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A random continued fraction in R**! with an
inverse Gaussian distribution
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A continued fraction in R+ is the composition of an infinite number of projectivities of B?*! which preserve
{0, +00) x RY. We consider a right random walk on the semigroup of such projectivities governed by a special
distribution, and we prove that the corresponding random continued fraction has a generalized inverse
Gaussian distribution on R?* . This leads to a characterization of these distributions.

Keywords: characterizations; iteration of random functions; random walks on matrices

1. Introduction

Let V be a d-dimensional Euclidean space, where the scalar product of ¥ and 7 is denoted by %. 7
and the squared norm of X by ¥2. An element x of R x ¥ is denoted by x = (xp, X), and adopting
the notation x" = xy — 2, we consider the interior P of a paraboloid of revolution,

P={xeRxV;x" >0} (L.1)
For Ain R, K, : R — R is the Bessel function defined by (Watson 1966, p. 78)
7 §2 5 2
K,\(s5) = L t exp(—zr 3! )dr. (1.2)

Let b be in P. We define the following two probability distributions on (0, +c0) x V:
Hras(dx) = (2m) K (Vab )} TN ()2

—dj2- 1 b - .
X xa\ a2 ]exp{—i;(ﬂ-Ffz)—UTJCD"'b'x}l(O&DO)(xO)dxﬂdx’ (1.3)
0

where A € R and @ > 0; and
Tap(dy) = 2wy} (Bt 2ty
)
Fo b s~ - -
X EKP{—EJTO——020+b'}’}1(n,+m)(}’0) dyy dy, (1.4)

where )\ > 0.
* To whom correspondence should be addressed.
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To check that u, . is actually a probability distribution, one has to use the forrula, for a and

a >0
g VM2 1 '
K,(Vaa') ARG me(}‘lexp —-—(axo +a_) dxg, (1.5)
2 0 2 Xp
which is easily obtained from (1.2). Integrating (1.3} first with respect to %, then, using (1.5), with
respect to xp, will give the result. Such a computation, passim, also yields the marginal distribution
of xg under (1.3), a generalized inverse Gaussian one in R,

x

- . _ b
{K(Vab" )}~ a2 (672 exp (“E - ?xo) Ligoroe)(X0) o, (1.6)
whereas ¥ conditioned by x; is Gaussian distributed with mean Exo and covariance xg/)-. Similarly,
one can verify that (1.4) is a probability distribution, that the marginal distribution of y, is gamma

{ro! (% )"yﬁ\'l exp (— bTy“) 10, +00) (7o) 4o, (1.7)

and that ¥ conditioned by yg is Gaussian distributed.
Because this is well adapted to the context and to the choice of the constants, we shall define in
this paper the Laplace transform of any positive measure z on R x V by

L,(6) = L,{6,,0) = L exp(-%oxu +48. f),u(dx). (1.8)

With this convention, the fact that (1.3} and (1.4) are probability measures gives without further
calculation that, for # in P, one has

xV

L, (0 = {K\(Vab")} (5" K, (Va6 + B H(b+ 6"}, (19)
L, = @@ +6y37 (1.10)

We are now able to state the two basic observations which motivate this paper, In the following,
indicates convolution in B x V.

Proposition 1.1 If ) > 0,a >0and b e P, then

Yab * Borap = Hrah- (1.11)
Proof
That K, (s) = K_,(s) is clear from (1.2). Taking the Laplace transforms of both sides of (1.11) and
using (1.9) and (1.10) proves (1.11). O

Proposition 1.2 For b and Zin V, define the permutation A('; 5, ¢} of (0, +o0) x ¥ by

h(x0, 55,8) = (i,—5+"“

X0 Xp

(1.12)

Then, for all (A,b,¢) in R x P?, the image of w, 5+ o by A(35,&) is po_y 0 -
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Proof
One has to use the fact that
W' (5 8,8) = h(E,b). (1.13)
Thus, if x' = h(x;5,Z), one gets x = h(x';&,b), dx = (xp) *"*dx’, and the image of py4 . by
(-3 B,7) is easily computed. 0O

Now fix A> 0 and (b,¢) in P2; consider a sequence X, Y,, Ya,... of independent random
variables valued in (0, +00} x V such that, for all in N" = {1,2,...},

FXo)=porcy FYu)=np  L(Xam)=7
(where #(X;) means ‘distribution of Xo ). Then, from Proposition 1.1, £(Xy + I1) = fir e -

Let us define X, = k(Xp + Yy; 7, 8), X5 = h(X, + Y5; 5,7), and more generally, for » in N*
Xopo1 = h(Xon_ 2 + Yh—l;csb}s X = h(Xan_1 + Yo 5,E). (1.14)
Then, Propositions 1.1 and 1.2 imply that for all n in N”
F X 1) =poape LX) =dones (1.15)

Thus, (Xoq)aeo and (X3, )peo are two stationary Markov chains valued in (0, +co) X V. Let us
now raise the following question: suppose that X, ¥, and ¥; are three independent random
variables of (0,400} x V such that #(¥;) = 7,4, £(Y3} = ¥, . and such that

F(X) = L(h(Y; +h(Y1 + X:8,5);,5,8)); (1.16)
can we claim that #(X) = u_, - ,? One of the results of this paper is to prove that the answer
is yes {Corollary 3.2). Of course, if » =¢, a similar question arises: if

LX) = LAY+ X:5,b)) (1.17)
is it true that (X ) = p., 5 »? The answer is again yes. However, the general method of the proof
provides a much more interesting result: consider the random projectivities £, of R x V" defined for
nin N* by

Fo(x) = h(Yan + A( Yoy + x;5,0);5,8). (1.18)
Hence

Xgﬁ =FHOF,,__10‘--OF1(X0), (119)

and the Markov chain is the result of the action on R x ¥ of the left random walk (F, 6 --- 0 Fi)pepp
on the group of projectivities of R x V. As usual in these types of question, the delicate point will be
to consider the action on R x V of the right random walk, and to show that

Z(x)y=F oFo: - 0F,(x) (1.19}

converges almost surely towards a random variable Z on {0, +o0) x ¥ which does not depend
on x (note that Z,(X,) and X, are identically distributed, although (Z(x));~ is not a Markov
chain). This convergence of Z,(x) towards Z will thus imply that Z, a kind of continued fraction
in R?!, with random elements following the ‘gamma’ distribution (1.4), has an ‘inverse
Gaussian’ distribution (1.3). This representation of (1.3} as the law of a ‘random continued
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fraction’ is the main result of this paper (Theorem 3.1). Before establishing this (section 3), we give a
few references.

2. Bibliographical comments

1. For dim ¥ = 0, the above problem has been solved by Letac and Seshadri (1983). Probabilistic
applications are given in Vallois (1989).

2. The work of Letac and Seshadri (1983) has been generalized by Bernadac (1992). She first
replaces the positive line by the cone of positive definite matrices, and considers the random
continued fraction

Xo= (¥ + (Y +(¥s+..)"")y")™ 2.1)

She proves its convergence, and is able to compute the law of X;, when the Y; are Wishart
distributed.

Actually, it is easy to consider a generalization of (1.3}, (1.4), and Propositions 1.1 and 1.2. One
has to replace the gamma distribution and the generalized inverse Gaussian distribution by the
Wishart distribution and the generalized inverse Gaussian distribution on the symmetric d x 4 real
matrices, as defined by Bernadac (1992; 1995). However, the convergence of (2.1) is sufficiently
delicate to prevent us from trying to extend Theorem 3.1 below.

A deeper generalization appears in Bernadac (1993; 1995), where the positive definite matrices are
replaced by an irreducible symmetric cone, i.¢. the set of squares in a simple Euclidean Jordan
algebra, where a snitable Wishart distribution can be defined (see Casalts 1990). The proof of the
convergence of (2.1), even in a deterministic case, becomes rather difficult and is achieved by
beautiful algebraic identities.

3. The distribution (I.4) seems to have been considered for the first time by Casalis (1992; 1993) and
is one of the 2d + 6 simple natural quadratic exponential families in R?"', For general A > 0, the
distribution of ¥ has no simple expression. However, since

Kils) = \/;:exp(_s), (2.2)

as is easily seen from (1.2), the marginal distributions of ¥ for A = (d + 1)/2 and (if d = 2) for
A= (d — 1)/2 are computable and interesting. For A= {(d + 1)/2 it is

-1
amy e fr(L) ) e e e (— Bl 71+ 6-5) 3)
and for A =(d —1}/21t1s
p— ‘-1 —
any<rfr (42 )} @0 1 o~V 7 + 6 5) 05 (24)

If b variesin P, (2.3) and (2.4) are general exponential families on ¥ {see Letac 1992), generated by
the measures d¥ and dj’/|| 7| respectively, and themap ¢ : ¥ — R x V, #{7) = (|| /||, ¥). From (2.3}
and (2.4), the Laplace transforms of the images of dj and dj/| 7| can be easily computed; the latter
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generates the Wishart distribution of the cone of revolution (Letac 1994), an observation made by
Barndorff-Nielsen er al. (1989, p. 100).

4. Special cases of the distribution (1.3) appear in various places, se¢ in particular Barndorff-Nielsen
and Blasild (1983b). For instance, let (Bg, B) be a standard Brownian motion in R x ¥ (endowed
with its canomnical Euclidean structure). Denote

T = inf {& By(t) + t/bo = Va}-
Then

Q(T: B.(T)) = Py 12,8,00,0) (2-5)

Formula (2.2) also gives two remarkable particular cases, for A = £1/2. In these cases, the
Laplace transforms are

Ly nss(8) = exp{Vab® — /a(b + 6)'} (2.6)
Ly s @) = (67)2{(b+6)'} " exp {Vab* - /alb +6)'}.
From (2.6) it is easy to see that
Brp2ap ¥ B-12a' b = B1/2,0" ) (2.7)

where va" = +/a + V@’ (we thank O.E. Barndorff-Nielsen for this remark). The natural exponen-
tial family F,={p_ip2.p b€ P} is especially interesting. Its variance function is
Ve {mg,m) = (mym@ m/a)+ [ ,,,E;y], as can be verified from (2.6). It is cubic. This is why
Hassairi (1992; 1993) has calied any affine transformation of u_, s 5 » an inverse Gaussian distribution
on R9*! He has shown that, as in the one-dimensionai case, these distributions, together with the
Gaussian ones, are the whole G-orbit (in Hassairi’s sense} of the Gaussian distributions.

_ For general A, the marginal distribution of ¥ under (1.3) is not elementary. For A = —1/2 and
b = 0, (2.5) shows that ¥is Cauchy distributed in V. Furthermore, from (2.2), things are computable
ifA=(dx1)/2. For A= (d+1)/2,(2.2) is

(2m) 2K gy 2 (Vab )a @A) 0B exp (<o + 20+ B-T) 5. (28)
ForA=(d-1)/2,itis

Qr) " K gy 2 (Vab* yam AR (@ + ) P exp (= a + £2/by + 5+ ) dR. (2.9)

For fixed g, if b varies in P, (2.8) and (2.9} are general exponential families on ¥, generated by the
measures d% and (g + x2)"?d%, and the map 1 : ¥ — R x V, (&) = ((a + )Y, 7); from (2.7)
and (2.8) the Laplace transforms of these measures can be computed, and can even be put in
elementary form (because of (2.2) and the fact that K, »(5)/K)2(s) is 2 polynomial in 1/s for all n
in N*: see Watson (1966, p. 80, formula (12)). These measures are concentrated not on a cone of
revolution (as in (2.3) and (2.4)) but on a hyperboloid of revolution. The distributions (2.7) and (2.8)
are called respectively multivariate hyperbolic and multivariate hyperboloid distributions in Barn-
dorfi-Nielsen and Biasild (1983a) — see also Barndorfi-Nielsen ez al. (1989, p.100) and references
therein.
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5. Pierre Vallois (private communication) has a nice probabilistic proof of Proposition 1.1, simply
by introducing four independent random variables Xj, Yo, N, N such that if ¥ = Xpb + XN
and ¥ = Yoh + VTN, then L(X,,X) = p_,,, and £(¥,, ) =75 Here N and N’ are
Gaussian with mean 0 and covariance [ (But a similar interpretation is also available for the
extension of Proposition 1.1 mentioned in section 4, with a suitable distribution for Nand N') The
idea is to note that VXN + VTN’ = (Xo + Y5)N" with L(N") = #(N) and N independent
of Xy + ¥;. Vallois then observes that this explains Proposition 1.2, since

X+ X%+Y, VX +7Y,

6. The trick for proving that (1.16} or (1.17) actually characterizes #(X) relies on the following
principle (see Letac 1986; Chamayou and Letac 1991; Goldie 1991). Although its proof is short, it
will not be repeated here.

- . - Nﬂ
h(Xo+Yo,X+Y;b,E'=( L - __ 4 )

Propesition 2.1 Let E be a locally compact space with countable basis; & is its Borel field, and C is
the set of continuous functions f : E — E. Furthermore, € is the smallest s-field on C such that for
all xin E, the maps C — E f + f(x) are measurable, and {F,),Z 1 is an independently and identically
distributed sequence of random variables in C. Suppose that, almost surely

Z= lim F] OFZO "‘OF”{x)
exists and does not depend on x. Then #(Z) is a stationary distribution of the Markov chain on E
given by
anpno"'oFl(Xﬂ)

and this stationary distribution is unique.
This will be appiied to E = (0, +o0) x ¥ and to the F, of (1.18).

3. A random walk on projectivities of R

Instead of providing an aigebraically correct definition of a projectivity on a projective space (which
may be pedantic), we shall be content with an intuitive view of a projectivity on a finjte-dimensional
vector space E. Let ¢ be a linear endomorphism of E, b in E, ¢ in the dual space E"* and 4 in R such

that
M= [a b}
" le d
is in the group GL{E x R) of automorphisms of £ x R. For x in E such that ¢(x) + 4 # 0, define
hue(x) in E by

x) = {a{x) + b} /{c(x) + d}. (3.1)

The map k,,; is called the projectivity associated with M. Note that k), = hy, for A # 0. (A complete
definition of #,, would invoive a projective completion of E by a hyperplane at infinity ) It is easy to
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see that if M} isin GL(E x R) then

hag o By, = B, s (3.2)
thus the set of projectivities is a group under composition. -
Suppose now that £ =R x ¥. For convenience, elements x of £ are now denoted (x ) The
projectivity A(-; 5, 7} of (1.12) can be represented by 0
I, b 7
M=10 0 1] (3.3)
o 1 0

Here ain (3.1) is (¥ -f), inbin (3.1)is (i ) , ¢(x) is the linear form (x ) —+ xp and d = 0. With the
M of (3.3) we have hy, = h(:; 5, ). G
Similarly if y € (0, +o0c) x V, the projectivity x+ h(y + x; b, ©) is represented by
Iy =6 Z+7~yb
M=10 0 1 : (3.4)
0 1 ¥o
Clearly enough, the projectivities h;,, with M of type (3.4), belong to the semigroup of all

projectivities of R x ¥ which map (0, +oo) x ¥ into itself. They also belong to the group T of
projectivities Ay, such that M has the form

Iy W
M(W,C) = [ 0 C] (3.5)
where C is a (2.2) invertible matrix, and W = (W, #,) is in V2. Note that:
MW, C)M(W',C') = M(W' + WC',CC"). (3.6)

For (3.4), for instance, W = (—b,c+ 7 — yob) and C = ¢ yo}
We consider now a sequence (y,)s; of independent random variables valued in (0, 400} x ¥
such that

L(Va1)=np  L(Y2) =Nrer (3.7)
where A > 0 and (b, ¢) in P? are fixed. To avoid a multiple index, we choose to write

Y, =(S,,Y,) instead of ((¥,)o, ¥,,)-
(5 is not for ‘sum’, but for ‘scalar’). We consider the random 2 x 2 matrix

6=[0 ! 5

and the random elements of V2,
Wanoy = (=85 + Yau_y — Spui @)
Wy, = (—b,+ Fan — S5,b). (3.9)
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Thus, with the notation (3.5),

-

X 0 B(You | +x38,0) = bagw, 10 )(%)
x = h(Yo, + x;(;,?:') = Bag(Wy 0} (%),
and using (3.2), (3.6) and the definition (1.18) of F,,
Fo o= Bag(Wy |+ Wanern 1, connn_1)* (3.10)

We now state the results of this paper.

Theorem 3.1 Let (F,),; be the independent random mappings of (0, +00) x V onto itself defined
by (1.18). Then almost surely

Z= lin;LO(Fl oFyo0---0F,)(x)
exists and does not depend on x. Furthermore, the law of Z is _, + .

Corollary 32 If X, ¥, ¥, are independent random variables on {0,+oc} x ¥ such that
g(yi) = ‘b\,bs g(Yz) = ’}“\,c and (1.16) holds, then -g(X) = #’—A,t",b'

Proof of Corollary 3.2
Equation (1.16) implies that #(X') is a stationary distribution of the Markov chain

X,=F,0-.-0Fj(x)

Since from (1.15) u_; - 5 is such a stationary distribution, and since Theorem 3.1 shows that the
hypothesis of Proposition 2.1 is fulfilled, Proposition 2.1 guarantees the uniqueness of the stationary
distribution. 0

Proof of Theorem 3.1

Since we are considering Fyo---oF, rather than F,o---oF, products such as
G0 CyCy - - - €y Ca,_q are going to appear (see (3.5)), (3.6) and (3.10)). To simplify the notation
we denote

cop = Cop_y, C3p-1 = Caps Son = S2y 15 S3-1 = Sy,
Wzﬂ = WZJI—I and WZJI‘I = W)_".

Denote by u; the element of ¥ defined by

k
u, = ZWjCj+le+2 LR % (3'11)
j=1
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with the convention that w;c; 16542« - ¢ = Wi if j = k. From (3.6), we easily see by induction on &
that

M{wy, )M (wy, ) - M(wg, ) = M (e, ¢4 - - C)- (3.12)

To express the product G142 -~ ¢ in (3.11) for fixed j = 0, 1,..., we define, as in Olds (1963),
the sequences (pk }k_j and (q,(;"]) ; by
(/) = (5) j (4 (J)

by Pf+1 = Si+1y = SePyoy T (3.13)
g’ =0, qu] =1 and q};’ = 5,0\, +q§;’_)2.

One easily sees by induction on k > j that

P L [0 1}= 7.y 4] (3.14)
R £ B B R S A PN %

For simplicity, we denote

0 [
pe=p" and g =g

In order to compute Fy o Fy ¢ - .- o F,(x), we observe that from (3.12) and (3.14)

- - (Xn) -
x X+ /3
1
M{wg,e1 )| % | = % = | g_1%+ g §,
1 Ci"'Ck( ) ) Pr—1%p + Px

and we have to show that

Flo---0F,(x) = (jz”—‘x°+q“, Y2n ) (3.15)
wm—1%0 + Pan Pan-1%0 + Pon

has a limit independent of x. Clearly the scalar part of (3.15} is A, ..., (Xo), and it has already been
proved in Letac and Seshadri (1983) that its limit exists and is independent of x,. We only have
to concentrate on the vector part of (3.15). For this, we make the basic observation from (3.13)
that

Pe = (SeSe1 + D)z +seprs 2 (sese1 + o2
which implies

52J_152J+1
j=1

Denoting K = exp [E{ln (5,5, + 1)}] > I, from the law of large numbers we have

liminf (p,)'" 2 K, (3.16)
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which then implies X/(p2,—1%p + P21) —n—o 0- We have to show that if

L=u( )
T pea e
then lim,_, ., I,, exists. To do this, we show that the series 3 [|Dxy; — L]} converges almost
surely.

A tedious computation starting from (3.11) shows that if w; = (“(lJ ﬁ}z)) and if 4y =
Pk-1%0 + Py, then

k
L — L= 4+ By, (3.17)
i=1
with

1 {2
A= K(W.{k-&lxo +%Z),

E ( 1)k+l
BT G

Details of this computation are as follows. We write, from the definition of £; and the definition
(3.11) of u:

k
- - - 1 0 1 X 1 /x
Bor=femdeSmona{zo (0, )(7) -2 (V)b o

i=1

(x} + XoSk1 = 1) x (= 1)’("}1)P;*W(Z}P; 1)

Using pr.1 = Sg+1 Px + Pr_1» the term in braces in (3.18) is

(a0 ) (D)2 ()} === ()
B \ 1 sy 1 dp \ 1 Al P/
CS(TPJ) — ( p.i‘—l ) for ausgz‘

Ps) —Ps-2

expression (3.18) is easily transformed mto ()3 17). Inequahty (3.16) implies easily that
Sk 4]l < +o0. Furthermore, 1fw = w Y “";+1, then || E; ,B;Ull can be rewritten as

e L U R |
k4k+1

Since now

and is majorized by

x3+xs +1 -
DT R T Zn Dy

PrPry1 i=1



A random continued fraction in R*"™ with an inverse Gaussian distribution 391

Since k— (I/k) ZJ 1 ||ﬁ"(3}|| is bounded from the law of large numbers and since p; < py + P for
allj=1,...,k, we just have to check that for positive constants z and b

= 1
> k(asesr +b) (p )

converges almost surely, But this is clear from (3.16).
Weproveina sumlar way that actually the limit of L, does not depend on x,. For this, we write
first u; = (@), | @, thus

s
PeaXo + P
We now imitate the classical formula:
ax+b a _ ad — be 1

ex+d ¢ & x+§

and write

Thus, we have only to prove that

()
— — 0.
Pil \proy /oo
We have again

1 (_pk) {_Uk-!-l (2) -1
— S o + (=)
Pi Pr-1 Pi_l ;

and we conclude with the law of large numbers and (3.16), O

4. Remarks on a generalization

Suppose that for all xy > 0 there exists a positive measure O, (d¥) on ¥ such that there exists a non-
void open convex set O and a function f : © — R with

exp(~ 20} = [ exp (0.%)0., ()

We denote b” = by — f(B) if b = (b, 5) € (0, +00) x ©. We define for such b two probabilities on
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{0,+00) x ¥ as follows: if A € Rand a > 0,

EVINvE b
(@) = Ky (Vab™)a 2 (6") Vg ‘exp(‘z%“oi)‘cg +b x)lmm (%) dxQ5,(d¥)

@) = LN E) 58" ex0( ~ 2204 55 ) Lo (0) 5005 (09).

Then it is easy to prove that Proposition 1.1 still holds with these more general » and 4. However,
it is not difficult to see that if for all (b, &) in ¥ ? we have the resuit of Proposition 2.2, then 0, (dX)is
nothing but x; 12 exp(—|1% — %17 /2xo) up to some constant.
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