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ABSTRACT. A multivariate generalized ridge (MGR) regression provides a shrinkage
estimator of the multivariate linear regression by multiple ridge parameters. Since the
ridge parameters which adjust the amount of shrinkage of the estimator are unknown,
their optimization is an important task to obtain a better estimator. For the univariate
case, a fast algorithm has been proposed for optimizing ridge parameters based on
minimizing a model selection criterion (MSC) and the algorithm can be applied to
various MSCs. In this paper, we extend this algorithm to MGR regression. We also
describe the relationship between the MGR estimator which is not sparse and a multi-
variate adaptive group Lasso estimator which is sparse, under orthogonal explanatory
variables.

1. Introduction

We consider n pairs of data {y,x;} (i=1,...,n), where y; is a
p-dimensional vector of response variables, x; is a k-dimensional vector of
explanatory variables, and n satisfies n > max{p,k + 1}. A multivariate linear
regression model is a statistical model for multiple response variables (e.g.,
Srivastava [19], Chap. 9; Timm [22], Chap. 4). Let Y = (y,,...,»,)" be
an n x p matrix of response variables, X = (xi,...,x,) be an n x k matrix
of explanatory variables, and & = (g1,...,&,) be an n x p matrix of error
variables. Then, the multivariate linear regression model is given by

Y=14+XE+6, (1)

where 1, is an n-dimensional vector of ones, u# is a p-dimensional vector
of location parameters, and & = (&,...,&)  is a k x p matrix of regression
coefficients. We assume that X is centralized and has full column rank, i.e.,
X1, =0, and rank(X) =k, and that ¢,...,&, are independently and iden-
tically distributed according to mean vector 0, and covariance matrix 2, where
0, is a k-dimensional vector of zeros. Omne of the most basic methods for
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estimating the unknown parameters # and = in (1) is the least squares (LS)
method. The LS estimators of g and = are given by

a=y=-Y1, E=M'X'Y (M=X'X). (2)

These estimators are equal to the maximum likelihood estimators (MLEs) of u
and £ under normality, i.e., the assumption that

El,..., &, ~ Lid. Np(Op,E).

The LS estimators can be obtained as simple forms as per (2) regardless of
having good theoretical properties, e.g., unbiasedness and asymptotic normality.
Unfortunately, it cannot be said that = is a good estimator, in the sense that
the variance of the estimator becomes large when multicollinearity occurs.
For the univariate case, i.e., when p = 1, a generalized ridge (GR) regres-
sion was proposed by Hoerl & Kennard [10] to avoid the problem posed by
multicollinearity. The GR regression can be expected to overcome this prob-
lem by shrinking an estimator of regression coefficients. The GR estimator
can be obtained as closed form and the amount of shrinkage of the estimator
is adjusted by k regularization parameters called ridge parameters. However,
since the ridge parameters are unknown, to obtain a better estimator, we have
a new problem to address, namely ridge parameters optimization. A model
selection criterion (MSC) minimization method is one approach to solve the
problem of ridge parameters optimization, which selects ridge parameters min-
imizing the MSC as the optimal ridge parameters. Most MSCs consist of a
residual sum of squares (RSS) and generalized degrees of freedom (GDF). In
other words, they account for model fit and model complexity. Salient exam-
ples include the C, criterion (Mallows [12]), Akaike’s information criterion
(AIC; Akaike [1]) under normality, and the generalized cross-validation (GCV)
criterion (Craven & Wahba [5]). Usually, the optimal parameters selected by
an MSC minimization method cannot be obtained as closed forms and itera-
tive calculation is often required. This presents difficulties in terms of the va-
lidity and applicability of such methods. Fortunately, Nagai er al. [14] showed
that the optimal ridge parameters based on minimizing a generalized C, (GC,)
criterion (Atkinson [3]) which is a generalization of the C, criterion can be
obtained as closed forms and Yanagihara [24] showed that the optimal ridge
parameters based on minimizing the GCV criterion can be obtained as closed
forms. There are various MSCs having a wide class like the GC, criterion;
for example, there are the generalized information criterion (GIC; Nishii [15]),
which includes AIC, and the extended GCV (EGCV) criterion (Ohishi et al
[16]), which includes the GCV criterion. All these criteria can be regarded as
bivariate functions of the RSS and GDF. Ohishi et al [16] defined an MSC
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having a wider class as the bivariate function and proposed an algorithm to
minimize it rapidly. Since the ridge parameters can be easily optimized by
using various MSCs, the GR regression is a useful method to avoid problems
arising from multicollinearity.

Ohishi et al. [16] also clarified a class of ridge parameters optimized by the
MSC minimization method. From the results, under orthogonal explanatory
variables, the GR estimator which was previously non-sparse is now charac-
terized by sparsity, i.e., includes 0, after the ridge parameters are optimized.
On the other hand, Lasso regression (Tibshirani [20]) and adaptive Lasso (AL)
regression (Zou [26]) which is an extension of the Lasso regression are well-
known methods for providing a sparse estimator. They also give shrinkage
estimators like the GR regression. Although the amount of shrinkage and
extent of sparsity of the AL estimator (including the Lasso estimator) are
adjusted by a regularization parameter called a tuning parameter, since this
parameter is unknown, its optimization is required. Moreover, the AL esti-
mator cannot usually be obtained without iterative calculation. However,
Ohishi ez al. [17] showed that the AL estimator can be obtained as closed form
under orthogonal explanatory variables and the GR and AL estimators are
equivalent after regularization parameters are optimized by the MSC minimi-
zation method.

Yanagihara et al [25] and Nagai ef al. [14] naturally extended the GR
regression to a multivariate GR (MGR) regression. The MGR estimator is
also a shrinkage estimator by k ridge parameters like the GR estimator and we
have to consider the ridge parameters optimization. In the MSC minimization
method for the MGR regression, although the ridge parameters optimized by
the GC, criterion minimization method can be obtained as closed forms (Nagai
et al. [14]), whether this is the case for other criteria is unclear. Recently,
Mori & Suzuki [13] proposed the ZMC, criterion and the ZKLIC which are
modified versions of the modified C, (MC,) criterion (Fujikoshi & Satoh [8])
and the bias-corrected AIC (AIC¢; Hurvich & Tsai [11]) for MGR regression.
However, these MSCs are designed for selecting explanatory variables, not for
optimizing ridge parameters. In this paper, we extend the algorithm pro-
posed by Ohishi et al. [16] to MGR regression. Furthermore, we describe the
relationship between MGR regression and multivariate adaptive group Lasso
(MAGL) regression under orthogonal explanatory variables.

The remainder of the paper is organized as follows. In Section 2, we
describe the MGR estimator and MSCs for optimizing ridge parameters, and
define an MSC class. In Section 3, we extend the algorithm proposed by
Ohishi et al. [16] to optimize ridge parameters in MGR regression by the MSC
minimization method. In Section 4, the MSC class defined in Section 2 is
extended, corresponding to various distances. Moreover, we propose an algo-



180 Mineaki OHISHI

rithm for minimizing the extended MSC. In Section 5, we propose a new
method for optimizing ridge parameters by using MSCs. In Section 6, we
describe the MAGL estimator and equivalence between the MGR and MAGL
estimators under the regularization parameters optimized by the MSC mini-
mization method. In Section 7, the performance of the ridge parameters
optimized by the MSC minimization methods is compared by simulation.
Technical details are provided in the Appendix.

2. Preliminaries

By a singular value decomposition, n x n and k x k orthogonal matrices
P and Q and a k x k diagonal matrix D = diag(d,,...,d;) express X as

D'/? 12

X=P Q' =P D'?Q, (3)
O,k

where O,, i is an n x k matrix of zeros, P; is an n x k matrix obtained from the

partition P = (P, P,), which satisfies P{1, = 0; and P{P, = I}, and d, ..., d;

are eigenvalues of M (= X'X) satisfying d; > --- > dy > 0. Then, the MGR

estimators of 4 and E are given by

A=5  Ey=M,'X'Y (My=M +Q0Q'), (4)
where 0= (0y,...,0¢)', O©=diag(0,...,0) and 6;e R, ={0ecR|0>0}
(j=1,...,k) is a regularization parameter called a ridge parameter. Since

My =M when 0 =0, 5, coincides with Z in (2) when 6 = 0, and the MGR
estimators coincide with the GR estimators when p = 1. The MGR estimators
in (4) denote the minimizers of the following penalized RSS (PRSS):

tr{(Y — 1,4/ — XE) (Y - 1,4/ — XE) + E'QOQ'E}. (5)

Although the ridge parameters adjust the amount of shrinkage of the MGR
estimator of Z, since they are unknown, their optimization is an important task
to obtain a better estimator. To simplify calculation, following Yanagihara
[24] and Ohishi et al. [16], we transform the ridge parameters as

5 =Y el0,1]  (=1,....k

=G0 , yeo oy k).
Since this transformation is a one-to-one correspondence, the optimization of
0; is equal to that of ¢, Hence, we optimize ¢; instead of 0; and we also call
0; a ridge parameter in this paper. Let é and 4 be a k-dimensional vector and
a k x k diagonal matrix of the ridge parameters defined by é = (Jy,...,d;)" and
A = diag(dy, . ..,0k), respectively, and let Z be a k x p matrix defined by

Z=(z,....5) = PY. (6)
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Then, the MGR estimator of & in (4) can be rewritten as
E5= QUi — A)D'*Z = £ - 04D Z. (7)

In this paper, we optimize the ridge parameter é by using the MSC minimiza-
tion method.
The MGR estimator in (7) gives a predictive matrix of Y as

Y5 =14+ X5 =HsY, H;=J,+P(I,— 4P|,

where J,, = 1,1, /n and H; is an n x n matrix called a hat matrix. Most MSCs
consist of the predictive matrix and the hat matrix. The predictive matrix is
used to evaluate model fit. We define an estimator and an unbiased estimator
of the covariance matrix X as

2(8) = (Y = Y5)'(Y - ¥y),

S=25  (Bo=200,b=1—(k+1)/n). (8)

S= S

Under normality, 2(d) is a penalized MLE of X and Xy is an MLE of X.
Then, model fit, i.e., the distance between Y and Y, is defined by

tr{Z(6)S '}

On the other hand, the hat matrix is used to evaluate model complexity and
it is defined by the following GDF:

df(8) = p tr(H). 9)

The GC, and EGCV criteria for optimizing ridge parameters consist of
tr{Z(8)S~'} and df(é). Similar to Yanagihara [24], we have the following
lemma about X(J) and df(d).

LemMmA 1. Let Bs and W be p x p matrices defined by
B;=Z7'4°Z, W =nZ,.

Then, £(8) and df(8) can be partitioned into terms which do and do not include
o as follows:

AV

) ] 1 E
Z(0) = (W +Bs) = % —I—Zszzf&-z
j=1

k
df(0) =p(l+k)—ptrd :p{(l + k) —Zé,}
=
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From Lemma 1, we have
tr{2(0)S~'y =btr(B;) +bp, By =W 'PB;w1/2

Then, the GC, and EGCV criteria for optimizing ridge parameters are defined
by

GCy(0) = nb tr(By) + nbp + o df (9),

_ btr(By)+bp
EGCV(6) = W,

where o is a positive value adjusting the strength of the penalty for model
complexity. Existing criteria are expressed by changing the value of «, for
example, the GC, and EGCYV criteria coincide with the C, and GCV criteria,
respectively, when o = 2 and the GC, criterion coincides with the MC, criterion
(Yanagihara et al. [25]) when o =2{1+ (p+1)/(n—k — p—2)}. From the
above, MSCs for optimizing ridge parameters can be regarded as bivariate
functions of tr(Bj) and df(d). From Lemma 1, ranges of tr(Bj;) and df(d) are
given as the following lemma.

LemMmA 2. The tr(Bjs) and df(9) are included in the following ranges:
w(By) € 0,te(2° 2", df(d) € [p, p(1+ k)],
where Z* = ZW™1/2,
Moreover, let f be a bivariate function defined by the following class.

DEeriNiTION 1 (Class of the bivariate function f). For a positive value r,,
f satisfies the following conditions:
(Al) For any (r,u) € [0,r] X [p,np), f(r,u) is continuous.
(A2) For any (r,u) € [0,r1] x [p,np), f(r,u) is first order partially differ-
entiable and its partial derivatives are positive.

We define an MSC for optimizing ridge parameters by using f in
Definition 1 as

MSC(8) = /(tr(B;), df(3)). (10)
For the GC, and EGCV criteria, f is given by
£ u) Jac,(r,u) = nb(r + p) + ou (GC, criterion)
rou) =
’ Secev(r,u) = b(r+ p)/(1 —u/np)* (EGCV criterion)’

and r, is given by

r =t(Z*Z").
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Then, the optimal ridge parameters based on minimizing the MSC in (10) are
given by

0=(d1,...,0,) =arg min MSC(d).
sefo, 1)k

3. Fast optimization of ridge parameters

In this section, to obtain ¢ minimizing the MSC in (10), we extend the
algorithm for optimizing ridge parameters in the GR regression proposed by
Ohishi [16]. First, we define the following class of ridge parameters.

DeriNiTION 2 (Class of ridge parameters). For e IR, a class of ridge
parameters is defined by

o(h) = (b1 (h),...,0k(h))',  &;(h) =1 —soft(1,h/zS™"'z)),

where z; is the p-dimensional vector defined by (6). Furthermore, soft(x,a) is
a soft-thresholding operator (e.g., Donoho & Johnstone [7]), i.e., soft(x,a) =
sign(x)(|x| —a),, and (x), = max{x,0}.

When § =1, and p =1, the class of ridge parameters in Definition 2
corresponds to that for the GR regression defined by Ohishi et @l [16]. Using
this class, the MGR estimator in (7) is given as a function of /:

ég(/,) = QV(h) /év

where Q is the k x k orthogonal matrix defined by (3) and V(h) is a k x k
diagonal matrix which has the following diagonal elements:

g(h) =1=6;(h) = soft(1,h/z}S ') (j=1,...,k).
The V(h) rewrites the predictive matrix of Y as
IA/é(h) ={Ju+PV(h)P}Y,

where P; is the n x k matrix defined by (3). Then, the ridge parameters
optimized by the MSC minimization method are given by the following
theorem (the proof is given in Appendix A.1).

THEOREM 1. We define ry as
ry =tr(Z2°Z7).

For f with the class in Definition 1, let ¢(h) (h e R \{0}) be a function defined
by

¢(h) = MSC(d(h)),
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and suppose that Iv >0 s.t. ¢(v) < limy_o ¢(h). Then, the ridge parameters
optimized by the MSC minimization method are given by d(h) and h is given

by

h= i h).
arg , min,, 1)
From this theorem, the class of ridge parameters in Definition 2 is the class
of the “optimal” ridge parameters.
Let t; (j=1,...,k) be the jth order statistic of z{Silzl, ... 7z,’CS*lzk and
R; (j=0,1,...,k) be a range defined by

0,a]  (j=0)
Ri=4q (t,t;1] (j=1,....k—1). (11)
(lk,OO] (]:k)

Then, similar to Ohishi et al [16], we have the following proposition.

ProprOSITION 1. The ¢(h) in Theorem 1 satisfies the following properties:
(P1)  For all he R.\{0}, ¢(h) is continuous.

(P2) For all h > t, ¢(h) = f(ry, p).

(P3) The ¢(h) can be expressed as the following piecewise function:

d(h) = ¢,(h) (heRy;;a=0,1,....k)
= f((cl,a + C2,ah2)/nb7p(1 +k—a— CZ.ah))a
where c| , and ¢, are nonnegative constants given by
0 a=0 ko
) ( ) D> (a=0,1,.. k-1
Cla = th (6121,...,/{)’ C2a = j:a+ltj .
Jj=1 0 (a=k)

From the results, the MSC minimization problem for optimizing ridge
parameters in the MGR regression can be solved by applying the fast algorithm
for the GR regression proposed by Ohishi er al. [16]. That is, we have the
following theorem.

THEOREM 2. Suppose that the derivative of ¢,(h) in Proposition 1 is
expressed as

L) =2, (e Rga =01, k1),

and y(h) =y, (h) (he R,) is continuous for all h e R \{0}, where y,(h) is a
positive function and ,(h) is a polynomial.  Moreover, suppose that Iv > 0 s.1.
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d(v) < limy_ ¢(h) and let h, be a root of Y, (h) =0 satisfying
de, >0 s.2. Vee (0,¢,), W, (he —€) <O. (12)

Then, minimizer candidates of ¢(h) are given by

y:{U{ha}}Ug‘7

ae.d
! () <0
S ={ae{0,1,....k—1}|h, € R}, 9‘:{{"} Wi (1) < 0)-
G (W) =20)
Hence, the ridge parameters optimized by the MSC minimization method are
given by o(h) and h is given by

h = arg }nlg $(h).

Although the range of / is a set of positive values, Theorem 2 can reduce
a search range of & to % which is a set of discrete points. Furthermore,
each element of & is given as closed form and #() < k + 1; hence we can
quickly optimize the ridge parameters. In the theorem, although (k) is
implicitly supposed as a linear or quadratic function, the theorem can naturally
be extended to higher order polynomial functions. In particular, roots of
W,(h) =0 can be obtained as closed forms when (k) is a cubic or a quartic
function, by using Cardano’s formula (e.g., David [6], Chap. 1) or Ferrari’s
method (e.g., Tignol [21], Chap. 3). Hence, if the degree of (/) is four or
less, we can quickly optimize the MSC.

3.1. Examples. In this subsection, we provide specific examples of the MSC
minimization methods for optimizing ridge parameters in the MGR regression.
To emphasize that the optimal ridge parameters depend on «, we specify that «
is given.

3.1.1. The GC, criterion. Although the ridge parameters optimized by the
GC, criterion minimization method have already been given by Nagai et al
[14], here we show how to derive them by applying Theorem 2. The GC,
criterion for optimizing ridge parameters is given by

GCy(8|2) = foc, (tr(Bj), df(0) | o).
When he R, (a=0,1,...,k), ¢ and its derivative are given by

d(hlo) = @, (h|la) = cz,ah2 —opca Jh+nbp +c1 4+ op(l +k —a),

d
T 0ulh) = ¢2.4(2h — o)
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Hence, the ridge parameters optimized by the GC, criterion minimization
method are given as the following closed form:

S_ o). =
6=0(h), =7

3.1.2. The EGCYV criterion. The EGCYV criterion for optimizing ridge param-
eters is given by

EGCV(d|a) = fecev(tr(Bj),df(d) | o).
When he R, (a=0,1,...,k), ¢ and its derivative are given by

_bp+ (crat cah?)/n

¢(/’l‘0€) = ¢a(h|u) - {b—|— (Cl+02 gh)/l’l}a ’

d . C2a
%¢a(h‘a) - nz{b + (Cl+ szah)/n}oc-&-l l//a(h|(x)7

W, (h|o) = —(o0 — 2)ca.oh® + 2(a + nb)h — a(nbp + c1.4).

When o =2, ie., using the GCV criterion minimization method, we
have

VW, (h|2) =2{(a + nb)h — nbp — ¢1 4},
and a root of y,(h2) =0 is

h _nbp+cl7a
“T a+nb

Moreover, similar to Yanagihara [24], the following statement is true:
Fa*e{0,1,...,k— 1} s.t. hyr € Ry

Hence, the ridge parameters optimized by the GCV criterion minimization
method are given by the following closed forms: o= S(hm).

When o > 2, since y,(h|o) is a concave quadratic function, a root of
W (h|o) =0 satisfying the condition (12) is given by

B (a+ nb) — \/(a + nb)2 — oo —2)ca, 4(nbp + ¢1.4)
na (& —2)ca 4 '

Therefore, candidates of h, are given by

% :{ U {ha,a}} U%,

ae.,
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where o7, and 7, are sets given by
oLy ={ae{0,1,....k—1}|h, . € R,},
7 {lw >0 )i /2~ p)
* o (ry <21 —n Yy Jab—p)

Hence, the ridge parameters optimized by the EGCV criterion minimization
method are given by

6= 0(hy), h, = arg Irlnl(g)l o(hlo).

In the EGCV criterion minimization method, the number of minimizer candi-
dates is only k+ 1 at most.

3.2. Relationships between the optimal ridge parameters. This subsection pro-
vides some theoretical properties concerning the relationships between the op-
timal ridge parameters. The class of the optimal ridge parameters satisfies

Vhi,hy € R, hy < hy = 6;(h) < 0;(h2) (Jj=1,...,k),

with equality only when /; > t;,. This fact yields some relationships concern-
ing the ridge parameters optimized by the GC, and EGCV criteria minimiza-
tion methods. Immediately, we have the following result which is similar to
Nagai et al. [14].

PROPOSITION 2.  For positive values oy and oy, we define the ridge param-
eters optimized by the GC, criterion minimization method as

517./:5f(il“1)7 52:]' :ﬁl(ilﬁz) (]: 17"'7k)7
where /Az“ =ap/2. Then, we have
o < oy = 5171' < 527]‘-

This proposition states that the stronger the penalty for model complexity,
the larger the amount of shrinkage of the estimator, when using the GC, cri-
terion minimization method. Next, we consider the ridge parameters opti-
mized by the GC, and the GCV criteria minimization methods. Similar to
Yanagihara [24], we have the following lemma.

LemMmA 3. The h,- obtained by the GCV criterion minimization method
satisfies hg- < p.

This lemma leads to the following result which is similar to the case when
p =1 (Yanagihara [24]).
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ProPOSITION 3. Let 5“0 f" and 5}GCV (j=1,...,k) be the ridge parameters
optimized by the GC, and GCV criteria minimization methods, respectively.
Then, we have

556

SGCV
u=2=9; P

<

The value of « in the MSC is often 2 or more. This means that the ridge
parameters optimized by the GC, criterion minimization method shrink the
estimator more than the GCV criterion minimization method in most cases.
Finally, we consider the ridge parameters optimized by the EGCV criterion

minimization method. We express ¢(ho) = EGCV(d(h)|a) as

$(hlo) = &7 ()n(h|a),
where
6*(h) = bp + b tr(B}),

n(hlo) = ma df (h) = df (8(h)),

and let /, be the minimizer of ¢(h|o). Then, n(h|o) has the following property
(the proof is given in Appendix A.2).

LemMmA 4. Suppose that 0 < hy < hy. Then, we have
n(ha|o) < n(hilo).

This lemma leads to the following proposition (the proof is given in
Appendix A.3).

ProprosITION 4. The EGCV criterion minimization method has the follow-
ing properties:
(1) Suppose that oy < ay. Then, we have

hul =l = haz = .

(2)  For positive values o and oy, we define the ridge parameters optimized
by the EGCV criterion minimization method as

517./:5/(i1“1)’ 527/:5;(;1%2) (]: 17"'7k)7
and suppose that izaz # tr. Then, we have

o1 <O€2:>51_j Séz,ﬁ

with equality only when izal > Z]{S_lzj‘-
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This proposition states that the stronger the penalty for model complexity,
the larger the amount of shrinkage of the estimator, when using the EGCV
criterion minimization method.

4. Extending the MSC class

In the previous section, we showed that the algorithm for the GR regres-
sion can be applied to minimize the MSC in (10), where the distance between
Y and Y; is defined by tr{Z(8)S~'} and the MSC is defined by using tr(B})
obtained from the distance. In this section, we focus on how to measure the
distance.

Let g be a real-valued function defined by the following class.

DeriniTION 3 (Class of the function g). For any p x p positive definite
matrix A4, the g satisfies the following conditions:

(A1) The g(A4) is positive.

(A2) The 0g(A4)/0A4 is a positive definite.

Using the function g, we extend the MSC in (10) to

MSC(dlg) = f(9(B5), df(9)), (13)

where f is the bivariate function given by Definition 1. For example, ¢
includes the following functions:

gLu(A4) = tr(A) (LH-distance)
gir(A) = log|I, + A| (LR-distance)
g(4) = { genp(A) = tr{A(I, + 4) "} (BNP-distance).
guL(A) = tr{(I, + A)"'} + log|l, + A| — p (ML-distance)
gors(A) = tr(4%)/2 (GLS-distance)

The MSC in (13) is equal to that in (10) when g(A4) = grLu(A) and the following
equation holds:

gLu(B;) = tr(BsW ).

Since we can regard Bs; as a between-group variation matrix and W as a
within-group variation matrix, grg(Bj) is a Lawley-Hotelling trace criterion
(LH-statistic; e.g., Anderson [2], Chap. 8) which is a well-known statistic in
multivariate analysis. That is, the MSC in (10) measures the distance between
Y and ¥; based on the LH-statistic. Similarly, regarding the LR-distance and
the BNP-distance, the following equations hold:
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gir(B;) = log|(W + Bs)W |,
genp(B)) = tr{Bs(W + B;) '},

They are a Likelihood-Ratio criterion and a Bartlett-Nanda-Pillai trace crite-
rion, respectively, which are also well-known statistics (e.g., Anderson [2],
Chap. 8). MSC based on the LR-distance includes the GIC and the AICc
under normality. The above three distances based on the three statistics
pertain to the mean structure of a model. In contrast, there are distances
with respect to the covariance structure of a model, e.g., the ML-distance
and the GLS-distance. Regarding these distances, the following equations
hold:

i (B}) = log|£()] + w(£(8) ' £} ~ log| | ~ p
govs(B;) = 5 wl{(Eo — Z0)Z; V)

They are distances between 2(d) and 2y called a maximum likelihood fitting
function and a generalized least square fitting function, respectively (e.g., Bollen
(4], Chap. 4). Using g(A4), the GC, and EGCV criteria, and the GIC and the
AIC¢ under normality are given by

GC,(0) = nbgiu(Bj) + nbp + o df(9),

_ bgiu(B;) +bp
{1 —df(0)/np}*’
GIC(d) = ngLr (Bj) + np log b + o df(d),

np{n + df (o)}
—p—1-—df(s)’

EGCV(d)

AIC¢(9) = ngrLr(Bj) + np log b + ,

Using the GIC, it is also possible to adjust the strength of the penalty for
model complexity, and for example, the GIC coincides with the AIC when
o =2, the HQC (Hannan & Quinn [9]) when o =2loglogn, and the BIC
(Schwarz [18]) when o = logn. For the GIC and AICc, the bivariate function
f(r,u) is given by

Sfaic(r,u) = n(r+ p log b) + ou (GIC)
Sryu) = { fatce (r,u) = n(r + p log b) +nfp;”% (AICc)

The following subsections describe two algorithms to minimize the MSC in
(13).
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4.1. Minimizing MSC via iterative method. This subsection describes an
algorithm for solving the MSC minimization method via an iterative method
with an iterative function. That is, we derive the iterative function. Notice
that

k

> _

B; =) 359, =Wz
=1

Therefore, the following partial derivatives can be obtained:

O p ‘ot 0 _
B =50 A =-p.

We express the (i,/) element of a matrix 4 as a;,, = (A),, and define

0 . P
jie(B) = A . GB =—g)| . 14
6 (B) = gm0 )| GBI = e (14)
Bj is a symmetric matrix, thus we have
PP 0 . )
55 a0, 9B ZZa (B3);y - Gi/(B;) = 22 G(B;)z0;.

\

i=1 /=i

Hence, a partial derivative of the MSC is given by

0 . . .
@ MSC(dlg) = 2z G(B;)z;1,(9(B;), df(0))d; — pf,(9(B;),df(d)),
where
fy) =2 f(nw Fey) =2 1)
A e L R L A

By solving d MSC(d|g)/0d = O, we can obtain the following iterative method:
o =¢(@0") = ("), .G(6"))  (i=0,1,...),
5(8) = 1 — soft(1,(6) /' G(B)3)), (15)

where (i) is the iteration number, 6°) is a given initial vector, and 7(d) is given
by
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By repeating the update of 6 with the iterative function £, we can obtain the
optimal 4. This iterative method has the following property (the proof is given
in Appendix A.4).

PROPOSITION 5.  For a k-dimensional vector € wherein all elements are non-
negative, suppose that

1(0) <t(6+¢),  G(B})z = z'G(B;.)3. (16)
Then, the iterative method with iterative function (15) converges if ¥Vje {l,...,

K}, 0V =0 or je{l,....k}, oV <o

From this proposition, when assumption (16) holds, the iterative method
with iterative function (15) converges if the initial vector is 0x or 1.

4.1.1. LR-distance. For the MSC based on the LR-distance, the following
equation holds:

0 0 4
agLR(A) :a_AlOg|Ip+A| =(,+4) .
Therefore, we have

: 1
wPGBHW 2 = (W+By) ! = ;2((5)*1.

Hence, the iterative function for solving the MSC minimization method based
on the LR-distance is given by

§(0) = 1 — soft(1,n7(8)/2/2() 'z). (17)

Furthermore, from Lemma 1, for € in Proposition 5 and for any p-dimensional
vector a, the following equation holds:

dE0)a<dZb+easadlo) 'a>dZ(0+¢) a
Let 'R be a solution obtained by the iterative method with iterative func-
tion (17). Then,
5LR — C(JALR)

The ridge parameters optimized by the MSC minimization method based on
the LR-distance are given by

SJLR =1- soft(l,nr(éLR)/z;f(gLR)_lzj) (j=1,...,k).

On the other hand, the ridge parameters optimized by the MSC minimization
method based on the LH-distance are given by the following form:

oMM =1—soft(1,h/z)S7'z;)  (j=1,....k).
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The 5}H includes S~! and S is an estimator of the covariance matrix for the
full model. Thus, 5jLH has a disadvantage because S~' is unstable when k

is large. Whereas, 5_/LR does not include !, but rather 2(6'®)~" and Z(6'})
is an estimator of the covariance matrix adjusted by é'®. Thus, éjLR has an

advantage because X (JALR)fl is stable even when k is large.

ExampLE 1. We derive an iterative function for solving the GIC min-
imization method. From f(r,u) = fcic(r,u), we have

Si(ryu) =n, Sulryu) = o,

and therefore, 7(d) = ap/2n. Hence, the iterative function for the GIC min-
imization method is given by

() = 1 —soft(1,0p/25/2(0)'z;)  (j=1,....k). (18)

Moreover, since 7(d) does not depend on 4, from Proposition 5, the iterative
method for solving the GIC minimization method converges under an appro-
priate initial vector.

ExaMpLE 2. We derive an iterative function for solving the AIC¢ min-
imization method. From f(r,u) = faic.(r,u), we have

. . 2n—p—1
fi(ru) =n, fu(r?u):np(n—p)w
m—p—1-u)
and therefore, we have

__ pen-p-1
C2{n—p—1—df(o)}*

Hence, the iterative function for the AICc minimization method is given
by

o np*(2n—p—1) .
{i(0) =1 soft(l,z{n . df(é)}zz_;f(é)lzj) (j=1,...,k).

Moreover, for € in Proposition 5, the following equation holds:
df(d) > df(d + ¢).
Therefore
7(6) > 7(d +€),

and thus, the iterative method for solving the AICc minimization method does
not satisfy Proposition 5.
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4.1.2. BNP-distance. For the MSC based on the BNP-distance, the following
equation holds:

0 0 _
agBNP(A) =4 tw{d(l, +A4)""}

0 -1 -2
:_atr{(lp‘f'A) J=Up+4)".
Therefore, we have

. 1 - A A
WRGB)W 2 = (W + By) 'W(W + By) ' = 2(0) 52 (0) .

Hence, the iterative function for solving the MSC minimization method based
on the BNP-distance is given by

L nt(9)
G0 =1 SOft<l’z;ﬁ(é)‘fof(é)lzf')

Accordingly, using the BNP-distance, the optimal ridge parameters are stable
even when k is large.

ExaMPLE. As an example of MSC based on the BNP-distance, we con-
sider the following criterion:

Then, since

f.(ryu) =n, Sfu(ryu) = o,

we have 7(d) = op/2n. Hence, the iterative function for solving the BNPC
minimization method is given by

L(0) =1— soft<1, R > (19)

27/2(0) ' Z02(0) 'y

4.1.3. ML-distance. For the MSC based on the ML-distance, the following
equation holds:

d 0 _
3 omML(4) = H[tr{(lp +A)"} +logll, + 4]

=—(L,+A) 2+, +4)"

Therefore, we have
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W PGBHW 2 = (W+Bs) ' — (W+Bs) 'W(W +B;)™!
1

1 R

=-2(0)" ==X 2 20)".

n n
Hence, the iterative function for solving the MSC minimization method based
on the ML-distance is given by

L nt(9)
G0) =1 W<Lﬁf@‘—f@1%ﬂﬂlh>

Accordingly, using the ML-distance, the optimal ridge parameters are stable
even when k is large.

4.1.4. GLS-distance. For the MSC based on the GLS-distance, the following
equation holds:
0 1

— 0 2y
6_AgGLS(A) = Ea—Atr(A ) =A.

Therefore, we have
. 1 . N PN
wlGB)yW 2P =wB,w ! = ;Eo"{f((’) — 22yt

Hence, the iterative function for solving the MSC minimization method based
on the GLS-distance is given by

o nt(d)
9@_13ﬁ0%g%ﬂ®—%ﬁwg'

Since fo is an estimator of the covariance matrix for the full model, the
optimal ridge parameters are unstable when k is large.

4.2. Minimizing MSC via coordinate descent. In the previous subsection, we
described an algorithm to minimize the MSC via the iterative method with an
iterative function obtained by solving 0 MSC(d|g)/d6 = 0. In this subsection,
we update Jy, . ..,d; individually, not simultaneously. That is, we minimize the
MSC via a coordinate descent algorithm.

4.2.1. LR-distance. We partition W + B; and df(d) into

k
W+Bs=W+zz06,, Wi=W+)Y 210,
=

K
df(6) = q1.; — pdj, Q1,j=l7{(1+k)—z5/}~

=y
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Then, the following equations hold:
I,+ B, =W '2(W+ Bsyw~'/?
=W R(W; + gz )yw 2, (20)
W) + 2207 | = IWI(1+ 2] W, 567).
Therefore, we have
gir (By) = log|I, + Bj|

= log(1 + 2/ W, '5;67) + log| W;W |

=log(1 + ¢2,6}) + g3,
where ¢ ; and g3 ; are constants which do not depend on J; given by

@y =W g, g, = loglWw .

Hence, the following partial derivative is obtained:

A

0 o _ 242,59
B;) = R

ExaMPLE 1. The partial derivative of the GIC is given by

. 9 1 )
£i(05) = @, GIC(d) = m (—opq2,j0; + 2nq2,j0; — op).

An update equation of the coordinate descent algorithm for solving the GIC
minimization method is given by the following theorem (the proof is given in
Appendix A.5).

THEOREM 3. Let f;(0) be a function for o € [0,1] and suppose that the de-
rivative of f;(0) is given by the following form:

f16) = ﬁf};z(é) (/10) > 0),
J;,z(é) = —c/-7252 +2¢j,10 — ¢j0 (¢j,0,¢j,1,¢,2 > 0),
and we define 5; as
L= ¢a260/¢},

¢2/¢jn

Then, 5j = arg mingc o,y f;(0) is given by
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(1) Case of 1 —¢jaci0/ci =0:

2 {5_/ (¢i2> ¢ or (¢j2 < ¢y and 6; < 1))
;= .

T (gas and §=1)
(2) Case of 1 —cjacio/c; <O:
9 = 1.
ExampPLE 2. The partial derivative of the AICc is given by

£0) = % AICc(9)

1 .
= fZ(é)a
(1 +q2,00)(n—p—1—qu;+pd)’n™"""
[i200) =2002;6 + pgo j{4(n— p— 1 = q1 ;) — p2n— p — 1)}5°

+2¢2;(n—p—1- ql,_/)257p2(2n —p—1).

An update equation of the coordinate descent algorithm for solving the AIC¢
minimization method is given by the following theorem (the proof is given in
Appendix A.6).

THEOREM 4. Let f;j(0) be a function for ¢ €[0,1] and suppose that the
derivative of f;(0) is given by the following form:
. 1. .
fi0) ==—=1200)  (f.1(0)>0),
J fj‘ 1(5) J J
[1200) = 30" + 620" +Gad — o (0> 0),

and let m (0 <m < 3) be the number of stationary points of sz(é) which is
included in (0,1) and d;1,...,0;,, (m=1) be the stationary points satisfying
0j1 <---<0jm Moreover, we define a set ¥; as

S ={1} (m=0); {51} (m=1); {&,1,1} (m=2); {5,1,6;3} (m=3).
Then, 5]- = arg mingco,1) f7(0) is given by

0j = arg min f;(9).

4.2.2. BNP-distance. Equation (20) leads to

(Ip +B;)—l — Wl/z(m+zjz],512)_lW1/2,
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and the following holds:
-1 —152 -1 —152
syt g WEgWior L W mm W
<W]+zjzj5j) =W, L2 2
1+ 2/ W, 20 1+ ¢»,0;

Therefore, we have

genp(Bs) = p — tr{(I, + B;)fl}

Wiz w167
=p—tr ijl_ J 11'121 1%
1+ qz,_/5,~

where ¢4 ; and ¢s; are constants which do not depend on J; given by
Gaj =W WW g g5 =p—tu(W'W).
Hence, the following partial derivative is obtained:
244,j9;
(1+¢2,07)%
ExampLE. The partial derivative of the BNPC is given by

£6) = % BNPC(d)

1
T Ut (—apg3 6% — 2apqn ;67 + 2nqa 16, — op).
2,9

aTsngNP(BJ) =

An update equation of the coordinate descent algorithm for solving the BNPC
minimization method is given by the following theorem obtained which is sim-
ilar to Theorem 4.

THEOREM 5. Let fij(0) be a function for ¢ €[0,1] and suppose that the
derivative of f;(0) is given by the following form:
1

£i(0) = mf,-,z@) (f,1(0) > 0),

f/2(5) = Cj,454 + 6‘1'7353 + Cj7252 + Cj,lé =G0 (Cj"o > 0),

and let m (0 <m <4) be the number of stationary points of f,z(é) which is
included in (0,1) and 9 1,...,0;,m (m>1) be the stationary points satisfying

0j1 < -+ <0jm Moreover, we define a set ¥; as
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{1} (m=0); {51} (m=1)
S3=9 {01, 1} (m=2); {6,1,0,3} (m=3).
{61.013,1} (m=4)

Then, 6} = arg minsc o,y f;(0) is given by

0 = arg min f;(9).
4.2.3. ML-distance. Notice that

gmL(A4) = gLr(A) — genp(A).

Hence, we have

2
. 44./9;
gwL(B;) = log(1 + ¢2,07) — + 43— 45,
( (S) ( J J) 1+‘I2,_1'5j2 2] 2]
and the following partial derivative is obtained:
2q3,0 2q4 ;0

“ BY) — - .
aéngL( o) L4q;0° (1 +¢2,;0%)°

4.2.4. GLS-distance. We have
BgW_1 = z]'ZJ{W_I(SjZ + I’VjW_l =1,

and therefore

o1 _ 1
gars(Bs) = 5 tr{(B;W ')’} = 3 (Q6,j5;‘ + 26]7.,1'(5_;2 +4s.7),

where ¢, ; (£ =6,7,8) are constants which do not depend on J; given by
g = (W '5)?  qry=gW (W - W)Wy,
gs,; = te{(W;W —1,)°}.

Hence, the following partial derivative is obtained:

0 .
a_éngLS(BJ) = 2%]‘5]‘3 + 247,j0;.

5. Plug-in iteration

In the previous section, we described the minimization of MSC extended to
general distance. For MSC based on the LH-distance, the class of the optimal
ridge parameters is obtained and since the minimizer is given as closed form
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and is unique, or minimizer candidates are given as closed forms and finite
points, MSC can be minimized quickly. In contrast, since the optimal ridge
parameters include the inverse of the estimator of the covariance matrix for the
full model, those parameters are unstable when k is large. On the other hand,
for MSC based on general distance, in particular the LR-distance, the BNP-
distance, and the ML-distance, since the estimator of the covariance matrix
which is included in the optimal ridge parameters is an adjusted estimator, the
optimal ridge parameters are stable even when k is large. In contrast, such
MSC cannot be minimized quickly. As above, MSC based on the LH-distance
and MSC based on another distance have contrasting properties. We propose
a new approach, called the Plug-in Iteration Method (PIM) which is a hybrid
method drawing on the merits of the various MSCs. The PIM optimizes ridge
parameters by repeating the following procedure: first, the ridge parameters
are optimized by the MSC minimization method based on the LH-distance;
next, the ridge parameters are optimized again by using the ridge parameters
optimized in the previous step.

The ridge parameters optimized by the MSC minimization method based
on the LH-distance include S, and this derives from the fact that the original
distance tr{2(6)S '} includes S. Although the MSC was hitherto defined by
using tr(Bj) obtained from the original distance, we now redefine it using the
original distance. For any p x p positive definite matrix 4, we define

ri(A) =tr(ZpA™") +% tr(ZA'Z"),

and let /T be a bivariate function defined by the following class.

DEFINITION 4 (Class of the bivariate function ff). The fT satisfies the
following conditions:
(A1") For any (r,u) e (0,r.(A4)] x [p,np), fT(r,u) is continuous.
(A2} For any (r,u) € (0,r.(A)] x [p,np), f1(r,u) is positive.
(A3") For any (r,u) e (0,r,(A4)] x [p,np), f1(r,u) is first order partially
differentiable and its partial derivatives are positive.

Using the bivariate function ', we redefine the MSC based on the LH-
distance as

MSCH(d|4) = f1({tr{Z(6) 4"}, df(d)). (21)

This MSC covers a wider class than the MSC in (10) and is equal to the MSC
in (10) when 4 =S. For the GC, and EGCV criteria, f is given by

i nr+ ow (GC, criterion)
f (ra ) = o . . .
r/(1 —u/np)” (EGCV criterion)
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Similar to Theorem 1, the optimal é minimizing the MSC in (21) is given by
the following corollary.

COROLLARY 1. We define a function ¢(h|A) (he Ry\{0}) as
¢(h|4) = MSC(3(h]4) | 1),

and  suppose  that v >0 s.t. ¢(v|d) <limy_o #(h|l4), where d(hlA) =
(01(h|A),...,0r(h|A))" is a class of ridge parameters given by

dj(h|ld) = 1 —soft(1,h/z]A"'z).

Then, we have the following:
(1) The optimal ridge parameters based on minimizing MSC'(d|4) are
given by 8(hy|A) and hy is given by
hg=arg min ¢(h|A).
A=, ity S0
(2) The ¢(h|A) has the following properties:
(P1) For all he R.\{0}, ¢(h|A) is continuous.
(P2) For all h>ty, ¢(hlA) = f1(r.(A4), p).
(P3)  The ¢(h|A) can be expressed as the following piecewise function:

¢(h|A) = ¢,(hAd)  (he Ry a=0,1,....k)
= fT(tr(ZoA™") + (c1.a + c2.ah®) /1, p(1 + k — a — ¢.4h)),

where R,, c1,4 and c; , are range and nonnegative constants sim-
ilar to (11) and Proposition 1, respectively. However, t; (j =
1,...,k) is the jth order statistic of zij_lzj (j=1,... k).

Corollary 1 is an extension of Theorem 1 and Proposition 1 and they are
equivalent when A4 = S. Furthermore, &4 can be obtained by applying The-
orem 2.

Using Corollary 1, we describe the PIM algorithm. Let S =8 and we
define 6 (h) = (5%0) (h),... 751(:))(}’))/ as 69(h) = 6(h|S”) and define the opti-
mal ridge parameters based on minimizing MSC'(6|S®) as

PUNE RSN GNP CINS G0N

i (0) _ ~ 0) 0 t(s
h argheﬁlﬁl{o}¢ (h),  ¢V(h) =MSCT(6 (h) | S).

Therefore 5}0) is given by

5}@ =1- soft(l,izw)/z;{S(O)}_lz/‘)- (22)
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Furthermore, by substituting 09, we define SV as
s — Wl/zG.(B;f(o))’lWl/z,

where W is given in Lemma 1 and G(-) is given by (14), and let 6 (k)
be a class of ridge parameters wherein the jth element (j=1,...,k) is given
by

a(1 -1
5" (h) = 1 — soft(1,h/z/{S"V}'z).
Then, we optimize the ridge parameters again as
2 a1 a(1 a(1 (1) /3
3V =@" oy, o =),
A =arg min W), ¢V () =MsCt(6V(n)|sW).
The 2V can be obtained quickly by applying Theorem 2. Since the optimal
ridge parameter 0 includes S, it is unstable when k is large. However, since

SW s adjusted by substituting 0, 6M is stable even when k is large. The
PIM algorithm is summarized as follows.

PIM Algorithm
Step 1. Let the initial vector 0¥ be the ridge parameters optimized by the
MSC minimization method based on the LH-distance and i « 0.
Step 2. Define S and ¢V (h) as
S(i+l) _ WI/ZG-(B;E(,-))71 W1/2’
¢(i+l)(h) _ MSCT(JA(HrI)(h) |S(i+l))’
where the class of ridge parameters is given by
SNy = @), (h))',

6"V () = 1 = soft(1,h/{S "} "),

Step 3. By using Theorem 2, update the ridge parameters as

S0+ = Fa+D (j+D) AHD —are min 40D (R).
(), g, min ")
Step 4. If 6/ converges, the algorithm is complete. If not, let i — i+ 1
and return to Step 2.
Since the MSC minimized at each iteration is based on the LH-distance,
the minimization is fast. Furthermore, an estimator of the covariance matrix
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which is included in 6" is stable by substituting the ridge parameters optimized
in the previous step. Thus, the PIM is a hybrid method which leverages the
merits of the various MSCs.
The PIM algorithm is similar to the iterative method. In particular, when
using the GC, criterion, for all i (=0,1,...), we have
RO

= 7'
Therefore, the PIM is the following iterative method:
S(i+1 *! g * *
8 =1 —soft(1,0p/22" G(BL)z}),
and this is equal to the iterative method wherein the initial vector is the
ridge parameters optimized by the GC, criterion minimization method, the
iterative function is equation (15), and 7(d) = ap/2. That is, when using
the GC, criterion, the PIM with the GIC is equal to the GIC minimization

method and the PIM with the BNPC is equal to the BNPC minimization
method.

6. Relationship with multivariate adaptive group Lasso regression

In this section, we describe a relationship between the MGR and MAGL
estimators after the regularization parameters are optimized by the MSC min-
imization method based on the LH-distance. The MAGL estimator cannot
usually be obtained as closed form. However, it can be obtained as closed
form under orthogonal explanatory variables. Although we use general X until
the previous section, this section deals with orthogonal explanatory variables.
Furthermore, instead of using the transformed ridge parameters 9y, ...,0;, we
approach this via the original ridge parameters 0y, ..., 0.

6.1. Estimators with optimal regularization parameters under orthogonality.
The orthogonality of X means Q = I, in (3). Therefore, the LS and the MGR
estimators of & in (2) and (4), respectively, are rewritten as

o -, B R 1
:(617"'a§k) =D 1/2Z7 éj:ﬁ
J

. . . B . d;
ER=(ER ..., &) =D D+ 0) 'z, & = f -z,
T d 40,

)

Zj,

(23)

where D = diag(di,...,d;) and Z = (z1,...,z)" are the k x k diagonal matrix
and the k x p matrix given by (3) and (6), respectively. The ridge parameters
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are optimized using the following MSC based on the LH-distance:
MSCr (0]4) = /T(tr{Zr (0)47'}, df (0)), (24)

where 2g (6) and dfg (@) are given by transforming the parameter from & to 6
in X£(d) and df(d), which are given by (8) and (9), respectively, as

. L1 0, \? k. g
2r(0) =2+~ o —L—=), dfr(0) = p(1 + k) — J
W0 =5, 305 (5] 0= -pd gy

Thus, the MSC in (24) is the parameter-transformed version of the MSC in
(21). Furthermore, since the transformation is a one-to-one correspondence,
Corollary 1 gives the following class of ridge parameters optimized by minimiz-
ing MSCg(0]|4):

O(hld) = (0:(h|A), ..., 0k(h|A))’,
dih

0;(hl4) = $ A"z — h
0 (h> z;A_lzj)

(h<zd'g)

Notice that for all x e Ry,
MSCR (0(x|4) | A) = MSC'(8(x]A4)| A).

Then, from Corollary 1, the optimal ridge parameters based on minimizing the
MSC in (24) are given by

0, =0j(hald)  (j=1,....k),

ha=arg | min g(HA). $(hl4) = MSC!(3(hlA)| 4)
and using these optimal ridge parameters, the optimal MGR estimator based
on minimizing the MSC in (24) is given by

A 1 -
ég.j = —— soft(1,h4/z/4" " 2)z;. (26)

v

Since «f =0, when hA > z’A z;, we found that the non-sparse MGR esti-
mator is sparse after the rldge parameters are optimized.

Next, we describe the MAGL estimator of Z. Obhishi ef al. [17] derived
the AL estimator as closed form under orthogonality of X. As a natural exten-
sion of this result, the MAGL estimator can be obtained as closed form.
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Let L, be a k x k diagonal matrix of which the jth diagonal element is given
by

/)“,j - d SOft iw]/f”@” (J = 17 N 'ak)a
where 4 € R, is a regularization parameter called a tuning parameter, w; is a
weight, and || - || is L, norm of a vector. Then, the MAGL estimator of Z is
given by

El = (&F,,.. &) =L X'Y=L,D"*Z,

é,lj Vit 5 = \/750& (1, 2w,/ \/dlIz]))z;
j

Since L, = D~! when / =0, the MAGL estimator coincides with the LS esti-
mator when A =0, and the MAGL estimator coincides with the AL estimator
given in Ohishi ef al. [17] when p =1. The MAGL estimator is sparse in the
sense that f/]f] =0, when Aw; > \/dj||z;||. The EL in (27) denotes the min-
imizer of the following PRSS:

(27)

k
tr{(Y — L' — XE)'(Y = Lp' = XE)} +22) _will&ll. (28)
j=1

The MGR estimator in (23) depends on k regularization parameters. Wher-
eas, the MAGL estimator in (27) depends on only one regularization param-
eter. Furthermore, although the MGR estimator is not sparse, the MAGL
estimator is characterized by sparsity. Hence, it can be stated that the MGR
and MAGL estimators have different properties.

The MAGL estimator in (27) gives a predictive matrix of Y for the
MAGL regression as follows:

Y =14 +XEF=H'Y, HI=J,+XLX'

Using YL and HL, we define an estimator of £ and a GDF as

)

. Y-YH'(Y-YhH Y'(U,-J,-XL,X")’Y
EL(/I):( )n( ) _ Y : )Y

dfy (1) = p tr(HY).

Similar to Ohishi er al [17], we have the following lemma concerning X (1)
and dfy(4).
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LEMMA 5. The Xy (2) and dfy (1) are expressed as

2i(A) =20 +%Z’(lk —~DL)*zZ
I . 5
=2 +ZZ{1 — soft(1, iw;/\/djl|5[1)} 'z,
J=1

k
dfL(A) = p+ p Y _ soft(1, dw;/\/dil|z])).
=

Then, the MSC for optimizing the tuning parameter in the MAGL regres-
sion is given by

MSCy(A]4) = fT(tr(ZL(A)4 ), dfL(2), (29)

and the tuning parameter optimized by the MSC minimization method is given
by

Ja = arg 21111{1 MSCL(4|4).

Regarding the weight w;, in general, an inverse of a norm of an estimator
of & is used. When using the weight w; = 1/||&|| based on the LS estimator,
the optimal MAGL estimator based on minimizing the MSC in (29) is given
by

“ 1 A
& = —— soft(1, La/llz1)z- (30)

T a

6.2. Equivalence between MGR and MAGL estimators. This subsection inves-
tigates a relationship between the MGR and MAGL estimators under the regu-
larization parameters optimized by the MSC minimization method. Although
the optimal MGR estimator in (26) and the optimal MAGL estimator in (30)
have similar forms, the optimal MGR estimator does not include ||z,||2, but
rather z;4"'z; normalized by 4. We focus on the difference.

Let T be an n x p matrix defined by T=¥YA~'/2, U and I' be k x p
matrices defined by U = (uy,...,u) = ZA > =P|T and I' = (y;,...,5) =
EA7'2 respectively, and v be a p-dimensional vector defined by v = 4~"u.
Then, we normalize the PRSS for the MGR regression as

tr{(Y — 1,4’ — XE) (Y — 1,4/ — XE)A™' + £'Q0Q' 247"}

=tr{(T — 10 — XTI (T — 1,0/ — XI') + I''0OQ'T’}.
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This normalized PRSS provides the MGR estimator of p; as

xR _ VG

0, 7dj+0j

llj.

Therefore, the MGR normalized estimator of ¢; is given by

ERT _ q1/25R Vi -
0;.J 0;,J d] _|_HJ. )

and this is equal to the MGR estimator in (23). That is, the MGR estimator
in (23) is a normalized estimator in spite of the fact that it is obtained from
non-normalized PRSS in (5). Thus, the optimal MGR normalized estimator is
given by (26). On the other hand, based on Xin et al [23], we normalize the
PRSS for the MAGL regression as

k
tr{(Y — L' — XE)'(Y — Lp' — XE)A™ "} +22) w4712
=1

k
= tr{(T = 10" = XI)'(T = 10" = XI)} + 22> wylly.
j=1

When using the general weight w; = 1/|3;]| (9; is the LS estimator of y;), this
normalized PRSS provides the MAGL estimator of y; as

. 1
35, = —= soft(1, /|| *)u;.

4

Therefore, the MAGL normalized estimator of ¢&; is given by

EH = AL = ﬁ soft(1, 7/z/ A7)z,
and this is different from the MAGL estimator in (27) obtained as the min-
imizer of the PRSS in (28) with the weight w; = 1 /||£_,~||. Hence, the difference
between the two optimal estimators (26) and (30) is whether the estimator is
normalized or not. If hy = iA, the two optimal normalized estimators are
equivalent. The equivalence is given by the following theorem (the proof is
given in Appendix A.7).

THEOREM 6.  Suppose that w; = 1/||3;|| and let éj (j=1,...,k) and J be
the regularization parameters optimized by the MSC minimization method based
on the LH-distance defined by
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0; = 0;(hqlA),  hy=arg min MSCr (0(h|A)| A),

A= A4 = arg min MSCy(1]|A4).

ieRy

Then, the following equation holds:

(:;“I:QLT] (j=1,...,k).

7. Numerical studies

In this section, we explore the performance of the MSC minimization
methods for optimizing ridge parameters by evaluating prediction accuracies
of predictive matrices via simulation. This simulation is executed using R
(ver. 3.6.0) on a computer with a Windows 10 Pro operating system, Intel (R)
Core 17-7700 processor, and 16 GB of RAM. Let R; = diag(l,...,k) and let
Q;(p) be a k x k matrix of which the (i, j) element is given by p!"~/. Then,
the simulation data are generated from the following model:

Y ~ Nnxp(X572® In>7
X =(,—-J)XP(099)'  X=R/2,(p,)R),

where & and X, are k x p and n x k matrices wherein all the elements are
identically and independently distributed according to U(—1,1) and ¥(p) is
a correlation matrix of X defined by ¥(p) :R,i/ 2Qk(p)R,i/ ®. Furthermore,
p = 0.99 and thus this simulation is a highly correlated setting. Finally, = and
X are fixed throughout the simulation iterations.

Let f"; be the predictive matrix of Y obtained from the optimal MGR
estimator based on minimizing the MSC and Y be the predictive matrix of ¥
obtained from the LS estimator, i.e., ¥ = Yok- Then, we evaluate the predic-
tion accuracy of f’j by the following relative mean square error (RMSE):

MSE|Y]

RMSE[Y;]| = — ¢ %
SE[Y] p(k+1)x100(/),

MSE[Y;] = E[tr{(XZ - ¥;)'(XE — ¥;) 2 '}].

In this setting, MSE[Y] = p(k 4+ 1). This means that the prediction accuracies
are evaluated in terms of the amount of improvement of the prediction ac-
curacy of Y. Specifically, RMSE < 100 means the prediction accuracy of Y5
is superior to that of ¥ and RMSE > 100 means the prediction accuracy of ¥;
is inferior to that of Y. The smaller the RMSE value, the better the prediction
accuracy. The expectation of the MSE is evaluated by Monte Carlo simula-
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tion with 10,000 iterations. Furthermore, it can be considered that the MSE
value strongly relates to the amount of shrinkage of the MGR estimator, in
particular, more shrinkage is required when there are highly correlated variables
in X. When 5} =1, the amount of shrinkage of the MGR estimator is maxi-
mized and this means that the jth eigenvalue (and corresponding eigenvector)
is removed from the model. From this, we measure the amount of shrinkage
of the MGR estimator by calculating the following relative number of removed
eigenvalues (RNRE):

RNRE($) = 711/ € “"'};k} 15 =10 5 100 ()

The RNRE expresses the ratio of the number of removed eigenvalues. If the
RNRE value is small (large), then the amount of shrinkage is also small
(large).

In this simulation, we estimate the mean structure of model. Thus, we
use the LH-, LR-, and BNP-distances as the distance in the MSC. RMSE
comparison 1 explores the prediction accuracies of predictive matrices where
ridge parameters are optimized by the following methods:

* GC,: GC, criterion minimization method.

e EGCV: EGCYV criterion minimization method.

* GIC: GIC minimization method via the iterative method with the initial
vector 0.

e BNPC: BNPC minimization method via the iterative method with the
initial vector 0.

e PIMI: PIM with EGCV criterion and GIC.

e PIM2: PIM with EGCV criterion and BNPC.

For all MSCs, we use o = 2,2 log log n, log n, and they are labeled as 1, 2, and

3, respectively. Furthermore, the quartic equation in the BNPC minimization

method is solved by the R function ‘“polyroot”.

Table 1 summarizes the RMSE and RNRE values for p, =0.2,0.5,0.9
and k£ =0.1n,0.3n,0.5n when p =15 and n=50. From this table, it can be
discerned that the prediction accuracy of f"; is greater than that of Y in most
cases. We also found that the RNRE values increase as o increases, i.e., as
the amount of shrinkage increases. Moreover, the RMSE values tend to in-
crease with increasing p,, or k, and this may be caused by decreasing shrinkage.
However, we could not find relationships between prediction accuracies and
the amount of shrinkage. Table 2 summarizes the results when p =5 and
n =200. Overall, trends are similar to those in Table 1. However, when
n = 200 the amount of shrinkage substantially decreases. Table 3 summarizes
the results when p =5 and n=500. In this case, the optimal ridge param-
eters often do not lead to improvements in prediction accuracies. This is
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Table 1. RMSE comparison 1 when p =5 and n= 50
Py 0.2 0.5 0.9
k 5 15 25 5 15 25 5 15 25
1 RMSE 49.40 47.52 4894 5143 50.44 5218 65.17 66.74 71.24
RNRE 36.22 3199 28.52 34.80 29.95 26.40 24.02  19.03  14.69
GC 5 RMSE 4530 44.06 4524 47.60 47.54  49.20 63.96 66.23 71.53
’ RNRE 50.10 4539 41.63 48.26 42.82 38.77 34.74  28.39 2235
3 RMSE 43.19 43.69 44.27 45.65 48.03 49.31 66.18 6991 76.91
RNRE 64.97 60.97 58.01 63.32 5791 5472 4783  40.62 3331
1 RMSE 49.59 4821 50.37 51.60 51.01 53.33 65.21  66.88  71.40
RNRE 35.72 30.11 25.18 3427 28.31 2349 2380 18.35 13.68
EGCy 2 RMSE 4529 44.00 44.99 47.57 47.47 4897 63.95 66.28  72.02
RNRE 50.34 45.71 43.00 48.50 4329 4047 35.08 29.25 2439
3 RMSE 43.12 44.08 45.02 45.60 48.70 51.01 66.52 7198 86.35
RNRE 66.00 64.46 66.79 6436 61.71 64.07 49.11 44.60 43.72
1 RMSE 50.02 50.80 57.71 52.08 53.59 60.48 65.78  69.00 76.44
RNRE 37.11 27.27 16.50 35.57 2532 14.83 2439 1491 6.82
Gic 2 RMSE 4521 4474 47.42 47.60 48.28 51.31 64.38  66.66  72.30
RNRE 53.65 46.23 38.21 51.77 4342 3476 37.31  27.15 1571
3 RMSE 42.88 44.54 4542 4551 49.67 51.73 67.94 7238 834l
RNRE 70.30 68.78 70.97 69.00 66.07  68.09 53.81  46.64 42.07
1 RMSE 48.17 45.60 50.84 50.42 49.82 61.45 6545 68.53 14594
RNRE 46.53 54.76 85.12 44.61 51.70  84.47 31.15  29.32 57.38
BNPC 2 RMSE 4373 4899 59.09 46.39 57.16 7594 66.25 102.30 * * *
RNRE 66.23  79.62 91.35 64.70 78.68  91.40 49.52  62.36  91.06
3 RMSE 42.80 66.04 89.59 45.60 79.82 118.06 76.70 * ¥ ko ox %
RNRE 78.76 88.69 92.94 78.34 88.57 93.34 69.75 8594  94.79
1 RMSE 48.84 4734 4891 50.94 50.30 52.11 65.06 66.78  71.46
RNRE 39.93 34.80 30.91 3820 32.79  29.01 26.84 21.69 17.51
pimMi 2 RMSE 4459 4359 44.28 47.01 4743 48.84 64.38  67.36  75.72
RNRE 56.00 52.84 52.60 54.31 50.29  50.00 39.97  35.09 32.80
3 RMSE 42.80 4539 46.58 4543 51.05 53.90 68.89  77.46 103.47
RNRE 71.71 72.21 76.51 70.49 69.92 74.35 5597 5299  56.55
| RMSE 48.02 46.50 47.93 50.22 49.78  51.97 65.02 67.28 78.35
RNRE 4541 42.84 4479 43.57 40.82 42.86 31.25 2798  30.58
pimM2 2 RMSE 4390 4434 46.32 46.49 4930 52.71 65.52  72.54 103.73
RNRE 63.43 63.54 67.10 61.89 61.48  65.29 47.13 4620 52.24
3 RMSE 42.64 49.52 50.09 4546 57.84  59.65 73.92 113.98 * * *
RNRE 77.31 80.65 84.19 76.70 79.66  82.99 6595 6735 73.37
Note: Emboldened entries represent the minimum of the RMSE values in each column; * * *

denotes values greater than 150.
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Table 2. RMSE comparison 1 when p =5 and n =200

Py 0.2 0.5 0.9
k 20 60 100 20 60 100 20 60 100
1 RMSE 68.57 75.92 81.39 73.54 80.32 84.51 89.94 9230 94.24
RNRE 1937 13.63 9.84 1586 10.71 7.94 517 377 256
Gc. o2 RMSE 73.88 82.70 89.17 80.85 88.41 92.48 97.35 98.59  99.68
’ RNRE 37.35 26.81 20.12 31.19 2143 1644 1230  7.62  5.63
3 RMSE 89.84 101.56 110.81 | 100.53 110.59 114.55 | 117.17 116.58 115.30
RNRE 55.56 41.74 3245 48.38 3431 27.06 21.37 12,67  9.73
1 RMSE 68.56 75.88 81.27 7352 80.25 84.39 89.93 9227 94.20
RNRE 19.16 1323 9.34 1573 1045  7.62 516 374 252
EGCY 2 RMSE 74.32  84.71 95.15 81.45 90.81 98.34 97.81 99.70 101.84
RNRE 38.18  29.04 2451 31.99 23.36 20.07 1262  8.08 643
3 RMSE 92.62 11519 * * * 104.26 129.24 * * * 120.70 128.37 148.20
RNRE 57.77 48.88 48.61 50.87 42.05 42.90 22.52 15.02 14.72
1 RMSE 68.76  76.45 83.20 73.60 80.41 85.79 89.66 91.89 94.34
RNRE 18.08 9.19  3.57 1479  7.07 279 457 229 075
Gic 2 RMSE 7421 80.60 83.03 81.29 85.67 85.72 96.60 94.62 94.11
RNRE 38.07 2425 1293 31.78 18.89  9.73 11.91 5.69 235
3 RMSE 94.07 110.50 136.68 | 106.84 123.88 141.34 | 120.95 114.66 103.06
RNRE 59.24  47.18 42.03 52.74 40.57 35.23 22.57 1238  6.67
1 RMSE 68.88 76.24 82.13 73.89 80.43 85.06 89.88 91.92 9425
RNRE 2041 1245 571 16.51 924 4.03 5.01 2.61 0.87
BNPC 2 RMSE 78.89 119.39 * * * 87.55 147.83 * * * 99.54 99.52 * * *
RNRE 4523 51.28 94.39 3844  49.56 95.01 14.02  8.05 559
RNRE 68.76  83.54 97.03 65.39 85.89 97.02 30.66 94.16 97.15
1 RMSE 68.67 76.04 81.62 73.68 80.49 84.80 90.06 9244 9441
RNRE 19.83  13.84 10.06 16.28 1099  8.23 539 393 272
piM1 2 RMSE 75.29  86.59 101.64 82.87 93.71 106.56 98.83 101.75 105.66
RNRE 39.87 30.98 2791 33.62  25.36 2346 13.40 8.83  7.37
3 RMSE 95.74 121.86 * * * 109.29 141.32 * * * 126.93 147.81 * * *
RNRE 60.36  52.26  53.79 54.14  47.10 50.12 24.11 1830 25.30
| RMSE 68.80 76.32 82.79 73.88  80.89 86.11 90.21  92.67 94.78
RNRE 20.62 14.67 11.50 1691 11.76  9.49 564 417  3.01
piM2 2 RMSE 76.58  90.23 122.20 84.85 100.37 140.97 | 100.18 106.38 * * *
RNRE 4195 34.07 35.28 35.68 29.12  32.68 1436 10.24 15.98
3 RMSE 100.12 133.69 * * * 116.54 * * * * x * 139.98 * * * * x *
RNRE 63.44 5630 59.23 58.54 53.67 58.34 26.59 3439 67.16
Note: Emboldened entries represent the minimum of the RMSE values in each column; * * *

denotes values greater than 150.
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Table 3. RMSE comparison 1 when p =5 and n = 500
Py 0.2 0.5 0.9
k 50 150 250 50 150 250 50 150 250
1 RMSE 87.42 9449 9498 89.93 9584 96.11 97.21 99.19 98.84
RNRE 675 227 214 5.23 1.58 1.56 1.11 0.11 0.40
Gc. o2 RMSE 98.40 104.50 103.78 | 100.49 105.05 104.03 | 103.37 103.50 102.07
’ RNRE 1590 695 571 1245 507 413 3.62  0.60 1.07
3 RMSE 130.30 131.79 129.36 | 130.42 130.22 127.53 | 120.89 116.88 112.61
RNRE 2647 14.69 11.48 2195 11.59  8.63 7.77 1.97  2.09
1 RMSE 87.40 9447 94.95 89.92 95.83 96.08 97.20  99.19 98.84
RNRE 6.72 226 2.11 5.21 1.57 1.55 1.11 0.11 0.40
EGCY 2 RMSE 99.18 106.79 108.56 | 101.17 106.90 107.68 | 103.57 103.84 102.57
RNRE 1633 779  7.05 1276 5.66 497 370 0.63 1.14
3 RMSE 137.37 * * * % % * 136.36 149.81 * * * 122.82 121.41 121.10
RNRE 2793 19.22 23.61 2331 1538 18.15 8.11 238  2.66
1 RMSE 87.10 93.58 94.63 89.59 9493 95.70 96.92 98.70 98.62
RNRE 5.94 1.17  0.60 459 078 044 092 0.04 0.10
Gic 2 RMSE 97.08 98.71 95.24 99.03 99.46 96.23 | 102.06 100.40 98.76
RNRE 1527 4.64 232 11.84  3.19 1.62 324 025 037
3 RMSE 134.11 129.57 115.52 | 132.87 126.22 111.41 | 119.31 108.82 101.60
RNRE 27.37 1424 8.0 22.65 10.65  5.69 7.62 1.20 1.00
| RMSE 87.22  93.62 94.55 89.70 94.98 95.65 96.96 98.71 98.62
RNRE 6.28 1.30  0.67 482 086 048 095 0.04 0.11
BNPC 2 RMSE 100.13 103.66 * * * 101.56 102.85 97.88 | 102.71 100.70 98.84
RNRE 17.00  6.77 432 13.10 441 2.34 3.51 029 041
RNRE 32.58  98.69 100* 27.14  99.36 100* 8.64 1.85 1.43
1 RMSE 87.44 9454 95.05 89.97 95.89 96.19 97.23  99.21 98.86
RNRE 683 231 2.19 5.29 1.61 1.60 .13 0.12 041
piM1 2 RMSE 99.66 107.65 111.08 | 101.67 107.89 110.47 | 103.83 104.11 103.06
RNRE 16.66  8.14  7.67 13.06 596 549 3.82  0.68 1.21
3 RMSE 140.71 * * * % x * 139.49 * * * & x % 12429 124.55 132.50
RNRE 28.64 20.44 28.29 24.08 16.84 24.37 846 2,66 324
| RMSE 87.49 94.61 95.20 90.01 9597 96.34 97.26  99.23  98.89
RNRE 694 238 228 5.38 1.66 1.67 1.16 0.12 043
piM2 2 RMSE 100.23 108.98 119.90 | 102.25 109.44 121.35 | 104.11 104.46 103.86
RNRE 17.03 8.64  9.25 1337 639 7.14 397  0.73 1.31
3 RMSE 145.66 * * * * x * 143.99 * * * * x * 126.11 131.62 * * *
RNRE 29.54  23.09 35.64 25.03 20.81 38.87 8.88  3.19 59.05
Note: Emboldened entries represent the minimum of the RMSE values in each column; * * *

denotes values greater than 150; * denotes an exact value.
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because the amount of shrinkage is too large for the BNPC and too small for
the methods. Tables 4-6 show the results when p = 10, and we can see that
trends are similar compared to the case where p = 5.

In RMSE comparison 1, the iteration method was used to optimize the
ridge parameters using the GIC and BNPC minimization methods. However,
these optimal ridge parameters can also be calculated by using the coordinate
descent algorithm or the PIM with the GC, criterion. RMSE comparison 2
confirms whether the three algorithms minimize the MSC or not by comparing
the results obtained from these algorithms. Although the initial vector used in
the iterative method is 0, the PIM with the GC, criterion is the iterative
method by changing the initial vector from 0; to the ridge parameters opti-
mized by the GC, criterion minimization method. Hence, by comparing the
results obtained from the two methods, we can confirm whether the iterative
method depends on the initial vector or not.

Table 7 compares the three algorithms for solving the GIC minimization
method in terms of the RMSE, i.e., from the iterative method (GIC_IM), the
coordinate descent algorithm (GIC_CD), and the PIM with the GC, criterion
(PIM_GC,). Settings are as per RMSE comparison 1, where o is only o = 2.
From these results, it can be discerned that there is equivalent performance
among the three algorithms. Although there is a bit of error, it can be con-
sidered that the error is made when convergence judgment. Thus, the three
algorithms all converge and achieve minimization of the GIC. Furthermore,
we found that the iterative method does not depend on the initial vector.

Table 8 shows a runtime comparison of the three algorithms for the GIC
minimization method in terms of time (s) per repeat, where the reported values
are 10,000 times the actual runtime values. The PIM is the fastest algorithm
in most cases. Sometimes the iterative method is faster than the PIM. In
such cases, the RNRE value is very small, that is, the optimal ridge parameters
are close to 0. The difference between the iterative method and the PIM is
the initial vector, and the initial vector of the iterative method is 0;. Hence, it
can be considered that the iterative method is faster than the PIM when the
optimal ridge parameters are close to 0. On the other hand, the coordinate
descent algorithm is overwhelmingly slowest of all. Hence, the best option for
solving the GIC minimization method is to use the PIM with the GC, criterion.

Table 9 compares the three algorithms for solving the BNPC minimiza-
tion method, in terms of RMSE as similar to Table 7. It can be discerned that
the three algorithms converge and achieve minimization of the BNPC, and the
iterative method does not depend on the initial vector.

Table 10 shows a runtime comparison of the three algorithms for the
BNPC minimization method in terms of time (s) as per Table 8. Similar to
what was noted above regarding the GIC minimization method, to solve the
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Table 4. RMSE comparison 1 when p =10 and n = 50
Py 0.2 0.5 0.9
k 5 15 25 5 15 25 5 15 25
1 RMSE 4725 4385 48.37 49.21 46.54 51.65 61.62 62.52 68.72
RNRE 2478 19.56  12.83 2324 1820 1148 1452 10.18 5.72
GC 5 RMSE 42.71 3881 42.17 4495 41.82  46.06 59.32 60.16 65.84
’ RNRE 42.72 3507 2476 4042 3290 22.35 27.17 19.76  11.70
3 RMSE 40.61 37.16 38.43 43.07 40.62 43.24 60.65 61.73  66.31
RNRE 63.05 55.28  43.57 60.99 5236  39.81 4392 3458  22.26
1 RMSE 4736 4427  49.05 4930 4690 52.21 61.65 62.63  68.87
RNRE 2449 18.68 11.86 2294 17.40 10.71 14.44 994 5.53
EGCV 2 RMSE 42.60 3834 40.39 4485 41.40 44.55 59.30 60.09  65.50
RNRE 4350 37.75  31.19 41.25 3554 28.33 2792 21.71 14.89
3 RMSE 40.55 37.68  38.50 43.03 41.41 4497 61.08 6398 73.76
RNRE 64.88 62.77 63.23 6291 59.69 5941 46.10 41.77  37.62
1 RMSE 46.61 46.01 58.58 48.71 4885 61.80 61.73 6521 7691
RNRE 32.68 21.04 6.86 30.68 19.21 5.69 19.44  9.33 1.96
Gic 2 RMSE 41.50 37.85 40.88 44.02 41.08 4591 59.74 61.02  69.04
RNRE 5842 50.97 40.64 56.12 4747 3449 39.19 2744 1041
3 RMSE 40.14 40.11 40.84 4293 4433  49.30 65.66 68.82  81.02
RNRE 77.07 78.59  82.57 76.24 75.06  78.72 60.97 57.74  51.56
1 RMSE 4271 4112 51.02 4539 4533  68.20 61.06 68.18 * * *
RNRE 64.79 79.62  91.59 62.73 7573  91.38 44.03 5431  78.60
BNPC 2 RMSE 39.83 52.83  72.67 4290 62.50 97.41 68.37 91.06 * * *
RNRE 79.04 89.89  93.29 78.69 87.98  93.56 67.08 73.92  92.37
3 RMSE 41.21 61.96 111.45 4332 79.90 138.42 82.95 ¥k x ok ox %
RNRE 80.03 93.12 9521 79.99 92.84  95.38 78.97 83.33  94.81
1 RMSE 4528 41.15 43.12 4742 44.00 46.92 60.75 61.49  66.64
RNRE 36.96 32.41 27.88 34.84 30.58  25.62 23.15 18.80  14.55
piM1 2 RMSE 41.01 37.02 3771 4357 4032 43.17 59.85 62.00 70.16
RNRE 61.72 59.62 61.03 59.60 56.79  57.30 43.06 3997  37.79
3 RMSE 40.20 41.42 42.05 4299 4622 52.06 67.20 73.52 102.37
RNRE 7791 81.02 85.84 7725 77.75  83.09 63.07 6421  65.64
1 RMSE 4294 3922 41.39 4549 4237 47.38 60.56 64.27  80.77
RNRE 61.28 61.61 64.39 59.20 59.00 61.61 43.11 4450 46.22
piM2 2 RMSE 39.90 41.28 42.22 4297 46.11 52.02 66.13  73.27 111.18
RNRE 78.32 81.28  83.70 7778 78.42  81.46 64.66 6539  67.05
3 RMSE 40.45 53.45 48.40 43.14 6321 63.07 81.84 95.55 * * *
RNRE 79.99 90.19 91.41 79.97 8832  90.86 78.23  75.29  80.91
Note: Emboldened entries represent the minimum of the RMSE values in each column; * * *

denotes values greater than 150.
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Table 5. RMSE comparison 1 when p =10 and n = 200

Py 0.2 0.5 0.9
k 20 60 100 20 60 100 20 60 100
1 RMSE 57.38 67.35 72.47 62.60 72.10 76.68 83.29 88.44 90.86
RNRE 16.40 1025  7.31 13.21 8.01 5.61 339 2.1 1.34
Gc. o2 RMSE 61.78 73.26 7822 68.67 78.80 82.61 90.30 93.85 95.20
’ RNRE 40.86 27.18 20.49 33.81 21.51 16.27 11.54 627 425
3 RMSE 76.54  92.15 98.54 87.31 100.35 103.24 | 111.52 111.78 110.88
RNRE 63.02 4594 36.23 55.35 38.00 29.93 2344 13.10  8.85
1 RMSE 57.39  67.37 7249 62.61 72.10 76.68 83.29 88.44 90.86
RNRE 16.24 10.00  6.98 13.11 7.86 543 338 2,10 1.33
EGCY 2 RMSE 62.35 76.04 85.74 69.43  81.88 89.90 90.91 9527 97.88
RNRE 4232 31.11 27.98 35.16 24.74 2249 12.08 698 529
3 RMSE 79.09 107.06 149.90 9091 119.41 * * * 11599 126.01 * * *
RNRE 65.46 5449 5501 5839 47.89 48.46 2520 17.08 17.74
1 RMSE 57.70 68.76 77.17 62.88 73.26 80.71 83.29 88.83 9249
RNRE 16.01 6.06 1.54 12.75  4.55 1.09 3.03 098 0.18
Gic 2 RMSE 63.40 7348 7493 70.68  78.53  78.36 90.51  90.67 90.93
RNRE 4518 2799 15.35 37.62 2140 10.36 1230 4.58 1.37
3 RMSE 83.94 110.14 144.62 97.64 12296 * * * 121.44 118.06 105.65
RNRE 69.91 56.63 54.61 64.36  51.24  47.69 27714 1557 7.2
1 RMSE 57.66 68.03 87.36 63.06 72.70 78.78 83.50 88.68 92.23
RNRE 21.14 12.84 13.01 16.82  8.71 3.12 3.88 136 0.26
BNPC 2 RMSE 7191 * * * *x x * 8222 *F * ok x x ok 96.74 * * x * x %
RNRE 59.59 71.87 92.54 5243 69.76  93.04 17.72 1524  77.56
RNRE 82.08 87.21 95.67 80.44 87.80 96.30 50.65 91.06  99.96
1 RMSE 5743  67.50 72.73 62.73 7231 77.03 83.47 88.61 91.07
RNRE 18.23  11.71 8.94 1477 926  17.03 391 2.48 1.72
piM1 2 RMSE 64.42  80.28 96.26 72.19 87.80 103.49 93.06 99.03 107.22
RNRE 4727 36.70 35.58 39.83  30.17 30.40 1429 893  8.09
3 RMSE 85.21 120.90 * * * 99.44 136.43 * * * 128.16 * * * * x *
RNRE 70.72  60.15 63.32 65.58 56.05 59.38 29.66 2398 33.96
| RMSE 57.59 68.00 74.63 62.99 7297 79.46 83.71 88.93 91.81
RNRE 20.71 14.32 13.19 1693 1142 10.84 460 302 249
piM2 2 RMSE 67.66 88.23 118.06 76.73 100.31 140.80 96.47 110.29 * * *
RNRE 53.40 4446 45.76 46.19 39.71 4274 17.45 13.81 23.59
RNRE 77.46 68.98 71.41 74.39  65.19  70.63 3843  49.73  67.58
Note: Emboldened entries represent the minimum of the RMSE values in each column; * * *

denotes values greater than 150.



216 Mineaki OHISHI
Table 6. RMSE comparison 1 when p =10 and n = 500
Py 0.2 0.5 0.9
k 50 150 250 50 150 250 50 150 250
1 RMSE 81.19 88.94 90.00 85.14 91.51 92.14 95.37 97.82 97.67
RNRE 4.32 1.56 1.66 293 0.9 1.12 0.38 0.03 0.20
Gc. o2 RMSE 9328 98.48 97.82 96.38 100.05 99.03 | 100.55 101.06 100.33
’ RNRE 15.09 7.32 646 10.64  4.69  4.47 203 027 0.77
3 RMSE 131.47 128.21 124.25 | 13240 127.22 122.64 | 119.74 113.93 111.01
RNRE 28.73 17.16 13.68 22.07 12.58 10.26 4.66 1.06 1.63
1 RMSE 81.19 88.93 89.99 85.14 91.51 92.14 95.36  97.82  97.67
RNRE 4.31 1.55 1.64 293 0.89 1.11 0.38  0.03 0.20
EGCY 2 RMSE 94.53 101.57 103.97 97.40 102.38 103.49 | 100.75 101.35 100.85
RNRE 1580 872 872 11.11 554 5.89 207 029 083
3 RMSE 142,15 * * * % % * 141.78 * * * * x * 122.24 118.84 122.10
RNRE 3145 2346 30.84 2422 17.55 2235 4.93 1.35 243
1 RMSE 81.06 88.96 91.45 84.98 9145 93.26 9524 97.75 97.99
RNRE 3.66 059 022 244 032 0.14 0.28  0.01 0.02
Gic 2 RMSE 9292 9359 90.43 95.60 9522 92.38 99.36  98.62 97.64
RNRE 15.10 493 2.8 1048  2.82 1.33 1.83  0.10 0.19
3 RMSE 14539 144.66 131.69 | 143.38 137.46 119.42 | 118.85 106.79 100.25
RNRE 32.53 2022 14.90 2488 1436  9.51 475 068  0.77
1 RMSE 81.18 88.85 91.17 85.07 91.39 93.08 95.26 97.75 97.98
RNRE 418 076  0.29 275 039  0.18 0.31 0.01 0.02
BNPC 2 RMSE 99.64 ¥ * x ok x % 100.71 106.53 * * * 100.06  98.92 97.71
RNRE 18.76  16.06  99.59 13.00 6.64 69.70 209 014 0.23
RNRE 50.52  96.67 99.90 40.25 96.76 100.00 5.99  37.40 90.00
1 RMSE 81.27 89.05 90.15 85.21 91.62 92.29 95.39 97.84 97.70
RNRE 4.55 1.70 1.85 3.09 098 1.25 0.41 0.04 0.22
piM1 2 RMSE 96.06 104.80 111.93 98.81 105.66 111.48 | 101.12 101.89 101.90
RNRE 16.79 10.01 10.84 1194 6.62 7.83 224 035 095
RNRE 3426 28.55 38.11 26.62 2241 34.55 5.45 1.94 585
| RMSE 81.36 89.21 90.51 85.30 91.78 92.62 9541 97.86 97.73
RNRE 4.82 1.90  2.18 3.27 1.09 1.46 044 0.04 025
piM2 2 RMSE 98.10 111.58 137.23 | 100.68 113.05 147.94 | 101.54 102.68 104.57
RNRE 18.01 12.06 15.23 1295  8.61 12.78 243 045 1.18
RNRE 38.48 38.87 46.20 30.39  36.78 48.39 6.17 724 65.25
Note: Emboldened entries represent the minimum of the RMSE values in each column; * * *

denotes values greater than 150.
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Table 7. RMSE comparison 2 (GIC; o = 2)
p=>5 p=10

n Py k GICIM GICCD PIM_GC, GICIM GICCD PIM_GC,
50 02 5 50.02 50.02 50.01 46.61 46.60 46.61
15 50.80 50.79 50.78 46.01 45.99 45.97
25 57.71 57.69 57.66 58.58 58.54 58.47
0.5 5 52.08 52.08 52.07 48.71 48.70 48.70
15 53.59 53.58 53.57 48.85 48.83 48.81
25 60.48 60.46 60.43 61.80 61.77 61.71
0.9 5 65.78 65.78 65.77 61.73 61.73 61.73
15 69.00 68.99 68.99 65.21 65.20 65.18
25 76.44 76.44 76.43 76.91 76.90 76.89
200 0.2 20 68.76 68.76 68.76 57.70 57.70 57.70
60 76.45 76.45 76.45 68.76 68.76 68.76
100 83.20 83.19 83.19 77.17 77.16 77.16
0.5 20 73.60 73.60 73.60 62.88 62.88 62.88
60 80.41 80.41 80.41 73.26 73.26 73.25
100 85.79 85.79 85.79 80.71 80.71 80.70
0.9 20 89.66 89.66 89.67 83.29 83.29 83.29
60 91.89 91.89 91.89 88.83 88.83 88.83
100 94.34 94.34 94.34 92.49 92.49 92.49
500 0.2 50 87.10 87.10 87.10 81.06 81.06 81.06
150 93.58 93.58 93.58 88.96 88.96 88.96
250 94.63 94.63 94.63 91.45 91.45 91.45
0.5 50 89.59 89.59 89.59 84.98 84.98 84.98
150 94.93 94.93 94.93 91.45 91.45 91.45
250 95.70 95.70 95.70 93.26 93.26 93.26
0.9 50 96.92 96.92 96.92 95.24 95.24 95.24
150 98.70 98.70 98.70 97.75 97.75 97.75
250 98.62 98.62 98.62 97.99 97.99 97.99

BNPC minimization method, using the PIM with the GC, criterion is the best

option.
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Table 8. Runtime comparison (GIC; x1/10,000 (s))

p=>5 p=10
n Py k GICIM GICCD PIM_GC, GICIM GICCD PIM_GC,
50 02 5 3.04 10.81 2.30 4.57 12.46 3.48
15 5.15 4341 3.76 8.78 52.13 6.10
25 8.06 95.43 5.87 13.65 122.30 10.74
0.5 5 3.40 10.97 2.09 4.65 12.41 3.53
15 6.04 46.88 3.66 8.86 52.57 6.45
25 8.48 104.61 5.87 13.57 124.52 11.11
0.9 5 3.52 12.28 2.23 5.70 12.36 4.05
15 6.04 46.51 3.80 8.97 52.90 6.70
25 8.74 104.99 6.15 13.61 121.29 11.77
200 0.2 20 4.00 52.16 2.76 4.99 57.31 3.62
60 7.51 205.03 5.26 9.66 228.49 6.95
100 15.20 443.87 12.82 20.92 489.25 18.33
0.5 20 3.96 52.96 275 4.92 58.35 343
60 7.64 207.20 5.77 10.24 227.12 7.16
100 15.74 450.99 13.95 22.31 504.68 20.00
0.9 20 3.74 49.59 2.53 4.69 54.66 3.40
60 6.12 174.76 4.48 9.25 197.91 7.01
100 9.30 303.43 9.91 16.13 379.86 13.15
500 0.2 50 4.70 128.49 3.16 5.86 137.78 4.05
150 13.66 456.75 10.85 23.53 528.58 20.47
250 41.80 851.61 38.38 81.79 1051.05 54.42
0.5 50 4.50 126.82 3.24 5.87 134.42 3.99
150 13.52 440.54 11.35 22.19 521.07 18.68
250 34.72 798.15 37.24 67.56 986.76 47.96
0.9 50 391 109.08 2.66 5.13 112.50 3.37
150 10.16 348.91 10.19 15.00 360.90 14.80
250 21.28 559.92 26.01 32.38 607.38 37.82

Note: Emboldened entries represent the fastest time in each row.
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Table 9. RMSE comparison 2 (BNPC; o = 2)

219

p=>5 p=10
n Py k BNPC.IM BNPCCD PIM_GC, BNPC_IM BNPC.CD PIM_GC,

50 0.2 5 48.17 48.15 48.16 42.71 42.67 42.71

15 45.60 45.58 45.60 41.12 47.36 41.12

25 50.84 60.14 50.83 51.02 602.41 51.02

0.5 5 50.42 50.41 50.42 45.39 45.36 45.39

15 49.82 49.83 49.82 45.33 5591 45.33

25 61.45 87.35 61.45 68.20 1127.10 68.20

0.9 5 65.45 65.45 65.45 61.06 61.12 61.06

15 68.53 68.56 68.52 68.18 138.36 68.18

25 145.94 510.55 146.63 193.23 9745.56 193.62

200 0.2 20 68.88 68.88 68.88 57.66 57.67 57.66

60 76.24 76.24 76.24 68.03 68.04 68.03

100 82.13 82.13 82.12 87.36 89.21 87.41

0.5 20 73.89 73.89 73.89 63.06 63.06 63.06

60 80.43 80.44 80.44 72.70 72.70 72.69

100 85.06 85.06 85.05 78.78 78.77 78.74

09 20 89.88 89.88 89.88 83.50 83.51 83.50

60 91.92 91.92 91.92 88.68 88.68 88.68

100 94.25 94.24 94.24 92.23 92.23 92.22

500 0.2 50 87.22 87.22 87.22 81.18 81.18 81.18

150 93.62 93.62 93.62 88.85 88.85 88.85

250 94.55 94.55 94.55 91.17 91.17 91.17

0.5 50 89.70 89.70 89.70 85.07 85.08 85.08

150 94.98 94.98 94.98 91.39 91.39 91.39

250 95.65 95.65 95.65 93.08 93.08 93.08

09 50 96.96 96.96 96.96 95.26 95.26 95.27

150 98.71 98.71 98.71 97.75 97.75 97.75

250 98.62 98.62 98.62 97.98 97.98 97.98
Appendix

A.1. Proof of Theorem 1.
2, the domain of f is included in [0,r.] X [p,np).

(9)

Let 7(0) = tr(B}) and u(3) = df(3).

2/,(1(8), u(d))

_ nbpf,(r(8), u(9))

From Lemma
We define 7(d) as
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Table 10. Runtime comparison (BNPC; x1/10,000 (s))

p=>5 p=10
nop, k BNPC_IM BNPCCD PIM.GC, BNPCIM BNPCCD PIM_GC,
50 0.2 5 4.39 68.80 3.43 5.92 76.06 4.95
15 9.73 337.69 8.10 11.66 281.44 10.57
25 11.36 621.02 9.32 12.21 472.33 9.96
0.5 5 4.34 71.33 3.45 6.07 73.57 5.23
15 10.17 364.55 8.64 12.77 283.79 11.63
25 12.20 650.78 10.31 13.28 482.18 10.76
0.9 5 5.29 72.58 4.26 7.73 70.38 6.87
15 12.20 418.82 9.86 16.47 320.11 14.59
25 18.36 886.39 15.46 23.12 604.47 20.86
200 0.2 20 5.27 376.38 4.04 7.73 390.91 6.68
60 17.64 2295.43 16.25 26.98 2116.54 24.41
100 27.54 3635.11 26.46 53.83 4494.30 48.62
05 20 5.47 388.16 4.37 8.05 414.10 7.12
60 20.60 2500.19 19.32 2891 2341.24 26.35
100 28.81 3581.45 26.60 41.19 3368.07 39.14
09 20 6.28 418.43 4.93 11.00 492.37 9.63
60 15.07 1676.25 12.75 25.66 2106.34 25.16
100 19.40 2759.43 17.84 45.79 3869.82 39.98
500 0.2 50 6.28 958.66 5.03 10.85 1175.67 9.16
150 35.73 4509.76 29.75 68.50 6669.25 64.67
250 59.00 6650.66 53.98 142.62 8408.83 127.37
0.5 50 6.19 928.01 4.70 11.59 1274.18 10.46
150 40.44 4488.88 34.88 53.09 4748.88 48.16
250 52.95 5933.89 47.70 176.77 12455.95 148.31
09 50 4.80 774.13 3.45 6.37 788.19 4.89
150 14.96 2655.99 11.09 57.38 5380.94 55.70
250 34.27 4518.84 39.54 118.36 8531.93 97.23

Note: Emboldened entries represent the fastest time in each row.

It is straightforward that 7(d) > 0 from f satisfies Definition 1. Then, we have

0 0 0 0

— MSC(8) = a—@r(é) = f(r,u)

0
5 (@)= f(r,u)

_l’_ PR
(ru=(r(6),u(@)) 0 (1) =(r(8), u(8))

2

= %z]{silzjéjf'r(r(é)v u(5>) - pf;(}’(é)7 u(é))
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2 el 19
=b ZjS zjfr(r(éL u(é)) <6j z;s—lzj ’
0
- MSC(s)| <0.
00; =0,

Let 6" = (d7,...,0;)" be the minimizer of MSC(d). Then, 6; #0 (j=1,...,
k), and the necessary condition of 5_/* is given by
7(0%)
X -1
5], = Z/IS 3
1 (x(6%) > 28 'z))

(6* rg-1,.
(110%) <5572) (G=1,....k).

Let ¥ be a set defined by
4 ={0€[0,1]"|6 = d(h), Vhe R, \{0}},
where 3(}1) is a k-dimensional vector of which the jth element is given by

h
) —— (h<zS'z)
oj(h) =3 S % (=1,....k).

1 (/’l > z/Silzj)

Then, from 6* is the minimizer of MSC(d), the following equation holds:

MSC(6*) = min  MSC(d) < min MSC(é) = min MSC(d(h)).
ae0,11°\{0,} dey heR\{0}

However, because 6* € 4 the following equation holds:

M ") > min M = i M .
SC(&)_rﬁrg{r/}l SC(d) he%lj{l{o} SC(a(h))

These results lead to

MSC(6*) = he%lil\l{o} MSC(é(h)),

and hence, we have

o* =o(h), h = arg hel%lil\’l{o} MSC(d(h)).

Consequently, Theorem 1 is proved.

A.2. Proof of Lemma 4. To prove Lemma 4, it is sufficient to prove df (k;) >
df(hy). From Lemma 1, df(h) is expressed as

k
df(h) = p+py_soft(l,h/z/S™'z).

j=1
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Therefore, we have
k
df () — df (hy) = p > _{soft(1,h/z}S ' z) — soft(1,ha/2/S ')},
J=1

and regarding the RHS of the above equation, the following equation
holds:

soft(l,hl/zjfsflzj) — soft(1, hz/z]folzj)

0 (7S5 < h)
h
=50 (<SS 'y <h)
= sz Zj .
hy —h
/2 -} ! >0 (hz < Z;S_IZ/)
Sz

Hence, df(h;) = df(h;) holds with quality only when # < ;. Consequently,
Lemma 4 is proved.

A.3. Proof of Proposition 4. First, we prove (1) by reduction to absurdity.
Let h, =t and suppose that h,, # t,. Then, the definition A, gives

Plhay|on) = Ptlon),  Ptelan) = Plha, |o),

and we have izaz # Iy éfzaz < tx from (P2) in Proposition 1. Furthermore,
d(hla) = n(h|a— ao)P(hlag) holds from the definition of ¢(h|a). Therefore,
from Lemma 4, we have

Ptelon) = nti | aa — on)p(tlon) < n(hay | o2 — 1) P(hay 1) = Pl |02).

However, this contradicts ¢(zi|aa) > ¢(hy,|02). Hence, (1) is proved.
Next, regarding (2), it is sufficient to prove h,, < hy,. We approach this

via reduction to absurdity again. Let o < ap and suppose that A, < ilm.
Now, we have h,, < t; from h,, # t;. Therefore,

¢(i10<1 |O(2) = n(ilocl |052 - ‘Xl)¢(iloc1 |OC1) < 7/(;’0{2 | % — “1)¢(il%z|a1) = ¢(ildz|a2)'

However, this contradicts the definition of /,,. Hence, (2) is proved.
Consequently, Proposition 4 is proved.

Ad4. Proof of Proposition 5. First, we consider when Vje{l,...A, k},
5}” 25}0). Suppose that 5]@ 2(5}’71) for all je{l,...,k}. Then, 5]@ is
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updated as

d(iﬂ) — ¢

} 5(07) =1 —soft(1,7(6") /z/'G(B},)z}),

J
and we have

(00) 2 (8 Y),  5'G(By)T <5 G(By )

This gives (5}”1) 25]@ for all je{l,...,k}, and hence the sequence {5]@} is
a monotonically increasing sequence. Moreover, the sequence is bounded.
Hence, the iterative method converges.

~ Next, we consider when Vje{l,... ,k}, é;l) sé}°>. Suppose that
5}” S(S,-(’fl) for all je{l,...,k}. Then, we have
1(0") <70 V), Z'G(Bjn)z = ' G(B)z]-
This gives 6}'“) géj(i) for all je{l,...,k}, and hence the sequence {5]@} is
a monotonically decreasing sequence. Moreover, the sequence is bounded.
Hence, the iterative method converges.

Consequently, Proposition 5 is proved.

A.5. Proof of Theorem 3. Now, we have

1+

O 2
1 - C/,ZC/,O/Cj,l

¢2/¢in

“0)=——22 <0, f(0)=0e0d=

£(0) RO ;(9)
Therefore, 5} # 0 and the smaller of the two real distinct roots or the double
root of the quadratic equation jj 5(0) =0 is the local minimizer. Notice that
0€[0,1]. Then, to obtain the minimizer of f;(d), it is sufficient to confirm
whether the local minimizer is included in [0,1] or not.

When 1 — ¢;2¢j0/¢f| = 0, there is one local minimizer, and let this be 5,

ie.,

o 2
1 - C./,2C./,0/C,;1

¢2/¢jn

This is positive and the following equation holds when ¢;» > ¢ 1:

1—¢ac0/ct < 1.

Hence, we can obtain (1) in Theorem 3.

When I—Cjﬁijﬁo/Cj%l < 0, there are no stationary points, and therefore
/i(0) is a monotonically decreasing function. Hence, we can obtain (2) in
Theorem 3.

Consequently, Theorem 3 is proved.
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A.6. Proof of Theorem 4. Now, we have

. ¢io . .

£;(0) 7.1(0) <0, £i(0)=0% f,06)=0
Thus 5]- # 0. Moreover, from ¢ € [0, 1], minimizer candidates are local min-
imizers of sz(é) included in (0,1) and the right end point of the range.
Hence, we can obtain the set of minimizer candidates &; by calculating sta-
tionary points of the cubic function sz(é) and by confirming whether each
stationary point is included in (0,1) or not. Consequently, Theorem 4 is
proved.

A.7. Proof of Theorem 6. To prove the equivalence between the two esti-
mators, it is sufficient to prove hy = 14. The two terms which constitute the
MSC for optimizing ridge parameters are

k

. . 1
tr{ZR(0(h)A)A™"} = b tr(ZpA~") + p > {1 —soft(1,h/z/d "' z)} /A7,
j=1

dfR(O(h|d)) = p+ p Y _soft(1,h/z/A"z)).

k
Jj=1

On the other hand, when w; = 1/[|y;[|, from Lemma 5, the two terms which
constitute the MSC for optimizing the tuning parameter are given by

. . 1 &
tr{ZL (A} =btr(Zpd ") +EZ{1 — soft(1,1/7jA ' z;)} 5/ A"z,
j=1

k
dfL(2) = p+p Y _soft(l,i/z/d"'z)).
j=1

Hence, for all x e R, the following equation holds:
MSCg (0(x|4) | A) = MSCy (x|4).

Thus 4 = A4 and consequently, Theorem 6 is proved.
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