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Approximating the first crossing-time
density for a curved boundary

HENRY E. DANIELS
Statistical Laboratory, University of Cambridge, 16 Mill Lane, Cambridge CB2 188, UK

This paper is concerned with the problem of approximating the density of the time at which a
Browruan path first crosses a curved boundary in cases where the exact density is not known or is
difficult to compute. Two methods are proposed involving the use of images, and the square root
boundary provides an example for numerical comparison. Two-sided boundaries are alse discussed.
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1. Introduction

A problem which is important in sequential analysis and constantly arises in other contexts
is to evaluate the probability P(¢) that a Brownian path does not cross a curved boundary
before time ¢. When the boundary is linear the solution is well known, but otherwise few
exact solutions are available and even when a formuia is known for a particular boundary it
usually involves heavy computation. It is very desirable, therefore, to have a reasonably
good approximation which is easy to calculate. The present paper attempts to address the
question by looking for workable approximate solutions which can be applied without
too much effort to a variety of situations. We have preferred to consider the first
crossing-time density g(7) rather than the distribution function 1 — P{#) since it gives
a more vivid impression of the form of the distribution.

Suppose we have standard Brownian motion X(¢) and a one-sided absorbing boundary
£(¢). A well-known result which is widely applicable is the rangent approximation (TA),
where £(1) is replaced at each # by its tangent at 1. It was first introduced by Strassen (1967)
as an asymptotic approximation for large £(i} as ¢t — 0, and independently Daniels (1974),
Cusick (1981), Jennen and Lerche (1981} established the result for general z. It was
developed as such by Lerche (1986) and his colleagues who devised improved asymptotic
versions. However, it seems to work quite well in many cases when £(¢) is not large and an
asymptotic justification is not available. Our object is to explore ways of improving on the
TA when £(r) is not large.

Two different approaches are discussed, both exploiting the use of images (see Daniels
1982). In the first approach the TA, which can be derived by introducing a suitable negative
image source, is modified by adding a second image source. This replaces the tangent to £(¢)
at t = T by another boundary £(¢, 7'} which has higher-order contact with £(¢) at r = Tand
has an easily computable first crossing-time density. In the second approach we look for a
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134 H.E. Daniels

distribution of weighted images on the vertical axis which, together with the original source
at the origin, will generate the given absorbing boundary £(¢}. An approximate solution is
found by discretizing the resulting integral equation, thus reducing the problem to the
solution of a set of linear equations.

The results presented here must be regarded as a preliminary look at the problem, the
suggested methods being tried out on a particular form of £{¢), namely the square-root
boundary £{f) = ¢/+/¢ + 1. The aim has been to balance accuracy of approximation against
ease of calculation.

In the final section, two-sided boundaries are discussed. It is shown that the TA can be
improved by considering both branches simultaneously.

2. The tangent approximation

Consider a standard Brownian motion X{#) with X (0) = 0, constrained by an absorbing
boundary £(#) > 0. We require the probability of not crossing £() before ¢, i.e.

P(y=P{X(1) < &(n0 < r<1}. (2.1}
Equivalently, we consider the first crossing-time density (fcd).
orP
g =-=. (22)

For general £(r) the problem is usually difficult to solve analytically, so we seek a good
approximation which is easy to compute.

There is another formula for the fod which is more convenient than (2.2) for the present
purpose. Let p(x, ¢) be the density at (x, ) given that x{(7) < &(7), 0 € 7 < ¢. By definition
p(£(6),t) = 0. Then

(= ~5 20

) (2.3)
xT(1)

The usual proof is as follows.

0 © p(x
22" pwnax=[" P2lax (aietinn=0)

_lf“’é’zﬁdx_l%‘l
T2)edx? 2 Ox

xTE(¢)

using the diffusion equation. But this proof does not work for two-sided boundaries
because the lower bound n{t) replaces —oo and the final term is

10p(x, 1)

Oplx,0)|  _10plx1)
2 ox

ag 2 Ox

xln(f).

The contributions from each branch cannot therefore be separated, even though (2.3} is
actually correct for the upper branch, and, with the appropriate changes, for the lower
branch also. A probabilistic proof avoiding the difficulty is sketched in Daniels (1982).
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The tangent approximation consists in replacing the boundary £(¢) near ¢ =T by its
tangent £(t, T) = o + ft, where o = £(T) — T£'(T), 8 = £'(T), the idea being that when
£(1) is large the only Brownian paths contributing to the fcd at 7" are those cressing within a
smail neighbourhood of T. An alternative approach using a renewal-type integral equation
is given in Daniels (1974). The density p(x, ) for the tangent boundary is found in the usual
way by putting a negative image of weight k = exp {—2af) at x = 2¢, 1 = 0, 5o that

e—x2 j2t e—Zuﬂ—(x-—h}Z;‘Z.r

o) = e o

—2n
= € {1 _ eZa(x—a—B:),a’r} (2. 4)
2nt
which vanishes on the absorbing boundary £ = « + 8t. The fcd is, from (2.3),
_ i - 52 - Cem a2
Bli) == (e e (R i (2:5)
it
which reduces to
)= g o & o-200-(-201/2 (2.6)

Vanh Vams

the second form generalizing naturally to the more complicated case considered later.

An important condition for the TA to work is that the intercept o on the vertical axis is
positive. This implies that £(T)/T > £'(T).

It helps the later manipulation to apply the time inversion

w=1/t,  z=x/t,  (u)=£n/1, (2.7}
in terms of which the tangent boundary becomes
C=ou+f, a=((U), B=(U)-UCW) (28)

where U =1/T.

The TA is a surprisingly good approximation in many cases. It is asymptotically exact as
£(1) — oo for fixed ¢, but as has been mentioned it seems to work well for quite moderate
§(#). In the numerical example shown in Table | for the boundary £(r) = £v/1+ 1 the
agreement is quite good over the whole range even when ¢ = 0.5.

3. Improvements on the TA

Various attempts have been made to improve the TA. Ferebee (1983) and Jennen (1985) get
higher-order terms in an asymptotic expansion using the integral equation approach.
Jennen also introduces an extra term to allow for possible crossings before 7. In an
important paper, Durbin (1992) developed a sequence of approximations starting with the
TA which actually converge to the correct answer. Unfortunately his method involves
heavy computation, but it appears not to rely on asymptotic considerations.
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Tabie 1. Square-root boundary: (a) # = 0.5; (b) £ = 1.0

(a)

i g &o b4} &2 43
0.05 1.2871 1.2928 1.2927 1.2928 1.2917
0.10 1.5976 1.5967 1.5963 1.5964 1.5948
0.15 1.3181 1.3201 1.3192 1.3195 1.3209
0.20 1.0570 1.0578 1.0564 1.0569 1.0591
0.25 0.8592 0.8395 0.8575 0.8581 0.8598
0.30 0.7085 0.7123 0.7099 0.7107 0.7116
0.35 0.5978 0.6015 0.5987 0.5996 0.5998
0.40 0.5137 . 0.5163 0.5132 0.5140 0.5139
0.45 0.4461 0.4494 0.4459 0.4468 0.4465
0.50 0.3924 0.3958 0.3920 0.3930 0.3925
0.6 0.3122 0.3161 0.3119 0.3129 0.3124
0.7 0.2568 0.2603 0.2557 0.2569 0.2563
0.8 0.2152 0.2196 0.2147 0.2159 0.2153
049 0.1837 0.1388 0.1837 0.1843 0.1842
1.0 0.1598 0.1648 0.1595 0.1607 0.1600
1.2 0.1233 0.1302 0.1246 0.1259 0.1250
1.4 0.1012 0.1067 0.1010 0.1022 0.1011
1.6 (.0848 0.0898 0.0840 0.0859 0.0840
18 0.0720 0.0772 0.0714 0.0726 0.0711
20 0.0621 0.0675 0.0617 0.0629 0.0613
2.2 0.0545 0.0598 0.0541 0.0553 0.0535
2.4 0.0485 0.0536 0.0479 0.0491 0.0472
(b}

[ g 2o &1 &2 £

0.2 0.2234 0.2230 0.2229 0.222% 0.2224
0.3 0.2810 0.2805 0.2801 0.2803 0.2799
0.4 0.2772 0.2779 02771 027714 0.2773
0.5 0.255% 0.2570 0.2557 0.2562 0.2559
0.6 0.2311 0.2325 0.2309 0.2316 0.2311
0.7 0.2081 0.2094 0.2074 0.2082 0.2076
0.8 0.1871 0.1889 0.1865 0.1875 0.1868
0.9 0.1685 0.1710 0.1684 0.1694 0.1687
1.0 0.1529 0.1557 0.1527 0.1539 0.1531
1.2 0.1278 0.130% 0.1275 0.1289 0.1277
1.4 0.1089 0.1122 0.1084 0.1099 0.1083
1.6 0.0946 0.0976 0.0937 0.0952 0.0931
18 0.0827 0.0862 0.0820 0.0837 0.0810
2.0 0.0732 0.0769 0.0726 0.0743 0.0711

2.5 0.0564 0.0603 0.0557 0.0576 0.0534
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Table 1. continued

! 4 & 4| £2 £;

3.0 0.04355 0.0493 0.0446 0.0465 0.0417
35 0.0376 0.0415 0.036% 0.0388 0.0336
4.0 0.0320 0.0358 0.0312 0.0331 0.0277
4.5 0.0277 0.0314 0.0269 0.0288 0.0233
5.0 0.0243 0.0280 0.0235 0.0254 0.019%
5.5 0.0216 0.0252 0.0208 0.0227 0.0173
6.0 0.0195 0.0229 0.0186 0.0205 0.0t51
H=¢v1+1,

g is ‘exact’, gy is TA,

g1 has o) = &(0), g; has o = EEO),
8 =£10)

£3 by second approach (Section 6)

Roberts and Shortland (1993) work with the hazard rate r(z) rather than the fed g(7):

10 =£0/60. 6= grar 6.1
They approximate this by

F(2) = #(0)/{B(E/ V1) — P B([€ - 2/ V1)), (3.2)

where £ = a + 3t and g(¢) is the fcd for the TA. Apparently they get improved accuracy for
a variety of boundaries and can state bounds on the error. Also the taii probability and fed
are approximated by

G{t) = 1 —exp {— J; F(‘T)d‘?’} (3.3)

gty =7(t)exp {-— J; ?(r)df}. (3.4)

We now describe another way of improving the accuracy of the TA by replacing the
tangent with a boundary which fits £(¢) more closely.

4. A more flexible approximate boundary

Daniels (1969; 1982) showed that by introducing two negative images, at 2o, 2as,
(@ < ap) with weights k; = exp (-2, 3,), &, = exp (—2a453,), one could obtain curved
boundaries with easily computable fcds. These can be used for £(t, 7) instead of the
previous straight-line approximation.
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The density in x{£) < £(£, 7),0< ¢t < T, is

5x, 1) = ! (572 g2 /2 _ =ty izt /21y
2mt
—f;z:
{t- ela(x—ay =B/t _ ezaz(-‘-az-ﬁzf}ff}. (4.1)
2mt
The absorbing boundary £(z, T) satisfying p(€, £) = 0 is then given implicitly by
el lE—a =51/t + elmlE-o=&0/t . | (4.2)
and its fed is

B(1) = — e 2B R H o =20 (B2 2t 4.3)
Van 2
When ¢ is small the image at 2¢; dominates and £ ~ o, + 5t It follows that in general the
intercept is o, which must necessarily be positive.
In the special case where o) = &, oy = 2a there is an explicit formula

- 3
f=a- éiog {% + (% K+ .‘52&-402"’:) } (4.4)

which is often used as a boundary with known fed for trying out approximations.

Since there are now four constants oy, 81, ap, G5, it is possible 1o introduce two extra
conditions toimprove the fit of £(r, T') to £(¢}, either by matching higher derivatives of () at T
or by introducing further constraintson £(¢, T ), or by both. The fact that the TA turns out to be
too large may be because it does not allow for crossings near ¢ = 0 where £(¢) is small. We shall
attempt to compensate for this by equating the intercepts of £(7, T) and £(2), i.e. by choosing
a; = £(0), leaving enough freedom to match £ and € at T up to the second derivative.

It is convenient to work with u = 1/1,{(u) = £(1)/t. The boundary {u, U ) is then given by

T{{au=f) 4 o20(C-oou—8) _ . (4.5)
Differentiating (4.5) twice gives
o (' — 0y)e 6w B gy (07 — ap)e o) < g (4.6)
(" +200( = @)y EnB) L 0 (87 4 205(0 — @)} 2o R 20 (47)
Then

("2 - ) —a1 —02) =0 (4.8)
_ 7 1 02(02"?)
b —c-—alu—zalog{(az_a])(a]+02_C)} (49)
5 1 o (' =)
,82—g‘-azu—r‘zlog{(az_al)(al+a2 f’)}' (4.10)

We have chosen
oy = £(0) = ¢'{00) = (5, say, (4.11)
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so that from (4.8), at u = U,

ar =~ 1o+ {10 — 1/ = Y @12)
and 8, 5, follow from (4.9), (4.10) withu = U.

Alternatively, £(¢, T} may be constrained to fit £(¢) more closely near =0 by choosing
a, = £(0), B; = £'(0), but then we can only fit = ¢, £ =£' at ¢t = T using o, 5. From
(4.5), (4.6) it is found that

ala, — ¢’ plar{{-a U-51)
aZ(C! - 02) = l( 11_ ega)l ({—e U-51) (413)

1
Br = ¢~ U —5-log{l — e2ulmaU=8)y, (4.14)

where U = 1/T, ((U) = &(T)/T, {'(V) = &(T) - TE(T).

A third possibility is to match derivatives of £ and £ up to the third at f = 7, ignoring any
constraint near ¢ = (. The formulae are more elaborate, involving the iterative solution of a
cubic equation, and the results are no better than those obtained by the previous two
methods, so we have not reproduced them.

5. The square-root boundary

The explicit formula (4.4) is often used as a convenient boundary for comparison purposes.
UnJortunately, it cannot be used to test our approximations because it belongs to the same
family of boundaries from which they are constructed, so that cur approximations will
reproduce it exactly! Not many other exact solutions are known or tabulated and the results
of simulation are in general too coarse.

Keilson and Ross (1975) tabulated the probability for a standard Omstein—Uhlenbeck
process to cross a horizontal boundary at height ¢ before time 7. Inierpolation at
= %log {1 4 7) gives the probability of Brownian motion crossing the square-root boundary
&(#) = £v'1 + 1 before time 1. Numerical differentiation then gives the fcd g{¢). The original
table has four-figure accuracy so the last figure for P(¢) and g{¢) is not reliable. Also the values
for very small 7 are not accurate. Tables 1a, 1b, compare the ‘exact’ fed g(¢) for £ = 0.5, 1.0,
with the approximations gy (¢) for the TA and the refinements g, (1), g2(¢) obtained by the two
methods described. The TA results are in all cases too high. Of the other two, g; seems on the
whole better than g,. (The last column, g3, refers to the results of Section 6.)

6. Another approach using images

The required fed can also be approximated in the following way. Assume there is a
distribution of images on the vertical axis 2t points § in the interval 2£(0) < 8 < oc, with
weights —dK(8), which will reproduce the given absorbing boundary £(1). Such a
distribution must satisfy the integral equation

ey _ Joc o tE(n-8Y /s

2£(0) vVan:

: dK (8}, (6.1}
2nt
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which simplifies to
| = r O/ g g 62
o © (62)

Lerche (1986) studied this integral equation on the assumption that dX{8) is non-negative. He
showed that for such weights the resulting absorbing boundary £(7) is unique and concave. But
with a general £(¢), even if concave, it need not be true that dK{#) is non-negative or that £(¢) is
unique. In fact uniqueness is not a necessary requirement. What is essential is that the density
p(x,t) for the constrained Brownian motion is positive for all x(r} < £(¢), otherwise a new
absorbing boundary will appear below £(r) which competes with £(2).

In general (6.2) is difficult to solve analytically, but an approximation can be sought by
discretizing the problem. Weights —x, are attached to images at 8, where 2£(0) =
0, < 8, < ... < 8y, and (6.2} is replaced by the set of linear equations

N .
1 = aneerg(fs)ﬂs"&:{h:, 5= 1’ 2, e, N" (6.3)
r=1
where #| < I < ... <ty is a set of times chosen to cover the time-range of interest. The
weights found by solving (6.3) will then lead to an absorbing boundary £(r) which coincides
with £{z) at the specified times ¢, and the fed is approximated by

1 N - 2

)= —e— S k0, OO /2 6.4
O e o
The condition that p(x, ¢) > 0 for x(r) < £() can be checked in any particular case.

It is not obvious how best to choose the values of 4, for a given value of N and a specified
range of 1;. As an exploratory example we have considered the square-root boundary with
{ =0.5and £ = 1.0. Taking N = 5 and equally spaced values of ¢, from (.05 to 1.00 when
¢ = 0.5 and from 0.2 to 1.0 when & = 1.0, the weights . found for the indicated values of
8, are shown in Table 2. The corresponding values of the approximate fcd g;(¢#) are shown
in the final columns of Tables 1a and 1b. The fit is good over the chosen ranges of ¢, but
begins to deteriorate as ¢ increases beyond this range. Incidentally the observed values of &,
suggest that dK(8) in (6.2} may oscillate about zero for this £(r).

One would expect to get a more accurate fit by choosing N large and arranging the values
of 1, to cover the whole effective time-range as estimated from the TA. Unfortunately large

Table 2. Square-root boundary: discretized images

£ =05 =10
te 9, Ky i er oy
0.0500 1.00 0.7830 0.2 2.00 0.3919
0.2875 1.25 —0.0406 0.4 2.25 -0.0777
0.5250 1.50 0.1916 0.6 2.50 0.3162
0.7625 1.75 —0.2652 0.8 2.75 -0.3957

1.9000 2.00 0.1794 1.0 3.00 0.2791
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N leads to numerical instability.. A way of reducing the value of N while retaining
comparable accuracy might be to replace summation in (6.3} by a more accurate numerical
integration formula, thus making (6.3) more like (6.2).

7. Two-sided boundaries

We now consider two-sided boundaries with branches £, (1) > 0,£_() < 0. Asymptotically
the one-sided TA for each branch is valid, but from the present peint of view the accuracy
can be improved by considering both branches together. The discussion is confined to
symmetric boundaries where £, (¢) = &(t), £_(r) = —£(z), but the argument can be extended
to the more general case.

The two-sided tangent approximation replaces &, (7} and £_{t) at ¢ = T by the tangents

L Ty=a+p, E(LT)=—(a+p), (7.1)
where o = &(T) — T€'(T'), 8 = ¢'(T). For the density p(x, f) to vanish on both £, and £_
an infinite series of images is required. When 3 = 0 we have the classical Wald test with
parallel boundaries at <¢. In that case the density is

o0

Flx, 1) = \/;_ D (~1yerteene (12)

Nir=—x

This is derived in the usual way by starting with the terms for r = 0, 1 corresponding to the
single boundary at o produced by an image at 2e. To incorporate the boundary at —«
successive images are then placed at —4¢e, 6. .., each successive image being added to
correct the disturbance produced by the previous image.

When 3 # 0 all that is required is to modify (7.2) by muitiplying the rth term by
exp (—2a6r2), giving the density

p{x I) = \/__t Z l)r —2a8r—(x—2ar) 2 (73)

with the corresponding fcd, conditional on crossing the upper boundary,
o X 2 z o, 2 z 2
F( 1) = -1 =1, 208" r —(E-2ary 2t _ —(E+2ar) 2 ) .
) = e (1 re e : } (7.4)

Daniels (1982) established result (7.3) in a discussion of T.W. Anderson’s sequential test
with converging linear boundaries. It can, however, be verified directly in the following
way. Rearrange the terms of (7.3) by pairing r = —2sand r = 25+ 1:

i (e20PC ~x 202 _ g -2abaer 1) - {r-a(aes ) 1)
2rts=—e

ﬁ(xa )=

Z e—Zuﬁ(Zs}z {x+2a{2s)}?/2¢ {1 2a(4s+l)(x—a—ﬁr);‘t}‘

T s=—o0

=0 on §+=a+ﬁr.
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Table 3, Two-sided square-root boundary: (2) £ = 0.5; (b) ¢ = 1.0

(a) ‘exact” TA for £, (b) ‘exact’ TA for £,
t g %o ¢ g go
0.05 1.2874 1.2928 0.2 0.2221 0.2230
0.10 1.6002 1.5965 03 0.2812 0.2805
0.15 1.3169 1.3170 04 0.2761 0.2779
0.20 1.0427 1.0449 0.5 0.2575 0.2569
0.25 0.8304 0.8308 0.6 0.2303 0.2324
0.30 0.6624 0.6661 0.7 0.2071 0.2091
0.35 0.5352 0.5388 0.8 0.1864 0.1834
0.40 0.4362 0.4395 0.9 0.1678 0.1702
0.45 0.3546 0.3614 1.0 0.1518 0.1545
0.50 0.2959 0.2984

12 0.1256 0.1290
0.6 0.2026 0.2098 1.4 0.1056 0.1085
0.7 0.1440 0.1508 1.6 0.090¢ 0.0944
0.8 0.1047 0.1108 1.8 0.0776 0.0824
0.9 0.0808 0.0831 2.0 0.0676 0.0727
1.0 0.0587 0.0635

2.5 0.0497 0.0553
1.2 0.0325 0.0388 3.0 0.0380 0.0440
1.4 0.0202 0.0251 3.5 0.0301 0.0362
1.6 0.0128 0.0170 4.0 0.0244 0.0305
1.8 0.0086 0.0119 4.5 0.0202 0.0262
2.0 0.0057 0.0087 5.0 0.0169 0.0229
2.5 0.0039 0.0044 55 0.0144 0.0203
30 0.0021 0.0025 6.0 0.0124 0.0182

==L+ 1
Alternatively the terms of (7.3) can be rearranged by pairing r = 25 — 1 and r = —-2s:

= {e——hﬁ{ls)z—{x+2a{23)}2,’2r _ e-—Zuﬁ(Zs—i)z—{x—Za(zs—l }}3;2;}

_ 1
plx, 1) = \/5—
Mis=—oc

__1 i e-—Etxﬁ(Zs)z—{x+2cr{25)}2/2£{1 — g~ Dalds- )(xra+ /1y
V 2Tt s=—oc

=0 on {_ =—(a+p).
The particular pairing of the terms is suggested by the order in which the images were
originally introduced.

Tables 3a and 3b compare the two-sided TA with the ‘exact’ values for £ = 0.5 and 1.0.
They may be compared with the one-sided values in Table 1. The two-sided TA is
consistently greater than ‘exact’. We have not yet extended our improved approximations
to two-sided boundaries.
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8. General comments

We have considered one particular boundary which is convex and can be small for small 1.
Other boundaries may need different approximations — for example, using the first
approach, if £(¢} is not too small near + =0 it may be worth fitting £(¢,T) up to the
third derivative. Clearly, improved approximations could be arrived at by including more
images but the computations become much more elaborate. The second approach provides
an alternative way of introducing more images without complicating the formulae, relying
instead on a direct numerical solution.

The techniques presented here need a firmer mathematical basis. In particular, some way
has to be found for providing bounds on the fit when the exact g(f) is not known.
Comparisons with particular cases can be misleading, as the example of (4.4) shows, though
they can also be suggestive.
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