by direct computations. Put $f(x) = (tx + s - t)(1 - t)^{-1}$ for $x \in F$. Then by (5.1)

$$S(1-s, 1-t) = \sum_{x \in F - J_{1-s, 1-t}} \varepsilon[u(1)wu(\psi_{s, t}(f(x)))].$$

Since the map f transforms $F - J_{1-s,1-t}$ bijectively onto $F - J_{s,t}$, it follows that

$$S(1-s, 1-t) = \sum_{y \in F-J_{s,t}} \varepsilon[u(1)wu(\psi_{s,t}(y))],$$

which equals S(s,t). By (5.3), we have S(s,1-t)=S(1-s,t). Using (5.2), we can write

$$S(1-s,t) = \sum_{x \in F-J_{1-s,t}} \varepsilon[u(1)wu(1-\psi_{s,t}(1-x))].$$

Since the map g(x) = 1 - x transforms $F - J_{1-s,t}$ bijectively onto $F - J_{s,t}$, it follows that

$$S(1 - s, t) = \sum_{y \in F - J_{s, t}} \varepsilon[u(1)wu(1 - \psi_{s, t}(y))].$$

Thus (5.4) holds.

Lemma 5.2. Let $s, t \in F - \{0, 1\}$ and put $K_{s,t} = \{x \in F - \{s\}; \psi_{s,t}(x) = 2^{-1}\}$. Then

(5.5)
$$|K_{s,t}| = \begin{cases} 2 & (D_{s,t} \in F_0^{\times}), \\ 1 & (D_{s,t} = 0), \\ 0 & (D_{s,t} \in F_1^{\times}) \end{cases}$$

where F_0^{\times} (resp. F_1^{\times}) is the set of squares (resp. non-squares) in F^{\times} and

$$D_{s,t} = (s-2^{-1})^2 + (t-2^{-1})^2 - 2^{-2}.$$

In particular

(5.6)
$$|K_{2^{-1},2^{-1}}| = \begin{cases} 2 & (q \equiv 1 \pmod{4}), \\ 0 & (q \equiv 3 \pmod{4}). \end{cases}$$

PROOF. It is clear that $\psi_{s,t}(x) = 2^{-1}$ if and only if

$$(t-1)x^2 + (s-t+2^{-1})x - 2^{-1}s = 0.$$

Since $t \neq 1$, this gives a quadratic equation, whose discriminant is $D_{s,t}$. Hence (5.5) is valid. If $s = t = 2^{-1}$, then $D_{2^{-1},2^{-1}} = -2^{-2}$. Since $-1 \in F_0^{\times}$ (resp. $-1 \in F_1^{\times}$) if and only if $q \equiv 1 \mod 4$ (resp. $q \equiv 3 \mod 4$), (5.6) follows immediately.

LEMMA 5.3. Let $F' = F - \{0, 1, 2^{-1}\}$. Define the sums S', S'_s $(s \in F')$ and S'(s,t) $(s,t \in F - \{0,1\})$ by

(5.7)
$$S' = \sum_{x \in F'} \varepsilon'[u(1)wu(x)], \qquad S'_s = \sum_{x \in F' - \{s\}} \varepsilon'[u(1)wu(x)]$$

and

(5.8)
$$S'(s,t) = \sum_{x \in F - J_s \cup K_s} \varepsilon'[u(1)wu(\psi_{s,t}(x))].$$

Then the sums S, S_s $(s \in F - \{0, 1\})$ in (4.1) and S(s, t) $(s, t \in F - \{0, 1\})$ in (4.2) are related to the sums S', S'_s and S'(s, t) as follows.

(5.9)
$$S_{2^{-1}} = S'$$
 and hence $S = 2\varepsilon'[u(1)wu(2^{-1})] + S'$.

(5.10)
$$S_s + S_{1-s} = 4\varepsilon'[u(1)wu(2^{-1})] + 2S'_s \quad \text{for } s \in F'.$$

(5.11)
$$S(s,t) + S(1-s,t) = 4|K_{s,t}|\varepsilon'[u(1)wu(2^{-1})] + 2S'(s,t)$$

$$for \ s,t \in F - \{0,1\}.$$

PROOF. Since $S_{2^{-1}} = \sum_{x \in F'} \varepsilon[u(1)wu(x)] = \sum_{x \in F'} \varepsilon[u(1)wu(1-x)]$, it follows that

$$S_{2^{-1}} = \frac{1}{2} \left(\sum_{x \in F'} \varepsilon[u(1)wu(x)] + \sum_{x \in F'} \varepsilon[u(1)wu(1-x)] \right).$$

Using (3.7), we have $S_{2^{-1}} = S'$. Since $S = \varepsilon[u(1)wu(2^{-1})] + S_{2^{-1}}$, $S = 2\varepsilon'[u(1)wu(2^{-1})] + S'$ is obvious. Let $s \in F'$. Then we can write

$$S_s = \varepsilon[u(1)wu(2^{-1})] + \sum_{x \in F' - \{s\}} \varepsilon[u(1)wu(x)]$$

and

$$S_{1-s} = \varepsilon[u(1)wu(2^{-1})] + \sum_{x \in F' - \{1-s\}} \varepsilon[u(1)wu(x)].$$

Replacing x by 1 - x, we obtain

$$S_{1-s} = \varepsilon[u(1)wu(2^{-1})] + \sum_{x \in F' - \{s\}} \varepsilon[u(1)wu(1-x)].$$

Therefore we have

$$S_s + S_{1-s} = 2\varepsilon[u(1)wu(2^{-1})] + \sum_{x \in F' - \{s\}} (\varepsilon[u(1)wu(x)] + \varepsilon[u(1)wu(1-x)]).$$

By (3.6) and (3.7), we conclude that

$$S_s + S_{1-s} = 4\varepsilon'[u(1)wu(2^{-1})] + 2S'_s$$
.

It follows from (5.4) that

$$S(s,t) + S(1-s,t) = \sum_{x \in F-J_{s,t}} (\varepsilon[u(1)wu(\psi_{s,t}(x))] + \varepsilon[u(1)wu(1-\psi_{s,t}(x))]),$$

which is transformed into

$$S(s,t) + S(1-s,t) = 2|K_{s,t}|\varepsilon[u(1)wu(2^{-1})] + \sum_{x \in F - J_{s,t} \cup K_{s,t}} (\varepsilon[u(1)wu(\psi_{s,t}(x))] + \varepsilon[u(1)wu(1 - \psi_{s,t}(x))]).$$

By (3.6) and (3.7), we get

$$S(s,t) + S(1-s,t) = 4|K_{s,t}|\varepsilon'[u(1)wu(2^{-1})] + 2S'(s,t).$$

Now we are ready to describe the multiplication table of $\mathcal{H}(G,H)$. In the table below, we omit the contribution of ε' because it is the identity element of $\mathcal{H}(G,H)$ and we also omit the upper half part because $\mathcal{H}(G,H)$ is commutative.

Theorem 5.4. The multiplication table of $\mathcal{H}(G,H)$ with respect to the standard basis is given as follows.

Table II

where $F' = F - \{0, 1, 2^{-1}\}$ and

$$S' = \sum_{x \in F'} \varepsilon'[u(1)wu(x)], \qquad S'_s = \sum_{x \in F' - \{s\}} \varepsilon'[u(1)wu(x)] \qquad \textit{for } s \in F'.$$

Furthermore

$$\begin{split} E'(2^{-1},2^{-1}) &= 2^{-1}(q-1)\varepsilon'[e] + 2^{-1}|K_{2^{-1},2^{-1}}|\varepsilon'[u(1)wu(2^{-1})] + 4^{-1}S'(2^{-1},2^{-1}), \\ E'(s,2^{-1}) &= \varepsilon'[u(1)] + |K_{s,2^{-1}}|\varepsilon'[u(1)wu(2^{-1})] + 2^{-1}S'(s,2^{-1}), \\ E'(s,t) &= \begin{cases} (q-1)\varepsilon' + \varepsilon'[u(1)] \\ &+ 2|K_{s,s}|\varepsilon'[u(1)wu(2^{-1})] + S'(s,s) & for \ t = s, \ or \ 1-s, \\ 2\varepsilon'[u(1)] + 2|K_{s,t}|\varepsilon'[u(1)wu(2^{-1})] + S'(s,t) & for \ t \neq s, 1-s. \end{cases} \end{split}$$

where

$$S'(s,t) = \sum_{x \in F - J_{s,t} \cup K_{s,t}} \varepsilon'[u(1)wu(\psi_{s,t}(x))].$$

PROOF. By (3.5), we have

$$\varepsilon'[u(1)]^2 = 4^{-1}(\varepsilon[u(1)] + \varepsilon[wu(1)] + \varepsilon[u(1)w] + \varepsilon[u(1)wu(1)])^2.$$

We can derive from Table I that the right-side is given by

$$(q-1)(\varepsilon+\varepsilon[w])+2^{-1}(q-1)(\varepsilon[u(1)]+\varepsilon[wu(1)]+\varepsilon[u(1)w]+\varepsilon[u(1)wu(1)])+2S,$$

which can be written, by (3.4), (3.5) and (5.9), as

$$2(q-1)\varepsilon' + (q-1)\varepsilon'[u(1)] + 4\varepsilon'[u(1)wu(2^{-1})] + 2S'.$$

By (3.5) and (3.6), we have

$$\varepsilon'[u(1)wu(2^{-1})]\varepsilon'[u(1)] = 4^{-1}\varepsilon[u(1)wu(2^{-1})] \times (\varepsilon[u(1)] + \varepsilon[wu(1)] + \varepsilon[u(1)w] + \varepsilon[u(1)wu(1)]).$$

It follows from Table I that the right-side is equal to

$$2^{-1}(\varepsilon[u(1)] + \varepsilon[wu(1)] + \varepsilon[u(1)w] + \varepsilon[u(1)wu(1)]) + S_{2^{-1}},$$

which can be written, by (3.5) and (5.9), as $\varepsilon'[u(1)] + S'$. By (3.5) and (3.7), we have for $s \in F'$

$$\varepsilon'[u(1)wu(s)]\varepsilon'[u(1)] = 4^{-1}(\varepsilon[u(1)wu(s)] + \varepsilon[u(1)wu(1-s)])$$
$$\times (\varepsilon[u(1)] + \varepsilon[wu(1)] + \varepsilon[u(1)w] + \varepsilon[u(1)wu(1)]).$$

We can derive from Table I that the right-side is equal to

$$\varepsilon[u(1)] + \varepsilon[wu(1)] + \varepsilon[u(1)w] + \varepsilon[u(1)wu(1)] + S_s + S_{1-s}$$

which can be written, by (3.5) and (5.10), as

$$2\varepsilon'[u(1)] + 4\varepsilon'[u(1)wu(2^{-1})] + 2S'_{\epsilon}$$

By (3.6) and Table I, we obtain

$$E'(2^{-1}, 2^{-1}) = \varepsilon'[u(1)wu(2^{-1})]^2 = 4^{-1}\{(q-1)(\varepsilon + \varepsilon[w]) + S(2^{-1}, 2^{-1})\},\$$

which can be written, by (3.4) and (5.11), as

$$2^{-1}(q-1)\varepsilon' + 2^{-1}|K_{2^{-1},2^{-1}}|\varepsilon'[u(1)wu(2^{-1})] + 4^{-1}S'(2^{-1},2^{-1}).$$

By (3.6) and (3.7), we have

$$E'(s, 2^{-1}) = \varepsilon'[u(1)wu(s)]\varepsilon'[u(1)wu(2^{-1})]$$

= $4^{-1}(\varepsilon[u(1)wu(s)] + \varepsilon[u(1)wu(1-s)])\varepsilon[u(1)wu(2^{-1})].$

It follows from Table I that the right-side is given by

$$2^{-1}(\varepsilon[u(1)] + \varepsilon[wu(1)] + \varepsilon[u(1)w] + \varepsilon[u(1)wu(1)]) + 4^{-1}(S(s, 2^{-1}) + S(1 - s, 2^{-1})),$$

which can be written, by (3.5) and (5.11), as

$$\varepsilon'[u(1)] + |K_{s,2^{-1}}|\varepsilon'[u(1)wu(2^{-1})] + 2^{-1}S'(s,2^{-1}).$$

Finally we consider the product $E'(s,t) = \varepsilon'[u(1)wu(s)]\varepsilon'[u(1)wu(t)]$ for $s,t \in F'$. By (3.7) and the definition of E(s,t), we have

$$E'(s,t) = 4^{-1}(E(s,t) + E(s,1-t) + E(1-s,t) + E(1-s,1-t)).$$

This implies E'(s,s) = E'(s,1-s). We can deduce from Table I

$$E'(s,s) = 2^{-1}(q-1)(\varepsilon + \varepsilon[w]) + 2^{-1}(\varepsilon[u(1)] + \varepsilon[wu(1)] + \varepsilon[u(1)w] + \varepsilon[u(1)wu(1)])$$

+ 4⁻¹(S(s,s) + S(s,1-s) + S(1-s,s) + S(1-s,1-s)).

By (3.4), (3.5), (5.3) and (5.4), we obtain

$$E'(s,s) = (q-1)\varepsilon' + \varepsilon'[u(1)] + 2^{-1}(S(s,s) + S(1-s,s)).$$

Applying (5.11), we get

$$E'(s,s) = (q-1)\varepsilon' + \varepsilon'[u(1)] + 2|K_{s,s}|\varepsilon'[u(1)wu(2^{-1})] + S'(s,s).$$

For $s, t \in F'$ and $t \neq s, 1 - s$, we can derive from Table I that

$$E'(s,t) = \varepsilon[u(1)] + \varepsilon[wu(1)] + \varepsilon[u(1)w] + \varepsilon[u(1)wu(1)]$$

+ $4^{-1}(S(s,t) + S(1-s,t) + S(s,1-t) + S(1-s,1-t)).$

By (3.5), (5.3) and (5.4), we have

$$E'(s,t) = 2\varepsilon'[u(1)] + 2^{-1}(S(s,t) + S(1-s,t)).$$

Using (5.11), we get

$$E'(s,t) = 2\varepsilon'[u(1)] + 2|K_{s,t}|\varepsilon'[u(1)wu(2^{-1})] + S'(s,t).$$

References

- C. W. Curtis and T. V. Fossum, On Centralizer Rings and Characters of Representations of Finite Groups, Math. Zeitschr. 107 (1968), 402–406.
- [2] W. Fulton and J. Harris, Representation Theory: A First Course, Springer-Verlag, N.Y., 1991.
- [3] M. Hashizume and Y. Mori, Spectra of Vertex-Transitive Graphs and Hecke Algebras of Finite Groups, The Bulletin of Okayama Univ. Sci., 31 (1996), 7–15.
- [4] M. Hashizume and Y. Mori, The Character Table of the Hecke Algebra $\mathcal{H}(GL_2(F_q), A)$, Preprint.
- [5] N. Iwahori, On the structure of Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo, Sect. I, 10 (1964), 215–236.
- [6] A. Krieg, Hecke Algebras, Mem. Amer. Math. Soc., 87 (1990) (#435).

Yoshiyuki Mori
Department of Applied Mathmatics
Okayama University of Science
1-1 Ridai-cho, Okayama, 700-0005, Japan
e-mail: mori@xmath.ous.ac.jp