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An identity for the nonparametric maximum
likelihood estimator in missing data and biased
sampling models

MARK J. VAN DER LAAN
Department of Statistics, Division of Biostatistics, University of California, Berkeley, CA 94703, USA

‘We derive an identity for the maximum likelihood estimator in nonparametric missing data models and biased
sampling models, which almast says that this estimator is efficient. Application of empirical process theory to
the identity provides us with a straightforward consistency and efficiency proof. The identity is illustrated with
the random truncation model.
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1. Introduction

Let X;,..., X, be nindependently and identically distributed (i.i.d.) observations from a probability
measure Pr; on a measurable space, which is parametrized by two distributions ¥ and G on two
measurable spaces. We consider the model with ¥ and G completely unspecified.

Let (F,, G,) be 2 maximum likelihood estimator of (F, G} in the sense that for a dominating
measure g, of Py, g, we have:

- dPy sG) i
Pro,=ars,, s [ioa(3i)ar. o) w
where P, denotes the empirical distribution of X,,...,X,. In particular, (I} will hold for a
nonparametric maximum likelihood estimator (NPMLE) as defined in Kiefer and Wolfowitz
(1956). Suppose that we are interested in estimating ¥{F) € R for a certain linear real-valued
function ¥. We will refer to ¥(F,) as the NPMLE of ¥(F).

In nonparametric missing data models one will often encounter the situation where for any
dominating measure pdPg /du = prpg for certain functions pr and pg, where pr does not depend
on (G and p; does not depend on F. In such models the likelihood factorizes into an F partand a G
part so that F, can be determined by just maximizing the relevant part of the log-likelihood. Also
certain information calculations (below) do not depend on knowledge of G and hence we can do as if
G is known, :

In this paper we derive a crucial identity (see (9)) for missing data and biased sampling models by
exploiting their specific structure (see (8)), and show how the combination of this identity with the
efficient score equation (see (10)) often leads to a powerful identity (see (11)) for the NPMLE which
forms an effective starting point for proving the consistency and efficiency of ¥{F,) (also in models
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where the NPMLE is highly implicit). The identity is an extension of the identity for missing data
models derived in van der Laan (1993a). We will first review some efficiency theory as can be found
in Bickel et al. (1993). Then we will derive the identity and discuss its application in proving the
efficiency of W(F,). Finally, we will illustrate our findings with the random truncation model. We
remark here that the results are trivially extended to any parametrization Py, having the same
structure (8); just replace F by # and G by n.

2. Biased sampling models

Let F <« uy, G < u,y and denote the corresponding densities with f and g, respectively. If we write
F| <, F; for two measures F|, F, then we mean that F| is absolutely continuous with respect to 5,
and that dF, /dF; is bounded. For each F; <, F we define alinef, = (1 + eh, }f from F, to F, where
by = (fy —f)/f € L3(F). Because k, is bounded it follows that f, is also a well-defined density for

€ € [—6,1] for some & > 0.
Similarly, for each @) «, G we define a line g, = (1 +¢h)g from G, to G, where A, =
(g1 — g)/g € L§(G). These lines imply a one-dimensional submodel Py ¢ through Prg. We will
= Ap () + Brg(h), (2)

assume that
dp
dl g( F(,Gs)
de dPrg / le=o

where the so-called score operators Agg: Ly(F) — L3(Prg) and Brg: LY(G) — L3(Prg) are
defined by

d dFr
Apglh) = a‘*log(dpi ::)

d dPs g
Brglh) = &log (—F—)

The equalities in (2) and the limits in d/de are assumed to hold in L’ {Pr ). In view of the linearity of
¥ the Cramér-Rao lower bound for the variance of +/n-normed unbiased estimator of
¥(F) = W(F,) along the one-dimensional submodel Py with parameter € is now given by:
d 2 . 2
U(F,) \P(J hIdF)
e=0 _

ldrc(h) + Beglh)lle,, | | 147600 ) + Brglta)lie,,

=0

(3)

Now, one obtains a Cramér—Rao lower bound for the whole model by taking the supremum of
these one-dimensional lower bounds over &, € L3(F)and h, € L3(G). Because the numerator in (3)
does not depend on 4, we can maximize this bound by rmm:mzmg the denominator in 4, for fixed 4.

For this purpose define T>(Pr ) to be the closure of Brg(Lg 2(G)), where the closure is taken in
L3(P; ). In order to minimize the denominator in 4, one has to choose &, such that Bgg(#,) =
—I(A7 (M) T2(Pr ), where II(:|To(Prg)) denotes the projection operator in LO(P; ¢} on the
subspace T»(Pr¢).
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Hence the Cramér-Rao lower bound for the whole model is given by:

RN

mesir) | 14Ecr)leeg |

where 4} : L3(F) — Lj(Pr ) is defined by:
Ar (B = Arg(R) — I(Ap (M) T3 (Pr ).

A¥ ¢ is called the efficient score operator. If hy — ¥([" hy dF) as a mapping from L3(FYto Ris
continuous, then by the Riesz representation theorem we have for a certain x(F, ¥) € L3(FY:

W(F) - U(F) = w(] By dF) = (k(F, %), hy)r.
Let A : L3(Prg) — Ly(F) be the adjoint of A% . If x(F, ¥) lies in the range of the so-called
information operator Irg = A}TGA},G, then
Y(F) - WF}= {Irclr6(x(F, 1)), li)r = (" (F,G, ¥}, A 6(M ) py s (5)
where
(*(F,G, %) = A5 o(AF 645 )" (s(F,T)). (6)

If the latter hoids, then, by the Cauchy-Schwarz inequality, the bound (4} is given by the variance of
£ (F,G, D).

According to general theory this quantity (4), usually cailed the information bound, is also the
optimal asymptotic variance of +/n{¥(F,) — ¥(F)) if ¥(F,) is a regular estimator (Bickel et al.
1993). For us the most relevant result from this theory is that ¥(F,} is an asymptotically efficient
estimator of ¥(F) if and only if

V(F,) ~¥(F) = Jf'(F, G, U){(x}d(P, — Prg)(x) +0p(1/Vn). (7)

Therefore £*(F, G, ¥) is often called the efficient influence function for estimating ¥(F).
We will now show that (5) has a convenient form in missing and biased sampling models. Because
' (F, G, ‘I’) L TZ(PF,G) we have that

(0" (F,G,¥), Ar e ) p,; = (¢ (F,G,¥), Ar (1 }) p, ;.

Suppose now that Pg ; satisfies the typical structure from missing and biased sampling models
given by:

1

PF,G = WP}’G‘ where F — G(F, G) and F — P’F,G are linear. (8)
Then it is easily verified that
oFi-F,G) , dPf ;e
Ars{h))dPr g = ——————dP —_—
Foil)dPrg 2(F,G) FGT o(F.G)
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We also have:

AR -FG) .., 4Pk _rg
dpP —dPrg = ————————ne &
mo =46 = R, G)alF,6) 7 T el 6)
_ afF,G)
= a(hi,6) el dPre

Consequenily, we have that (5) reduces to the following identity for a pair (F, F;) with F <, F; (we
exchanged the roles of F and Fy):
alF,G .

W) - ¥(F) = - 20T [ (R, 6,9)(x) e 0 ©)
We want to apply this identity (9) to | = F,. Usually F, does not dominate F so that this identity
cannot be directly applied. However, notice that the identity holds in particular for F; =
Fyla)= (1 — a)F, + oF for any a € (0, 1]. Hence if *(F, (), G, ¥) converges to £*(F,, G, ¥) in
L' (Pr g) for oo — 0, then (9) holds also for F,. Since F,(c) converges to F, with respect to each norm
this is a weak continuity condition on the efficient influence function., This condition has been
verified for a general class of missing data models which allow complete observations in van der
Laan (1993b).

In many missing data models with independent censoring (van der Laan 1993b), in the random
truncation model and line segments models (Laslett 1982; Gill et al. 1993) the efficient score
operator A%, ¢, at (F,, G,) does not depend on G,,. Hence, /*(F,, G, ¥) lies in the closure of the
range of A . If £*(F,, G, ¥) is actually lying in the range (so it is given by (6)), then it is a score
corresponding to a one-dimensional submodel Pg (, ¢ () and hence it follows by simply differ-
entiating (1) along this one-dimensional submodel that the NPMLE (F,, G,) should solve this
score:

J!*(F,,,G,W)(x) dP,(x) = 0. (10)

Combining this so-called efficient score equation with (9) for the pair (F,F))= (F,F,}, we
obtain:

W(E) — 0(F) = 2D [0, 6, 0)x) (s~ Prc)() (1)
Comparing (11) with (7) teaches us that (11) almost says that T(F;) is efficient. We are now in the
perfect setting to apply empirical process theory (see, for exampie, van der Vaart and Wellner 1994).
If ¢*(F,, G, ¥)a(F, G)/a(F,, G) falls in a Pr ¢-Donsker class with probability tending to 1, then this
identity provides us with root-n consistency of ¥(F,). If also |£*(F,, G, ¥)/a(F,, G)—
£*(F,G,¥)/a(F,G)| 7, converges to zero in probability, then we have asymptotic cfficiency.

In the random truncation model, worked out below, the identity (11) can be explicitly written
down. Here, we do not apply empirical process theory to the identity which would provide us
with an alternative efficiency proof for the well-known and understood product limit estimator;
for the interested reader we refer to the completely worked-out examples in van der Laan
(1994).
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Example (Random truncation model)
Let X,,..., X, be ni.id. copies of a real-valued X with distribution function F on [0, 00), where F is
completely unknown. Let C,,..., C, beni.id. copies of a real-valued C with distribution function G
on [0, 20), where G is completely unknown. X and C are independent. We observe (X;, C;)if X; < C;.
So we are sampling from the conditional distribution instead of the distribution of (X, C} itself.
Denote the observed (X;, C;) by (X}, C}). We have (X}, C}) ~ Pp g, where
1

de'G(x, C) = -a—(F’—G)dF(x) dG(c)I(x < C)
and ofF, G) = P(X < C) = [(1 — G)(x) dF(x). Let x, be fixed. We are concerned with estimating
W(F) = F{xy). We will assume that (here G = 1 - G)

1 1

Using the notation Pf = [ £ dP, the score operator for F is given by
Apg : LY(F) — Li(Prg) : hy — m(X") — Prghy,
and the score operator for G is
BF,G H L(z](G) — L%(PF,G) : hz —* hz(C‘) - Pp'ohz.
It is easy to verify (see also Bickel er a/. 1993, p. 249) that the projection of A (#;) on the range of
Br g is given by:
(k) — Prgh|To(Prg)) = E{m(X")|C'} ~ Prgh;.
Hence the efficient score operator Ax g for F is given by:
CJ’
J hydF
Arol)(X',C) = (X') = E{y(X)IC} = by (X)) - P,

which indeed does not depend on G. Consequently, this is a model where one should expect
that the efficient score equation (10) holds: [£*(F,, G, ¥)dP, = 0, as will indeed appear to be the
case.

Define

Mo =13 K <)
i=1

Y, (u) E%iI(Xﬁsu, Ci>u)
im1
dF(x)
t F(x—)'

Let N ayd Y be the expectations of N, and Y,: N = PrgN, and ¥ = PrgY,. If (12) holds, then
the efficient influence function for estimating F(x;) is given by (see Bickel et al. 1993, p. 244,

Alg) =
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formula (19)):

¢ (F,G,xp)(x',¢") = afF, G)F(xg)-[:(l(x' <u<d) G(Sﬁvﬁ?u—) — é((z;FG(:i))) (13)

Consequently, the efficient score equation for the NPMLE F, is given by

Fo(du)  Ny(du)
G)Fi(u-) Glu)F,(u-)’
This holds if and only if dA,(u} =dF,(w)/F,(u—)=dN,(u)/Y,(u), which implies that
Fo(t) = [T¢r.00)(1 —dN,/Y;). This verifies the efficient score equation for F,. F,(#) is the well-
known product limit estimator for the random truncation model. Asymptotic results of this
estimator have been obtained by Woodroofe (1985). Wang, Jewell and Tsai (1986), Keiding and
Gill (1990) and van der Vaart (1991); under assumption (12) F, is asymptotically efficient.

It remains to verify (9), i.e. F,(xq) — F(xp) = —(c/a,) Pl (Fy, G, Xo). Substitution of (13) and
taking the expectation with respect to Pr ; within the integral tells us that (9) is here given by:

o g F,(du) N{du)
~Flxy) = —— " - )

We have that ¥ = FG /o and N(du) = F(du)G(«)/a. Hence (14) can be rewritten as follows:

F(xe) — Flxg) = —Fy(xo) r i(ﬁj‘—l)(m ~ A)dw)

0= Pt (F,, G, 1) = ofF,, G)F(xo) J Y,(u)

(14)

Falxo)
- [ B, - n@rw

= [ T1 11 - Aeda, - ) T (1 - @),

 (xge ) (u, 00}

which is just the well-known Duhamel equation for the product integral (see Gill and Johansen
1990, p. 1519, Theorem 6).

This proves identity (11) for the NPMLE, i.e. the product limit estimator, in the random
truncation model.
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