On meromorphic functions sharing three two-point sets CM

Manabu Shirosaki

(Received June 19, 2020)
(Revised February 26, 2021)

Abstract

We show that if three meromorphic functions share three two-point sets CM, then there exist two of the meromorphic functions such that one of them is a Möbius transform of the other.

1. Introduction

For nonconstant meromorphic functions f and g on \boldsymbol{C} and a finite set S in $\overline{\boldsymbol{C}}=\boldsymbol{C} \cup\{\infty\}$, we say that f and g share $S \mathrm{CM}$ (counting multiplicities) if $f^{-1}(S)=g^{-1}(S)$ and if for each $z_{0} \in f^{-1}(S)$ two functions $f-f\left(z_{0}\right)$ and $g-g\left(z_{0}\right)$ have the same multiplicity of zero at z_{0}, where we consider $1 / f$ and $1 / g$ for $f-f\left(z_{0}\right)$ and $g-g\left(z_{0}\right)$ if $f\left(z_{0}\right)=\infty$ and $g\left(z_{0}\right)=\infty$, respectively. Also, if $f^{-1}(S)=g^{-1}(S)$, then we say that f and g share S IM (ignoring multiplicities). In particular if S is a one-point set $\{a\}$, then we say also that f and g share a CM or IM.

In $[\mathrm{C}], \mathrm{H}$. Cartan showed the following theorem:
Theorem 1. Let f, g and h be three nonconstant meromorphic functions on \boldsymbol{C} and let a_{1}, a_{2} and a_{3} be three distinct points in $\overline{\boldsymbol{C}}$. If f, g and h share $a_{j} C M$ for $j=1,2,3$, then at least two of f, g and h are identical.

On the other hand the author proved ([S3], see also [S2] and [ST]).
Theorem 2. Let $S_{1}, S_{2}, S_{3}, S_{4}$ be four one-point or two-point sets in $\overline{\boldsymbol{C}}$. Suppose that S_{1}, S_{2}, S_{3} and S_{4} are pairwise disjoint. If two nonconstant meromorphic functions f and g on C share $S_{j} C M$ for $j=1, \ldots, 4$, then f is a Möbius transform of g.

Theorem 2 contains partially the result of Nevanlinna ([N1] and [N2]).
Theorem 3. Let f and g be two distinct nonconstant meromorphic functions on \boldsymbol{C} and let a_{1}, \ldots, a_{4} be four distinct points in $\overline{\boldsymbol{C}}$. If f and g share $a_{1}, \ldots, a_{4} C M$, then f is a Möbius transform of g, i.e., $f=(a g+b) /(c g+d)$

[^0]for some complex numbers a, b, c, d with $a d-b c \neq 0$. Moreover, there exists a permutation σ of $\{1,2,3,4\}$ such that $a_{\sigma(3)}$ and $a_{\sigma(4)}$ are Picard exceptional values of f and g and the cross ratio $\left(a_{\sigma(1)}, a_{\sigma(2)}, a_{\sigma(3)}, a_{\sigma(4)}\right)=-1$.

Theorems 1 and 2 raise the following problem:
Problem. If three meromorphic functions on \boldsymbol{C} share three pairwise disjoint two-point sets, then do there exist two in the three meromorphic functions such that one of them is a Möbius transform of the other?

In this paper we consider three meromorphic functions on \boldsymbol{C} sharing three two-point sets in $\overline{\boldsymbol{C}} \mathrm{CM}$.

Theorem 4. Let S_{1}, S_{2}, S_{3} be three two-point sets in $\overline{\boldsymbol{C}}$. Suppose that S_{1}, S_{2}, S_{3} are pairwise disjoint. If three nonconstant meromorphic functions f, g and h on C share each of $S_{1}, S_{2}, S_{3} C M$, then one of f, g and h is a Möbius transform of one of the others.

For the proof of Theorem 4, by considering compositions of f, g, h and a suitable Möbius transformation, it is enough to prove the following theorem which assume that each S_{j} is in \boldsymbol{C}.

Theorem 5. Let S_{1}, S_{2}, S_{3} be three two-point sets in \boldsymbol{C}. Suppose that S_{1}, S_{2}, S_{3} are pairwise disjoint. If three nonconstant meromorphic functions f, g and h on C share each of $S_{1}, S_{2}, S_{3} C M$, then one of f, g and h is a Möbius transform of one of the others.

2. Representations of rank N and some lemmas

In this section we introduce the definition of representations of rank N. Let G be a torsion-free abelian multiplicative group, and consider a q-tuple $A=\left(a_{1}, \ldots, a_{q}\right)$ of elements a_{i} in G.

Definition 1. Let N be a positive integer. We call integers μ_{j} representations of rank N of a_{j} if

$$
\prod_{j=1}^{q} a_{j}^{\varepsilon_{j}}=\prod_{j=1}^{q} a_{j}^{\varepsilon_{j}^{\prime}}
$$

and

$$
\sum_{j=1}^{q} \varepsilon_{j} \mu_{j}=\sum_{j=1}^{q} \varepsilon_{j}^{\prime} \mu_{j}
$$

are equivalent for any integers $\varepsilon_{j}, \varepsilon_{j}^{\prime}$ with $\sum_{j=1}^{q}\left|\varepsilon_{j}\right| \leq N$ and $\sum_{j=1}^{q}\left|\varepsilon_{j}^{\prime}\right| \leq N$.

For the existence of representations of rank N, see [S1].
For two entire function α and β without zeros we say that they are equivalent if α / β is constant. Then we denote $\alpha \sim \beta$. This relation "equivalent" is an equivalence relation.

We introduce following Borel's Lemma, whose proof can be found, for example, on p. 186 of [L].

Lemma 1. If entire functions $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ without zeros satisfy

$$
\alpha_{0}+\alpha_{1}+\cdots+\alpha_{n}=0
$$

then for each $j=0,1, \ldots, n$ there exists some $k(\neq j)$ such that $\alpha_{j} \sim \alpha_{k}$, and the sum of all elements of each equivalence class in $\left\{\alpha_{0}, \ldots, \alpha_{n}\right\}$ is zero.

Now we investigate the torsion-free abelian multiplicative group $G=\mathscr{E} / \mathscr{C}$, where \mathscr{E} is the abelian group of entire functions without zeros and \mathscr{C} is the subgroup of all non-zero constant functions. We represent by $[\alpha]$ the element of $\mathscr{E} / \mathscr{C}$ with the representative $\alpha \in \mathscr{E}$. Let $\alpha_{1}, \ldots, \alpha_{q}$ be elements in \mathscr{E}. Take representations μ_{j} of rank N of $\left[\alpha_{j}\right]$. For $\alpha=\prod_{j=1}^{q} \alpha_{j}^{\varepsilon_{j}}$ we define its index $\underset{q}{\operatorname{Ind}(\alpha)}$ by $\sum_{j=1}^{q} \varepsilon_{j} \mu_{j}$. The indices depend only on $\left[\prod_{j=1}^{q} \alpha_{j}^{\varepsilon_{j}}\right]$ under the condition $\sum_{j=1}^{q}\left|\varepsilon_{j}\right| \leq N$. Trivially $\operatorname{Ind}(1)=0$, and hence $\operatorname{Ind}(\alpha)=0$ and the constantness of α are equivalent, and $\operatorname{Ind}(\alpha)=\operatorname{Ind}\left(\alpha^{\prime}\right)$ is equivalent to that α / α^{\prime} is constant, where $\alpha=\prod_{j=1}^{q} \alpha_{j}^{\varepsilon_{j}}$ and $\alpha^{\prime}=\prod_{j=1}^{q} \alpha_{j}^{\varepsilon_{j}^{\prime}}$ with $\sum_{j=1}^{q}\left|\varepsilon_{j}\right| \leq N$ and $\sum_{j=1}^{q}\left|\varepsilon_{j}^{\prime}\right| \leq N$.

We use the following lemma in the proof of Theorem 5 which is an application of Lemma 1 (for the proof see Lemma 2.3 of [ST]).

Lemma 2. Assume that there is a relation $\Psi\left(\alpha_{1}, \ldots, \alpha_{q}\right) \equiv 0$ where $\Psi\left(X_{1}, \ldots, X_{q}\right) \in \boldsymbol{C}\left[X_{1}, \ldots, X_{q}\right]$ is a nonconstant polynomial of degree at most N of X_{1}, \ldots, X_{q}. Then each term $a X_{1}^{\varepsilon_{1}} \cdots X_{q}^{\varepsilon_{q}}$ of $\Psi\left(X_{1}, \ldots, X_{q}\right)$ has another term $b X_{1}^{\varepsilon_{1}^{\prime}} \cdots X_{q}^{\varepsilon_{q}^{\prime}}$ such that $\alpha_{1}^{\varepsilon_{1}} \cdots \alpha_{q}^{\varepsilon_{q}}$ and $\alpha_{1}^{\varepsilon_{1}^{\prime}} \cdots \alpha_{q}^{\varepsilon_{q}^{\prime}}$ have the same indices, where a and b are non-zero constants.

3. A Lemma from the theory of general resultants

For the proof of Theorem 5 we preparate a result from the theory of general resultants in this section.

Let $d(\geq 2)$ be an integer and let F_{1}, \ldots, F_{6} be six homogeneous polynomials of degree d of six variables $X_{0}, X_{1}, Y_{0}, Y_{1}, Z_{0}, Z_{1}$. Denote their

Jacobian determinant by J :

$$
J=\left|\begin{array}{llllll}
\frac{\partial F_{j}}{\partial X_{0}} & \frac{\partial F_{j}}{\partial X_{1}} & \frac{\partial F_{j}}{\partial Y_{0}} & \frac{\partial F_{j}}{\partial Y_{1}} & \frac{\partial F_{j}}{\partial Z_{0}} & \frac{\partial F_{j}}{\partial Z_{1}}
\end{array}\right|_{1 \leq j \leq 6}
$$

Lemma 3. Let P be a non-trivial common zero of F_{1}, \ldots, F_{6}. Then (i) J is zero at P; (ii) all the partial derivatives $\frac{\partial J}{\partial X_{0}}, \frac{\partial J}{\partial X_{1}}, \frac{\partial J}{\partial Y_{0}}, \frac{\partial J}{\partial Y_{1}}, \frac{\partial J}{\partial Z_{0}}, \frac{\partial J}{\partial Z_{1}}$ are zero
at P (iii) if we assume that at P; (iii) if we assume that

$$
\begin{equation*}
\frac{\partial^{2} F_{j}}{\partial X_{k} \partial Y_{l}}=\frac{\partial^{2} F_{j}}{\partial Y_{k} \partial Z_{l}}=\frac{\partial^{2} F_{j}}{\partial Z_{k} \partial X_{l}}=0 \quad(j=1, \ldots, 6 ; k, l=0,1) \tag{S}
\end{equation*}
$$

and if plural components of P are not zero, then the second partial derivatives $\frac{\partial^{2} J}{\partial X_{j} \partial Y_{k}}, \frac{\partial^{2} J}{\partial Y_{j} \partial Z_{k}}, \frac{\partial^{2} J}{\partial Z_{j} \partial X_{k}}$ have zero at P for any $j, k=0,1$; (iv) under the assumption (S), if plural components of P are not zero, then the third partial derivative $\frac{\partial^{3} J}{\partial X_{j} \partial Y_{k} \partial Z_{l}}$ has zero at P for any $j, k, l=0,1$.

Proof. Without loss of generality, we may assume that the X_{0} component of P is not zero.

By Euler's relation we have

$$
\begin{align*}
X_{0} J & =\left\lvert\, \begin{array}{llll}
X_{0} \frac{\partial F_{j}}{\partial X_{0}} & \frac{\partial F_{j}}{\partial X_{1}} & \cdots & \left.\frac{\partial F_{j}}{\partial Z_{1}}\right|_{1 \leq j \leq 6} \\
& =d\left|\begin{array}{llll}
F_{j} & \frac{\partial F_{j}}{\partial X_{1}} & \cdots & \frac{\partial F_{j}}{\partial Z_{1}}
\end{array}\right|_{1 \leq j \leq 6}
\end{array}\right.
\end{align*}
$$

and, hence we have $J(P)=0$, which is (i).
By differentiating (3.1) by $X_{0}, X_{1}, \ldots, Z_{1}$, respectively, we get

$$
\begin{align*}
& J+X_{0} \frac{\partial J}{\partial X_{0}}=d J+\left.\left.d\right|_{j} \quad \frac{\partial^{2} F_{j}}{\partial X_{0} \partial X_{1}} \quad \frac{\partial F_{j}}{\partial Y_{0}} \quad \frac{\partial F_{j}}{\partial Y_{1}} \quad \frac{\partial F_{j}}{\partial Z_{0}} \quad \frac{\partial F_{j}}{\partial Z_{1}}\right|_{1 \leq j \leq 6} \\
& +\cdots+\left.\left.d\right|_{j} \frac{\partial F_{j}}{\partial X_{1}} \quad \frac{\partial F_{j}}{\partial Y_{0}} \quad \frac{\partial F_{j}}{\partial Y_{1}} \quad \frac{\partial F_{j}}{\partial Z_{0}} \quad \frac{\partial^{2} F_{j}}{\partial X_{0} \partial Z_{1}}\right|_{1 \leq j \leq 6}, \tag{3.2}\\
& X_{0} \frac{\partial J}{\partial X_{1}}=d\left|F_{j} \quad \frac{\partial^{2} F_{j}}{\partial X_{1}^{2}} \quad \frac{\partial F_{j}}{\partial Y_{0}} \quad \frac{\partial F_{j}}{\partial Y_{1}} \quad \frac{\partial F_{j}}{\partial Z_{0}} \quad \frac{\partial F_{j}}{\partial Z_{1}}\right|_{1 \leq j \leq 6} \\
& +\cdots+\left.\left.d\right|_{j} \quad \frac{\partial F_{j}}{\partial X_{1}} \quad \frac{\partial F_{j}}{\partial Y_{0}} \quad \frac{\partial F_{j}}{\partial Y_{1}} \quad \frac{\partial F_{j}}{\partial Z_{0}} \quad \frac{\partial^{2} F_{j}}{\partial X_{1} \partial Z_{1}}\right|_{1 \leq j \leq 6}, \tag{3.3}
\end{align*}
$$

$$
\left.\begin{align*}
X_{0} \frac{\partial J}{\partial Z_{1}}= & d \mid F_{j} \\
\frac{\partial^{2} F_{j}}{\partial X_{1} \partial Z_{1}} & \frac{\partial F_{j}}{\partial Y_{0}} \tag{3.4}
\end{align*} \frac{\frac{\partial F_{j}}{\partial Y_{1}}}{} \frac{\partial F_{j}}{\partial Z_{0}} \quad \frac{\partial F_{j}}{\partial Z_{1}}\right|_{1 \leq j \leq 6} .
$$

Therefore we obtain (ii) since $F_{j}(P)=0(j=1, \ldots, 6)$.
Under the assumption (S), the equations (3.2), (3.3) and (3.4), and so on, become

$$
\begin{align*}
& J+X_{0} \frac{\partial J}{\partial X_{0}}=d J+\left.\left.d\right|_{j} \quad \frac{\partial^{2} F_{j}}{\partial X_{0} \partial X_{1}} \quad \frac{\partial F_{j}}{\partial Y_{0}} \quad \frac{\partial F_{j}}{\partial Y_{1}} \quad \frac{\partial F_{j}}{\partial Z_{0}} \quad \frac{\partial F_{j}}{\partial Z_{1}}\right|_{1 \leq j \leq 6}, \tag{3.5}\\
& X_{0} \frac{\partial J}{\partial X_{1}}=d\left|F_{j} \quad \frac{\partial^{2} F_{j}}{\partial X_{1}^{2}} \quad \frac{\partial F_{j}}{\partial Y_{0}} \quad \frac{\partial F_{j}}{\partial Y_{1}} \quad \frac{\partial F_{j}}{\partial Z_{0}} \quad \frac{\partial F_{j}}{\partial Z_{1}}\right|_{1 \leq j \leq 6}, \tag{3.6}\\
& X_{0} \frac{\partial J}{\partial Z_{1}}=d\left|F_{j} \quad \frac{\partial F_{j}}{\partial X_{1}} \quad \frac{\partial F_{j}}{\partial Y_{0}} \quad \frac{\partial F_{j}}{\partial Y_{1}} \quad \frac{\partial^{2} F_{j}}{\partial Z_{0} \partial Z_{1}} \quad \frac{\partial F_{j}}{\partial Z_{1}}\right|_{1 \leq j \leq 6} \\
& +d\left|F_{j} \quad \frac{\partial F_{j}}{\partial X_{1}} \quad \frac{\partial F_{j}}{\partial Y_{0}} \quad \frac{\partial F_{j}}{\partial Y_{1}} \quad \frac{\partial F_{j}}{\partial Z_{0}} \quad \frac{\partial^{2} F_{j}}{\partial Z_{1}^{2}}\right|_{1 \leq j \leq 6} . \tag{3.7}
\end{align*}
$$

By differentiating (3.5), (3.6), (3.7), and so on, by Y_{0}, we get

$$
\begin{align*}
& \frac{\partial J}{\partial Y_{0}}+X_{0} \frac{\partial^{2} J}{\partial X_{0} \partial Y_{0}}=d \frac{\partial J}{\partial Y_{0}}+d\left|F_{j} \quad \frac{\partial^{2} F_{j}}{\partial X_{0} \partial X_{1}} \quad \frac{\partial^{2} F_{j}}{\partial Y_{0}^{2}} \frac{\frac{\partial F_{j}}{\partial Y_{1}}}{} \quad \frac{\partial F_{j}}{\partial Z_{0}} \quad \frac{\partial F_{j}}{\partial Z_{1}}\right|_{1 \leq j \leq 6} \\
& +d\left|F_{j} \quad \frac{\partial^{2} F_{j}}{\partial X_{0} \partial X_{1}} \quad \frac{\partial F_{j}}{\partial Y_{0}} \quad \frac{\partial^{2} F_{j}}{\partial Y_{0} \partial Y_{1}} \quad \frac{\partial F_{j}}{\partial Z_{0}} \quad \frac{\partial F_{j}}{\partial Z_{1}}\right|_{1 \leq j \leq 6}, \tag{3.8}\\
& X_{0} \frac{\partial^{2} J}{\partial X_{1} \partial Y_{0}}=d\left|F_{j} \quad \frac{\partial^{2} F_{j}}{\partial X_{1}^{2}} \quad \frac{\partial^{2} F_{j}}{\partial Y_{0}^{2}} \quad \frac{\partial F_{j}}{\partial Y_{1}} \quad \frac{\partial F_{j}}{\partial Z_{0}} \quad \frac{\partial F_{j}}{\partial Z_{1}}\right|_{1 \leq j \leq 6} \\
& +d\left|F_{j} \quad \frac{\partial^{2} F_{j}}{\partial X_{1}^{2}} \quad \frac{\partial F_{j}}{\partial Y_{0}} \quad \frac{\partial^{2} F_{j}}{\partial Y_{0} \partial Y_{1}} \quad \frac{\partial F_{j}}{\partial Z_{0}} \quad \frac{\partial F_{j}}{\partial Z_{1}}\right|_{1 \leq j \leq 6}, \tag{3.9}\\
& \vdots \\
& X_{0} \frac{\partial^{2} J}{\partial Y_{0} \partial Z_{1}}=d\left|F_{j} \quad \frac{\partial F_{j}}{\partial X_{1}} \quad \frac{\partial^{2} F_{j}}{\partial Y_{0}^{2}} \quad \frac{\partial F_{j}}{\partial Y_{1}} \quad \frac{\partial^{2} F_{j}}{\partial Z_{0} \partial Z_{1}} \quad \frac{\partial F_{j}}{\partial Z_{1}}\right|_{1 \leq j \leq 6}
\end{align*}
$$

$$
\begin{aligned}
& +\left.\left.d\right|_{j} \quad \frac{\partial F_{j}}{\partial X_{1}} \quad \frac{\partial F_{j}}{\partial Y_{0}} \quad \frac{\partial^{2} F_{j}}{\partial Y_{0} \partial Y_{1}} \quad \frac{\partial^{2} F_{j}}{\partial Z_{0} \partial Z_{1}} \quad \frac{\partial F_{j}}{\partial Z_{1}}\right|_{1 \leq j \leq 6} \\
& +d\left|F_{j} \quad \frac{\partial F_{j}}{\partial X_{1}} \quad \frac{\partial^{2} F_{j}}{\partial Y_{0}^{2}} \quad \frac{\partial F_{j}}{\partial Y_{1}} \quad \frac{\partial^{2} F_{j}}{\partial Z_{0} \partial Z_{1}} \quad \frac{\partial^{2} F_{j}}{\partial Z_{1}^{2}}\right|_{1 \leq j \leq 6} \\
& +d\left|F_{j} \quad \frac{\partial F_{j}}{\partial X_{1}} \quad \frac{\partial F_{j}}{\partial Y_{0}} \quad \frac{\partial^{2} F_{j}}{\partial Y_{0} \partial Y_{1}} \quad \frac{\partial^{2} F_{j}}{\partial Z_{0} \partial Z_{1}} \quad \frac{\partial^{2} F_{j}}{\partial Z_{1}^{2}}\right|_{1 \leq j \leq 6},
\end{aligned}
$$

hence we obtain, with similar manners, (iii).
Differentiate (3.8) and (3.9) by Z_{0}, then we have

$$
\begin{aligned}
& \frac{\partial^{2} J}{\partial Y_{0} \partial Z_{0}}+X_{0} \frac{\partial^{3} J}{\partial X_{0} \partial Y_{0} \partial Z_{0}} \\
& =d \frac{\partial^{2} J}{\partial Y_{0} \partial Z_{0}}+d\left|F_{j} \quad \frac{\partial^{2} F_{j}}{\partial X_{0} \partial X_{1}} \quad \frac{\partial^{2} F_{j}}{\partial Y_{0}^{2}} \quad \frac{\partial F_{j}}{\partial Y_{1}} \quad \frac{\partial^{2} F_{j}}{\partial Z_{0}^{2}} \quad \frac{\partial F_{j}}{\partial Z_{1}}\right|_{1 \leq j \leq 6} \\
& +d\left|F_{j} \quad \frac{\partial^{2} F_{j}}{\partial X_{0} \partial X_{1}} \quad \frac{\partial^{2} F_{j}}{\partial Y_{0}^{2}} \quad \frac{\partial F_{j}}{\partial Y_{1}} \quad \frac{\partial F_{j}}{\partial Z_{0}} \quad \frac{\partial^{2} F_{j}}{\partial Z_{0} \partial Z_{1}}\right|_{1 \leq j \leq 6} \\
& +d\left|F_{j} \quad \frac{\partial^{2} F_{j}}{\partial X_{0} \partial X_{1}} \quad \frac{\partial F_{j}}{\partial Y_{0}} \quad \frac{\partial^{2} F_{j}}{\partial Y_{0} \partial Y_{1}} \quad \frac{\partial^{2} F_{j}}{\partial Z_{0}^{2}} \quad \frac{\partial F_{j}}{\partial Z_{1}}\right|_{1 \leq j \leq 6} \\
& +d\left|F_{j} \quad \frac{\partial^{2} F_{j}}{\partial X_{0} \partial X_{1}} \quad \frac{\partial F_{j}}{\partial Y_{0}} \quad \frac{\partial^{2} F_{j}}{\partial Y_{0} \partial Y_{1}} \quad \frac{\partial F_{j}}{\partial Z_{0}} \quad \frac{\partial^{2} F_{j}}{\partial Z_{0} \partial Z_{1}}\right|_{1 \leq j \leq 6}, \\
& X_{0} \frac{\partial^{3} J}{\partial X_{1} \partial Y_{0} \partial Z_{0}}=d\left|F_{j} \quad \frac{\partial^{2} F_{j}}{\partial X_{1}^{2}} \frac{\partial^{2} F_{j}}{\partial Y_{0}^{2}} \frac{\partial F_{j}}{\partial Y_{1}} \quad \frac{\partial^{2} F_{j}}{\partial Z_{0}^{2}} \quad \frac{\partial F_{j}}{\partial Z_{1}}\right|_{1 \leq j \leq 6} \\
& +d\left|F_{j} \quad \frac{\partial^{2} F_{j}}{\partial X_{1}^{2}} \quad \frac{\partial^{2} F_{j}}{\partial Y_{0}^{2}} \quad \frac{\partial F_{j}}{\partial Y_{1}} \quad \frac{\partial F_{j}}{\partial Z_{0}} \quad \frac{\partial^{2} F_{j}}{\partial Z_{0} \partial Z_{1}}\right|_{1 \leq j \leq 6} \\
& +d\left|F_{j} \quad \frac{\partial^{2} F_{j}}{\partial X_{1}^{2}} \quad \frac{\partial F_{j}}{\partial Y_{0}} \quad \frac{\partial^{2} F_{j}}{\partial Y_{0} \partial Y_{1}} \quad \frac{\partial^{2} F_{j}}{\partial Z_{0}^{2}} \quad \frac{\partial F_{j}}{\partial Z_{1}}\right|_{1 \leq j \leq 6} \\
& +d\left|F_{j} \quad \frac{\partial^{2} F_{j}}{\partial X_{1}^{2}} \quad \frac{\partial F_{j}}{\partial Y_{0}} \quad \frac{\partial^{2} F_{j}}{\partial Y_{0} \partial Y_{1}} \quad \frac{\partial F_{j}}{\partial Z_{0}} \quad \frac{\partial^{2} F_{j}}{\partial Z_{0} \partial Z_{1}}\right|_{1 \leq j \leq 6} .
\end{aligned}
$$

Hence we have $\frac{\partial^{3} F_{j}}{\partial X_{0} \partial Y_{0} \partial Z_{0}}(P)=\frac{\partial^{3} F_{j}}{\partial X_{1} \partial Y_{0} \partial Z_{0}}(P)=0$, and by the similar ways,
we get (iv).

Let

$$
F_{j}\left(X_{0}, X_{1}, Y_{0}, Y_{1}, Z_{0}, Z_{1}\right)=\sum_{k=0}^{2}\left(a_{j k} X_{0}^{2-k} X_{1}^{k}+b_{j k} Y_{0}^{2-k} Y_{1}^{k}+c_{j k} Z_{0}^{2-k} Z_{1}^{k}\right)
$$

$(j=1, \ldots, 6)$ be six quadratic homogeneous polynomials satisfying the assumption (S). Then the first derivatives are

$$
\begin{array}{ll}
\frac{\partial F_{j}}{\partial X_{0}}=2 a_{j 0} X_{0}+a_{j 1} X_{1}, & \frac{\partial F_{j}}{\partial X_{1}}=a_{j 1} X_{0}+2 a_{j 2} X_{1}, \\
\frac{\partial F_{j}}{\partial Y_{0}}=2 b_{j 0} Y_{0}+b_{j 1} Y_{1}, & \frac{\partial F_{j}}{\partial Y_{1}}=b_{j 1} Y_{0}+2 b_{j 2} Y_{1}, \\
\frac{\partial F_{j}}{\partial Z_{0}}=2 c_{j 0} Z_{0}+c_{j 1} Z_{1}, & \frac{\partial F_{j}}{\partial Z_{1}}=c_{j 1} Z_{0}+2 c_{j 2} Z_{1}
\end{array}
$$

Since J is the determinant of the matrix $D X$, where

$$
D=\left(\begin{array}{lllllllll}
a_{\mu 0} & a_{\mu 1} & a_{\mu 2} & b_{\mu 0} & b_{\mu 1} & b_{\mu 2} & c_{\mu 0} & c_{\mu 1} & c_{\mu 2} \tag{3.10}
\end{array}\right)_{1 \leq \mu \leq 6}
$$

and

$$
X=\left(\begin{array}{cccccc}
2 X_{0} & 0 & 0 & 0 & 0 & 0 \\
X_{1} & X_{0} & 0 & 0 & 0 & 0 \\
0 & 2 X_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 2 Y_{0} & 0 & 0 & 0 \\
0 & 0 & Y_{1} & Y_{0} & 0 & 0 \\
0 & 0 & 0 & 2 Y_{1} & 0 & 0 \\
0 & 0 & 0 & 0 & 2 Z_{0} & 0 \\
0 & 0 & 0 & 0 & Z_{1} & Z_{0} \\
0 & 0 & 0 & 0 & 0 & 2 Z_{1}
\end{array}\right)
$$

we see, by the formula of determinant of product of $m \times n$ matrix and $n \times m$ matrix with $1 \leq m<n$,

$$
J=8 \sum_{0 \leq j, k, l \leq 2} 2^{j(2-j)+k(2-k)+l(2-l)} D_{j k l} X_{0}^{j} X_{1}^{2-j} Y_{0}^{k} Y_{1}^{2-k} Z_{0}^{l} Z_{1}^{2-l}
$$

where $D_{j k l}$ is the determinant of the 6×6 matrix obtained from D by excluding three columns $\left(a_{\mu j}\right)_{1 \leq \mu \leq 6},\left(b_{\mu k}\right)_{1 \leq \mu \leq 6}$ and $\left(c_{\mu l}\right)_{1 \leq \mu \leq 6}$.

By differentiating J, we have

$$
\begin{aligned}
\frac{1}{64} \frac{\partial^{3} J}{\partial X_{0} \partial Y_{0} \partial Z_{0}}= & D_{222} X_{0} Y_{0} Z_{0}+D_{221} X_{0} Y_{0} Z_{1}+D_{212} X_{0} Y_{1} Z_{0} \\
& +D_{211} X_{0} Y_{1} Z_{1}+D_{122} X_{1} Y_{0} Z_{0}+D_{121} X_{1} Y_{0} Z_{1} \\
& +D_{112} X_{1} Y_{1} Z_{0}+D_{111} X_{1} Y_{1} Z_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{64} \frac{\partial^{3} J}{\partial X_{0} \partial Y_{0} \partial Z_{1}}=D_{221} X_{0} Y_{0} Z_{0}+D_{220} X_{0} Y_{0} Z_{1}+D_{211} X_{0} Y_{1} Z_{0} \\
& +D_{210} X_{0} Y_{1} Z_{1}+D_{121} X_{1} Y_{0} Z_{0}+D_{120} X_{1} Y_{0} Z_{1} \\
& +D_{111} X_{1} Y_{1} Z_{0}+D_{110} X_{1} Y_{1} Z_{1}, \\
& \frac{1}{64} \frac{\partial^{3} J}{\partial X_{0} \partial Y_{1} \partial Z_{0}}=D_{212} X_{0} Y_{0} Z_{0}+D_{211} X_{0} Y_{0} Z_{1}+D_{202} X_{0} Y_{1} Z_{0} \\
& +D_{201} X_{0} Y_{1} Z_{1}+D_{112} X_{1} Y_{0} Z_{0}+D_{111} X_{1} Y_{0} Z_{1} \\
& +D_{102} X_{1} Y_{1} Z_{0}+D_{101} X_{1} Y_{1} Z_{1}, \\
& \frac{1}{64} \frac{\partial^{3} J}{\partial X_{0} \partial Y_{1} \partial Z_{1}}=D_{211} X_{0} Y_{0} Z_{0}+D_{210} X_{0} Y_{0} Z_{1}+D_{201} X_{0} Y_{1} Z_{0} \\
& +D_{200} X_{0} Y_{1} Z_{1}+D_{111} X_{1} Y_{0} Z_{0}+D_{110} X_{1} Y_{0} Z_{1} \\
& +D_{101} X_{1} Y_{1} Z_{0}+D_{100} X_{1} Y_{1} Z_{1}, \\
& \frac{1}{64} \frac{\partial^{3} J}{\partial X_{1} \partial Y_{0} \partial Z_{0}}=D_{122} X_{0} Y_{0} Z_{0}+D_{121} X_{0} Y_{0} Z_{1}+D_{112} X_{0} Y_{1} Z_{0} \\
& +D_{111} X_{0} Y_{1} Z_{1}+D_{022} X_{1} Y_{0} Z_{0}+D_{021} X_{1} Y_{0} Z_{1} \\
& +D_{012} X_{1} Y_{1} Z_{0}+D_{011} X_{1} Y_{1} Z_{1}, \\
& \frac{1}{64} \frac{\partial^{3} J}{\partial X_{1} \partial Y_{0} \partial Z_{1}}=D_{121} X_{0} Y_{0} Z_{0}+D_{120} X_{0} Y_{0} Z_{1}+D_{111} X_{0} Y_{1} Z_{0} \\
& +D_{110} X_{0} Y_{1} Z_{1}+D_{021} X_{1} Y_{0} Z_{0}+D_{020} X_{1} Y_{0} Z_{1} \\
& +D_{011} X_{1} Y_{1} Z_{0}+D_{010} X_{1} Y_{1} Z_{1} \text {, } \\
& \frac{1}{64} \frac{\partial^{3} J}{\partial X_{1} \partial Y_{1} \partial Z_{0}}=D_{112} X_{0} Y_{0} Z_{0}+D_{111} X_{0} Y_{0} Z_{1}+D_{102} X_{0} Y_{1} Z_{0} \\
& +D_{101} X_{0} Y_{1} Z_{1}+D_{012} X_{1} Y_{0} Z_{0}+D_{011} X_{1} Y_{0} Z_{1} \\
& +D_{002} X_{1} Y_{1} Z_{0}+D_{001} X_{1} Y_{1} Z_{1}, \\
& \frac{1}{64} \frac{\partial^{3} J}{\partial X_{1} \partial Y_{1} \partial Z_{1}}=D_{111} X_{0} Y_{0} Z_{0}+D_{110} X_{0} Y_{0} Z_{1}+D_{101} X_{0} Y_{1} Z_{0} \\
& +D_{100} X_{0} Y_{1} Z_{1}+D_{011} X_{1} Y_{0} Z_{0}+D_{010} X_{1} Y_{0} Z_{1} \\
& +D_{001} X_{1} Y_{1} Z_{0}+D_{000} X_{1} Y_{1} Z_{1} \text {. }
\end{aligned}
$$

If $P\left(x_{0}, x_{1}, y_{0}, y_{1}, z_{0}, z_{1}\right)$ is a common zero of F_{1}, \ldots, F_{6} such that some $x_{j} y_{k} z_{l} \neq 0$, then

$$
\Delta:=\left|\begin{array}{llllllll}
D_{222} & D_{221} & D_{212} & D_{211} & D_{122} & D_{121} & D_{112} & D_{111} \tag{3.11}\\
D_{221} & D_{220} & D_{211} & D_{210} & D_{121} & D_{120} & D_{111} & D_{110} \\
D_{212} & D_{211} & D_{202} & D_{201} & D_{112} & D_{111} & D_{102} & D_{101} \\
D_{211} & D_{210} & D_{201} & D_{200} & D_{111} & D_{110} & D_{101} & D_{100} \\
D_{122} & D_{121} & D_{112} & D_{111} & D_{022} & D_{021} & D_{012} & D_{011} \\
D_{121} & D_{120} & D_{111} & D_{110} & D_{021} & D_{020} & D_{011} & D_{010} \\
D_{112} & D_{111} & D_{102} & D_{101} & D_{012} & D_{011} & D_{002} & D_{001} \\
D_{111} & D_{110} & D_{101} & D_{100} & D_{011} & D_{010} & D_{001} & D_{000}
\end{array}\right|=0
$$

at P since all of the above derivatives are zero at P by (iii) of Lemma 3.

4. The key theorem and the proof of Theorem 5

By the following theorem we can prove Theorem 5 easily.
Theorem 6. Let $f=f_{1} / f_{0}, g=g_{1} / g_{0}$ and $h=h_{1} / h_{0}$ be nonconstant meromorphic functions on \boldsymbol{C}, where f_{0} and f_{1} are entire functions without common zero and so are g_{0} and g_{1}, and h_{0} and h_{1}. Let $P_{j}(z)=z^{2}+a_{j} z+b_{j}$ $(j=1,2,3)$ be polynomials such that $P_{j}(z)$ and $P_{k}(z)$ have no common zero for distinct j, k. Assume that there exist entire functions α_{j}, β_{j} without zeros such that

$$
\begin{equation*}
\alpha_{j}\left(f_{1}^{2}+a_{j} f_{1} f_{0}+b_{j} f_{0}^{2}\right)=g_{1}^{2}+a_{j} g_{1} g_{0}+b_{j} g_{0}^{2} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{j}\left(f_{1}^{2}+a_{j} f_{1} f_{0}+b_{j} f_{0}^{2}\right)=h_{1}^{2}+a_{j} h_{1} h_{0}+b_{j} h_{0}^{2} \tag{4.2}
\end{equation*}
$$

for $j=1,2,3$. Then one of the followings holds: (A) both α_{1} / α_{2} and α_{1} / α_{3} are constant; (B) both β_{1} / β_{2} and β_{1} / β_{3} are constant; (C) both $\left(\alpha_{1} / \beta_{1}\right) /\left(\alpha_{2} / \beta_{2}\right)$ and $\left(\alpha_{1} / \beta_{1}\right) /\left(\alpha_{3} / \beta_{3}\right)$ are constant; (D) both α_{j} / α_{k} and β_{j} / β_{k} are constant for some $1 \leq j<k \leq 3$.

Proof. Take $z \in \boldsymbol{C}$. Then $\left(f_{0}(z), f_{1}(z), g_{0}(z), g_{1}(z), h_{0}(z), h_{1}(z)\right)$ is a common zero of

$$
\alpha_{j}(z)\left(b_{j} X_{0}^{2}+a_{j} X_{0} X_{1}+X_{1}^{2}\right)-\left(b_{j} Y_{0}^{2}+a_{j} Y_{0} Y_{1}+Y_{1}^{2}\right)
$$

and

$$
\beta_{j}(z)\left(b_{j} X_{0}^{2}+a_{j} X_{0} X_{1}+X_{1}^{2}\right)-\left(b_{j} Z_{0}^{2}+a_{j} Z_{0} Z_{1}+Z_{1}^{2}\right)
$$

for $j=1,2,3$. Under this situation the matrix D of (3.10) is

$$
D=\left(\begin{array}{ccccccccc}
b_{1} \alpha_{1} & a_{1} \alpha_{1} & \alpha_{1} & -b_{1} & -a_{1} & -1 & 0 & 0 & 0 \\
b_{2} \alpha_{2} & a_{2} \alpha_{2} & \alpha_{2} & -b_{2} & -a_{2} & -1 & 0 & 0 & 0 \\
b_{3} \alpha_{3} & a_{3} \alpha_{3} & \alpha_{3} & -b_{3} & -a_{3} & -1 & 0 & 0 & 0 \\
b_{1} \beta_{1} & a_{1} \beta_{1} & \beta_{1} & 0 & 0 & 0 & -b_{1} & -a_{1} & -1 \\
b_{2} \beta_{2} & a_{1} \beta_{2} & \beta_{2} & 0 & 0 & 0 & -b_{2} & -a_{2} & -1 \\
b_{3} \beta_{3} & a_{1} \beta_{3} & \beta_{3} & 0 & 0 & 0 & -b_{3} & -a_{3} & -1
\end{array}\right)
$$

Since some $f_{j}(z) g_{k}(z) h_{l}(z) \neq 0$, by (3.11), we have $\Delta(z)=0$, and hence $\Delta \equiv 0$. Put

$$
D_{0}^{(\mu v)}=\left|\begin{array}{cc}
a_{\mu} & 1 \\
a_{v} & 1
\end{array}\right|, \quad D_{1}^{(\mu v)}=\left|\begin{array}{cc}
b_{\mu} & 1 \\
b_{v} & 1
\end{array}\right|, \quad D_{2}^{(\mu v)}=\left|\begin{array}{cc}
b_{\mu} & a_{\mu} \\
b_{v} & a_{v}
\end{array}\right|
$$

for $\mu, v=1,2,3$, and $A_{j}^{(1)}=D_{j}^{(23)}, A_{j}^{(2)}=D_{j}^{(13)}, A_{j}^{(3)}=D_{j}^{(12)}$ for $j=0,1,2$. Then

$$
\begin{equation*}
D_{j k l}=\sum_{1 \leq \mu, v \leq 3}(-1)^{\mu+v} D_{j}^{(\mu v)} A_{k}^{(\mu)} A_{l}^{(v)} \alpha_{\mu} \beta_{v} . \tag{4.3}
\end{equation*}
$$

Since each $D_{j k l}$ is a quadratic homogeneous polynomial of $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}$ which consists of terms $\alpha_{k} \beta_{l}(k \neq l)$, by (3.11) Δ is a homogeneous polynomial of degree sixteen of them whose terms are $\prod_{m=1}^{8} \alpha_{j_{m}} \beta_{k_{m}}$, where $j_{m} \neq k_{m}, m=$ $1, \ldots, 8$, with complex coefficients. Fix μ, v such that $1 \leq \mu, v \leq 3$ and $\mu \neq v$. For simplicity, we write D_{j} for $D_{j}^{(\mu v)}, A_{j}$ for $A_{j}^{(\mu)}$ and B_{j} for $A_{j}^{(v)}$. Then, in the expansion of Δ, from (3.11) and (4.3) the term $(-1)^{\mu+\nu}\left(\alpha_{\mu} \beta_{v}\right)^{8}$ has the coefficient

$$
\begin{aligned}
& \left|\begin{array}{llllllll}
D_{2} A_{2} B_{2} & D_{2} A_{2} B_{1} & D_{2} A_{1} B_{2} & D_{2} A_{1} B_{1} & D_{1} A_{2} B_{2} & D_{1} A_{2} B_{1} & D_{1} A_{1} B_{2} & D_{1} A_{1} B_{1} \\
D_{2} A_{2} B_{1} & D_{2} A_{2} B_{0} & D_{2} A_{1} B_{1} & D_{2} A_{1} B_{0} & D_{1} A_{2} B_{1} & D_{1} A_{2} B_{0} & D_{1} A_{1} B_{1} & D_{1} A_{1} B_{0} \\
D_{2} A_{1} B_{2} & D_{2} A_{1} B_{1} & D_{2} A_{0} B_{2} & D_{2} A_{0} B_{1} & D_{1} A_{1} B_{2} & D_{1} A_{1} B_{1} & D_{1} A_{0} B_{2} & D_{1} A_{0} B_{1} \\
D_{2} A_{1} B_{1} & D_{2} A_{1} B_{0} & D_{2} A_{0} B_{1} & D_{2} A_{0} B_{0} & D_{1} A_{1} B_{1} & D_{1} A_{1} B_{0} & D_{1} B_{1} & D_{1} A_{0} B_{0} \\
D_{1} A_{2} B_{2} & D_{1} A_{2} B_{1} & D_{1} A_{1} B_{2} & D_{1} A_{1} B_{1} & D_{0} A_{2} B_{2} & D_{0} A_{2} B_{1} & D_{0} A_{1} B_{2} & D_{0} A_{1} B_{1} \\
D_{1} A_{2} B_{1} & D_{1} A_{2} B_{0} & D_{1} B_{1} & D_{1} A_{1} B_{0} & D_{0} A_{2} B_{1} & D_{0} A_{2} B_{0} & D_{0} A_{1} B_{1} & D_{0} A_{1} B_{0} \\
D_{1} A_{1} B_{2} & D_{1} A_{1} B_{1} & D_{1} A_{0} B_{2} & D_{1} A_{0} B_{1} & D_{0} A_{1} B_{2} & D_{0} A_{1} B_{1} & D_{0} A_{0} B_{2} & D_{0} A_{0} B_{1} \\
D_{1} A_{1} B_{1} & D_{1} A_{1} B_{0} & D_{1} A_{0} B_{1} & D_{1} A_{0} B_{0} & D_{0} A_{1} B_{1} & D_{0} A_{1} D_{0} & D_{0} A_{0} B_{1} & D_{0} A_{0} B_{0}
\end{array}\right| \\
& \quad=\left|\begin{array}{lll}
D_{2} E_{4} & D_{1} E_{4} \\
D_{1} E_{4} & D_{0} E_{4}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \times\left|\begin{array}{llllllll}
A_{2} B_{2} & A_{2} B_{1} & A_{1} B_{2} & A_{1} B_{1} & & & & \\
A_{2} B_{1} & A_{2} B_{0} & A_{1} B_{1} & A_{1} B_{0} & & & & \\
A_{1} B_{2} & A_{1} B_{1} & A_{0} B_{2} & A_{0} B_{1} & & & & \\
A_{1} B_{1} & A_{1} B_{0} & A_{0} B_{1} & A_{0} B_{0} & & & & \\
& & & & A_{2} B_{2} & A_{2} B_{1} & A_{1} B_{2} & A_{1} B_{1} \\
& & & & A_{2} B_{1} & A_{2} B_{0} & A_{1} B_{1} & A_{1} B_{0} \\
& & & & A_{1} B_{2} & A_{1} B_{1} & A_{0} B_{2} & A_{0} B_{1} \\
& & & & A_{1} B_{1} & A_{1} B_{0} & A_{0} B_{1} & A_{0} B_{0}
\end{array}\right| \\
& =\left|\begin{array}{ll}
D_{2} E_{4} & D_{1} E_{4} \\
D_{1} E_{4} & D_{0} E_{4}
\end{array}\right| \cdot\left|\begin{array}{llll}
A_{2} E_{2} & A_{1} E_{2} & & \\
A_{1} E_{2} & A_{0} E_{2} & & \\
& & A_{2} E_{2} & A_{1} E_{2} \\
& & A_{1} E_{2} & A_{0} E_{2}
\end{array}\right| \\
& \times\left|\begin{array}{llllllll}
B_{2} & B_{1} & & & & & & \\
B_{1} & B_{0} & & & & & & \\
& & B_{2} & B_{1} & & & & \\
& & B_{1} & B_{0} & & & & \\
& & & & B_{2} & B_{1} & & \\
& & & & B_{1} & B_{0} & & \\
& & & & & & B_{2} & B_{1} \\
& & & & & & B_{1} & B_{0}
\end{array}\right| \\
& =\left(D_{0} D_{2}-D_{1}^{2}\right)^{4}\left(A_{0} A_{2}-A_{1}^{2}\right)^{4}\left(B_{0} B_{2}-B_{1}^{2}\right)^{4} \\
& =\left\{R\left(P_{\mu}, P_{v}\right) R\left(P_{\lambda}, P_{v}\right) R\left(P_{\lambda}, P_{\mu}\right)\right\}^{4},
\end{aligned}
$$

where void elements represent 0 , and E_{n} is the unit matrix of size n and $R(P, Q)$ is the resultant of two polynomials $P(z)$ and $Q(z)$, and $\{\lambda, \mu, \nu\}=$ $\{1,2,3\}$. Since $R\left(P_{j}, P_{k}\right) \neq 0$ for $j \neq k$, every term $\left(\alpha_{\mu} \beta_{v}\right)^{8}$ really appears in the expansion of Δ for $\mu \neq v$.

Now take representations μ_{j}, v_{j} of $\left[\alpha_{j}\right],\left[\beta_{j}\right]$ of rank 16. Let $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$, λ_{5}, λ_{6} be the indices $\mu_{j}+v_{k}$ of $\alpha_{j} \beta_{k}(j \neq k)$, which are arranged as $\lambda_{1} \geq \lambda_{2} \geq$ $\lambda_{3} \geq \lambda_{4} \geq \lambda_{5} \geq \lambda_{6}$. If $\lambda_{1}>\lambda_{2}$, then there is no term in the expansion of Δ with the index $8 \lambda_{1}$ except one, which contradicts Lemma 2. Hence $\lambda_{1}=\lambda_{2}$, and similarly, $\lambda_{5}=\lambda_{6}$.

Without loss of generality, we may assume that $\mu_{1} \geq \mu_{2} \geq \mu_{3}$. Note that (A), (B), (C) and (D) are equivalent to the followings, respectively: (a) $\mu_{1}=$ $\mu_{2}=\mu_{3}$; (b) $v_{1}=v_{2}=v_{3}$; (c) $\mu_{1}-v_{1}=\mu_{2}-v_{2}=\mu_{3}-v_{3}$; (d) $\mu_{j}=\mu_{k}, v_{j}=v_{k}$ for some $1 \leq j<k \leq 3$.
(I) The case where $v_{1} \geq v_{2} \geq v_{3}$. In this case $\mu_{1}+v_{2} \geq \mu_{1}+v_{3} \geq \mu_{2}+v_{3}$, $\mu_{2}+v_{1} \geq \mu_{3}+v_{1} \geq \mu_{3}+v_{2}$ and $\mu_{2}+v_{1} \geq \mu_{2}+v_{3}$. When we consider the
maximal index, following three cases arise: (i) $\mu_{1}+v_{2}>\mu_{2}+v_{1}$, (ii) $\mu_{1}+v_{2}<$ $\mu_{2}+v_{1}$ and (iii) $\mu_{1}+v_{2}=\mu_{2}+v_{1}$. If (i), then $\mu_{1}+v_{2}=\mu_{1}+v_{3}$ are the maximal indices, and hence $v_{2}=v_{3}$. If (ii), then $\mu_{2}+v_{1}=\mu_{3}+v_{1}$ are the maximal incices, and hence $\mu_{2}=\mu_{3}$. When we consider the minimal index, following three cases arise: (iv) $\mu_{2}+v_{3}>\mu_{3}+v_{2}$, (v) $\mu_{2}+v_{3}<\mu_{3}+v_{2}$ and (vi) $\mu_{2}+v_{3}$ $=\mu_{3}+v_{2}$. If (iv), then $\mu_{3}+v_{2}=\mu_{3}+v_{1}$ are the minimal indices, and hence $v_{2}=v_{1}$. If (v), then $\mu_{2}+v_{3}=\mu_{1}+v_{3}$ are the minimal indices, and hence $\mu_{1}=\mu_{2}$.

Furthermore we must consider nine cases by multipying the first three cases (i), (ii), (iii) and the secondary three cases (iv), (v), (vi). In the case where (i) and (iv), $v_{1}=v_{2}=v_{3}$, which is (b). In the case of (i) and (v), $0=$ $\mu_{1}-\mu_{2}>v_{1}-v_{2}$, which contradicts $v_{1} \geq v_{2}$. In the case where (i) and (vi), $v_{2}=\nu_{3}$ and $\mu_{2}=\mu_{3}$, which is (d). In the case where (ii) and (iv), $0=\mu_{2}-\mu_{3}>$ $v_{2}-v_{3} \geq 0$, which is a contradiction. In the case where (ii) and (v), $\mu_{1}=$ $\mu_{2}=\mu_{3}$, which is (a). In the case where (ii) and (vi), $\mu_{2}=\mu_{3}$ and $v_{2}=v_{3}$. We get (d). If (iii) and (iv) hold, then $v_{1}=v_{2}$ and $\mu_{1}=\mu_{2}$, which is (d). Also, in the case where (iii) and (v), we have (d). If (iii) and (vi) hold, then $\mu_{1}-v_{1}=$ $\mu_{2}-v_{2}=\mu_{3}-v_{3}$, which is (c).
(II) The case where $v_{1} \geq v_{3} \geq v_{2}$. In this case $\mu_{1}+v_{3} \geq \mu_{1}+v_{2} \geq$ $\mu_{3}+v_{2}, \quad \mu_{2}+v_{1} \geq \mu_{3}+v_{1} \geq \mu_{3}+v_{2}$ and $\mu_{1}+v_{3}, \mu_{2}+v_{1} \geq \mu_{2}+v_{3} \geq \mu_{3}+v_{2}$. When we consider the minimal index, the following two subcases arises: (i) $\mu_{2}+v_{3}=\mu_{3}+v_{2}$. Then $0 \leq \mu_{2}-\mu_{3}=v_{2}-v_{3} \leq 0$, and hecne, $\mu_{2}=\mu_{3}$, $\mu_{2}=v_{3}$, which is (d). (ii) $\mu_{2}+v_{3}>\mu_{3}+v_{2}$. Then $\mu_{3}+v_{2}=\mu_{1}+v_{2}$ or $\mu_{3}+v_{2}=\mu_{3}+v_{1}$ holds. In the former case, we have $\mu_{1}=\mu_{3}$, which implies (a). In the latter case, we have $v_{1}=v_{2}$, which is (b).
(III) The case where $v_{2} \geq v_{1} \geq v_{3}$. In this case we have $\mu_{1}+v_{2} \geq$ $\mu_{1}+v_{3} \geq \mu_{1}+v_{3}, \mu_{1}+v_{2} \geq \mu_{2}+v_{1} \geq \mu_{3}+v_{1}$ and $\mu_{2}+v_{1} \geq \mu_{2}+v_{3}, \mu_{1}+v_{2} \geq$ $\mu_{3}+v_{2}$. When we consider the maximal index, we have following three subcases: (i) $\mu_{1}+v_{2}=\mu_{3}+v_{2}$, and hence, $\mu_{1}=\mu_{3}$, which is (a). (ii) $\mu_{1}+v_{2}$ $=\mu_{1}+v_{3}$, and hence, $v_{2}=v_{3}$, which is (b). (iii) $\mu_{1}+v_{2}=\mu_{2}+v_{1}$. In this case $0 \leq \mu_{1}-\mu_{2}=v_{1}-\mu_{2} \leq 0$, and hence, $\mu_{1}=\mu_{2}, v_{1}=v_{2}$, which is (d).
(IV) The case where $v_{2} \geq v_{3} \geq v_{1}$. In this case the inequalties $\mu_{1}+v_{2} \geq$ $\mu_{1}+v_{3} \geq \mu_{2}+\mu_{3} \geq \mu_{2}+v_{1} \geq \mu_{3}+v_{1}$ and $\mu_{1}+v_{2} \geq \mu_{3}+v_{2} \geq \mu_{3}+v_{1}$ hold. We see that $\mu_{3}+v_{1}$ is the minimal index and that $\mu_{3}+v_{2}$ or $\mu_{2}+v_{1}$ equals it. If $\mu_{3}+v_{2}=\mu_{3}+v_{1}$, then $v_{2}=v_{1}$, which implies (b). If $\mu_{2}+v_{1}=\mu_{3}+v_{1}$, then $\mu_{2}=\mu_{3}$. On the other hand the maximal indices are $\mu_{1}+\nu_{2}=\mu_{1}+\nu_{3}$ or $\mu_{1}+v_{2}=\mu_{3}+v_{2}$. In the former, we obtain $\mu_{2}=v_{3}$ with $\mu_{2}=\mu_{3}$, which is (d). In the latter, we get (a).
(V) The case where $v_{3} \geq v_{1} \geq v_{2}$. In this case the inequalities $\mu_{1}+v_{3} \geq$ $\mu_{2}+v_{3} \geq \mu_{2}+v_{1} \geq \mu_{3}+v_{1} \geq \mu_{3}+v_{2}$ and $\mu_{1}+v_{3} \geq \mu_{1}+v_{2} \geq \mu_{3}+v_{2}$ hold. The maximal indices are $\mu_{1}+v_{3}=\mu_{1}+v_{2}$ or $\mu_{1}+v_{3}=\mu_{2}+v_{3}$. In the former
$v_{2}=v_{3}$, which implies (b). In the latter, we have $\mu_{1}=\mu_{2}$. The minimal indices are $\mu_{3}+v_{2}=\mu_{1}+v_{2}$ or $\mu_{3}+v_{2}=\mu_{3}+v_{1}$. In the former $\mu_{1}=\mu_{3}$, which is (a). In the latter, we have $v_{1}=v_{2}$. Hence in any cases, we get one of (a), (b) and (d).
(VI) The case where $v_{3} \geq v_{2} \geq v_{1}$. In this case $\mu_{1}+v_{3} \geq \mu_{1}+v_{2} \geq$ $\mu_{2}+v_{1} \geq \mu_{3}+v_{1}, \mu_{1}+v_{3} \geq \mu_{2}+v_{3} \geq \mu_{2}+v_{1}$ and $\mu_{2}+v_{3} \geq \mu_{3}+v_{2} \geq \mu_{3}+v_{1}$. When we consider the maximal index, we have two cases: (i) $\mu_{1}+v_{3}=$ $\mu_{1}+v_{2}$, and hence, $v_{2}=v_{3}$; (ii) $\mu_{1}+v_{3}=\mu_{2}+v_{3}$, and hence, $\mu_{1}=\mu_{2}$. When we consider the minimal index, we have two cases: (iii) $\mu_{3}+v_{1}=\mu_{2}+v_{1}$, which implies $\mu_{2}=\mu_{3}$; (iv) $\mu_{3}+v_{1}=\mu_{3}+v_{2}$, which implies $v_{1}=v_{2}$. If (i) and (iii) hold, then we have (d). In the case where (i) and (iv), we have (b). In the case where (ii) and (iii), we have (a). If (ii) and (iv) hold, then we have (d).

We have completed the proof.
Remark. Note that we did not assume that P_{j} have no double zeros in the above proof.

Now, we start the proof of Theorem 5.
Let

$$
S_{j}=\left\{\xi_{j}, \eta_{j}\right\}=\left\{z ; z^{2}+a_{j} z+b_{j}=0\right\} \quad(j=1,2,3)
$$

be pairwise disjoint two-point sets in \mathbf{C} and let f, g, h be nonconstant meromorphic functions on \mathbf{C} sharing each $S_{j} \mathbf{C M}$. Then we can take $P_{j}(z)=z^{2}+a_{j} z+b_{j}$ in Theorem 6 and there exist some entire functions α_{j} without zeros satisfying (4.1) and (4.2) for $j=1,2,3$, where f_{0}, f_{1}, g_{0}, g_{1}, h_{0}, h_{1} are as in Theorem 6. By Theorem 6, one of (A), (B), (C) and (D) holds.

First we consider the case where (A) holds. If $\left\{z: f(z)=g(z) \in S_{j}\right\}=\varnothing$ $(j=1,2)$, then $f^{-1}\left(\xi_{j}\right)=g^{-1}\left(\eta_{j}\right)$ and $f^{-1}\left(\eta_{j}\right)=g^{-1}\left(\xi_{j}\right)$ for $j=1,2$. We can take a Möbius transformation T such that $T\left(\xi_{j}\right)=\eta_{j}, T\left(\eta_{j}\right)=\xi_{j}(j=1,2)$. Then f and $T \circ g$ share four values $\xi_{1}, \eta_{1}, \xi_{2}$ and $\eta_{2} \mathrm{CM}$, and we get the conclusion by Nevanlinna's four-value theorem (Theorem 3). So, we may assume there exists $z_{0} \in \boldsymbol{C}$ such that $f\left(z_{0}\right)=g\left(z_{0}\right)=\xi_{1}$, without loss of generality. Now, $c:=\alpha_{2} / \alpha_{3}$ is a nonzero constant and

$$
c \frac{f^{2}+a_{2} f+b_{2}}{f^{2}+a_{3} f+b_{3}}=\frac{g^{2}+a_{2} g+b_{2}}{g^{2}+a_{3} g+b_{3}}
$$

holds. This equality at z_{0} induces $c=1$, and hence, we get the conclusion.

Similarly, we get the conclusion in each case (B) and (C).

Now, we consider the case (D). Without loss of generality, we may assume that $\mu_{1}=\mu_{2}, v_{1}=v_{2}$. Then

$$
c \frac{f^{2}+a_{1} f+b_{1}}{f^{2}+a_{2} f+b_{2}}=\frac{g^{2}+a_{1} g+b_{1}}{g^{2}+a_{2} g+b_{2}}
$$

and

$$
c^{\prime} \frac{f^{2}+a_{1} f+b_{1}}{f^{2}+a_{2} f+b_{2}}=\frac{h^{2}+a_{1} h+b_{1}}{h^{2}+a_{2} h+b_{2}}
$$

hold, where $c:=\alpha_{1} / \alpha_{2}, c^{\prime}:=\beta_{1} / \beta_{2}$ are nonzero constants. If $c=1$ or $c^{\prime}=1$ or $c=c^{\prime}$, then we get the conclusion. Now assume that $c \neq 1, c^{\prime} \neq 1$ and $c \neq c^{\prime}$. Then there is no $z \in \boldsymbol{C}$ such that $f(z)=g(z) \in S_{3}$ or $f(z)=h(z) \in S_{3}$ or $g(z)=h(z) \in S_{3}$. This fact implies that f, g and h omit two values ξ_{3} and η_{3}, and hence, f, g and h share $S_{1}, S_{2},\left\{\xi_{3}\right\}$ and $\left\{\eta_{3}\right\} C M$, and we get the conclusion by Theorem 2.

We have completed the proof.

5. Proof of Theorem 1

Though proofs of Theorem 1 are given by H. Cartan in §56 of [C] and by R. Nevanlinna in p. 125 of [N2], we prove it, again, by using Theorem 6.

Let f, g and h be nonconstant meromorphic functions on \boldsymbol{C} and let ξ_{1}, ξ_{2}, ξ_{3} be distinct points in $\overline{\mathbf{C}}$. Assume that f, g and h share each $\xi_{j} C M$. Then, we prove that two of f, g and h are identical.

By considering compositions of each of f, g, h and a suitable Möbius transformation, we may assume that $\xi_{j} \in \mathbf{C}(j=1,2,3)$. Put $P_{j}(z)=\left(z-\xi_{j}\right)^{2}$. Then, by Theorem 6, one of (A), (B), (C) and (D) holds.

In the case (A), we have

$$
\begin{aligned}
& c_{1}\left(f-\xi_{1}\right) /\left(f-\xi_{3}\right)=\left(g-\xi_{1}\right) /\left(g-\xi_{3}\right), \\
& c_{2}\left(f-\xi_{2}\right) /\left(f-\xi_{3}\right)=\left(g-\xi_{2}\right) /\left(g-\xi_{3}\right),
\end{aligned}
$$

where $c_{j}^{2}=\alpha_{j} / \alpha_{3}(j=1,2)$ are nonzero constants. Since f and g are nonconstant, we obtain $f=g$ from these identities.

Similarly, we get $f=h$ in the case (B) and $g=h$ in the case (C).
Consider the case (D). We may assume that $\mu_{1}=\mu_{2}$ and $v_{1}=v_{2}$. Then we have

$$
\begin{aligned}
& c\left(f-\xi_{1}\right) /\left(f-\xi_{2}\right)=\left(g-\xi_{1}\right) /\left(g-\xi_{2}\right) \\
& c^{\prime}\left(f-\xi_{1}\right) /\left(f-\xi_{2}\right)=\left(h-\xi_{1}\right) /\left(h-\xi_{2}\right)
\end{aligned}
$$

where c and c^{\prime} are nonzero constants. We get $f=g, f=h$ and $g=h$ if $c=1, c^{\prime}=1$ and $c=c^{\prime}$, respectively.

Assume that $c \neq 1, c^{\prime} \neq 1$ and $c \neq c^{\prime}$. Then f, g and h must omit ξ_{3}. Since from the above identities

$$
f=\frac{\left(\xi_{2}-c \xi_{1}\right) g-(1-c) \xi_{1} \xi_{2}}{(1-c) g-\left(\xi_{1}-c \xi_{2}\right)}
$$

and

$$
f=\frac{\left(\xi_{2}-c^{\prime} \xi_{1}\right) h-\left(1-c^{\prime}\right) \xi_{1} \xi_{2}}{\left(1-c^{\prime}\right) h-\left(\xi_{1}-c^{\prime} \xi_{2}\right)}
$$

hold, f omit also two values

$$
\frac{\left(\xi_{2}-c \xi_{1}\right) \xi_{3}-(1-c) \xi_{1} \xi_{2}}{(1-c) \xi_{3}-\left(\xi_{1}-c \xi_{2}\right)}
$$

and

$$
\frac{\left(\xi_{2}-c^{\prime} \xi_{1}\right) \xi_{3}-\left(1-c^{\prime}\right) \xi_{1} \xi_{2}}{\left(1-c^{\prime}\right) \xi_{3}-\left(\xi_{1}-c^{\prime} \xi_{2}\right)} .
$$

It follows from $c \neq 1, c^{\prime} \neq 1, c \neq c^{\prime}$ and distinctness of $\xi_{1}, \xi_{2}, \xi_{3}$ that three exceptional values of f are distinct, which is a contradiction.

Hence we have proved Theorem 1.

References

[C] H. Cartan, Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires et leurs applications, Ann. Sci. École Norm. Sup., 45 (1928), 255-346.
[L] S. Lang, Introduction to Complex Hyperbolic Spaces, Springer-Verlag, New York, 1987.
[N1] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math., 48 (1926), 367-391.
[N2] R. Nevanlinna, Le théorèm de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929.
[S1] M. Shirosaki, On meromorphic functions sharing three values and one set, Kodai Math. J., 29 (2006), 475-484.
[S2] M. Shirosaki, On meromorphic functions sharing a one-point set and three two-point sets, Kodai Math. J., 36 (2013), 56-68.
[S3] M. Shirosaki, On meromorphic functions sharing four two one-point sets CM, Kodai Math. Journal, 36 (2013), 386-395.
[ST] M. Shirosaki and M. Taketani, On meromorphic functions sharing two one-point sets and two two-point sets, Proc. Japan Acad., Ser. A, 83 (2007), 32-35.

Manabu Shirosaki
Department of Mathematical Sciences
Osaka Prefecture University
Sakai 599-8531 Japan
E-mail: mshiro@ms.osakafu-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 30D35; Secondary 30D30.
 Key words and phrases. Uniqueness theorem, Sharing sets, Nevanlinna theory.

