
Strong approximation for the sums of

squares of augmented GARCH sequences
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We study so-called augmented GARCH sequences, which include many submodels of considerable

interest, such as polynomial and exponential GARCH. To model the returns of speculative assets, it is

particularly important to understand the behaviour of the squares of the observations. The main aim of

this paper is to present a strong approximation for the sum of the squares. This will be achieved by an

approximation of the volatility sequence with a sequence of blockwise independent random variables.

Furthermore, we derive a necessary and sufficient condition for the existence of a unique (strictly)

stationary solution of the general augmented GARCH equations. Also, necessary and sufficient

conditions for the finiteness of moments are provided.
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1. Introduction

Starting with the fundamental paper of Engle (1982), autoregressive conditionally

heteroscedastic (ARCH) processes and their generalizations have played a central role in

finance and macroeconomics. One important class of these generalizations can be subsumed

under the notion of augmented GARCH(1,1) processes introduced by Duan (1997). He

studied random variables fyk : �1 , k , 1g satisfying the equations

yk ¼ � k�k (1:1)

and

¸(� 2
k) ¼ c(�k�1)¸(� 2

k�1) þ g(�k�1), (1:2)

where ¸(x), c(x) and g(x) are real-valued functions. To solve for � 2
k, the definitions in (1.1)

and (1.2) require that

¸�1(x) exists: (1:3)

Throughout this paper we assume that

f�k : �1 , k , 1g is a sequence of independent, identically distributed random variables:

(1:4)
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We start by giving a variety of examples which are included in the framework of the

augmented GARCH model. Since all submodels must satisfy (1.1), only the corresponding

specific equations (1.2) are stated. Moreover, it can be seen that (1.3) always holds.

Example 1.1 GARCH. Bollerslev (1986) introduced the process

� 2
k ¼ øþ �� 2

k�1 þ Æy 2
k�1

¼ øþ [�þ Æ�2
k�1]� 2

k�1:

Example 1.2 AGARCH. This asymmetric model for volatility was defined by Ding et al.

(1993) as

� 2
k ¼ øþ �� 2

k�1 þ Æ(jyk�1j � �yk�1)2

¼ øþ [�þ Æ(j�k�1j � ��k�1)2]� 2
k�1:

Example 1.3 VGARCH. Engle and Ng (1993) used the equations

� 2
k ¼ øþ �� 2

k�1 þ Æ(�k�1 � �)2

to study the impact of news on volatility.

Example 1.4 NGARCH. This nonlinear asymmetric model was also introduced by Engle

and Ng (1993):

� 2
k ¼ øþ �� 2

k�1 þ Æ(�k�1 � �)2� 2
k�1:

Example 1.5 GJR-GARCH. The model of Glosten, Jagannathan and Runke (1993) is given

by

� 2
k ¼ øþ �� 2

k�1 þ Æ1 y 2
k�1 Ifyk�1 , 0g þ Æ2 y 2

k�1 Ifyk�1 > 0g

¼ øþ �þ Æ1�
2
k�1 If�k�1 , 0g þ Æ2�

2
k�1 If�k�1 > 0g

� �
� 2

k�1:

Example 1.6 TSGARCH. This is a modification of Example 1.1 studied by Taylor (1986)

and Schwert (1989):

� k ¼ øþ �� k�1 þ Æ1jyk�1j

¼ øþ �þ Æ1j�k�1j½ �� k�1:

Example 1.7 PGARCH. Motivated by a Box–Cox transformation of the conditional

variance, Carrasco and Chen (2002) extensively studied the properties of the process

satisfying
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��
k ¼ øþ ���

k�1 þ Æjyk�1j�

¼ øþ �þ Æj�k�1j�
� �

��
k�1:

Example 1.8 TGARCH. Example 1.5 is a non-symmetric version of the GARCH process of

Example 1.1. Similarly, a non-symmetric version of Example 1.7 is

��
k ¼ øþ ���

k�1 þ Æ1jyk�1j� Ifyk�1 , 0g þ Æ2jyk�1j� Ifyk�1 > 0g

¼ øþ �þ Æ1j�k�1j� If�k�1 , 0g þ Æ2j�k�1j� If�k�1 > 0g
� �

��
k�1:

The special case of � ¼ 1 was proposed by Taylor (1986) and Schwert (1989) and includes

the threshold model of Zakoian (1994).

In Examples 1.1–1.8, ¸(x) ¼ x�, so these models are usually referred to as polynomial

GARCH. Next, we provide two examples of exponential GARCH models.

Example 1.9 MGARCH. The multiplicative model of Geweke (1986) is defined as

log � 2
k ¼ øþ � log� 2

k�1 þ Æ log y 2
k�1

¼ øþ (Æþ �) log � 2
k�1 þ Æ log �2

k�1:

Example 1.10 EGARCH. The exponential GARCH model of Nelson (1991) is

log � 2
k ¼ øþ � log � 2

k�1 þ Æ1�k�1 þ Æ2j�k�1j:

Straumann and Mikosch (2006) obtained a necessary and sufficient condition for the

existence and uniqueness of the solution of the recursive equations in Examples 1.1, 1.2 and

1.10. Their method is based on the theory of iterated functions. Carrasco and Chen (2002)

studied the existence of solutions in the general framework of (1.1) and (1.2). Since they were

also interested in the mixing properties of the sequences fykg and f� 2
kg, they assumed that

jc(0)j , 1, Ejc(�0)j , 1 and Ejg(�0)j , 1. We show that these conditions can be weakened

to logarithmic moment conditions. The verification of the mixing property of solutions to

(1.1) and (1.2) is based on the theory of hidden Markov models and geometric ergodicity, and

it is also assumed that �0 has a continuous density which is positive on the whole real line.

The exponential mixing proved by Carrasco and Chen (2002) yields the weak convergence as

well as the approximation of partial sums of y 2
i with Brownian motion. However, for these

results to hold it should not be necessary to assume either the existence or smoothness of the

density of �0.

The main aim of this paper is to provide a general method for obtaining strong invariance

principles for partial sums of GARCH-type sequences. To this end, we show that f� 2
kg can

be approximated with a sequence of random variables f~�� 2
kg which are defined such that ~�� 2

i

and ~�� 2
j are independent if the distance ji � jj is appropriately large. This is a generalization

of the observation in Berkes and Horváth (2001) that the volatility in GARCH( p, q) models

can be approximated with random variables which are blockwise independent. It is also
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known that the general theory of mixing provides a poor bound for the rate of convergence

to Brownian motion. We connect this rate of convergence to the finiteness of moments of

�0. The general blocking method used throughout the proofs yields strong invariance for the

partial sums of the random variables fy 2
k � Ey 2

kg with very sharp rates. Our method can,

however, also be used to obtain strong approximations for other functions of y1, . . . , yn.

Additionally, while we are focusing on processes of order (1,1) for the sake of presentation,

adaptations of our methods work also for sequences of arbitrary order ( p, q).

Strong approximations of partial sums play an important role in, for instance, deriving

results in asymptotic statistics. Thus, it has been pointed out by Horváth and Steinebach

(2000) that limit results for so-called CUSUM and MOSUM-type test procedures, which are

used to detect mean and variance changes, can be based on strong invariance principles.

Theorem 2.4 below, in particular, might be used to test for the stability of the observed

volatilities. In addition, strong approximations can also be used to develope sequential

monitoring procedures (see Berkes et al. (2004; Aue and Horváth 2004; Aue et al. 2005;

and Horváth et al. (2006).

The paper is organized as follows. First, we discuss the existence of a unique stationary

solution of the augmented GARCH model (1.1) and (1.2). We also find conditions for the

existence of the moments of ¸(� 2
0) (see Theorems 2.1–2.3 below). These results will be

utilized to provide strong approximations for the partial sums of fy 2
kg in Theorem 2.4. The

proofs of Theorems 2.1–2.3 are given in Section 4, while the strong approximation of

Theorem 2.4 is verified in Section 5. In Section 3, we deal with applications of Theorem

2.4 in the field of change-point analysis.

2. Main results

Solving (1.1) and (1.2) backwards, we obtain that, for any N > 1,

¸(� 2
k) ¼ ¸(� 2

k�N )
Y

1<i<N

c(�k�i) þ
X

1<i<N

g(�k�i)
Y

1< j<i�1

c(�k� j): (2:1)

This suggests that the general solution of (1.1) and (1.2) is given by

¸(� 2
k) ¼

X
1<i,1

g(�k�i)
Y

1< j<i�1

c(�k� j): (2:2)

Our first result gives a necessary and sufficient condition for the existence of the random

variable

X ¼
X

1<i,1
g(��i)

Y
1< j<i�1

c(�� j): (2:3)

Let logþ x ¼ log(maxfx, 1g).

Theorem 2.1. We assume that (1.1)–(1.4) hold, and that
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E logþjg(�0)j , 1 and E logþjc(�0)j , 1: (2:4)

(i) If

E logjc(�0)j , 0, (2:5)

then the sum in (2.3) is absolutely convergent with probability one.

(ii) If

Pfg(�0) ¼ 0g , 1 (2:6)

and the sum in (2.3) is absolutely convergent with probability one, then (2.5) holds.

We note that in (2.5) we allow that E logjc(�0)j ¼ �1. The result bears some

resemblence to Theorem 1.3 in Bougerol and Picard (1992), who concentrate, however, on

positive processes and put more emphasis on the problem of irreducibility. The proof of

Theorem 2.1 is given in Section 4.

Since under stationarity ¸(� 2
k)¼D X, the next result gives conditions for the existence of

EjX j� as well as of Ej¸(� 2
k)j�.

Theorem 2.2. We assume that (1.1)–(1.4) and (2.5) hold, � . 0 and

Ejg(�0)j� , 1: (2:7)

(i) If

Ejc(�0)j� , 1, (2:8)

then

EjX j� , 1: (2:9)

(ii) If (2.6) and (2.9) are satisfied, and

c(�0) > 0 and g(�0) > 0, (2:10)

then (2.8) holds.

We note that in Examples 1.1–1.8 the left-hand side of the equations defining ¸(� 2
k) is

always positive, so the right-hand side must also be positive. This requirement restricts the

values of possible parameter choices such that (2.10) always holds in these examples. We

also point out that Theorem 2.2 is an extension of the results in Nelson (1990) on the

existence of the moments of a GARCH(1,1) sequence.

The next result shows that (2.2) is the only solution of (1.1) and (1.2). We say that a

strictly stationary solution of (1.1) and (1.2) is non-anticipative if, for any k, the random

variable yk is independent of f�i : i . kg. According to Brandt (1986), the strictly

stationary solution of (1.1) and (1.2) in part (i) of the following theorem is always non-

anticipative. The same is true under the assumptions of part (ii) of the same theorem.

Theorem 2.3. We assume that (1.1)–(1.4) and (2.4) are satisfied.
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(i) If (2.5) holds, then (2.2) is the only stationary solution of (1.1) and (1.2).

(ii) If, in addition, (2.6) and (2.10) hold, and (1.1) and (1.2) have a stationary, non-

negative solution, then (2.5) must be satisfied.

Theorem 2.3 gives, in particular, a necessary and sufficient condition for the existence of

polynomial GARCH(1,1) and thus generalizes the result of Nelson (1990). The special case

of EGARCH introduced in Example 1.10 is also covered by Straumann and Mikosch

(2006). Here, stationarity can be characterized as follows. If j�j , 1 and

E logþjÆ1�0 þ Æ2j�0k , 1, then there is a unique stationary, non-anticipative process

satisfying the equation in Example 1.10. If � . 0 and PfÆ1�0 þ Æ2j�0j > 0g ¼ 1, then

� , 1 is necessary and sufficient for the existence of a stationary solution of the EGARCH

equations. If we allow anticipative solutions, then (1.1) and (1.2) might have a solution even

if (2.5) fails, that is, if E logjc(�0)j > 0 (cf. Aue and Horváth 2005).

We now consider approximations for

S(k) ¼
X

1<i<k

(y 2
i � Ey 2

i ):

To this end, we need ¸�1(x) to be a smooth function. We make the following assumptions:

¸(� 2
0) > ø, for some ø . 0; (2:11)

and ¸9 exists and is non-negative, and there are C, ª such that���� 1

¸9(¸�1(x))

���� < Cxª, for all x > ø: (2:12)

Assumptions (2.11) and (2.12) hold for the processes in Examples 1.1–1.8, but fail for the

remaining Examples 1.9 and 1.10. Thus, more restrictive moment conditions are needed in

the exponential GARCH case (see Theorem 2.4(ii) below). Set

� 2 ¼ var y 2
0 þ 2

X
1<i,1

cov(y 2
0, y 2

i ): (2:13)

Theorem 2.4. We assume that (1.1)–(1.4) and (2.5) hold, � . 0, and

Ej�0j8þ� , 1, for some � . 0: (2:14)

(i) If (2.11) and (2.12) are satisfied and (2.7) holds for some � . 4(1 þ maxf0, ªg),

then there is a Wiener process fW (t) : t > 0g such thatX
1<i<n

(y 2
i � Ey 2

i ) � �W (n) ¼ o(n5=12þ�) almost surely: (2:15)

for any � . 0.

(ii) If ¸(x) ¼ log x, and we assume that E exp(tjg(�0)j) exists for some t . 4 and that

there exists

0 , c , 1, such that jc(x)j , c, (2:16)
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then (2.15) holds.

The method of the proof of Theorem 2.4 can be used to establish strong approximations

for the sums of functionals of the yi, too. For example, approximations can be derived forP
1<i<n(yi � Eyi),

P
1<i<n(yi yiþk � E[yi yiþk]) and

P
1<i<n(y 2

i y 2
iþk � E[y 2

i y 2
iþk]), where k

is a fixed integer. Examples of strong approximations for dependent sequences other than

augmented GARCH processes may be found in Eberlein (1986) and Kuelbs and Philipp

(1980). While we are using a blocking argument, the methods in the aforementioned papers

are based on examining conditional expectations and variances, and mixing properties,

respectively.

3. Applications

In this section, we illustrate the usefulness of Theorem 2.4 with some applications from

change-point analysis. One of the main concerns in econometrics is to decide whether the

volatility of the underlying variables is stable over time or if it changes in the observation

period. While, in general, this allows us to include larger classes of random processes, we

will focus on augmented GARCH sequences here. To accommodate the setting, we assume

that the volatilities f� 2
kg follow a common pattern until an unknown time k�, called the

change-point. After k� a different regime takes over. It will be demonstrated in the

following that, using Theorem 2.4, some of the basic detection methods can be applied to

the observed volatilities fy 2
kg.

Example 3.1. The popular CUSUM procedure is based on the test statistics

Tn ¼ 1ffiffiffiffiffiffiffi
n�

p max
1<k<n

���� X
1<i<k

y 2
i �

k

n

X
1<i<n

y 2
i

����:
Under the assumption of no change in the volatility,

Tn !
D

sup
0< t<1

jB(t)j, (3:17)

where fB(t) : 0 < t < 1g denotes a Brownian bridge. Theorem 2.4 not only gives an

alternative way to prove (3.17), but also provides the strong upper bound O(n�1=12þ�) for the

rate of convergence.

Example 3.2. A modification of Example 3.1 is given by the so-called moving-sum or

MOSUM procedure. Its basic properties have been presented by Csörgő and Horváth (1997:

181). In our case, the test statistic becomes

Vn ¼ 1ffiffiffiffiffiffiffiffiffi
a(n)

p
�

max
1<k<n�a(n)

���� X
k,i<kþa(n)

y 2
i �

a(n)

n

X
1<i<n

y 2
i

����:
In addition to the assumptions of Theorem 2.4, let the conditions
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n5=12þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log(n=a(n))

p
ffiffiffiffiffiffiffiffiffi
a(n)

p ¼ O(1), for some � . 0, (3:18)

and a(n)=n ! 0, as n ! 1, be satisfied. Then we obtain the following extreme value

asymptotic expression for Vn:

lim
n!1

P A
n

a(n)

� �
Vn < t þ D

n

a(n)

� �� �
¼ exp �e� tð Þ (3:19)

for all t, where

A(x) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log x

p
and D(x) ¼ 2 log x þ 1

2
log log x � 1

2
log�:

We now give a proof of (3.19). Indeed, on using Theorem 2.4, we obtain

Vn ¼ 1ffiffiffiffiffiffiffiffiffi
a(n)

p max
1<k<n�a(n)

����W (k þ a(n)) � W (k) � a(n)

n
W (n)

����þOP

n5=12þ�ffiffiffiffiffiffiffiffiffi
a(n)

p
� �

(3:20)

as n ! 1. The moduli of continuity of the Wiener process (see Csörgő and Révész 1981:

30) yield, as n ! 1,

1ffiffiffiffiffiffiffiffiffi
a(n)

p max
1<k<n�a(n)

jW (k þ a(n)) � W (k)j (3:21)

¼ 1ffiffiffiffiffiffiffiffiffi
a(n)

p sup
0< t<n�a(n)

jW (t þ a(n)) � W (t)j þ OP

ffiffiffiffiffiffiffiffiffiffi
log n

a(n)

s !
:

By the scale transformation we obtain for the functional of the Wiener process on the right-

hand side of the latter equation

1ffiffiffiffiffiffiffiffiffi
a(n)

p sup
0< t<n�a(n)

jW (t þ a(n)) � W (t)j ¼D sup
0<s<n=a(n)�1

jW (s þ 1) � W (s)j: (3:22)

Hence, Theorem 7.2.4 of Révész (1990: 72) gives the following extreme value asymptotic

expression for the Wiener process:

lim
n!1

P A
n

a(n)

� �
sup

0<s<n=a(n)�1

jW (s þ 1) � W (s)j < t þ D
n

a(n)

� �( )
¼ exp(e� t): (3:23)

On combining (3.20)–(3.22) with condition (3.18), we arrive at

A
n

a(n)

� �
Vn ¼

D
A

n

a(n)

� �
sup

0<s<n=a(n)�1

jW (s þ 1) � W (s)j þ oP(1),

so that (3.19) follows from (3.23).

Example 3.3. It has been pointed out by Csörgő and Horváth (1997) that weighted versions

of the CUSUM statistics have a better power for detecting changes that occur either very
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early or very late in the observation period. Therefore, Tn from Example 3.1 can be

transformed to the weighted statistics

T n,Æ ¼ 1ffiffiffiffiffiffiffi
n�

p max
1<k<n

n

k

	 
Æ���� X
1<i<k

y 2
i �

k

n

X
1<i<n

y 2
i

����,
where 0 < Æ , 1=2. Under the assumptions of Theorem 2.4,

Tn,Æ !
D

sup
0, t,1

jB(t)j
tÆ

, n ! 1, (3:24)

where fB(t) : 0 < t < 1g is a Brownian bridge. Theorem 2.4 and the moduli of continuity of

the Wiener process (Csörgő and Révész 1981: 30) imply thatX
1<i< t

(y 2
i � Ey 2

0) � �W (t) ¼ o t5=12þ�
	 


a:s: (3:25)

as t ! 1. Hence,

1ffiffiffi
n

p sup
1=n< t<1

1

tÆ

���� X
1<i<nt

(y 2
i � Ey 2

0) � �W (nt)

����
¼ OP

1ffiffiffi
n

p sup
1=n< t<1

(nt)5=12þ�

tÆ

 !
¼

OP(n�1=12þ�), if Æ < 5=12 þ �,

OP(nÆ�1=2), if 5=12 þ � , Æ , 1=2,

(

giving that

Tn,Æ ¼D sup
1=n< t<1

1

tÆ
jW (t) � tW (1)j þ oP(1):

By the almost sure continuity of t�ÆW (t), we obtain

sup
1=n< t<1

1

tÆ
jW (t) � tW (1)j ! sup

0, t<1

1

tÆ
jW (t) � tW (1)j a:s:

Since fW (t) � tW (1) : 0 < t < 1g and fB(t) : 0 < t < 1g have the same distribution, (3.24)

holds.

Example 3.4. Instead of the weighted supremum norm, weighted L2 functionals can be used.

Let

Z n ¼ 1

n� 2

ð1

0

1

t

X
1<i<nt

y 2
i � t

X
1<i<n

y 2
i

 !2

dt:

Under the conditions of Theorem 2.4 we have that

Z n !
D
ð1

0

B2(t)

t
dt, n ! 1, (3:26)
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where fB(t) : 0 < t < 1g denotes a Brownian bridge. Using (3.25), we conclude that

Z n ¼ 1

n

ð t

0

1

t
W (nt) � tW (n)ð Þ2

dt þOP n�1=12þ�
	 


:

Thus, with B(t) ¼ n�1=2(W (nt) � tW (n)), we immediately obtain (3.26).

For on-line monitoring procedures designed to detect changes in volatility, see Aue et al.

(2005). All the applications above contain the parameter � , which is in general unknown

and so has to be estimated from the sample data y1, . . . , yn. This can be achieved easily by

imposing the method developed by Lo (1991). For further results concerning the estimation

of the variance of sums of dependent random variables we refer to Giraitis et al. (2003) and

Berkes et al. (2005).

4. Proofs of Theorems 2.1–2.3

Proof of Theorem 2.1. Part (i) is an immediate consequence of Brandt (1986).

The first step in the proof of (ii) is the observation that by (2.6) there is a constant a . 0

such that Pfjg(�0)j . ag . 0. Define the events

Ai ¼ jg(��i)j > a,
Y

1< j<i�1

jc(�� j)j > 1

( )
, i > 1:

We introduce the � -algebras

F0 ¼ f˘, �g,

F i ¼ � (f� j : �i < j < 0g), i > 1: (4:1)

Clearly, Ai 2 F i for all i > 1. Also, by standard arguments,

X
1<i,1

PfAijF i�1g ¼ Pfjg(��i)j > ag
X

1<i,1
P

Y
1< j<i�1

jc(�� j)j > 1jF i�1

( )

¼ Pfjg(�0)j > ag
X

1<i,1
I

X
1< j<i�1

logjc(�� j)j > 0

( )
:

We claim that

X
1<i,1

I
X

1< j<i�1

logjc(�� j)j > 0

( )
¼ 1 a:s:
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This follows from the strong law of large numbers if E logjc(�0)j . 0, while the Chung–

Fuchs law (Chow and Teicher 1988: 148) applies if E logjc(�0)j ¼ 0. Hence, Corollary 3.2 of

Durrett (1986, p. 240) gives PfAi infinitely ofteng ¼ 1, and therefore

P lim
i!1

g(��i)
Y

1< j<i�1

c(�� j) ¼ 0

( )
¼ 0:

This contradicts the result that the sum in (2.3) is finite with probability one. h

Proof of Theorem 2.2. If � > 1, then by Minkowski’s inequality we have

EjX j� <
X

1<i,1
E

����g(��i)
Y

1< j<i�1

c(�� j)

����
�

" #1=�
0
@

1
A

�

¼ Ejg(�0)j�
X

1<i,1
Ejc(�0)j�½ �(i�1)=�

 !�

, 1

by assumptions (2.7) and (2.8). If 0 , � , 1, then (see Hardy et al. 1959)

EjX j� <
X

1<i,1
E

����g(��i)
Y

1< j<i�1

c(�� j)

����
�

¼ Ejg(�0)j�
X

1<i,1
Ejc(�0)j�½ �i�1

, 1,

completing the proof of the first part of Theorem 2.2.

If � > 1, then by the lower bound in the Minkowski inequality (Hardy et al. 1959) and

(2.10) we obtain

EjX j� >
X

1<i,1
E g(��i)

Y
1< j<i�1

c(�� j)

" #�
¼ E[g(�0)]�

X
1<i,1

E[c(�0)]�ð Þi�1:

Since by (2.6) and (2.7) we have 0 , E[g(�0)]� , 1, we obtain (2.8).

Similarly, if 0 , � , 1, then

EjX j� >
X

1<i,1
E g(��i)

Y
1< j<i�1

c(�� j)

" #� !1=�
0
@

1
A

�

¼ E[g(�0)]�
X

1<i,1
E[c(�0)]�ð Þ(i�1)=�

 !�

and therefore (2.8) holds. h

Proof of Theorem 2.3. The first part is an immediate consequence of Brandt (1986).

The second part is based on (2.1) with k ¼ 0. Since by (2.10) all terms in (2.1) are non-

negative, we obtain for all N > 1 that
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¸(� 2
0) >

X
1<i<N

g(��i)
Y

1< j<i�1

c(�� j): (4:2)

If E log c(�0) > 0, then the proof of Theorem 2.1(ii) gives that

lim sup
i!1

g(��i)
Y

1< j<i�1

c(�� j) > a,

for some a . 0. So by (2.10) we obtain that

lim
N!1

X
1<i<N

g(��i)
Y

1< j<i�1

c(�� j) ¼ 1 a:s:,

contradicting (4.2). h

5. Proof of Theorem 2.4

Since the proof of Theorem 2.4 is divided into a series of lemmas, we will first outline its

structure. The main ideas can be highlighted as follows.

The first goal of the proof is to show that the partial sums of fy 2
kg can be approximated

by the partial sums of a sequence of random variables f~yy2
kg which are independent at

sufficiently large lags. To do so, we establish exponential inequalities for the distance

between the volatilities f� 2
kg and a suitably constructed sequence f~�� 2

kg. Consequently,

letting ~yyk ¼ ~�� k�k , it suffices to find an approximation for the partial sumsPn
k¼1 (~yy2

k � E~yy2
k). Detailed proofs are given in Lemmas 5.1–5.4 below.

Set ~��k ¼ ~yy2
k � E~yy2

k . The partial sum
Pn

k¼1
~��k will be blocked into random variables

belonging to two subgroups. The random variables associated with each subgroup form an

independent sequence which allows the application of the following simplified version of

Theorem 4.4 in Strassen (1967: 334).

Theorem A. Let fZig be a sequence of independent centred random variables and let

0 , k , 1. If

r(N ) ¼
X

1<i<N

EZ2
i ! 1, N ! 1,

X
1<N,1

r(N )�2kEZ4
N , 1,

then there is a Wiener process fW (t) : t > 0g such thatX
1<i<N

Zi � W (r(N )) ¼ o r(N )(kþ1)=4 log r(N )
	 


a:s:, N ! 1:

Lemmas 5.5–5.9 help prove that the assumptions of Theorem A are satisfied, while the actual

approximations are given in Lemmas 5.10–5.12.

Let 0 , r , 1 and define ~�� 2
k as the solution of
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¸(~�� 2
k) ¼

X
1<i<kr

g(�k�i)
Y

1< j<i�1

c(�k� j):

First, we obtain an exponential inequality for ¸(� 2
k) �¸(~�� 2

k).

Lemma 5.1. If (1.1)–(1.4), (2.5), (2.7) and (2.8) hold, then there are constants C1,1, C1,2 and

C1,3 such that

P j¸(� 2
k) �¸(~�� 2

k)j > exp �C1,1 krð Þ
� �

< C1,2 exp �C1,3 krð Þ:

Proof. Observe that

¸(� 2
k) �¸(~�� 2

k) ¼
X

krþ1<i,1
g(�k�i)

Y
1< j<i�1

c(�k� j) ¼
Y

1<i<kr

c(�k�i)¸(� 2
k�kr):

Using Theorem 2.7 of Petrov (1995) yields

P
Y

1<i<kr

jc(�k�i)j > exp �C1,4 krð Þ
( )

¼ P
X

1<i<kr

(logjc(�k�i)j � a) > �(C1,4 þ a)kr

( )

< 2 exp �C1,5 krð Þ,

where E logjc(�0)j ¼ a , 0 and 0 , C1,4 , �a. Theorem 2.2 implies

P j¸(� 2
k) �¸(~�� 2

k)j > exp � C1,4

2
kr

� �� �

< P
Y

1<i<kr

jc(�k�i)j > exp �C1,4 krð Þ
( )

þ P j¸(� 2
k�kr)j > exp

C1,4

2
kr

� �� �

< 2 exp �C1,5 krð Þ þ exp � �C1,4

2
kr

� �
Ej¸(� 2

0)j� < C1,6 exp �C1,7 krð Þ:

This completes the proof. h

Lemma 5.2. If (1.1)–(1.4), (2.5), (2.7), (2.8), (2.11) and (2.12) hold, then there are constants

C2,1, C2,2 and C2,3 such that

P j� 2
k � ~�� 2

k j > exp �C2,1 krð Þ
� �

< C2,2 exp �C2,3 krð Þ:

Proof. By the mean-value theorem,

� 2
k � ~�� 2

k ¼ ¸�1(¸(� 2
k)) �¸�1(¸(~�� 2

k)) ¼ 1

¸9(¸�1(�k))
¸(� 2

k) �¸(~�� 2
k)


 �
,
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where �k is between ¸(� 2
k) and ¸(~�� 2

k). By (2.12),

j� 2
k � ~�� 2

k j < Ck¸(� 2
k)jª þ j¸(~�� 2

k)jªk¸(� 2
k) �¸(~�� 2

k)j: (5:1)

If ª < 0, then Lemma 5.2 follows from (2.11) in combination with Lemma 5.1. If ª . 0,

then Theorem 2.2 and Lemma 5.1 yield

P j¸(� 2
k)jª þ j¸(~�� 2

k)jª

 �

j¸(� 2
k) �¸(~�� 2

k)j > exp � C1,1

2
kr

� �� �

< P j¸(� 2
k) �¸(~�� 2

k)j > exp �C1,1 krð Þg þ P j¸(� 2
k)jª þ j¸(~�� 2

k)jª > exp
C1,1

2
kr

� �� ��

< 2C1,2 exp �C1,3 krð Þ þ P j¸(� 2
k)j� > 1

2
exp

C1,1

2
kr

� �� ��=ª
( )

þ P j¸(� 2
k)j þ exp �C1,1 krð Þ


 ��
>

1

2
exp

C1,1

2
kr

� �� ��=ª
( )

< C2,4 exp �C2,5 krð Þ,

finishing the proof. h

Lemma 5.3. If (1.1)–(1.4), (2.5), (2.7) and (2.8) hold and ¸(x) ¼ log x, then there are

constants C3,1 and C3,2 such that

P j� 2
k � ~�� 2

k j > exp �C3,1 krð Þ
� �

< C3,2 k�r�:

Proof. By the mean-value theorem, � 2
k � ~�� 2

k ¼ elog � 2
k � elog ~�� 2

k ¼ e� k (log � 2
k � log ~�� 2

k),

where �k is between log � 2
k and log ~�� 2

k . Hence,

j� 2
k � ~�� 2

k j < elog � 2
k þ elog ~�� 2

k

	 

jlog � 2

k � log ~�� 2
k j: (5:2)

On the set �1 , log � 2
k � log ~�� 2

k , 1, we have exp(log ~�� 2
k) < 3 exp(log � 2

k), so by Theorem

2.2 and Lemma 5.1, we obtain
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P j� 2
k � ~�� 2

k j > exp � C1,1

2
kr

� �� �

< P 3elog � 2
k jlog� 2

k � log ~�� 2
k j > exp � C1,1

2
kr

� �� �
þ C1,2 exp(�C1,3 kr)

< P jlog� 2
k � log ~�� 2

k j > exp �C1,1 krð Þ
� �

þ P 3elog� 2
k > exp

C1,1

2
kr

� �� �
þ C1,2 exp(�C1,3 kr)

< C1,2 exp �C1,3 krð Þ þ P log � 2
k >

C1,1

2
kr � log 3

� �
þ C1,2 exp(�C1,3 kr)

< C1,2 exp �C1,3 krð Þ þ P jlog � 2
k j� >

C1,1

2
kr � log 3

� ��� �
þ C1,2 exp(�C1,3 kr)

< C3,3 k�r�:

This completes the proof. h

Let

~yyi ¼ ~�� i�i, �1 , i , 1:

It is clear that ~yyi and ~yyj are independent if i , j � jr. The next result shows that it is enough

to approximate the sum of the ~yy2
i .

Lemma 5.4. If the conditions of Theorem 2.4 are satisfied, then

max
1<k,1

���� X
1<i<k

y 2
i �

X
1<i<k

~yy2
i

���� ¼ O(1) a:s:

Proof. Condition (2.14) implies that

j�k j ¼ o k1=(8þ�)
	 


a:s:

as k ! 1. By Lemmas 5.2 and 5.3 we obtain

j� 2
k � ~�� 2

k j ¼ O(exp(�C4,1 kr)) a:s:

Thus we conclude that

max
1<k,1

���� X
1<i<k

y 2
i �

X
1<i<k

~yy2
i

���� < X
1<i,1

jy2
i � ~yy2

i j ¼
X

1<i,1
j� 2

i � ~�� 2
i j�2

i

¼a:s:O(1)
X

1<i,1
i2=(8þ�) exp(�C4,1 ir) ¼a:s:O(1),
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and the proof is complete. h

We note that under the conditions of Theorem 2.4 we have

P j� 2
k � ~�� 2

k j > exp(�C4,2 kr)
� �

< C4,3 k��, (5:3)

where � ¼ r� when ¸(x) ¼ log x, while � can be chosen arbitrarily when (2.11) and (2.12)

hold. In both cases � can be chosen arbitrarily large.

Lemma 5.5. If the conditions of Theorem 2.4 are satisfied, then

E(~�� 2
k)4þ� ¼ O(1), for some � . 0, (5:4)

and

E(� 2
k � ~�� 2

k)2 ¼ O k��=2
	 


,

where � is defined in (5.3).

Proof. We first show that Ej� 2
k � ~�� 2

k j4þ� ¼ O(1). Assume first that (2.11) and (2.12) are

satisfied. Using (5.1), we obtain in case of ª . 0 that

j� 2
k � ~�� 2

k j4þ� < C j¸(� 2
k)j(4þ�)(1þª) þ j¸(~�� 2

k)j(4þ�)(1þª)



þ j¸(� 2
k)j(4þ�)ªj¸(~�� 2

k)j4þ�þj¸(� 2
k)j4þ�j¸(~�� 2

k)j(4þ�)ª
�
:

It follows from our assumptions that Ej¸(� 2
k)j(4þ�)(1þª) < C5,1. Applying the definition of ~�� 2

k ,

we obtain from the proof of Theorem 2.2 that

Ej¸(~�� 2
k)j(4þ�)(1þª) < E

X
1<i<kr

jg(�k�i)j
Y

1< j<i�1

jc(�k� j)j
 !(4þ�)(1þª)

< E
X

1<i<1
jg(�k�i)j

Y
1< j<i�1

jc(�k� j)j
 !(4þ�)(1þª)

< C5,2:

Similarly,

j¸(� 2
k)j(4þ�)ªj¸(~�� 2

k)j4þ�

<
X

1<i<1
jg(�k�i)j

Y
1< j<i�1

jc(�k� j)j
 !(4þ�)ª X

1<i<kr

jg(�k�i)j
Y

1< j<i�1

jc(�k� j)j
 !4þ�

<
X

1<i<1
jg(�k�i)j

Y
1< j<i�1

jc(�k� j)j
 !(4þ�)(1þª)

and therefore Ej¸(� 2
k)j(4þ�)ªj¸(~�� 2

k)j4þ� < C5,3. The same argument similarly implies that

Ej¸(� 2
k)j4þ�j¸(~�� 2

k)j(4þ�)ª < C5,4. If ª , 0, then (5.1) and (2.11) yield
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j� 2
k � ~�� 2

k j4þ� < C5,5j¸(� 2
k) �¸(~�� 2

k)j4þ�

and similarly Ej¸(� 2
k)j4þ� < C5,6 as well as Ej¸(~�� 2

k)j4þ� < C5,6.

If ¸(x) ¼ log x, then by (5.2) we have

j� 2
k � ~�� 2

k j4þ� < C5,7 e(4þ�)log � 2
k þ e(4þ�)log ~�� 2

k

	 

jlog � 2

k j4þ� þ jlog ~�� 2
k j4þ�


 �
:

So, it is enough to prove that

Ee	 log � 2
k < C5,8 and Ee	 log ~�� 2

k < C5,8, (5:5)

for some 	 . 4 and C5,8 ¼ C5,8(	). By assumption (2.16),

j¸(� 2
k)j <

���� X
1<i,1

g(�k�i)
Y

1< j<i�1

c(�k� j)

���� < X
1<i,1

ci�1jg(�k�i)j:

Now M(t) ¼ E exp(tjg(�0)j) exists for some t . 4 and therefore

E exp(tj¸(� 2
k)j) <

Y
1<i,1

M(tci�1) ¼ exp
X

1<i,1
log M(tci�1)

 !
:

Since 0 , c , 1, we see that tci ! 0 as i ! 1. For any x . 0, log(1 þ x) < x and

M(x) ¼ 1 þO(x) as x ! 0, so we obtain the first part of (5.5). A similar argument applies to

the second statement.

For k > 1, define the events Ak ¼ j� 2
k � ~�� 2

k j < exp(�C5,9 kr)
� �

and write

(� 2
k � ~�� 2

k)2 ¼ (� 2
k � ~�� 2

k)2 IfAkg þ (� 2
k � ~�� 2

k)2 IfAc
kg:

Clearly,

E[(� 2
k � ~�� 2

k)2 IfAkg] ¼ O exp(�C5,9 kr)ð Þ:

Applying (5.3), (5.4) and the Cauchy–Schwarz inequality, we arrive at

E (� 2
k � ~�� 2

k)2 IfAc
kg

� �
< Ej� 2

k � ~�� 2
k j4


 �1=2
P(Ac

k)1=2 ¼ O k��=2
	 


,

completing the proof of Lemma 5.5. h

Lemma 5.6. If the conditions of Theorem 2.4 are satisfied, then

X
1<k,1

cov(y 2
0, y 2

k)

is absolutely convergent.

Proof. Since y0 and ~yyk are independent for all k . 1, we obtain that
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E(y 2
0 � Ey 2

0)(y 2
k � Ey 2

k) ¼ E(y 2
0 � Ey 2

0)(y 2
k � ~yy2

k þ ~yy2
k � Ey 2

k)

¼ E(y 2
0 � Ey 2

0)(~yy2
k � Ey 2

k) þ E(y 2
0 � Ey 2

0)(y 2
k � ~yy2

k)

¼ E(y 2
0(y 2

k � ~yy2
k)) � Ey 2

0E(y 2
k � ~yy2

k):

Since y 2
k � ~yy2

k ¼ (� 2
k � ~�� 2

k)�2
k and the random variables � 2

k � ~�� 2
k , �2

k are independent,

Lemma 5.5 and Cauchy’s inequality give jcov(y 2
0, y 2

k)j ¼ O(k��=4), so Lemma 5.6 is proved

on account of �=4 . 1. h

Lemma 5.7. If the conditions of Theorem 2.4 are satisfied, then there is a constant C7,1 such

that

E
X

n,k<nþm

(~yy2
k � E~yy2

k)

 !2

< C7,1 m

for all n, m > 1.

Proof. Set �k ¼ y 2
k � Ey 2

k and ~��k ¼ ~yy2
k � E~yy2

k . It is easy to see that

E
X

n,k<nþm

~��k

 !2

¼
X

n,k, l<nþm

E�k� l þ
X

n,k, l<nþm

E~��k(~�� l � � l) þ
X

n,k, l<nþm

E� l(~��k � �k):

Lemma 5.5 and Cauchy’s inequality imply that

X
n,k, l<nþm

E

����~��k(~�� l � � l)

���� < X
n,k, l<nþm

E~��2
kE(~��l � �l)

2
	 
1=2

<
X

n,k, l<nþm

E~�� 4
kE�4

k


 �1=2
E�4

l E(� 2
l � ~�� 2

l )
2


 �1=2

¼ O(1)
X

n,k, l<nþm

l��=4 ¼ O(1)m
X

n, l,1
l��=4 ¼ O(1)m:

Similarly,

X
n<k, l<nþm

Ej� l(~��k � �k)j ¼ O(1)m:

By the stationarity of f�k : �1 , k , 1g, we have

X
n<k, l<nþm

E�k� l ¼
X

n<k, l<nþm

E�0�jk� lj ¼ O(1)m

by an application of Lemma 5.6. h
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Lemma 5.8. If the conditions of Theorem 2.4 are satisfied, then there are constants n0, m0

and C8,1 . 0 such that

E
X

n,k<nþm

(~yy2
k � E~yy2

k)

 !2

> C8,1 m

for all n > n0 and m > m0.

Proof. Following the proof of Lemma 5.7, we obtain

����E X
n,k<nþm

~��k

 !2

�
X

n,k, l<nþm

E�k� l

���� < C8,2 m
X

n, l,1
l��=4:

Since

1

m

X
n,k, l<nþm

E�k� l ¼
1

m

X
n,k, l<nþm

E�0�jk� lj ! var y 2
0 þ 2

X
1<k,1

cov(y 2
0, y 2

k) ¼ � . 0,

the proof is complete. h

Lemma 5.9. If the conditions of Theorem 2.4 are satisfied, then there is a constant C9,1 such

that

E
X

n,k<nþm

(~yy2
k � E~yy2

k)

 !4

< C9,1 m2 (5:6)

for all n, m > 1.

Proof. We prove (5.6) using induction. If m ¼ 1, then by (5.4) we have E(~yy2
k � E~yy2

k)4 < C9,2,

for all k > 1. We assume that (5.6) holds for m and for all n. We have to show that

E
X

n,k<nþmþ1

~��k

 !4

< C9,1(m þ 1)2, for all n: (5:7)

To this end, let b�c denote integer part, m�(r) ¼ m=2 � 2mr and set

S1(n, m) ¼
Xnþm�(r)

k¼nþ1

~��k , S2(n, m) ¼
Xnþmþ1

k¼nþmþ(r)þ1

~��k , S3(n, m) ¼
Xnþmþ(r)

k¼nþm�(r)

~��k :

By the triangle inequality, we have

E
X

1< j<3

S j(n, m)

" #4
0
@

1
A

1=4

< E S1(n, m) þ S2(n, m)½ �4
	 
1=4

þ E S3(n, m)½ �4
	 
1=4

:

Also, by (5.4),
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E S3(n, m)½ �4
	 
1=4

< C9,3 mr:

Let Ak ¼ j� 2
k � ~�� 2

k j < exp(�C9,4 kr)
� �

and write ~��k ¼ �k þ (~��k � �k)IfAkg þ (~��k �
�k)IfAc

kg. Let U ¼ fn þ 1, n þ 2, . . . , n þ bm�(r)cg [ fn þ bmþ(r)c, . . . , n þ m þ 1g.

Then,

E S1(n, m) þ S2(n, m)½ �4
	 
1=4

< E
X
k2U

�k

" #4
0
@

1
A

1=4

þ E
X
k2U

(~��k � �k)IfAkg
" #4

0
@

1
A

1=4

þ E
X
k2U

(~��k � �k)IfAc
kg

" #4
0
@

1
A

1=4

:

It follows from the definition of the Ak that

E
X
k2U

(~��k � �k)IfAkg
" #4

< C9,5:

Moreover, by (5.4), (5.3) and Minowski’s and Hölder’s inequalities we obtain that

E
X
k2U

(~��k � �k)IfAc
kg

 !4
0
@

1
A

1=4

<
X
k2U

E (~��k � �k)4 IfAc
kg

	 
1=4

<
X
k2U

(E(~��k � �k)4þ�)1=(4þ�)(PfAc
kg)�=(4þ�) < C9,6

X
1<k,1

k���=(4þ�) < C9,7:

Observe that by the stationarity of the �k ,

E
X
k2U

�k

" #4

¼ E
X

1<k<m�(r)

�k þ
X

mþ(r)<k<mþ1

�k

" #4

:

Arguing as before, we estimate

E
X

1<k<m�(r)

�k þ
X

mþ(r)<k<mþ1

�k

" #4
0
@

1
A

1=4

< E
X

1<k<mþ(r)

~��k þ
X

mþ(r)<k<mþ1

�k

" #4
0
@

1
A

1=4

þC9,8:

Since the partial sums
P

1<k<m�(r)
~��k and

P
mþ(r)<k<mþ1

~��k are independent, if m > m0 for

some m0 and E~��k ¼ 0, we obtain that

E
X

1<k<m�(r)

~��k þ
X

mþ(r)<k<mþ1

~��k

" #4

¼ E
X

1<k<m�(r)

~��k

" #4

þE
X

mþ(r)<k<mþ1

~��k

" #4

þ6E
X

1<k<m�(r)

~��k

" #2

E
X

mþ(r)<k<mþ1

~��k

" #2

:
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Using the induction assumption we obtain

E
X

1<k<m�(r)

~��k

" #4

< C9,1

m2

4
and E

X
mþ(r)<k<mþ1

~��k

" #4

< C9,1

m2

4
:

Lemma 5.7 yields

6E
X

1<k<m�(r)

~��k

" #2

E
X

mþ(r)<k<mþ1

~��k

" #2

< 6C2
7,1

m2

4
:

Since we can assume that C9,1 > 6C2
7,1, we conclude that

E
X

1<k<m�(r)

~��k þ
X

mþ(r)<k<mþ1

~��k

" #4

<
3

4
C9,1 m2,

thus completing the proof. h

Lemmas 5.7–5.9 contain upper and lower bounds for the second and fourth moments of

the increments of the partial sums of the ~yy2
i � E~yy2

i . As we will see, these inequalities,

together with the independence of the ~yyj and ~yyi, where i , j � jr, are sufficient to establish

the strong approximation in Theorem 2.4.

According to Lemma 5.4 it suffices to approximate
P

(~yy2
i � E~yy2

i ). Let 	 . 1 þ r,

	r , � , 	� 1, and set

X k ¼
X

k	<i<(kþ1)	�(kþ2)�

~��i and Yk ¼
X

(kþ1)	�(kþ2)�,i,(kþ1)	

~��i,

where ~��i ¼ ~yy2
i � E~yy2

i . Then fX kg and fYkg are sequences each consisting of independent

random variables. To show that X k and X kþ1 are independent, consider the closest lag, that

is, the index difference of the first ~��i in X kþ1 and of the last ~��i in X k . We obtain that

(k þ 1)	 � [(k þ 1)	 � (k þ 2)�] . (k þ 1)� . (k þ 1)	r which implies the assertion. Similar

arguments apply to fYkg.

Finally, let

r(N ) ¼ E
X

1<k<N

X k

" #2

and r�(N ) ¼ E
X

1<k<N

Yk

" #2

: (5:8)

Lemma 5.10. If the conditions of Theorem 2.4 are satisfied, then there is a Wiener process

fW1(t) : t > 0g such thatX
1<k<N

X k � W1(r(N )) ¼ o r(N )(kþ1)=4 log r(N )
	 


a:s:

for any (2	� 1)=(2	) , k , 1.
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Proof. It follows from the definition of ~��i that X 1, X 2, . . . are independent random variables

with mean 0. By Lemmas 5.7 and 5.8, there are C10,1 and C10,2 such that

EX 2
k < C7,1 (k þ 1)	 � (k þ 2)� � k	ð Þ < C10,1 k	�1

and

EX 2
k > C8,1 (k þ 1)	 � (k þ 2)� � k	ð Þ > C10,2 k	�1: (5:9)

Using Lemma 5.9, we can find C10,3 such that

EX 4
k < C9,1 (k þ 1)	 � (k þ 2)� � k	ð Þ2

< C10,3 k2(	�1): (5:10)

Now (5.9) and (5.10) imply

X
1<k,1

X
1<i<k

EX 2
i

 !�2k

EX 4
k < C10,4

X
1<k,1

k2(	�1)�2k	 , 1

and the result follows from Theorem A. h

Lemma 5.11. If the conditions of Theorem 2.4 are satisfied, then there is a Wiener process

fW2(t) : t > 0g such thatX
1<k<N

Yk � W2(r�(N )) ¼ o r�(N )(k�þ1)=4 log r�(N )
	 


a:s:

for any (2�þ 1)=(2(1 þ �)) , k� , 1.

Proof. Following the proof of Lemma 5.10, we have EY 2
k > C11,1 k� and EY 4

k < C11,2 k2�.

Hence,

X
1<k,1

X
1<i<k

EY 2
i

 !�2k�

EY 4
k < C11,3

X
1<k,1

k2��2(�þ1)k� , 1,

so the assertion follows from Theorem A. h

The next lemma gives an upper bound for the increments of
P

i<n(~yy2
i � E~yy2

i ).

Lemma 5.12. If the conditions of Theorem 2.4 are satisfied, then

max
k	< j<(kþ1)	

���� X
j<i<(kþ1)	

~��i

���� ¼ O r(k)(kþ1)=4 log r(k)
	 


a:s:,

where k is specified in Lemma 5.10.

Proof. On account of Lemma 5.9 we can apply Theorem 12.2 of Billingsley (1968: 94),

resulting in
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P max
k	< j<(kþ1)	

���� X
j<i<(kþ1)	

~��i

���� > º

( )
<

C12,1

º4
(k þ 1)	 � k	ð Þ2

<
C12,2

º4
k2(	�1):

So,

P max
k	< j<(kþ1)	

���� X
j<i<(kþ1)	

~��i

���� > k	(kþ1)=4 log k

( )
< C12,2 k2(	�1)�	(kþ1):

Since (	� 1)=	 , (2	� 1)=(2	) , k, we obtain that

X
1<k,1

P max
k	< j<(kþ1)	

���� X
j<i<(kþ1)	

~��i

���� > k	(kþ1)=4 log k

( )
, 1

and therefore, using the Borel–Cantelli lemma, the proof is complete. h

For any real n > 1 (not necessarily an integer), we introduce the notation

Tn ¼ E
X

1<k<n

�k

" #2

and ~TTn ¼ E
X

1<k<n

~��k

" #2

:

The final lemma contains certain properties of the quantities Tn and ~TTn.

Lemma 5.13. Let Nk ¼ (k þ 1)	. Then we have, for some constant C . 0,

(i) j ~TTNk
� r(k)j < Cr(k)1=2 r�(k)1=2,

(ii) j ~TTn � ~TTNk
j < Ck(2	�1)=2, for Nk , n < Nkþ1,

(iii) jTn � ~TTnj < C
ffiffiffi
n

p
, for n > 1.

Proof. By Minkowski’s inequality, we have j ~TT1=2
Nk

� r(k)1=2j < r�(k)1=2 and thus

j ~TTNk
� r(k)j < r�(k)1=2( ~TT

1=2
Nk

þ r(k)1=2) < r�(k)1=2(2r(k)1=2 þ r�(k)1=2),

proving (i). The proof of (ii) is similar, using Lemma 5,7. Finally, to prove (iii) we apply

Minkowski’s inequality again to get

jT 1=2
n � ~TT1=2

n j <
Xn

k¼1

E[�k � ~��k]2
	 
1=2

and, using the independence of �k and � 2
k � ~�� 2

k and Lemma 5.5, we obtain

E[�k � ~��k]2
	 
1=2

< 2 E[� 2
k � ~�� 2

k]2E[�4
k]


 �1=2¼ O k��=4
	 


:

As � can be chosen arbitrarily large, we get T 1=2
n � ~TT 1=2

n ¼ O(1), which implies (iii), since
~TTn ¼ O(n) by Lemma 5.7. h

We are at last in a position to give the proof of Theorem 2.4.

Sums of squares of augmented GARCH sequences 605



Proof of Theorem 2.4. Putting together Lemmas 5.10, 5.11 and the law of the iterated

logarithm for W2 yieldsX
1<i<(Nþ1)	

~��i � W1(r(N )) ¼ O r(N )(kþ1)=4 log r(N )
	 


a:s:, (5:11)

provided the constants involved are chosen according to the side conditions

	(kþ 1) . 2(�þ 1) and
2	� 1

2	
, k , 1, (5:12)

which ensure that the sum of the Yk is of smaller order of magnitude than the remainder term

in Lemma 5.10. Observe that r(N ) � N	 and r�(N ) � N �þ1, where � means that the ratio of

the two sides is between positive constants. Letting S�t ¼ ~��1 þ . . . þ ~��b tc, t > 0, we obtain

for Nk�1 , n < N k, using Lemmas 5.12, 5.13, relation (5.11) and standard estimates for the

increments of Wiener processes (see, for example, Theorem 1.2.1 of Csörgő and Révész

1981: 30),

jS�n � W1(Tn)j < jS�n � S�Nk
j þ jS�Nk

� W1(r(k))j

þ jW1(r(k)) � W1( ~TT Nk
)j þ jW1( ~TTNk

) � W1( ~TTn)j þ jW1( ~TTn) � W1(T n)j

¼ O r(k)(kþ1)=4 log r(k)
	 


þO r(k)(kþ1)=4 log r(k)
	 


þO r(k)1=4 r�(k)1=4 log k
	 


þO k(2	�1)=4 log k
	 


þO n1=4 log n
	 


¼ O n(kþ1)=4 log n
	 


þO n(	þ�þ1)=4	 log n
	 


þO n(2	�1)=4	 log n
	 


þO n1=4 log n
	 


: (5:13)

In the last step we expressed the remainder terms in n, using the fact that k � n1=	. Choose

	 ¼ 3=2, � near 0 and k very near to, but larger than, 2/3. In this case the relations (5.12) are

satisfied and hence (5.13) yields

S�n � W1(Tn) ¼ O n5=12þ�
	 


a:s: (5:14)

for any � . 0. Now f�kg is a stationary sequence with zero mean and covariances

E(�0�k) ¼ O(k��) for any � . 0, from which it easily follows that

Tn ¼ E
X

1<k<n

�k

" #2

¼ n� 2 þO(1),

where � 2 is defined in (2.13). Thus, on applying Theorem 1.2.1 of Csörgő and Révész (1981,

p .30), we arrive at W1(T n) ¼ W1(n� 2) þO(log n) a:s:, so Theorem 2.4 is readily proved on

setting W (t) ¼ � �1W1(� 2 t). h
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