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ABSTRACT. Let A be the subgroup of G = GLy(F,) consisting of diagonal matrices.
We study the structure of the Hecke algebra # (G, A) of G relative to 4. In particular,
we determine the multiplication table of #(G, A) with respect to the standard basis.
As an application, we describe the multiplication table of the Hecke algebra #(G, H)
where H is the normalizer of 4 in G.

1. Introduction

The Hecke algebra #(G,A) of a finite group G relative to its subgroup
A is a generalization of the group algebra CG of G, whose structure and rep-
resentations are interesting mathematical objects as well as those of CG.

In particular, the Hecke algebra (G, A) plays an important role in the
study of vertex-transitive graphs with vertex set G/A. In fact, such a graph
is constructed by giving a certain family of double cosets of G relative to A.
Moreover the adjacency matrix and its powers of such a graph are described in
terms of the elements of #(G,A) ([3]). Therefore if one knows the multipli-
cative structure and irreducible characters of #(G, A), one can find the spectra
of vertex-transitive graphs over G/A.

Let G = GL,(F,) be the general linear group of 2 x 2 non-singular ma-
trices over the finite field F,, and let 4 be the subgroup of diagonal matrices
of G (a split torus of G) and H be the normalizer of 4 in G. In our pre-
vious paper ([4]), we have considered the irreducible characters of #(G, A) and
described the character table of it with respect to the standard basis of #(G, A).
In the present article, we study the multiplicative structure of both #(G, A)
and #(G,H). In particular we determine the multiplication tables of both
H(G,A) and #(G,H) with respect to their standard basis.

The paper is organized as follows. In §2 we consider the double coset
spaces A\G/A and H\G/H. Using Bruhat decomposition of G, we determine
a complete set # of representatives of A\G/A in Theorem 2.1. Moreover de-
composing an H double coset into 4 double cosets, we give a complete set of
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representatives of H\G/H in Theorem 2.2. Let ind(A4gA) (resp. ind(HgH)) be
the number of left A-cosets (resp. H-cosets) in the double coset AgA (resp.
HyH). Their actual values are given in Theorem 2.3.

In §3 we introduce the Hecke algebra #(G, A) (resp. #(G, H)), which is
defined by #(G, A) = eCGe (resp. ¢'CGe’) where ¢ (resp. ¢') is the idempotent
of CG given by

e= 4] Za (resp. ¢ = |H|™' Z h).
aeA heH
We notice that (G, H) is a subalgebra of #(G,A) since A is a normal
subgroup of H. The elements ¢[g] = ind(AgAd)ege (g € #) of #(G,A) form
a linear basis # of #(G,A), which we call the standard basis of (G, A4).
Similarly we introduce the standard basis #’ of #(G,H). Each element of
%' is expressed as a linear combination of elements of # in Theorem 3.1.

In §4 we describe the multiplication table of (G, A) with respect to the
standard basis # in Theorem 4.1.

In §5 we give the multiplication table of #(G,H) with respect to the
standard basis 4’ of #(G,H), by applying Theorem 3.1 and Theorem 4.1.

2. The double coset spaces A\G/A and H\G/H

Let F = F, be a finite field with ¢ elements where ¢ is a power of an odd
prime p. Let F*=F — {0} be the multiplicative group of F. Then F* is a
cyclic group of order ¢ — 1. Let G = GL,(F) be the general linear group of
2 x 2 nonsingular matrices over F. The order |G| of G is known to be equal
to g(qg+1)(¢—1)>. Let 4 be the subgroup of G consisting of diagonal ma-

trices, namely
x 0
A= a(x,y):< );x,yeFX}.
{ 0 »

Note that 4 is a split torus of G and the order |4| of 4 is equal to (¢ — 1)
Let H = Ng(A) be the normalizer of 4 in G. Then one can write

(2.1) H=AUwAd =AU Aw

where w is an element of G given by

(2.2) W= <(1) _01 )

Note that |H| =2(g—1)* and

(2.3) wa(x, y)w™ ' = a(y, x) for a(x, y) € A.
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Let Z(G) be the center of G. Then

Z(G) = {a(x,x) - (g 2>;xeFX},

so that Z(G) is contained in 4 and every element a € A can be written uniquely
as

(2.4) a=a(x,x)a(y,1) where x,y e F*.
Let U be the subgroup of G, which is defined by

U= {u(x):((l) T);xeF}.

2.5)  a(x, yu@)a(x', y") = u(xy'z) for x,ye F* and z€F,

Then one can check

so that 4 normalizes U. Let

g:<a b)eG where ¢ e F*.
c d

Then one can verify
(2.6) g = u(ac™ " Ywu(cd(det g) a(c, ¢! det g)
and therefore
(2.7) G =UAUUwUA (Bruhat decomposition of G).
From (2.7), it follows that the coset space G/A is given by
G/A ={u(x)4;x e F}U{u(y)wu(z)4; y,z € F}.
Now we consider the double coset space A\G/A.
THEOREM 2.1. Let R be the subset of G defined by
R = {e,w,u(l),wu(1),u(V)wu(r) (reF)}

where e is the identity matrix. Then R is a complete set of representatives of
A\G/ A, that is,

A\G/A = {AgA;g € %}
and consequently |A\G/A| = q+ 4.

PrOOF. Since AgA (g € #) are all distinct, it is enough to see A\G/A =
{AgA;9€ #}. Assume g = u(x)a(s,t) € UA. Then AgA = Au(x)A. If x=0,
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then Ag4 = A. While if x#0, then by (2.5) we have u(x) = a(x, u(l)-
a(x7',1) and hence AgA = Au(1)A. Assume g = u(y)wu(z)a(s,t) € UwUA.
Then AgA = Au(y)wu(z)A. If y=z=0, then Ag4A = AwA. If y=0 and
z#0, then AgA = Awu(z)A. Since u(z) = a(z,1)u(1)a(z7", 1), it follows that
AgA = Awa(z,1)u(1)4. But by (2.3) we have wa(z,1) = a(l,z)w and hence
AgA = Awu(1)A. Similarly if y#0 and z=0, then we have Agd =
Au(1)wA. Finally assume y # 0 and z # 0. Since u(y) = a(y, Du(1)a(y~',1)
and a(y~', D)w=wa(l,y "), we have Au(y)wu(z)4 = Au(1)wa(1, y"u(z)A.
Using (2.5), we obtain a(1, y~"u(z) = u(yz)a(l, ') and hence

(2.8) Au(y)wu(z)A = Au(l)wu(yz)A for y,ze F*.
Since G = UAU UwUA, our assertion is now clear.
Next we consider the double coset space H\G/H.
THEOREM 2.2. The double coset space H\G/H is given by
{H, Hu(1)H, Hu(1)wu(2™" H, Hu(1)wu(r)H = Hu(l)wu(l —r)H (re F')}
where we put F' = F —{0,1,27'} and consequently |H\G/H|= (¢ + 3)/2.

ProoOF. Since A4 is a subgroup of H, it follows that HgH = HAgAH
for g € G. Therefore we conclude from Theorem 2.1 that H\G/H = {HyH,
g€ R}. But by (2.1), we have

(2.9) HgH = AgAU AwgA U AgwA U Awgw A (geR).
Assume g = e or w. Since w? = a(—1,—1) € Z(G), it follows from (2.9) that
(2.10) H=A4UAwA = HwH.

Next assume g =u(1). Since wu(l)w =u(—1)wu(—1) by (2.6) and hence
Awu(1)wA = Au(1)wu(1)4 by (2.8), it follows from (2.9) that

(2.11) Hu(1)H = Au(1)AU Awu(1)AU Au(1)wA U Au(1)wu(1)A.
Similar argument yields that
(2.12) Hu(1)H = Hwu(1)H = Hu(1)wH = Hu(1)wu(1)H.

Finally assume ¢ =u(l)wu(r) with re F—{0,1}. Then by (2.6), we
have wg = u(—Dwu(r—1), gw=u((r — Dr Hwu(—r)a(r,r') and wgw =
u(—r(r— 1) Ywu(l —r)a(r—1,(r—1)"") and hence by (2.8) Awgd =
Au(Dywu(l —r)4, AgwA = Au()wu(l —r)4 and AwgwA = Au(l)wu(r)A.
Therefore we have

(2.13)  Hu(V)wu(r)H = Au(1)wu(r)AU Au(1)wu(l — r)A4 (re F—{0,1}),
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from which we can deduce

(2.14) Hu(l)wu(r)H = Hu(1)wu(1 —r)H for re F —{0,1}.
In particular if r =27, then

(2.15) Hu(D)wu(2™"YH = Au(1)wu(27") 4.

Thus the theorem follows from (2.10), (2.12), (2.14) and (2.15).

We denote by ind(AgA4) (resp. ind(HgH)) the number of left A-cosets
(resp. H-cosets) in AgA (resp. HgH). Then ind(AgAd) = |AgA|/|A| = |A|/|A4,]
where 4, = ANgAg~' (resp. ind(HgH) = |HgH|/|H| = |H|/|H,| where H, =
HNgHg™).

THEOREM 2.3. For the double cosets AgA given in Theorem 2.1 and HgH
given in Theorem 2.2, we have

(g =ew),

. 1
ind(AgA4) = {q -1 (9e—{ew})

and

1 g=e,

2Ag-1)  g=u(l),

(¢=1)/2 g=ul)wu(2"),

g—1 g=u(l)wu(r) (reF’).

ind(HgH) =

Proor. By simple matrix computations, we get
Ag=A4 (g=ew), Ay =Z(G) (ge R —{e,w})

and
H,=H, H,y = Z(G),

Hu(l)wu(Z*') = Z(G) Ua(l, *1)Z(G) U WZ(G) U wa(l, 71)Z(G)’
Hyywutry) = Z(G) Uwa((1 —1) "', r HZ(G)  (re F').

This implies the theorem immediately.

3. The Hecke algebras ##(G,A) and #(G,H)

Let CG be the group algebra of G over C. Let ¢ (resp. &) be the
idempotent of CG, which is defined by

(3.1) e=4"Y a  (resp. & =|H|"" > h).

acA heH
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Then #(G,A) = ¢CGe (resp. # (G, H) = &' CG¢’) is a semisimple subalgebra of
CG, which we call the Hecke algebra of G relative to A (resp. H). Clearly
H(G,A) (resp. #(G,H)) is spanned by ege (resp. ¢'ge’) for g € G and ¢g1¢e =
egre (resp. &'g1e’ = ¢&'gre’) for g1,9, € G if and only if Ag1A = Ag,A (resp.
Hng = ngH). Put

(3.2) elg] = ind(A4gA)ege (resp. &'lg] = ind(HgH)é'ge')

for ge G. Then it is not difficult to see ([6]) that

(3:3) elg) =14 Yk (resp. &lg) = [HITN Y k).
keAgA ke HgH

Note that ¢le] = ¢ (resp &'[e] = ¢’). Furthermore the set 4 = {¢[g];9 € #} is a
linear basis of #(G,A) over C by Theorem 2.1 and the set

B = {& &' [u(D)], &' [u(D)wu2™N)], &' [u()wu(r)] = &'lu(D)wu(l —r)] (reF')}

forms a linear basis of # (G, H) over C by Theorem 2.2. We call 4 (resp. 4’)
the standard basis of #(G, A) (resp. # (G, H)). Note that dim¢ #(G,A) =
q+4 (resp. dim¢ #(G,H) = (¢ +3)/2).

THEOREM 3.1. The Hecke algebra # (G, H) is a commutative subalgebra of
the Hecke algebra # (G, A). Moreover the standard basis elements of # (G, H)
are expressed in terms of the standard basis elements of # (G, A) as follows.

(3.4) ¢ =271 (e + elw]),

(3:5) e'lu(1)] = 27 (efu(1)] + elwu(1)] + elu(1)w] + e[u()wu(1)]),

(3.6) u()wu(2)] = 27 efu(Dwu(2 1)),

(3.7) &lu(Vywu(r)] = &/fu(Dwu(l — 1] = 27 Elu()wu(r)] + efu(wu(l - 1)
for re F’

ProOF. By the criterion of the commutativity of Hecke algebras ([6]),
it is enough to see Hg 'H = HgH for ge G. For that purpose, we have
only to check it for g = u(1) and u(1)wu(r) (re F —{0,1}). Since u(1)™' =
a(l,—Du(Da(1,-1) and (u()wu(r)™" = u(—r)wu(=1)a(~1,-1), it follows
that Hu(1)'H = Hu(1)H and  H(u(1)wu(r))"'H = Hu(—r)wu(—1)H =
Hu(l)wu(r)H. Thus #(G,H) is commutative. Since A4 is a normal sub-
group of H, it follows that e’ = &’ = ¢’¢ and hence #(G, H) is a subalgebra of
H(G,A). Applying (2.10), (2.11), (2.15) and (2.13) to (3.3), we obtain (3.4),
(3.5), (3.6) and (3.7) respectively.
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4. The multiplication table of J#(G,A)
The multiplication table of #(G, ), we mean, is the matrix
(8[9]8[h])(g,h)eﬂ/7x.@
where {e[g];g € #} is the standard basis of #(G, A).

THEOREM 4.1. The Hecke algebra #(G,A) is not commutative and its
multiplication table with respect to the standard basis {e[g];g € R} is given as
follows. Here we omit the contribution of ¢ = ¢le] because it is the identity
element of #(G,A).

Table L
e[w] elu(1)]
&[w] e[wu(1)]
elu(1)] elu ( )w] (¢ =D+ (g = 2)efu(1)]
epwu(1)] eu(Mwu(D)] (g — Dew] + (g — 2)ewu(1)]
elu(1)w] elu(1)] eu()wu(l)] + S
elu()wu(1)] elwu(1)] eu(l)w] + S
eu(V)wu(s)] (se F* —{1}) | eu(V)wu(l —s)] eu()wu(1)] + eu(l)w] + S;
e[wu(1)] e[u(1)w]
élw] elu(1)] glu(Lywu(1)]
elu(1)] eu(V)wu(1)] + S (g — Delw] + (g — 2)efu(1)w]
g[wu(1)] eu()w] + S (¢ — De+ (g — 2)efu(1)wu(1))
elu(1)w] (¢ — De+ (g — 2)efu(1)] ewu(l)] + S
elu(1)wu(1)] (g — De[w] + (g — 2)g[wu(1)] eu(l)]+ S

elu(Hywu(s)] (se F* —{1}) | elu()wu(1)] + efu()w] + Si_s elu(1)] + elwu(1)] + S5

eu()wu(1)] elu(Hwu(r)] (te F* —{1})
e[w) elu(1)w] elu(wu(l — 1)]
elu(1)] efwu(1)] + S epwu(1)] + efu()wu(l)] + S,
e[wu(1)] eu()]+ S elu(1)] + elu(l)w] + S1—,
efu(1)w] (g = Delw] + (g = 2)efu()w]  elwu(1)] + efu(D)wu(1)] + S1—
elu(l)wu(1)] (g —De+ (g —2)efu(1)wu(1)] efu(1)] + elu()w] + S,
eu()wu(s)] (se F* —{1}) e[u(1)] + e[wu(1)] + Sy E(s,1)

where we put

4.1) S= Z elu(1)wu(x)] and S, = Z glu(1)wu(x))
xeF—-{0,1} xeF—{0,1,r}

for re F—{0,1}.
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Moreover for s,te F —{0,1} the product E(s,t) = elu(1)wu(s)]e[u(1)wu(t)]
is given by

(g Ve + (g — Delw] + 271,271 (t=s=21),

E(s,1) = (¢ — De+e[wu(1)] + elu(l)w] + S(s, s) (t=s#271),
A’ (g — De[w] + e[u(1)] + efu(L)wu(1)] + S(s,1 — ) (t=1-s5#271),
elu(D)] + ewu(D)] + elu()w] + elu(V)wu(1)] + S(s, 1) (¢ #s,t#1—3s).

Here we set
(4.2) S(s,0) =Y eu(Hwu(y (x))]

where Js; = {0,1,s,5(1 — N s=0)1=0"} and
(4.3) Yo (x) = (x = )((t—Dx+s)(x—s5)""  for xe F—{s}.

Before proving Theorem 4.1, we need the following lemma.

LEmMA 4.2. In H(G,A), the following identities hold.
(4.4) ea(x,y) =e=ua(x,y)e  for x,yeF*.
(4.5) eu(x)e = eu(1)e, ewu(x)e = ewu(1)e,

eu(x)we = eu(l)we  for x e F*.
(4.6) eu(y)wu(z)e = eu(V)wu(yz)e  for y,ze F*.
(4.7) &lglelh] = ind(AgA) ind(4hA)(qg — 1)71 Z ega(y, 1)he for g,heG.
yeF~

PrOOF. (4.4) is clear from the definition of & (4.5) and (4.6) are also

obvious from the proof of Theorem 2.1. Since &> = ¢,

elgle[h] = ind(AgA) ind(AhA)egehe.
By (2.4) and (3.1), we can write
e=(g-1)7" > alx.xa(y1),
x,yeF*

so that

egehe = (¢ — 1)7 Z ega(x,x)a(y, 1)he.
x,yeF>

Since a(x,x) € Z(G), it follows that
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egehe = (g — 1) Z ega(y, 1)he.
yeF~
Thus we obtain (4.7).

Proor oF THEOREM 4.1. Here we will verify the last column in Table I.
The products in the other part are caluculated in a similar and simpler way.
Applying & = u(1)wu(t) (te F —{0,1}) to (4.7) and using ind(Au(1)wu(t)4) =
qg— 1, we have

elglefu(1)wu(r)] = ind(AgA) Z ega(y, Du(1)wu(t)e for g € %.
yeF~

Since a(y, Du(1)wu(t) = u(y)wu(ty=")a(1, y), it follows that
(4.8) elglefu(1)wu(t)] = ind(AgA) Z equ(y)wu(ty™)e.

yeF~
Case 1. g=w. Since ind(Awd)=1 and wu(y)wu(ty™') =u(—y7")-
wu(y(t —1))a(y, y), it follows from (4.8) that

elwlelu(D)wu(t)] = Z eu(—y wu(y(t —1))e.
yeF~
Using (4.6), we get
ewlelu(D)wu(r)] = Z eu(N)wu(l — t)e = (¢ — Deu()wu(1 — t)e.
yeF~
Since ind(Au(1)wu(l —t)4) = g — 1, we have
elwlefu(D)wu(r)] = elu()wu(l — 1)].
Case 2. g=u(l). Since ind(4u(1)4)=¢g—1 and u(Du(y)wu(ty™!) =
u(1+ y)wu(ty~1), it follows from (4.8) that
elu()]efu(Dwu()] = (g —1) Z eu(1 4 y)wu(ty e
yeF~
Replacing 1+ y by x, we get
elu(D)]efu(Dwu(e)] = (¢ — Vewu(—t)e+ (¢ — 1) Z eu(x)wu(r(x — 1) e
xeF*—{1}

Using (4.5) and (4.6), we have
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elu(D)]efu(V)wu(t)] = (g — Dewu(l)e + (¢ — 1) Z eu()ywu(tx(x — 1)71)8.

xe F*—{1}

-1

Putting z = tx(x — 1), we can deduce

elu(D]elu(Dwu()] = (¢ — Dewu(De + (g — 1) _E;{t} u(1)wu(2)e.
Since ind(Awu(1)A4) = ind(Au()wu(z)4) = ¢ — 1, we get
elu(Dlefu(1)wu(r)] = epru(1)] + 'E;m elu(Dwu(2)),
which is equal to
elu(Dlefue(wu(t)] = epru(1)] + elu(wu(1)] + S:.

Case 3. g=wu(l). Since ind(Awu(1)4)=¢g—1 and wu(l)u(y)wu(ty™!) =
wu(1 + y)wu(ty~'), we have, by putting x =1+ y,

elwu()]eu(L)wu(t)] = (g — Deu(—t)e + (g — 1) xe;{l} ewu(x)wu(t(x — 1),
Using (4.5), wu(x)wu(t(x — 1)) = u(=x"Ywu(x(tx(x — 1) = 1))a(x,x~") and
(4.6), we have
elwu(D)efu(wu(®)] = (¢ — Deu(De+ (g = 1) > au(D)wu(l - tx(x = 1)),

veF {1
Putting z =1 —rx(x — 1)”", we can deduce :
ewu(D)Jelu(V)wu(t)] = (g — Deu(l)e + (¢ — 1) Fz{;l }su(l)wu(z)e-
Since ind(Au(1)4) = ind(Au(1)wu(z)4) = g — 1, we obta;in
elwu(D)lelu(wu(n)] = efu(D)] +elu(Wpw) + Y elu(lwu(z)].
cer {0 11-1)

Case 4. g=u(l)w. Since ind(Au(l)wd)=g¢g—1 and u()wu(y)wu(ty™') =
u((y — Dy Hwu(y(t — 1))a(y, 1), it follows from (4.8) that
-1

elu(Dwlelu(1)wu(r)] = (g

+lg-1) > eu((y— 1)y wu(y(t—1)e
yeF*—{1}

ewu(t —1)e
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By (4.5) and (4.6), we obtain
efu(L)wlelu(Vywu(z)] = (¢ — Dewu(l)e + (g — 1) Z eu(Dwu((y — 1)(t —1))e.
e F*—{1
Putting z=(y—1)(t—1) and using ind(ilwu(i)il) = ind(Au(1)wu(z)4) =
qg—1, we get
efu()wlelu()wu(z)] = elwu(l)] + FZ{I }a[u(l)wu(z)],

which yields
(wlefu(Dwu(n)] = elwu(1)] + elu(H)wu(1)] + S1-.

elu
(Dwu(1).  Since u(1)wu(D)u(y)wu(ty=") = u(1)wu(l + y)wu(ty™")
wu(1)4) = g — 1, it follows from (4.8) that

Case 5. g=u
and ind(Au(l)w

efu()wu(D)]efu()wu(t)] = (g —1) Z eu(D)wu(1 + y)wu(ty™e.
yeF~
Putting x =1+ y, we have
elu(ywu(1)]e[u(1)wu(r)]

=(q—Deu(—t)e+(g—1) Z eu(1)wu(x)wu(t(x — 1) e
xe F*—{1}

By (4.5), u(Dwu(x)wu(t(x— 1)) =u((x = DxDwu(x(tx(x = 1)~ = 1))a(x, x7 1)
and (4.6), we can deduce
elu(V)wu(D)]efu(1)wu(t)] = (¢ — Deu(l)e+ (¢ — 1) Z eu(Hywu((t — )x + 1)e.
xe F*—{1}
Putting z= (r—1)x+ 1 and using ind(4u(1)A4) = ind(Au(l)wu(z)4) =g — 1,
we obtain
elu(D)wu(D)]e[u()wu(r)] = elu(1)] + elu(1)w] + Z elu()wu(z)],
ze F*—{1,1}
which yields
elu(Vywu(D)]elu()wu(r)] = elu(1)] + elu(1)w] + S,.

Case 6. g=u(l)wu(s) (se F—{0,1}). Set E(s, 1) = e[u(1)wu(s)]e[u(1)wu(r)].
Since ind(Au(1)wu(s)4) =g — 1, it follows from (4.8) that
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E(s,t)=(q¢—1) Z eu()wu(s + y)wu(ty Ve
yeF~
Putting x = s+ y, we have
E(s,t)=(¢—1) Z eu(Dwu(x)wu(t(x — ) e,

xeF—{s}

which equals
E(s,t) = (¢ — Deu((s — t)s De+ (g — 1) Z eu(1)wu(x)wu(t(x —s) e
xeF*—{s}

Since  u(1)wu(x)wu(t(x —s)7") = u((x — Dx"Ywu(x(tx(x — )~ = 1))a(x, x1),
it follows from (4.6) that

E(s, ) = (g — Deu((s — £)s e+ (¢ — Dewu((s+t— 1)(1 —s) e

+g-1) > au(wu((x—1)(tx(x —s)" = 1))

veF{Ls)

Since (x — 1)(tx(x —s)~' — 1) =, (x), we have

(49)  E(s,1) = (g — Deu((s — 0)s e+ (g — Dewu((s+ 1= 1)(1 —5) e
+lg=1) D au(Dwu(yy (x))e

xeF*—{1,s}
If t=s5=2"", then (4.9) becomes
EQ'2 ) =(g-De+(g—Debwl+ Y elu(D)wulhrr 1 (x))].

xeF*—{1,271}

Since Jy-1 51 = {0,1,27'}, it follows that

EQ7 27 = (g— e+ (g— De[w] + 527", 27h.
If t=s5%2"", then (4.9) becomes
E(s,;s) = (¢ = De+epu(D)] + D> elu(l)wuly o(x))):

xeF*—{1,s}

Since w;sl (0) = {s(1 —5)~'} and 1//;1(1) is empty, it follows that

E(s,s) = (¢ — Ve + e[wu(1)] + efu(1)w] + > elu(V)wu (i 5(x))];

xeF*—{1,s5,5(1—=s)"'}
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which implies
E(s,s) = (g — e+ e[wu(1)] + e[u(1)w] + S(s, 5).
If t=1—5#2"1, then (4.9) becomes
E(s,1—s) =efu(D)] + (g = Delw] + Y elu(D)wuly (%))
xeF*—{1,s}
(0) is empty and ¥, {_ (1) ={(2s— 1)s~'}, it follows that

E(s,1 —s) = (g — 1)e[w] + elu(1)] + efu(1)wu(1)]

+ Z 8[u(1)Wll(lﬁS717S(X>)],

xeF*—{1,s,(2s—1)s"'}

Since ¥, |,

which yields
E(s,1 —5) = (g — De[w] + eu(1)] + eu()wu(1)] + S(s, 1 —s).
If t#5s and t# 1 — s, then (4.9) becomes
E(s,1) = elu(D)] +elwu(D)] + D elu(L)wuly, (x))].
xeF*—{1,s}
Since ., (0) = {s(1 — n~'} and 1//;}(1) ={(s—0)(1 —=0)7"}, it follows that
E(s,1) = elu(1)] + efwu(1)] + elu(D)w] + elu(Dywu()] + D elu(Lywu(y (x))],
xeF—Js,
which implies

E(s,t) = elu(1)] + ewu(1)] + elu(1)w] + efu()wu(1)] + S(s, 7).

5. The multiplication table of #(G, H)

Using the multiplication table of #(G,A) given in §4, we describe the
multiplication table of #(G,H) with respect to the basis

B = {&, &' uD)], & [u(D)wu2™N)], &' [u()wu(r)] = &'[u(D)wu(l —r)] (reF')}.

To start with, we need some properties of the map W, ,: F — {s} — F in (4.3)
and the sum S(s,7) in (4.2) where s,t€ F — {0, 1}.

Lemma S.1. Let s,te F—{0,1}. Let ,: F—{s} — F be the map
defined by

Vi) = (x = D((t = Dx +5)(x =)~
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and let S(s,t) be the sum
Ss,0) =Y elu(Lywu(y (x))]
xeF—Js,
where Jg; ={0,1,5,5(1 =)', (s—)(1 =)'}, Then we have
51 Vi) = ((x+s =01 =07")  for xeF—{l -s},
(5.2) Viog () =1 =4 (1 =x)  for xe F—{l —s},
(5.3) S(1—s5,1—1)=S8(s,1),
(5.4) S(s,1—1)=8S(1 —s,¢) = Z eu()wu(l — g (x))].
xeF>*—J;

ProoE. (5.1) and (5.2) are proved by direct computations. Put f(x) =
(tx+s—1)(1—1)" for xe F. Then by (5.1)

S=s1—0=> euwuly,(f(x))].

xeF—Ji 51—

Since the map f transforms F — Jj_, 1, bijectively onto F — J; ,, it follows that

S(l=s1—0)=" > elu(V)wuli, (1),
yeF—J:J
which equals S(s,¢). By (5.3), we have S(s,1 —¢) = S(1 —s,1). Using (5.2),
we can write

SA=s0)="Y_ euwu(l -y, (1 -x)).
xeF—-Jy_s
Since the map g(x) = 1 — x transforms F — Jj_,, bijectively onto F —J;,, it
follows that

S(t=s0)= Y eu()wu(l =y, ,(»))]

yeF—Jg,
Thus (5.4) holds.

LEMMA 5.2. Let s,te F—{0,1} and put K, ={xeF —{s};y, (x)=2""}.
Then
2 (Ds: € Fy),
(5.5) (Kol =41 (Ds:=0),
0 (Ds, € Fy)
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where F§ (resp. F[) is the set of squares (resp. non-squares) in F* and
Dy,=(s—2" 4+ (@-27"2 -2

In particular

_[2 (¢g=1 (mod4)),
(5.6) o120 = {0 (g=3 (mod 4)).
PrOOF. It is clear that v, (x) =27! if and only if

(t—Dx*+(s—t+2Hx-2"1s=0.

Since ¢ # 1, this gives a quadratic equation, whose discriminant is D, ,. Hence
(5.5) is valid. If s=7=2"" then D,1,1 =-2"2 Since —1e€ F (resp.
—1 e F) if and only if ¢ =1 mod4 (resp. ¢ = 3 mod 4), (5.6) follows imme-
diately.

LemMMA 5.3. Let F'=F —{0,1,27'}.  Define the sums S’,S! (se F') and
S/(Sa t) (Sa teF— {Oa l}) by

(5.7) S = Z &' u(1)wu(x)], S! = Z ' u(1)wu(x))
xeF’ xeF'—{s}
and
(5.8) S's,0= D & u(Mwuly (x))].
xe T, UK,

Then the sums S,S; (se F—{0,1}) in (4.1) and S(s,t) (s,te F—{0,1}) in
(4.2) are related to the sums S',S! and S'(s,t) as follows.

(5.9) S, =8" and hence S =2¢'u(l)wu(27")] + 5"
(5.10) S+ Sy = 4e’[u()wu(27] +28!  for seF’.
(5.11) S(s,0) + S(1 —s,0) = 4|K, e [u(D)wu(27)] + 28'(s, 1)

for s,te F—{0,1}.

ProoF. Since Sy-1 = > efu(D)wu(x)] =" g efu()wu(l — x)], it fol-
lows that

Sy :% <Z elu(wu(x)] + Z elu(Hwu(l — x)])
xeF’ xeF’

Using (3.7), we have S, =S". Since S=-clu()wu2™")]+ S, S=
2¢'u(1)wu(271)] + S’ is obvious. Let se F’. Then we can write
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and

Therefore we have

Sy + S5 = 2efu()wu(27 )] + Z (e[u(Dywu(x)] + efu()wu(l — x)]).
xeF'—{s}

By (3.6) and (3.7), we conclude that
Sy + S5 = 4e'[u()wu(27")] + 25!

It follows from (5.4) that

S, ) +S(L=s,0)= > (elu(ywul (x))] + elu(Lwa(l = ,(x)]),

xeF—Js,

which is transformed into

S(s,0) + 81— s.0) = 2Ky lefu(wu7 )]+ > (elu()wu(yy,,(x))]

veF TIUK,
+ efu(1)wu(l =y (x))])-
By (3.6) and (3.7), we get
S(s,0) + S(1 —s,1) = 4K, Je'[u(1)wu(27")] 4+ 28" (s, 1).

Now we are ready to describe the multiplication table of #(G, H).

the table below, we omit the contribution of &’ because it is the identity element
of #(G,H) and we also omit the upper half part because #(G,H) is com-

mutative.

THEOREM 5.4. The multiplication table of #(G,H) with respect to the

standard basis is given as follows.
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Table 11
&' [u(1)] eu(Vwu2™N]  &'u(l)wu(t)] (teF’)

&' [u(1)] 2(q — 1)’ + 28’
+ (g = 1e'[u(1)]
+ de'fu(L)wu(27)]

' u(1)wu(27h)] &lu(l)] + 8’ E'(271271
eu(Dwu(s)] (se F') | 2&'[u(1)] + 4&'u(1)wu(2™")] E'(s,271) E'(s,1)
+ 28]

where F' = F —{0,1,27'} and
S = Z &' [u(1)wu(x)], S! = Z e'u()wu(x)]  for seF'.
xeF' xeF'—{s}
Furthermore
E'27 27 =27 (g — De'le] + 27Ky 5 e [u(D)wu(27H] + 47187271 271,
E'(5,27") = &'[u(1)] + |K, o1 ¢/ [u(Dwa(27 )] +2718"(s,271),

(¢ — )&’ + &'[u(1)]
E'(s,1) = + 2|K sl u(1)wu(271)] + S'(s, 5) Jor t=3s, or 1—s,
28" [u(1)] + 2|Ks, e’ u(D)wu(2=1)] + S'(s,£)  for t #s,1 —s.

S's,n= Y e luwuly, ()]

xeF-, UK, ,
Proor. By (3.5), we have
e/lu(1)]* = 47 (elu(1)] + elu(1)] + elu(1)w] + elu(Lwa(1)])%.
We can derive from Table I that the right-side is given by
(q = 1)(e+elw]) + 27 (g = 1)(elu(1)] + efwu(1)] + efu(1)w] + efu()wu(1)]) + 25,
which can be written, by (3.4), (3.5) and (5.9), as
2(q = 1)e' + (¢ = De[u(1)] + 4e'[u(1)wu(271)] + 28",
By (3.5) and (3.6), we have
'[u(1)wu(2”)]e [u(1)] = 4~ elu(D)wa(271)] > (elua(1)] + ewu(1)]
+ efu(1)w] + efu( ywu(1))).

It follows from Table I that the right-side is equal to
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27N e[u(1)] + e[wu(1)] 4 elu(1)w] + efu(1)wu(1)]) + Sy,

which can be written, by (3.5) and (5.9), as ¢'[u(1)] + S’. By (3.5) and (3.7),
we have for se F’

&' lu(1)wu(s)le'[u(1)] = 47" ([u(1)wu(s)] + elu(1)wu(l - s5)))
x (efu(1)] + efwu(1)] + efu(1)w] + elu(1)wu(1)]).
We can derive from Table 1 that the right-side is equal to
e[u(1)] + efwu(1)] + efu()w] + efu()wu(1)] + Ss + Si-,
which can be written, by (3.5) and (5.10), as
26/ [u(1)] + 4¢'u(D)wu(27)] + 25,
By (3.6) and Table I, we obtain
E'Q7 27 =& u(wu(2 )] = 4 (g — D(e+w]) + 527", 27N},
which can be written, by (3.4) and (5.11), as
27N (g — e’ + 27Ky p | u(Dwu(27 )] + 4718271, 27,
By (3.6) and (3.7), we have
E'(5,271) = &'lu(1)wu(s)le' [u(1)wu(2™")]
= 47 (eu(V)wu(s)] + efu(D)wu(l — s)])efu(1)wu(2™")].
It follows from Table I that the right-side is given by
27 (efu(1)] + efwu(1)] + elu(L)w] + efu(Dwau(1)]) +471(S(5,271) + S(1 = 5,271),
which can be written, by (3.5) and (5.11), as
'lu(1)] + |K o1 e/ u()wu(2~ 1] +2718"(s,271).

Finally we consider the product E’(s, ) = &'[u(1)wu(s)]e’[u(1)wu(t)] for s,t € F'.
By (3.7) and the definition of E(s,f), we have

E'(s,t) =47 (E(s,t) + E(s,1 =) + E(1 —5,8) + E(1 — 5,1 — 1)).
This implies E'(s,s) = E'(s,1 —s). We can deduce from Table I
E'(s,5) =27 (¢ = 1) +e[w]) + 27 (elue(1)] + epwue(1)] + elu(1)w] + elu(1)wu(1)])
+471(S(s,5) + S(s, 1 —5) + S(1 —5,8) + S(1 — 5,1 —5)).
By (3.4), (3.5), (5.3) and (5.4), we obtain
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E'(s,;5) = (¢ = 1)&' +&'[u(1)] + 27 (S(s,5) + S(1 = 5,9)).
Applying (5.11), we get
E'(s,s) = (q — D)e' +&'[u(1)] + 2|Ky sle [u(D)wau(271)] + S'(s,.9).
For s,te F’ and t# 5,1 —s, we can derive from Table I that
E'(s,t) = elu(1)] + efwu(1)] + efu(1)w] + elu(1)wu(1)]

+471(S(s,0) + S(1 —5,0) + S(s,1 — 1) + S(1 — 5,1 —1)).
By (3.5), (5.3) and (5.4), we have

E'(s,1) = 2&'u(1)] + 27" (S(s, 1) + S(1 — 5,1)).
Using (5.11), we get

E'(s,1) = 2¢'[u(1)] + 2|K; o[ [u(D)wu(2™")] + S (s, 1).
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