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We prove the max-martingale conjecture of Obłój and Yor. We show that for a continuous local
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and only if there exists a locally integrable function f such that H(x, y) ¼
Ð y

0
f (s)ds�

f (y)(x � y) þ H(0, 0). This readily implies, via Lévy’s equivalence theorem, an analogous result

with the maximum process replaced by the local time at 0.

Keywords: Azéma–Yor martingales; continuous martingales; maximum process; max-martingales;

Motoo’s theorem

1. Introduction

In recent work with Marc Yor (Obłój and Yor 2006), we argued for the importance of a

class of local martingales which are functions of a continuous local martingale and its one-

sided maximum process. We called them max-martingales or simply M-martingales. Such

processes were first introduced by Azéma and Yor (1979), who described a family of such

martingales, often referred to as Azéma–Yor martingales. Obłój and Yor (2006) gave a

complete description of this family. These martingales have a remarkably simple form, yet

they proved to be a useful tool in various problems. In the same paper Obłój and Yor

(2006) assembled applications including the Skorokhod embedding problem (cf. Obłój

2004), a simple proof of Doob’s maximal and L p- inequalities, as well as a derivation of

bounds on the possible laws of the maximum or the local time at 0 of a continuous,

uniformly integrable martingale, and links with Brownian penalization problems (cf.

Roynette et al. 2006).

In this paper, we obtain a complete characterization of max-martingales, which was

conjectured by Obłój and Yor (2006). Let (Nt) be a continuous local martingale and

Nt ¼ sups< t Ns. We show that the process H(Nt, Nt) is a local martingale if and only if

there exists a locally integrable function f such that H(x, y) ¼ H(0, 0) þ
Ð y

0
f (s)ds

� f (y)(y � x). Put differently, we show that Azéma–Yor martingales are the only max-

martingales. We will thus use both terms interchangeably. We note that this result, under the

additional assumption that H 2 C2, can be obtained via Itô’s formula and has been known
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for a long time. The general case, however, has remained an open problem (cf. Revuz and

Yor 1999: 279).

Let us give some motivation, apart from pure mathematical curiosity, as to why the

question of fully characterizing local martingales of the form H(Nt, Nt) is interesting. Our

first observation is that any such martingale is basically equivalent to an equality

EH(BT , BT ) ¼ H(0, 0) for stopping times T , where (Bt) is a Brownian motion. A prime

example of such equality is Doob’s maximal equality: ºP(BT > º) ¼ EBT1BT>º. Thus,

looking for a particular kind of equalities is the same as seeking a max-martingale of a

particular form.

Our second observation is that max-martingales appear naturally in penalizations of the

Wiener measure. We describe this briefly here and refer to the original work of Roynette et

al. (2006) for details. Solely for the purpose of this example we use the canonical space

and coordinate process notation. Let (X t) be the coordinate process on the space of

continuous functions � ¼ C(Rþ, R) which is a Brownian motion under the Wiener measure

W. Denote its natural filtration by (F t). For f a probability density on Rþ, we define a

family of measures (W f
t : t > 0) via

W f
t ¼ f (X t)

EW f (X t)
�W

and ask if W f
t converges to W f

1, as t ! 1, in the sense that for ˆs 2 F s,

W f
t (ˆs) ! W f

1(ˆs). This is equivalent to the following question: does

M s ¼ lim
t!1

EW
f (X t)

EW f (X t)

����F s

� �

exist and define a martingale? Using the Markov property of (X t, X t), we can see that if M s

exists, it has to be of the form M s ¼ H(s, X s, X s) and a further argument shows that actually

we have to have M s ¼ H(X s, X s), thus a max-martingale. Roynette et al. (2006) show that

W f
1 and M s do indeed exist and the latter is an Azéma–Yor martingale associated with f .

The rest of the paper is organized as follows. Section 2 contains our main theorem, its

corollaries and a complementary result. All proofs are gathered in the subsequent Section 3.

Section 4 contains some arguments based on the optional stopping theorem which are very

different from the arguments used in the proofs in Section 3, and hopefully will give the

reader some additional insight.

2. Main results

Throughout, N ¼ (N t : t > 0) denotes a continuous local martingale with N0 ¼ 0 and

hNi1 ¼ 1 almost surely. Extensions of our results to local martingales with arbitrary N0

are immediate. The maximum and minimum processes are denoted respectively by

Nt ¼ sups< t Ns and N t ¼ �inf s< t Ns. Note that N t ¼ sups< t(�Ns) and thus all our results

about the maximum translate into results about the minimum by simply considering �N

instead of N . The local time at zero of N is denoted by LN
t . Filtrations considered are
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always taken to be complete and right-continuous. B ¼ (Bt : t > 0) denotes a real-valued

Brownian motion. The following theorem is the main result of this paper.

Theorem 1. Let D ¼ f(x, y) 2 R2 : y > x _ 0g, H : D ! R be a Borel function, and

N ¼ (Nt : t > 0) be a continuous local martingale with N0 ¼ 0 and hNi1 ¼ 1 a.s. Then

(H(Nt, Nt) : t > 0) is a right-continuous local martingale, in the natural filtration of N, if

and only if there exists f : Rþ ! R, a locally integrable function, such that a.s., for all t > 0,

H(Nt, N t) ¼ F(N t) � f (Nt)(N t � N t) þ H(0, 0) (1)

¼
ð t

0

f (Ns)dNs þ H(0, 0), (2)

where F(y) ¼
Ð 1

0
f (x)dx.

Furthermore, if f > 0 and
Ð 1

0
f (x)dx , 1, then (H(N t, Nt) : t > 0) given in (1)

converges a.s., as t ! 1, to F(1) þ H(0, 0). If, moreover, (Nt : t > 0) is a martingale

with E sups< tjNsj , 1, t . 0, then the local martingale in (1) is a martingale.

Note that, in particular, if H(Nt, Nt) t>0 is a right-continuous local martingale, then it is

in fact a continuous local martingale and H(�, y) is a linear function for almost all y . 0.

We also can specify the maximum process of this local martingale as

sups< t H(Ns, Ns) ¼ F(Nt) þ H(0, 0), when f > 0. Indeed, from (1) it is clear that the

left-hand side is less than or equal to the right, and the right-hand side is attained by

considering the last time the maximum of N is reached before time t. Note that the

formula can also be obtained with Skorokhod’s lemma (cf. Revuz and Yor 1999: Exercise

VI.4.24) and that it is no longer true for arbitrary f .

The martingale property stated in the theorem was observed by Roynette et al. (2006).

We stress here that the local martingales we obtain have some interesting properties. If

f > 0 and F(1) , 1 then the process M
f
t ¼ F(Nt) � f (Nt)(Nt � Nt) provides an

example of a local martingale which converges a.s. to its maximum:

M
f
t !

t!1
F(1) ¼ M f1:

Equivalently, f (Nt)(N t � N t) is a local submartingale, zero at zero, which converges a.s. to

zero as t ! 1.

Theorem 1 tells us that a local martingale H(Nt, Nt) is entirely characterized by its

initial value H(0, 0) and by a locally integrable function f such that (1) holds. We point

out that we can recover this function from the process H(Nt, N t) itself. Indeed, from (2) we

have that hN , H(N , N )i t ¼
Ð t

0
f (Ns)dhNis. Thus the measure dhN , H(N , N )i t is absolutely

continuous with respect to dhNi t, and the density is given by f (Nt). This yields

f (x) ¼ dhN , H(N , N )i t

dhNi t

����
t¼Tx

, (3)

where Tx ¼ infft : Nt ¼ xg, x . 0. It is easier to obtain F(x). Indeed, as NTx
¼ NTx

¼ x,
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from (1) we have F(x) ¼ H(NTx
, NTx

) � H(0, 0) ¼ H(x, x) � H(0, 0). The function f can

then be obtained as the derivative of F.

As indicated at the beginning, replacing N with �N gives an immediate analogue of

Theorem 1 with the maximum Nt replaced by the minimum N t. More precisely,

H(Nt, N t) t>0 is a right-continuous local martingale if and only if there exists a locally

integrable function f such that H(Nt, N t) ¼ F(N t) � f (N t)(N t þ Nt) þ H(0; 0) a.s.

Thanks to Lévy’s equivalence theorem, we can rephrase Theorem 1 also in terms of the

local time at zero instead of the maximum process:1

Theorem 2. Let H : Rþ 3 Rþ ! R be a Borel function and N ¼ (Nt : t > 0) be a

continuous local martingale with N0 ¼ 0 and hNi1 ¼ 1 a.s. Then (H(jNtj, LN
t ) : t > 0)

is a right-continuous local martingale, in the natural filtration of N, if and only if there exists

g : Rþ ! R a locally integrable function such that a.s., for all t > 0,

H(jNtj, LN
t ) ¼ G(LN

t ) � g(LN
t )jNtj þ H(0, 0) (4)

¼ �
ð t

0

g(LN
s )sgn(Ns)dNs þ H(0, 0), (5)

where G(y) ¼
Ð y

0
g(x)dx.

Furthermore, if g > 0 and
Ð 1

0
g(x)dx , 1, then (H(jN tj, LN

t ) : t > 0) given in (1)

converges a.s., as t ! 1, to G(1) þ H(0, 0). If, moreover, (Nt : t > 0) is a martingale

with E sups< tjNsj , 1, t . 0, then the local martingale in (1) is a martingale.

Note that if H(jNtj, LN
t ) is a continuous local martingale then we can recover from it, in a

similar manner to (3), the function g such that (4) holds.

Theorem 1 allows us also to consider local martingales of the form H(Nþ
t , Nt), where H

is a Borel function. Indeed, H(Nþ
t , Nt) can be written as G(Nt, Nt) with

G(x, y) ¼ H(x _ 0, y), and we can then apply Theorem 1. This yields the following

theorem.

Theorem 3. Let H : Rþ 3 Rþ ! R be a Borel function. Let (Nt : t > 0) be a continuous

local martingale with N0 ¼ 0 and hNi1 ¼ 1 a.s. and put Nþ
t ¼ maxfNt, 0g,

N�
t ¼ maxf�Nt, 0g and N�

t ¼ sups< tjNsj. Then the processes (H(Nþ
t , Nt) : t > 0),

(H(N�
t , N t) : t > 0) and (H(jNtj, N�

t ) : t > 0) are right-continuous local martingales, in

the natural filtration of N, if and only if they are a.s. constant.

Note that it is not true that all martingales in the natural filtration of Nþ are also

martingales in the natural filtration of N . In fact, the former also admits discontinuous

martingales, unlike the latter. From the proof it will be clear that the theorem remains true

if we replace Nþ
t ¼ maxfNt, 0g with some more complicated, appropriate function of Nt

1After submitting this paper we realized that by using techniques similar to those in the proof of Theorem 1 we
can also characterize the class of local martingales of the form H(Nt , Lt) which is larger than that described in
Theorem 2. This will be included in our next work on the subject.
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and work with local martingales in the natural filtration of N . For example we can easily

see that if A is an interval and (�1, 0) � A, then (H(N t1Nt2A, Nt) : t > 0), is a right-

continuous local martingale, in the natural filtration of N , if and only if it is constant a.s.

Similar arguments can be naturally developed for the local time LN in place of the

maximum N .

Finally, we present a deterministic description of Hs such that (1) holds. This is very

close to studying the fine topology for the process (Bt, Bt).

Proposition 4. In the set-up of Theorem 1, (1) holds if and only if there exists a Borel set

ˆ � D, such that

H(x, y) ¼ F(y) � f (y)(y � x) þ H(0, 0), 8(x, y) 2 Dnˆ, (6)

and 2̂ ¼ fy : 9x, (x, y) 2 ˆg has Lebesgue measure zero, and f(y, y) : y > 0g \ ˆ ¼ ˘.

An analoguous result for the function G satisfying (4) follows.

3. Proofs

We now present proofs of the results given in Section 2. Whenever possible we split the

proof into steps or remarks and indicate clearly what is being proved. We start with a

simplifying technical remark.

Remark 1. It suffices to prove Theorems 1, 2, 3 and Proposition 4 for N ¼ B, a standard real-

valued Brownian motion, as then by virtue of the Dambis–Dubins–Schwarz theorem (Revuz

and Yor 1999: 181) it extends to any continuous local martingale N with N0 ¼ 0 and

hNi1 ¼ 1.

Proof of Remark 1. We know that if �u is the right-continuous inverse of hNi t then the

process �u ¼ N�u
is a Brownian motion and Nt ¼ �hNi t

. It follows that N t ¼ �hNi t
.

Denote by (F N
t ) the natural filtration of N and by Gu ¼ F N

�u
, F �

u ¼ � (�s : s < u) two

filtrations with respect to which (�u) is a Brownian motion. Naturally F �
u � Gu but in fact

the smaller filtration is immersed in the larger, meaning that all (F �
u)-local martingales are

also (Gu)-local martingales. This follows readily from the representation of (F �
u)-local

martingales as stochastic integrals with respect to � and thus (Gu)-local martingales (Yor

1979). This entails that H(�u, �u), which is (F �
u)-measurable, is a (Gu)-local martingale if

and only if it is also an (F �
u)-local martingale.

Thus if H(�u, �u) is an (F �
u)-local martingale, it is a (Gu)-local martingale and therefore

its time-changed version H(�hNi t
, �hNi t

) ¼ H(Nt, N t) is an (F N
t )-local martingale (note

that the time change is continuous). Conversely, as N is constant on the jumps of (�u), we

have �u ¼ N�u
and if H(Nt, Nt) is an (F N

t )-local martingale, then its time-changed version

H(�u, �u) is a (Gu)-local martingale (cf. Revuz and Yor 1999: Proposition V.1.5) and thus

an (F �
u)-local martingale. Analogous arguments apply to local martingales considered in

Theorem 3.
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Likewise, as LN
t ¼ limE!0(2E)�1

Ð t

0
1jNs j<EdhNis (Revuz and Yor 1999: 227), it is easy to

see that L
�
hNi t

¼ LN
t , L�

u ¼ LN
�u

and that Theorem 2 holds for an arbitrary continuous local

martingale N , with N0 ¼ 0 and hNi1 ¼ 1 a.s., if and only if it holds for Brownian

motion. h

In view of Remark 1, in proving Theorems 2 and 3 it suffices to consider N ¼ B.

Proof of Theorem 2. This follows from Theorem 1 with Lévy’s equivalence theorem, which

asserts that the processes ((Bt, Bt) : t > 0) and ((LB
t � jBtj, LB

t ) : t > 0) have the same

distribution. h

Proof of Theorem 3. Suppose that (H(Bþ
t , Bt) : t > 0) is a right-continuous local martingale

in the natural filtration of B. Then (G(Bt, Bt) : t > 0) is also a right-continuous local

martingale, where G(x, y) ¼ H(x _ 0, y). By Theorem 1, there exists a locally integrable

function f such that G(x, y) ¼ F(y) � f (y)(y � x) þ G(0, 0) almost everywhere, where

F(y) ¼
Ð y

0
f (x)dx. However, for any fixed y 2 Rþ, G is constant for x , 0 which means that

f (x) ¼ 0 a.e. (cf. the proof of Proposition 4 below) and thus H(Bþ
t , Bt) ¼ H(0, 0) a.s. An

analogous result for H(B�
t , Bt) follows.

Finally, we prove that local martingales of the form H(jBtj, B�t ) are constant. To this end,

let Aþ
t ¼

Ð t

0
1Bs>0 ds and Æþ

u be its right-continuous inverse. Then Wu ¼ Bþ
Æþ

u
is a reflected

Brownian motion in the filtration Gu ¼ FÆþ
u
, where (F t) is the natural filtration of B, and

Wu ¼ BÆþ
u
. If we write (FW

u ) for the natural filtration of W , then H(Wu, Wu) is a (Gu)-local

martingale if and only if it is also an (FW
u )-local martingale. This follows from our

discussion above and the fact that W can be written as Wu ¼ �u þ L�
u, where �u is a (Gu)-

Brownian motion and the natural filtrations of W and � are equal (Yor 1977).

Suppose now that H(Wu, Wu) is an (FW
u ) right-continuous local martingale and thus a

(Gu) right-continuous local martingale. As the time change Aþ
t is continuous, the time-

changed version H(W Aþ
t
, W Aþ

t
) ¼ H(Bþ

t , Bt) is an (F t) right-continuous local martingale

and thus is constant a.s. This completes the proof of Theorem 3. h

Proof of Proposition 4. As the law of (Bt, Bt) is equivalent to the Lebesgue measure on D, it

is clear that (1) implies that (6) holds for (x, y) 2 Dnˆ, for some Borel set ˆ of two-

dimensional Lebesgue measure zero. However, we know also that H(Bt, Bt) is a.s. continuous

and this yields more constraints on ˆ. Conversely, if (6) holds for a two-dimensional

Lebesgue null set ˆ, small enough so that H(Bt, Bt) is a.s. continuous, then (1) holds.

For a set ˆ � D define 2̂ :¼ fy : 9x, (x, y) 2 ˆg and, for y 2 2̂, xy :¼ supfx :

(x, y) 2 ˆg. Let ˆþ
2 ¼ fy 2 2̂ : xy , yg, ˆ�

2 ¼ 2̂nˆþ
2 and ˆþ ¼ f(x, y) 2 ˆ : y 2 ˆþ

2 g,

ˆ� ¼ ˆnˆþ.

First of all, note that upon stopping at T y ¼ infft > 0 : Bt ¼ yg we have that

H(y, y) ¼ F(y) þ H(0, 0) which means that ˆ cannot contain points from the diagonal

in R2
þ.

Let R be the range of the process (Bt, Bt), R(ø) ¼ f(Bt(ø), Bt(ø)) : t > 0g. The

restriction we have to impose on ˆ is that P(R \ ˆ ¼ ˘) ¼ 1. Notice, however, due to the
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continuity of sample paths of B, that if (x, y) 2 R \ ˆ then (xy, y) 2 R. With Lévy’s

equivalence theorem we know that the process ª t ¼ (Bt � Bt) is a reflected standard

Brownian motion and the stretches [x, y] 3 fyg in R correspond to its excursions, which

form a Poisson point process on the time scale given by Bt. Thus the process of extremal

values of these excursions, (e y : y > 0) ¼ (supT y<s<T yþ (y � Bs) : y > 0), is also a Poisson

point process and its intensity measure is dv=v2 (Revuz and Yor 1999: Exercise XII.2.10).

Then we have

P(R \ ˆþ ¼ ˘) ¼ exp �
ð
ˆþ

2

dy

y � xy

 !
,

which is equal to one if and only if jˆþ
2 j ¼ 0, where j � j denotes the Lebesgue measure on R.

The probability P(R \ ˆ� ¼ ˘) is just the probability that the Poisson point process

(e y : y > 0) has no jumps for y 2 ˆ�
2 , and this probability is zero if and only if jˆ�

2 j ¼ 0.

Indeed if, for A � R2
þ, we denote by N (A) the cardinality of fy : (y, e y) 2 Ag then we

have P(R\ ˆ� ¼ ˘) ¼ P(N (ˆ�
2 3 (0, 1)) ¼ 0) and

P(N (ˆ�
2 3 (0, 1)) . 0) ¼ lim

h&0
P(N (ˆ�

2 3 [h, 1)) . 0) ¼ lim
h&0

jˆ�
2 j=h:

The limit is zero if and only if jˆ�
2 j ¼ 0, which justifies our claim.2

As P(R \ ˆ ¼ ˘) ¼ P(R\ ˆþ ¼ ˘) þ P(R \ ˆ� ¼ ˘) we need to impose on ˆ the

requirement that j 2̂j ¼ 0. This ends the proof of Proposition 4. h

Proof of Theorem 1. The rest of this section is devoted to the proof of Theorem 1 for

Brownian motion. The proof is divided into two parts. In Part 1 we show that if f : Rþ ! R

is a locally integrable function and H is given by (6) then (H(Bt, Bt) : t > 0) is a local

martingale, and (2) holds; this was proved by Obłój and Yor (2006) but we include it here for

the sake of completeness. In Part 2 we show the converse.

Part 1. Suppose f 2 C1 and H is given through (6), so that (1) holds by Proposition 4.

We can apply Itô’s formula to obtain:

H(Bt, Bt) ¼ H(0, 0) þ
ð t

0

f (Bs)dBs þ
ð t

0

f 9(Bs)(Bs � Bs)dBs

¼ H(0, 0) þ
ð t

0

f (Bs)dBs,

since dBs-a:e: Bs ¼ Bs. We have thus established formula (2) for f of class C1. Thus if we

can show that the quantities given in (1) and (2) are well defined and finite for any locally

integrable f on [0, 1), then the formula (1)–(2) extends to such functions through the

monotone class theorem. In particular, we see that (H(Bt, Bt) : t > 0), for H given by (6), is

a local martingale, as it is a stochastic integral with respect to Brownian motion. For f a

locally integrable function, F(x) is well defined and finite, so all we need to show is that

2We wish to thank Victor Rivero for his helpful remarks.
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Ð t

0
f (Bs)dBs is well defined and finite a.s. for all t . 0. The proof of Part 1 thus concludes

with the following crucial remark:

Remark 2. The stochastic integral
Ð t

0
f (Bs)dBs is well defined and finite a.s. for all t . 0 if

and only if f is a locally integrable function.

This is equivalent to asking when
Ð t

0
( f (Bs))

2ds , 1 a.s., for all t . 0, and we now show that

it is necessary and sufficient to impose local integrability of f .

Write �x ¼ infft > 0 : Bt . xg for the first hitting time of (x;1), which is a well

defined, a.s. finite, stopping time. The integrals in question are finite,
Ð t

0
( f (Bs))

2ds , 1 a.s.,

for all t . 0, if and only if, for all x . 0,
Ð �x

0
( f (Bs))

2ds , 1. However, the last integral

can be rewritten asð�x

0

ds( f (Bs))
2 ¼

X
0<u<x

ð�u

�u�

ds( f (Bs))
2

¼
X

0<u<x

f 2(u)(�u � �u�) ¼
ðx

0

f 2(u)d�u: (7)

Now it suffices to note that3

E exp � 1

2

ðx

0

f 2(u)d�u

� �� �
¼ exp �

ðx

0

j f (u)jdu

� �
, (8)

to see that the last integral in (7) is finite if and only if
Ð x

0
j f (u)jdu , 1, which is precisely

our hypothesis on f . Finally, note that the function H given by (6) is locally integrable as

both x ! f (x) and x ! xf (x) are locally integrable.

Part 2. In this part we show the converse to the first part. That is, we show that if

H : D ! R is a Borel function such that (H(Bt, Bt) : t > 0) is a right-continuous local

martingale, then there exists a locally integrable function f : Rþ ! R such that (1) holds.

Equation (2) then holds by Part 1 of the proof above, and H is described by Proposition 4.

Let Tr ¼ infft > 0 : Bt ¼ rg. We start with a useful lemma.

Lemma 5. Let r . 0 and K : (�1, r] ! R be a Borel function, such that

(K(Bt^Tr
) : t > 0) is a right-continuous local martingale. Then there exists a constant Æ

such that K(x) ¼ Æx þ K(0) for x 2 (�1, r] and (K(Bt^Tr
) : t > 0) is a martingale.

Proof of Lemma 5. This lemma essentially says that the scale functions for Brownian motion

are the affine functions. This is a well-known fact; however, for the sake of completeness, we

provide a short proof.

We know that a right-continuous local martingale has actually a.s. cadlag paths.

Furthermore, as K t ¼ K(Bt^Tr
) is a local martingale with respect to the Brownian filtration

generated by B, it actually has a continuous version. As the laws in the space of cadlag

3Recall that (�x : x > 0) is a 1
2
-stable subordinator. Equality (8) is easily established for simple functions and

passage to the limit (Revuz and Yor 1999: 72, 107; Exercise III.4.5).
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functions are determined by finite-dimensional projections, K t is a.s. continuous, which

implies that K(�) is continuous on (�1, r].4

Let Ta,b ¼ infft > 0 : Bt =2 [a, b]g. Then, as K is bounded on compact sets, for any

0 , x , r the local martingale K(Bt^T�1,x^Tr
) ¼ K(Bt^T�1,x

) is bounded and hence it is a

uniformly integrable martingale. Applying the optional stopping theorem, we obtain

EK(BT�1,x
) ¼ K(0) and thus K(x) ¼ x(K(0) � K(�1)) þ K(0). Similarly, for x , 0, we can

apply the optional stopping theorem to see that EK(BTx, r=2
) ¼ K(0), which yields

K(x) ¼ x
2K(r=2) � 2K(0)

r
þ K(0):

Expressing K(r=2) with the formula above, we conclude that K is an affine function on

(�1, r].5 h

We now return to the proof of the theorem. We will show how it reduces to Lemma 5.

With no loss of generality we can assume that H(0, 0) ¼ 0. The proof is carried out in five

steps:

1. For almost all y, the function H(�, y) is continuous.

2. For all y . x _ 0 and suitable random variables � independent of Brownian motion �,

(H(x þ � t^Ry�x
, �) : t > 0) is a local martingale (where Ru ¼ infft : � t ¼ ug) in the

filtration of � initially enlarged with �.

3. For almost all z, z . y . x _ 0, actually (H(x þ � t^Ry�x
, z) : t > 0) is a local

martingale in the natural filtration of �.

4. Apply Lemma 5 to obtain (1).

5. Proof of the martingale property.

Step 1. As in the proof of Lemma 5, we can argue that (H(Bt, Bt) : t > 0) is a

continuous local martingale. From the proof of Proposition 4, in particular from the

discussion of the range of the process (B, B), it follows that for almost all z > 0, H(�, z) is

a continuous function on (�1, z]. As we wish to prove the almost sure representation given

by (1) we know, by Proposition 4, that we can change H on any set of the form

[z2A(�1, z) 3 fzg with A of zero Lebesgue measure, and so we can and will assume that

H(�, z) is continuous on (�1, z] for all z > 0.

Let y . x _ 0 and T y ¼ infft > 0 : Bt ¼ yg, and T y
x ¼ infft . T y : Bt ¼ xg, two a.s.

finite stopping times. Denote � ¼ BT
y
x
, which is a random variable with an absolutely

continuous distribution on [y, 1). We denote its density by r, P(� 2 du) ¼ r(u)1u> ydu. We

will need this notation in due course. Note that we could also derive the continuity

properties of H by analysing the behaviour of H(Bt, Bt) for t between the last visit to y

before T y
x and T y

x .

Step 2. Using the representation theorem for Brownian martingales, we know that there

exists a predictable process (hs : s > 0) such that H(Bt, Bt) ¼
Ð t

0
hs dBs a.s. Let

4We could also just say that the right continuity of K(Bt) implies fine continuity of K (Blumenthal and Getoor
1968: Theorem II.4.8) and the fine topology for real-valued Brownian motion is the ordinary topology.
5We thank Goran Peskir and Dmitry Kramkov for their remarks, which simplified our earlier proof of the lemma.
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(Łt : t > 0) be the standard shift operator for the two-dimensional Markov process

((Bt, Bt) : t > 0). Obviously, for t, s . 0, we have

H(Btþs, Btþs) � H(Bt, Bt) ¼ (H(Bs, Bs) � H(B0, B0)) � Łt:

If we rewrite this using the integral representation, we see thatð s

0

huþ tdBuþ t ¼
ð s

0

(hu � Łt)dBuþ t a:s:, (9)

which implies that huþ t ¼ hu � Łt for u . 0 a.s. This reasoning remains true if we replace t

by an arbitrary, a.s. finite, stopping time T . This in turn means that the process

hH(B, B), Bi t ¼
Ð t

0
hs ds is a signed (strong) additive functional of the process

((Bt, Bt) : t > 0). To each of the strong additive functionals
Ð t

0
(hs _ 0)ds andÐ t

0
(�hs _ 0)ds we can apply Motoo’s theorem (cf. Sharpe 1988: 309; see also Meyer 1967:

122; Revuz and Yor 1999: Exercise X.2.25) to see that there exists a measurable function

h : R3 Rþ ! R such that

H(Bt, Bt) ¼
ð t

0

h(Bs, Bs)dBs, t > 0, a:s:

Let y . x _ 0 and recall Ty, T y
x and � ¼ BT

y
x
, as defined in Step 1 above. These objects

are represented in Figure 1. An application of the strong Markov property at the stopping

time T y
x yields that the process

H(x þ � t, � _ (x þ � t)) � H(x, �) ¼ H(BT
y
x þ t, BT

y
x þ t) � H(BT

y
x
, BT

y
x
)

¼
ð t

0

h(x þ �s, � _ (x þ �s))d�s (10)

is a local martingale in the enlarged filtration G t ¼ � (�, �s : s < t), where �s ¼ BT
y
x þs � BT

y
x

is a new Brownian motion independent of (Bu : u < T y
x ). Furthermore, as on the interval

[0, Ry�x], where Ry�x ¼ inffs > 0 : �s ¼ y � xg, we have � _ (x þ �s) ¼ � (cf. Figure 1),

the stopped local martingale can be written as

H(x þ � t^Ry�x
, �) ¼ H(x, �) þ

ð t^Ry�x

0

h(x þ � t, �)d�s: (11)

Step 3. We wish to show that actually, for almost all z 2 (y, 1), (H(x þ � t^Ry�x
,

z) : t > 0) is a local martingale in the natural filtration of �.

Let ~HH(x, z) ¼ (H(x, z) � H(0, z))1x<z þ (H(z, z) � H(0, z))1x.z, which is a measurable

function, continuous in the first coordinate. Fix K . 0 and define the function

E : (0, 1) ! [0, 1] via

E(z) ¼ supf0 < � < 1 : j ~HH(x, z)j < K for x 2 [��K, �K]g (12)

¼ supf0 < � < 1 : j ~HH(x, z)j < K for x 2 [��K, �K] \Qg, (13)

where the equality follows from continuity properties of ~HH . We now show that E(�) is a

measurable function. To this end, let � 2 (0, 1] and write

964 J. Obłój



fz : E(z) , �g ¼ gfz : supfj ~HH(x, z)j : x 2 [��K, �K] \Qg . Kg

¼
[

x2[��K,�K]\Q
fz : j ~HH(x, z)j . Kg:

Measurability of E follows as

fz : j ~HH(x, z)j . Kg ¼ (fxg3 Rþ) \ ~HH�1[(�1, K) [ (K, 1)],

is a Borel set.

We defined E so that j ~HH(x, z)j < K on [�E(z)K, E(z)K] (and it is the largest such

interval). Note that, since a continuous function is bounded on compact intervals, we have

E(z)K ! 1 as K ! 1. Let TK be a stopping time in the filtration (G t) defined by

TK ¼ TK (�, �) ¼ infft > 0 : j� tj > E(�)Kg, and write T z
K for TK (�, z), which is a stopping

time in the natural filtration of �. Then by (11) we see that (H(x þ
� t^Ry�x^TK

, �) � H(x, �) : t > 0) is an a.s. bounded local martingale, hence a martingale.

Recall that r is the density function of the distribution of �, P(� 2 dz) ¼ r(z)1z> ydz, and

let b : R ! R be a Borel, bounded function. Put x ¼ 0. Then the process

(M b
t ¼ b(�)H(� t^Ry^TK

, �) : t > 0) is a (G t)-martingale. We wish to show that the process

Figure 1. Quantities used in Step 2.
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H(� t^T z
K^Ry

, z) is a martingale for almost all z . y. As we deal with continuous, a.s.

bounded processes in a continuous filtration, it suffices to verify the martingale property for

rational times. Fix t, s 2 Qþ. For any A 2 F �
t ¼ � (�s : s < t), by the martingale property

of M b, we have

E[1Ab(�)H(�( tþs)^Ry^TK
, �)] ¼ E[1Ab(�)H(� t^Ry^TK

, �)]ð1
y

dzr(z)b(z)E[1A H(�( tþs)^Ry^T z
K
, z)]

¼
ð1

y

dzr(z)b(z)E[1A H(� t^Ry^T z
K
, z)]

and, as b was arbitrary,

E[1A H(�( tþs)^Ry^T z
K
, z)] ¼ E[1A H(� t^Ry^T z

K
, z)], dz-a:e: (14)

We will now argue that the above actually holds dz-a.e. for all t, s 2 Q and all A 2 F �
t . Let

— � F �
t be a countable �-system which generates F �

t (Revuz and Yor 1999: Exercise I.4.21).

We can thus choose a set ˆt,s � (y, 1) of full Lebesgue measure, such that for any A 2 —,

(14) holds for all z 2 ˆt,s. As sets A which satisfy (14) for all z 2 ˆt,s form a º-system, it

follows that (14) holds for any A 2 F �
t for all z 2 ˆt,s. Letting ˆ ¼ \ t,s2Qþˆt,s, we see that

(H(� t^T z
K^Ry

, z) : t > 0) is a martingale for all z 2 ˆ, and ˆ is of full Lebesgue measure.

This implies the local martingale property for (H(� t^Ry
, z) : t > 0) since (T z

K : K 2 N) is a

good localizing sequence. Indeed, for almost all z . y, E(z)K ! 1 as K ! 1, and so

T z
K ! 1 a.s., as K ! 1.

Step 4. We thus know that for almost all z . y, (H(� t^Ry
, z) : t > 0) is a local

martingale with respect to the natural filtration of �. We can thus apply Lemma 5 to see

that K(b) ¼ H(b, z) is a linear function on (�1, y], for almost all z . y. Thus

H(� t^Ry
, �) ¼ Æ(�)� t^Ry

þ H(0, �) a.s. Comparing this with (11) and using uniqueness of

representation for stochastic integrals, we deduce that h(b, z) does not depend on b for

b 2 (�1, y], h(b, z) ¼ h(z) for almost all z . y. As y . 0 was arbitrary, taking y 2 Q and

y ! 0, we see that h(b, z) ¼ h(z) for almost all z . 0, and therefore

H(Bt, Bt) ¼
Ð t

0
h(Bu)dBu a.s., and we put f ¼ h. From the Part 1 of the proof we know

that if
Ð t

0
f (Bs)dBs is well defined and finite then f is locally integrable and (1) holds.

Step 5. We turn now to the proof of the last statement in Theorem 1. Let f be a Borel,

positive function in L1, k f k ¼
Ð1

0
f (x)dx. Define H(x, y) ¼ k f k � F(y) þ f (y)(y � x). The

process H(N t, N t) is a local martingale as in (1). Furthermore, it is a positive process and

we can apply Fatou’s lemma to see that it is a positive supermartingale and thus converges

a.s., as t ! 1. As hNi1 ¼ 1 we know that N1 ¼ 1 a.s. This entails that

k f k � F(N t) ¼
ð1

Nt

f (x)dx !
t!1

0 a:s:

and thus f (Nt)(N � Nt) also converges a.s. as t ! 1. However, it can only converge to zero

since N1 ¼ 1 a.s. and thus Nt � Nt has zeros for arbitrary large t. The convergences stated

in Theorem 1 and in the remarks which follow it are immediate. To establish the martingale

966 J. Obłój



property it suffices to see that the expectation of the positive supermartingale H(Nt, Nt) is

constant in time and equal to H(0, 0) ¼ k f k. If f is bounded and E(sups< tjNsj) , 1, this

follows readily from Lebesgue’s dominated convergence theorem. The general case follows

from the monotone convergence theorem by replacing f with minf f , ng and taking the limit

as n ! 1. This concludes the proof of Theorem 1. h

4. Optional stopping arguments

In the previous section we proved Theorem 1. Here we wish to present some alternative

arguments which rely on the optional stopping theorem. Our goal is to provide the reader

with additional intuition. The reasoning below can be rigorously justified; however, parts of

it rely on our results and an independent proof would require fresh arguments. We comment

on this at the end.

We place ourselves in the Brownian motion set-up, that is, N ¼ B is a real-valued

Brownian motion. As above, we may assume H(0, 0) ¼ 0. Let Tx, y ¼ infft > 0 :

Bt =2 [x, y]g. Relying on the first part of the proof of Theorem 1, which grants that the

processes defined via (1) are local martingales, one can verify the well-known fact that the

law of BT�x, y
1fBT�x, y¼�xg is given by

P(BT�x, y
1fBT�x, y¼�xg 2 ds) ¼ xds

(s þ x)2
10<s< y:

Suppose we can apply the optional stopping theorem to H(Bt, Bt) at T�x, y. Then we obtain:

0 ¼ x

x þ y
H(y, y) þ x

ð y

0

H(�x, s)

(x þ s)2
ds, (15)

and thus

H(y, y) ¼ �(x þ y)

ð y

0

H(�x, s)

(x þ s)2
ds: (16)

Note that the left-hand side does not depend on x. Taking x ! 0 on the right-hand side

(formally) yields

y

ð y

0

H(0, s)

s2
ds ¼ �H(y, y) ¼ (x þ y)

ð y

0

H(�x, s)

(x þ s)2
ds, (17)

for any x, y . 0. Differentiating the extreme expressions in y, we obtainð y

0

H(0, s)

s2
ds þ H(0, y)

y
¼
ð y

0

H(�x, s)

(x þ s)2
ds þ H(�x, y)

x þ y

and, by (17),

�H(y, y) þ H(0, y)

y
¼ �H(y, y) þ H(�x, y)

x þ y
,

which leads directly to

Characterization of max-martingales 967



H(�x, y) ¼ H(y, y) � (a þ y)
H(y, y) � H(0, 0)

y
: (18)

To obtain (6) we write H(y, y) ¼ F(y). It suffices to use (17) to see that

H(y, y) � H(0, y)

y
¼ �

ð y

0

H(0, s)

s2
ds � H(0, y)

y
¼ F9(y):

The above provides arguments analogous to those used in the proof that Brownian scale

functions are affine, presented in the proof of Lemma 5. However, it appears that to make

the above reasoning into a complete proof of Theorem 1 one would need the following two

facts. We formulate them as propositions and prove them using Theorem 1. An independent

proof would require fresh arguments which are not apparent.

Proposition 6. Let x, y . 0 and H t ¼ H(Bt, Bt) be a right-continuous local martingale with

H0 ¼ 0. Then one can apply the optional stopping theorem at T�x, y to (H t), that is,

EH(BT�x, y
, BT�x, y

) ¼ 0.

Proof. Theorem 1 implies that H t is of the form (1) for some locally integrable function f .

Let gn be f bounded to take values in [�n, n], g n(x) ¼ ( f (x) ^ n) _ (�n),

Gn(y) ¼
Ð y

0
gn(x)dx and H n(x, y) ¼ Gn(y) � gn(y)(y � x). Then the local martingale

H n(Bt, Bt) for t < T�x, y is bounded by (2y þ x)n and is therefore a uniformly integrable

martingale. We thus have, for n . 0,

EGn(BT�x, y
) ¼ Eg n(BT�x, y

)(BT�x, y
� BT�x, y

) ¼ x

ð y

0

gn(s)

s þ x
ds:

As j f j is integrable on [0, y], by the dominated convergence theorem, the right-hand side

converges to x
Ð y

0
f (s)=(x þ s)ds and the left-hand side converges to EF(BT�x, y

). This yields

the desired result. h

Proposition 7. Let H(Bt, Bt) be a right-continuous local martingale. Then for any x > 0,

H(x þ Bt, x þ Bt) is a continuous local martingale.

Proof. Theorem 1 implies that H(Bt, Bt) is of the form (1) for some locally integrable

function f . Let g(u) ¼ f (x þ u) and G(y) ¼
Ð y

0
g(u)du ¼ F(y þ x) � F(x). Then H(x þ

Bt, x þ Bt) ¼ G(Bt) � g(Bt)(Bt � Bt) þ F(x) and is a continuous local martingale by

Theorem 1. h

5. Closing remarks

In the Introduction we indicated two motivations for developing a complete characterization

of max-martingales. Actually similar questions motivate a much larger project of describing

all local martingales which are functions of Brownian motion and its maximum, minimum

and local time processes. Therefore, we see this work as the first step in the general project
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of describing local martingales which are functions of Brownian motion and some adapted,

Rd-valued, process with ‘small support’ (such as the maximum, minimum and local time

processes). Such martingales, for functions which are sufficiently regular, can be described

entirely via Itô’s formula as shown by Obłój (2005: Chapter 7). However, a complete

characterization for arbitrary functions is more delicate. We believe that the methodology

developed in our proof of Theorem 1 will be useful for this purpose. We plan to develop

these issues in subsequent papers.
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