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This paper is concerned with optimal estimation of the additive components of a nonparametric,

additive regression model. Several different smoothing methods are considered, including kernels, local

polynomials, smoothing splines and orthogonal series. It is shown that, asymptotically up to first order,

each additive component can be estimated as well as it could be if the other components were known.

This result is used to show that in additive models the asymptotically optimal minimax rates and

constants are the same as they are in nonparametric regression models with one component.
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1. Introduction

In this paper we discuss a general approach to applying one-dimensional nonparametric

smoothers to an additive model. The procedure consists of two steps. In the first step, a fit

to the additive model is constructed using the projection approach of Mammen et al.

(1999). This preliminary estimator uses an undersmoothing bandwidth, so its bias terms are

of asymptotically negligible higher order. In the second step, a one-dimensional smoother

operates on the fitted values of the preliminary estimator. We will show that this two-step

estimator is asymptotically equivalent to the estimator obtained by applying the one-

dimensional smoother to a nonparametric regression model that only contains one

component.

We consider an additive regression model with observations

Y i ¼ m0 þ m1(X i
1) þ . . . þ mD(X i

D) þ � i, i ¼ 1, . . . , n: (1:1)

Here Y i are the response variables. The covariates X i ¼ (X i
1, . . . , X i

D) are assumed to be

random and to be independently and identically distributed. The density of X i is denoted by

p. Our results could be extended to a non-random design that approximately follows a

smooth design density p. For simplicity, we assume that the covariates X i
1, . . . , X i

D are one-

dimensional. We suppose that they lie in a bounded set that, without loss of generality, is

equal to [0, 1]. Also for simplicity we assume that the error variables � i are independent,

identically distributed and independent of X i
1, . . . , X i

D with E(� i) ¼ 0 and var(� i) ¼ � 2. Our

Bernoulli 12(2), 2006, 271–298

1350–7265 # 2006 ISI/BS



results can be extended to the case of independent non-identically distributed error variables

or to dependent errors that fulfil mixing conditions. The constant m0 and the functions

m1, . . . , mD are unknown. For identifiability we assume that

Emd(X i
d) ¼ 0, d ¼ 1, . . . , D: (1:2)

We will discuss optimal estimation of an additive component, m1, say. Many smoothing

estimators are available if there is only one component, that is, D ¼ 1. We will show that

asymptotically m1 can be estimated as well for D . 1 as for D ¼ 1. In other words,

consider an additive model with D . 1 and suppose that m2, . . . , mD are known. Then an

estimator m̂m of m1 can be constructed using the data (X i
1, Z i), where

Z i ¼ Y i � m2(X i
2) � . . . � mD(X i

D) (1:3)

¼ m0 þ m1(X i
1) þ � i:

The notation for estimates of m1 does not include the subscript 1 because, without loss of

generality, we treat only estimation of m1. For each member of a broad class of estimators m̂m

of m1 in the single-component model (1.3), we show that there is an estimator ~mm of m1 in the

multi-component model (1.1) that does not require knowledge of the functions m2, . . . , mD

and is asymptotically equivalent to m̂m. Thus, when estimating an additive component such as

m1 in a nonparametric regression model, one can do as well asymptotically when the other

components are unknown as when they are known. In particular, m̂m can be chosen with

asymptotically minimax L2 risk for m1 in a Sobolev ball. In the general model (1.1) where all

additive components are unknown, we call m̂m an ‘oracle estimator’. It is clear that one cannot

do better than m̂m in model (1.1). Our result implies that in model (1.1) there is an estimator

of m1 that achieves the oracle lower bound. That is, the estimator has the same first-order

asymptotic L2 risk as m̂m. We emphasize that this result is specific to nonparametric

estimation. It does not hold if the additive components are known up to finite-dimensional

parameters as in a linear model.

Our result generalizes a classical result on optimal rates of estimation in nonparametric

additive models. Stone (1985) showed that each additive component in an additive model

can be estimated with the asymptotically optimal L2 rate of convergence that is achievable

in the one-dimensional model (1.3). This was one of the main motivations for the use of

model (1.1). It was argued that additive fits give good insight into multivariate structure

while avoiding the curse of dimensionality.

Backfitting is a popular method for estimating nonparametric additive models; see Hastie

and Tibshirani (1991). Backfitting is based on iterative updates of the additive components.

A one-dimensional smoother is applied at each step. Opsomer and Ruppert (1997),

Opsomer (2000) and Mammen et al. (1999) have developed asymptotic theory for

backfitting estimators. Opsomer (2000) considered backfitting estimators that use local

polynomial estimators in the iterative updates of the additive components. He showed that

the backfitting estimator has a normal limiting distribution with the same variance as an

oracle local polynomial estimator (that is, a local polynomial estimator that uses knowledge

of the additive components m2, . . . , mD). However, the backfitting and oracle estimators

have different biases. Mammen et al. (1999) showed that after a modification of the
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backfitting algorithm, the estimators have the same asymptotic normal distribution. Linton

(2000) and Horowitz and Mammen (2004) present other two-step procedures that have the

same asymptotic bias and variance as an oracle estimator.

The asymptotically optimal L2 risk over Sobolev balls for model (1.1) with D ¼ 1 or,

equivalently, model (1.3) is well known. Nussbaum (1985) studied minimax risks for

equidistant designs and Gaussian noise. Golubev and Nussbaum (1990) and Efromovich

(1996) treated general designs and non-Gaussian errors. All these authors use the fact that

Sobolev balls can be represented as infinite-dimensional ellipsoids. Then they apply a result

of Pinsker (1980), who showed that minimax linear estimators over an ellipsoid are

asymptotically minimax in the class of all estimators. Belitser and Levit (1995) provide an

elementary proof of Pinsker’s result. Golubev (1992) considered minimax risks for

projection pursuit regression models. These models generalize additive models by replacing

the arguments X i
1, . . . , X i

D in the functions m1, . . . , mD with projections aT
1 X i, . . . , aT

D X i

with unknown projection vectors a1, . . . , aD. But Golubev (1992) treated only a regular

grid of equidistant design points. An equidistant design greatly simplifies the asymptotic

analysis of an additive model, because the additive components can then be estimated

directly by non-iterative smoothing methods. Nonetheless, the results of Golubev (1992)

motivate our analysis, because one may conjecture that asymptotically the difference

between regression models with equidistant and non-equidistant designs vanishes in the

limiting white noise experiment.

The remainder of this paper is organized as follows. Section 2 discusses the construction

of the preliminary estimator. Sections 3, 4 and 5, respectively, apply our approach to kernel,

smoothing spline and orthogonal series estimators. Section 6 presents our result on

asymptotic minimax estimation. Section 7 presents results of simulation experiments using

our approach to kernel smoothing. The proofs of our results are given in Section 8.

2. Preconditioning by presmoothing

Many smoothing methods are not affected to first order if observations are replaced by

averages over local neighbourhoods (presmoothing). This holds if the length of the local

neighbourhood is of higher order (converges to zero more rapidly) in presmoothing than in

final smoothing. This fact is the starting point of our comparison of experiments with

observations Y i from the additive model (1.1) and observations Z i from the oracle model

(1.3). We will replace Z i by local averages ẐZ i and will show that, with many smoothing

operators, smoothing of Z i and ẐZ i leads to asymptotically equivalent estimators. In

addition, in this section we construct values ŶY i that are based on backfitting of Y i and have

only higher-order differences from ẐZ i. We use this result in the sections that follow to show

that the results of smoothing ŶY i and ẐZ i are the same up to first order. This is a general

strategy for showing that, for a smoothing estimator based on Z i, there is a corresponding

asymptotically equivalent estimator based on Y i.

We now give a definition of the presmoothing values ẐZ i. We divide [0, 1] into Ln

intervals I l ¼ ((l � 1)=Ln, l=Ln], l ¼ 1, . . . , Ln. The indicator functions of these intervals

are denoted by I l(x). In our applications in the following sections, Ln will be chosen such
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that L�1
n is of smaller order than the smoothing of the estimator that is considered. Our

presmoothing estimator ẐZ i is defined as an average of Z i � Z:

ẐZ i ¼
Pn

r¼1(Z r � Z)I l(X r
1)Pn

r¼1 I l(X r
1)

, for X i
1 2 I l: (2:1)

Here, Z denotes the overall average n�1
Pn

i¼1 Z i. By construction, for each value of l, the

fitted value ẐZ i is constant for X i
1 2 I l. Therefore, ẐZ i may also be denoted by �̂� Z(l). This is a

regressogram estimator.

We now construct ŶY i. The construction is based on a least-squares fit of an additive

model. Define �̂�Y ,1(1), . . . , �̂�Y ,d(Ln) as minimizers of

Xn

i¼1

Y i � Y �
XD

d¼1

XLn

l¼1

�Y ,d(l)I l(X i
d)

" #2

: (2:2)

Here, Y denotes the overall average n�1
Pn

i¼1Y i. Observe also that �̂� Z(l) minimizes the least-

squares criterion function:

Xn

i¼1

Z i � Z �
XLn

l¼1

�Z(l)I l(X i
1)

" #2

:

In (2.2) we use the same interval partition I l (l ¼ 1, . . . , Ln) for all additive components.

This has been done for simplification of notation. For applications the arguments can easily

be extended to partitions that depend on d.

Because our focus is on the estimation of the first additive component, m1, we write

�̂�Y (l) instead of �̂�Y ,1(l) for l ¼ 1, . . . , Ln. For X i
1 2 I l, the value of �̂�Y (l) is also denoted by

ŶY i.

Our first result makes use of the following assumptions.

(A1) Ln n�1=2 log n ! 0 as n ! 1.

(A2) All covariates take values in a bounded interval, [0, 1], say. The one- and two-

dimensional marginal densities pd and pd,d9 of X i
d and (X i

d , X i
d9), respectively, are

bounded away from zero and infinity.

(A3) For all additive components md the first derivative exists almost surely and

satisfies
Ð

m9d(x)2 dx , 1 for d ¼ 1, . . . , D.

(A4) There is a finite constant C . 0 such that jmd(x) � md(y)j < Cjx � yj for each

d ¼ 1, . . . , D. Moreover, E[j� ij2þ�] , 1 for each i ¼ 1, . . . , n and some � . 0.

The next theorem gives a bound for the difference between ẐZ i and ŶY i. In the statement

of the theorem the conditional expectation given the covariates X 1, . . . , X n is denoted by

E�.

Theorem 1. Suppose that model (1.1) holds with (1.2) and that Z i is defined by (1.3).

(i) Under assumptions (A1), (A2) and (A3),
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E� 1

n

Xn

i¼1

ŶY i � ẐZ i
� �2

" #
¼ OP(L�2

n ): (2:3)

(ii) Under assumptions (A1), (A2) and (A4),

max
1<i<n

jŶY i � ẐZ ij ¼ OP(L�1
n ): (2:4)

Results similar to Theorem 1 hold for other constructions of the presmoothers ŶY i and ẐZ i.

In particular, ŶY i and ẐZ i could be constructed by using kernel smoothers or other orthogonal

series estimates. Kernel estimators should be undersmoothed, and overfitting should be used

for orthogonal series estimators. Mammen et al. (1999) discuss kernel smoothing of additive

models. Kernel estimators make sense if all additive components m1, . . . , md satisfy

smoothness conditions that are stronger than (A3) or (A4). We conjecture that sharper

bounds on ŶY i � ẐZ i can be obtained under these stronger conditions. We do not pursue this

here because our interest is in optimal estimation of m1 under minimal smoothness

assumptions about the other components. In particular, we want to allow the possibility that

m1 is smoother than the other components. In practice, the choice of the presmoother

should depend on the method that is used in the second step. For example, it is natural to

use a kernel presmoother if kernel smoothing is used in the second step. In this paper, we

discuss only the piecewise constant presmoothing of (2.1) and (2.2). This approach yields a

simple theory and works well, at least asymptotically, for a broad class of smoothing

methods and smoothness assumptions. Practical questions about our approach will be

discussed in another paper.

The conclusions of Theorem 1 hold uniformly over (sequences of) design densities and

regression functions if assumptions (A2)–(A4) are replaced with uniform versions. Instead

of (A2), one assumes that the one- and two-dimensional marginals are uniformly bounded

away from zero and infinity. Instead of (A3), one requires the L2 norm of the first derivative

to be uniformly bounded. In (A4), the same constant C must apply uniformly for all

additive components. Under these conditions, the conclusions of Theorem 1 apply to all

sequences of such functions. In part (i) of the theorem, for example, this is equivalent to

the statement that for every � . 0 there are a finite c . 0 and n0 . 0 such that

sup
p

sup
m1,...,mD

P L2
nE� 1

n

Xn

i¼1

ŶY i � ẐZ i
� �2

. c

 !
< �

for n > n0. The suprema are over all design densities and additive components that satisfy

the regularity conditions.

3. Kernel smoothing in additive models

Suppose m̂m is of the form
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m̂mK (x) ¼ n�1
Xn

i¼1

wi(x)(Z i � Z)

with random functions wi that may depend on X 1
1, . . . , X n

1 but that are independent of

�1, . . . , � n. We compare this estimator with

~mmK (x) ¼ n�1
Xn

i¼1

wi(x)ŶY i:

We will now state assumptions under which the differences between these estimators are

asymptotically negligible relative to m̂mK � m1.

(A5) The following conditions hold:

sup
0<x<1

n�1
Xn

i¼1

jwi(x)j ¼ OP(1),

sup
0<i<n

ð1

0

jwi(x)jdx ¼ OP(1):

(A6) There exist (random) functions ur ( 1 < r < n), depending on X 1
1, . . . , X n

1 and n,

and a sequence rn . 0 with

sup
1<s<n,jX r

1�X s
1j<L�1

n

jwr(x) � ws(x)j < L�1
n ur(x), (3:1)

n�1

ð1

0

Xn

i¼1

ui(x)2 dx ¼ OP(r2
n): (3:2)

(A7) The condition:

sup
0<x<1,1<i<n

jui(x)j ¼ OP(n1=2�ªr1=2
n ) (3:3)

holds for a constant ª . 0 with Ej� ij� , 1 for some � . 1=ª.

Theorem 2. Suppose that model (1.1) holds with (1.2) and that Z i is defined by (1.3).

(i) Under assumptions (A1)–(A3), (A5) and (A6)ð1

0

m̂mK (x) � ~mmK (x)½ �2 dx ¼ OP(L�2
n r2

n n�1 þ L�2
n ): (3:4)

(ii) Under assumptions (A1), (A2) and (A4)–(A7),

sup
0<x<1

jm̂mK(x) � ~mmK(x)j ¼ OP(L�1
n rn n�1=2

ffiffiffiffiffiffiffiffiffiffi
log n

p
þ L�1

n ): (3:5)

We now briefly discuss the application of Theorem 2 to Nadaraya–Watson and local

polynomial estimators. A local polynomial estimator m̂m
j
LP,q,h is defined by the following

minimization problem:
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(a0, . . . , aq) ¼ arg min
Xn

i¼1

Z i � Z i � a0 � (X i
1 � x)a1 � . . . � (X i

1 � x)qaq

� �2
K h(X i

1 � x):

We denote the minimum by m̂m
j
LP,q,h(x) ¼ a j. Here K h(u) ¼ h�1 K(h�1u) is a kernel with

bandwidth h. The quantity m̂m
j
LP,q,h(x) is the local polynomial estimator of the jth derivative of

m1 at x. We now define ~mm j
LP,q,h(x) as m̂m

j
LP,q,h(x) but with Z i � Z i replaced by ŶY i. We make

the following assumptions on the kernel K and bandwidth h.

(A8) The kernel function K is a probability density function with a compact support,

say [�1, 1], and an absolutely bounded derivative. The density p1 is continuous.

(A9) For constants c1 . 0, c2 . 0 and 0 , Æ2 < Æ1 , 1=3, the bandwidth satisfies

c1 n�Æ1 < h < c2 n�Æ2 :

In addition, in part (ii) of Theorem 3 we assume that:

(A10) Ej� ij� , 1 for some � . 2(1 � Æ1)�1.

The following theorem states our results for local polynomial smoothing.

Theorem 3. Suppose that model (1.1) holds with (1.2) and that Z i is defined by (1.3).

(i) Let assumptions (A1)–(A3), (A8) and (A9) hold. For q > 1 and 0 < j < q,

h2 j

ð1

0

m̂m
j
LP,q,h(x) � ~mm j

LP,q,h(x)
h i2

dx ¼ OP(L�2
n ): (3:6)

(ii) Let assumptions (A1), (A2), (A4), (A8) and (A10) hold. The following result holds

for c1, c2 . 0, 0 , Æ2 < Æ1 , 1=3, q > 1 and 0 < j < q.

sup
0<x<1,c1 n�Æ1<h<c2 n�Æ2

h jjm̂m j
LP,q,h(x) � ~mm j

LP,q,h(x)j ¼ OP(L�1
n ): (3:7)

Theorem 3 shows that the asymptotic theory of local polynomials in the classical

nonparametric regression model carries over to our estimator in the additive model. The

first-order difference between our two-step estimator and the oracle estimator can be made

to be of nearly parametric order. Theorem 3 can be also applied to plug-in data-adaptive

bandwidth choices. For an r times differentiable regression function the bandwidth h that

minimizes the asymptotic mean integrated square error depends on known quantities, the

variance of � and
Ð

m
(r)
1 (x)2 dx. The variance can be estimated in the additive model by

average of the squared residuals. In a conventional nonparametric regression model,Ð
m

(r)
1 (x)2 dx can be estimated consistently by

Ð
m̂mr

LP,r,h(x)2 dx if
Ð

m
(r)
1 (x)2 dx , 1 and, as

n ! 1, h ! 0 and nhr ! 1. Theorem 3(i) implies that in the additive model, the

estimator
Ð
~mmr

LP,r,h(x)2 dx is consistent under the same conditions. Theorem 3(ii) shows that

the asymptotic performance of the local polynomial estimator ~mm0
LP,r,h is the same with the

plug-in bandwidth as it is with the asymptotically optimal bandwidth. This is because the

asymptotic performance of the oracle estimator m̂m0
LP,r,h is the same with the plug-in and
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asymptotically optimal bandwidths. Note that we obtain all of these results using only

Lipschitz continuity (assumption A4) of the components m2, . . . , mD.

4. Smoothing splines in additive models

Now suppose that m̂m is a smoothing spline. That is,

m̂mS ¼ arg min
m
kZ � Z � mk2

n þ º2
n J2

k(m),

where

kZ � Z � mk2
n ¼ 1

n

Xn

i¼1

Z i � Z � m(X i
1)

� �2
and

J 2
k(m) ¼

ð
m(k)(u)2 du:

We make the following assumption about the smoothing parameter and the error distribution.

(A11) The smoothing parameter ºn satisfies º�1
n ¼ OP(nk=(2kþ1)). It may be random and

it is allowed to depend on the data. The error variables have sub-Gaussian tails.

This means E exp(t�2
i ) is finite for t . 0 small enough. The function m1 has a

kth derivative with J k(m1) , 1.

Under (A11) (see van de Geer 2000, Theorem 10.2) the estimator m̂mS achieves rate ºn:

km̂mS � m1kn ¼ OP(ºn), (4:1)

J k(m̂mS) ¼ OP(1): (4:2)

The estimator m̂mS achieves an optimal rate if ºn is of order n�k=(2kþ1). Then

km̂mS � m1kn ¼ OP(n�k=(2kþ1)).

We compare the estimate m̂mS with

~mmS ¼ arg min
m
kŶY � mk2

n þ º2
n J2

k(m):

The next theorem states that the differences between these estimates are asymptotically

negligible.

Theorem 4. Suppose that model (1.1) holds with (1.2) and that Z i is defined by (1.3). Then,

under assumptions (A1)–(A3) and (A11),
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km̂mS � ~mmSk2
n ¼ OP(n�1=2 L�(2k�1)=(2k)

n þ L�2
n ), (4:3)

ð1

0

m̂mS(x) � ~mmS(x)½ �2 dx ¼ OP(n�1=2 L�(2k�1)=(2k)
n þ L�2

n ), (4:4)

J2
k m̂mS � ~mmSð Þ ¼ OP(º�1

n n�1=2 L�(2k�1)=(2k)
n þ L�2

n ): (4:5)

The right-hand side of (4.3) is oP(n�2k=(2kþ1)) if L�1
n ¼ o(n�k=(2kþ1)). Such a choice is

possible under our conditions. So we obtain the result that in the additive model an estimate

can be constructed that is asymptotically equivalent to a smoothing spline in the oracle

model (1.3). If the smoothing parameter ºn is of optimal order n�k=(2kþ1), we further have

that J2
k m̂mS � ~mmSð Þ ¼ oP(1):

5. Orthogonal series estimates in additive models

We now consider orthogonal series estimates. For basis functions en, j, the estimate m̂mO is

defined as

m̂mO(x) ¼
XJ n

j¼1

ºn, jŁ̂Łn, jen, j, (5:1)

where Ł̂Łn ¼ (Ł̂Łn,1, . . . , Ł̂Łn,J n
) minimizes

1

n

Xn

i¼1

Z i � Z �
XJ n

j¼1

Łn, jen, j(X i
1)

" #2

, (5:2)

and where the ºn, j are (random) shrinkage factors that may depend on X 1, . . . , X n but are

independent of �1, . . . , � n.

We make the following assumptions.

(A12) The functions en, j are an orthonormal system of differentiable functions on

L2([0, 1]). Moreover,

1

n

XJ n

j, j9¼1

ð
en, j(x)2en, j9(x)2 dx ¼ o(1),

sup
1< j<J n

ð
e9n, j(x)2 dx ¼ OP(Dn),

for a sequence Dn of positive numbers.

We assume that the en, j are orthonormal with respect to Lebesgue measure on [0, 1]. This

assumption is made for simplicity and could be achieved for other function systems by

orthogonalization.

(A13) The shrinkage factors ºn, j satisfy
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max
1< j<J n

jºn, jj ¼ OP(1):

We compare the estimate m̂mO with ~mmO ¼
PJ n

j¼1 ºn, j
~ŁŁ jen, j where ~ŁŁ ¼ (~ŁŁ1, . . . , ~ŁŁJ n

) minimizes

1

n

Xn

i¼1

ŶY i �
XJ n

j¼1

Ł jen, j(X i
1)

" #2

: (5:3)

The following theorem states that the differences between these estimates are asymptotically

negligible.

Theorem 5. Suppose that model (1.1) holds with (1.2) and that Z i is defined by (1.3). Then,

under assumptions (A1)–(A3), (A12) and (A13),

km̂mO � ~mmOk2
n ¼ OP(L�2

n þ Dn L�2
n J n n�1), (5:4)

ð1

0

m̂mO(x) � ~mmO(x)½ �2 dx ¼ OP(L�2
n þ Dn L�2

n J n n�1): (5:5)

We will check the assumptions of Theorem 5 for two examples: one with basis functions

that localize in the frequency domain, and a second with orthonormal functions that localize

in the space and frequency domains. Our first example is a Fourier basis on [0, 1]. Then

en,0(x) ¼ 1, (5:6)

en, j(x) ¼
ffiffiffi
2

p
cos j�xð Þ, for 1 < j < J n: (5:7)

Here, J n diverges to 1 for n ! 1. It is easy to check that for this basis and if J 2
n=n ¼ o(1),

the assumptions of Theorem 5 hold with Dn ¼ J 2
n. For r times differentiable functions

(r > 1) optimal rates are achieved by choosing J n of order n1=(2rþ1). For such choices we

obtain from Theorem 5 that km̂mO � ~mmOk2
n ¼ OP(L�2

n ). For Ln ! 1 fast enough this

difference is asymptotically negligible because km̂mO � m1k2
n ¼ OP(n�2r=(2rþ1)) for r times

differentiable functions m1.

Our second example is a local Fourier basis. We will use orthogonal series estimates with

this basis in the next section to show that in additive models, the same L2 minimax risk can

be achieved as in the oracle model (1.3). Wavelets are an example of a basis that localizes

in the time and frequency domains. Calculation of empirical wavelet coefficients by

minimizing the empirical norm (5.3) is algorithmically feasible only for equidistant designs.

For non-equidistant designs, it has been proposed to minimize (5.3) for preconditioned data.

These methods are not covered by Theorem 5. Results on rate optimality of wavelet

threshold estimates in additive regression models can be found in Zhang and Wong (2003).

The local Fourier basis is defined as follows. Let
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et0(x) ¼

ffiffiffiffi
T

p
, for

t � 1

T
< x ,

t

T
,

0, otherwise,

8><
>: (5:8)

ets(x) ¼

ffiffiffiffiffiffi
2T

p
cos s�T x � t � 1

T

� �� 	
, for

t � 1

T
< x ,

t

T
,

0, otherwise,

8>><
>>: (5:9)

where 1 < t < T , 1 < s < S with T and S possibly depending on n. Now the dimension J

of the basis is of order O(TS). It is easy to check that for this basis, the assumptions of

Theorem 5 hold with Dn ¼ J 2 if (TS)2=n ¼ o(1) as n ! 1. In the next section we will

apply Theorem 5 to a local Fourier basis with T of order n1=(2rþ1) and (approximately)

constant S. Then for r times differentiable functions m1, the error km̂mO � m1k2
n is of order

OP(n�2r=(2rþ1)). From Theorem 5 we obtain that km̂mO � ~mmOk2
n ¼ OP(L�2

n ). For Ln ! 1 fast

enough this difference is asymptotically negligible. So again we have that m̂mO and ~mmO have

the same first-order asymptotic performance.

6. Asymptotic minimax estimation in additive models

In Section 5 we showed that when the estimators m̂mO for the oracle model (1.3) and ~mmO for

the additive model (1.1) are based on empirical coefficients of a local Fourier basis, then

m̂mO and ~mmO have the same first-order L2 risk. In this section we show that in the oracle

model, asymptotic minimax risks can be achieved by local Fourier basis estimators. This

implies that in model (1.1), ~mmO achieves the asymptotic minimax risk of m̂mO in model

(1.3). Therefore, models (1.1) and (1.3) have the same asymptotic minimax risk. Not

knowing m2, . . . , mD in (1.1) leads to no loss of first-order asymptotic efficiency.

For the additive model (1.1) we make the assumption that the additive components lie in

Sobolev balls. For d ¼ 1, . . . , D we assume that

md 2 Sd ¼ g : R ! R






ð

g(rd )(x)
� �2

dx < Cd

� �
, (6:1)

where rd > 1 are integers and Cd . 0 are positive constants.

Furthermore we assume that for a constant C . 0 and a function ª : [0, 1] ! [0, 2] with

limu!0 ª(u) ¼ 0 the design density p1 of X i
1 lies in a class F1 where F1 is the set of

densities p1 on [0, 1] that are bounded from above by C and from below by C�1 and that

fulfil the uniform continuity condition j p1(u) � p1(v)j < ª(ju � vj) for 0 < u, v < 1.

We define the asymptotic minimax risk r ¼ r( p1) by the condition

lim
n!1

n2r1=(2r1þ1)inf
m1

sup
p12F1

r( p1)�1 sup
m12S1

E

ð1

0

(m1(x) � m1(x))2 dx ¼ 1,
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where the infimum runs over all estimates m1 based on observations Z1, . . . , Z n in model

(1.3). In model (1.3) we have for Gaussian errors � i,

r ¼ r( p1) ¼ (2r1 þ 1)C1

� 2 r1

�(r1 þ 1)

ð1

0

p�1
1 (x)dx

� 	2r1
( )1=(2r1þ1)

: (6:2)

Equation (6.2) was proved by Efromovich (1996, Theorem 2.1); see also Golubev and

Nussbaum (1990), where only non-random ‘locally equispaced’ designs were considered.

Our next result states that the asymptotic Gaussian minimax risk is achieved by a

shrinkage estimator ~mm1 with appropriately chosen shrinkage factors º t,s. For simplicity, we

only consider conditional L2 risks, where we condition on the values of the design variables.

As above, in the statement of the proposition the conditional expectation given the

covariates X 1, . . . , X n is denoted by E�.

Proposition 1. Suppose that for d ¼ 1 model (1.3) holds with (1.2). Then there exist

constants c and S and (random) choices of º t,s (that depend only on the design variables, on

the constants C1, r1 and on the error variance � 2) with 0 < º t,s < 1 such that the following

bound holds uniformly over p1 2 F1 and over m1 2 S1:

n2r1=(2r1þ1)r( p1)�1E�
ð1

0

(m̂mO(x) � m1(x))2 dx < 1 þ o p 1ð Þ: (6:3)

Here r( p1) is defined as in (6.2). The shrunken orthogonal polynomial estimate m̂mO is defined

as in (5.1) with local Fourier basis (5.8), (5.9) with S and with T ¼ Tn ¼ bc�1 n1=(2r1þ1)c
where the integer part of a real number x is denoted by bxc.

Uniformity in Proposition 1 means that for every k . 0,

lim
n!1

sup
p12F1

sup
m12S1

P n2r1=(2r1þ1)r( p1)�1E�
ð1

0

(m̂m1(x) � m1(x))2 dx . 1 þ k
� 	

¼ 0:

From the previous section and Proposition 1 we immediately obtain that, for ~mmO with c,

S and º t,s as in Proposition 1,

n2r1=(2r1þ1)r( p1)�1E�
ð1

0

( ~mmO(x) � m1(x))2 dx < 1 þ o p 1ð Þ:

This result holds uniformly over p 2 F and over m1 2 S0
1, . . . , mD 2 S0

D. Here for a fixed

constant C and a fixed function ª : [0, 1] ! [0, 2] with limu!0 ª(u) ¼ 0 the class F is the

set of densities p on [0, 1]D that have one- and two-dimensional marginals pd , pd,d9

(1 < d, d9 < D) bounded from above by C and from below by C�1 and that, for the first

argument, have a marginal p1 with j p1(u) � p1(v)j < ª(ju � vj) for 0 < u, v < 1.

Furthermore, S0
d ¼ Sd \ fmd : Emd(X1

d) ¼ 0g.

We reformulate this result as the following theorem.

Theorem 6. Under the conditions of Proposition 1 there exists an estimator ~mmO in the

additive model (1.1) with
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n2r1=(2r1þ1)r( p1)�1E�
ð1

0

( ~mmO(x) � m1(x))2 dx ¼ 1 þ o p 1ð Þ

uniformly over p 2 F and over m1 2 S0
1, . . . , mD 2 S0

D.

For Gaussian errors, Theorem 6 shows that in an additive model there exists an estimator

that achieves the same asymptotic minimax risk as for a classical regression model with one

regression component. This means that asymptotically no information is lost by the

introduction of additive components. But Theorem 6 and Proposition 1 are only of interest

for Gaussian errors. For non-Gaussian errors better asymptotic minimax constants can be

achieved by using local likelihood methods; see Golubev and Nussbaum (1990). We

conjecture that at the cost of some rather technical considerations these results can be

generalized to additive models with non-Gaussian errors. Another possible generalization

concerns data-adaptive choices of the weights º t,s. The weights depend on the constants C1,

r1 and on the error variances � 2 that are typically unknown. Data-adaptive estimates ofÐ
(m

(r1)
1 (x))2 dx and � 2 can be easily achieved as discussed for kernel smoothing in Section

3. These estimates can be plugged into the definition of the weights º t,s. An extension of

Theorem 6 to estimates ~mmO with these data-adaptive choices of º t,s would require bounds

on ~mmO � m̂mO that hold uniformly over possible choices of º t,s. Compare also with Section 3,

where bounds on ~mmLP,h � m̂mLP,h are stated that hold uniformly for possible choices of the

bandwidths h. Extensions of our results to data-adaptive choices of r1 could be done along

the same lines as the construction in Efromovich and Pinsker (1984) and Golubev (1987).

But the mathematics would be technically rather involved.

7. Simulations

We generated two-dimensional regression data (Y i, X i
1, X i

2), i ¼ 1, . . . , n, where Y i ¼
m1(X i

1) þ m2(X i
2) þ � i, and � i are independent, identically distributed standard Gaussian.

The design variables (X i
1, X i

2) are Gaussian, truncated to [�1, 1], with standard deviations

�1 ¼ �2 ¼ 1 and correlation r ¼ 0:8. The first component m1(x1) ¼ x2
1, x1 2 [�1, 1], of the

regression function is shown as a thick solid line in Figures 1 and 2. The second component

of the regression function is m2(x2) ¼ x3
2, x2 2 [�1, 1].

We considered the kernel regression estimation with the quartic kernel (Bartlett kernel).

Three estimators were studied:

1. Estimator ~mm1 is the kernel estimator applied to the data ŶY i which was obtained by

backfitting the presmoothed data. We draw the estimator ~mm1 with a dashed line.

2. Estimator m̂m1 is the kernel estimator based on smoothing of Z i � Z, where

Z i ¼ m1(X i
1) þ � i are the oracle data. We draw the estimator m̂m1 with a thin solid

line.

3. We study also the kernel estimator m1, which was constructed from the presmoothed

oracle data ẐZ i. We draw this estimator with a dotted line.

Figure 1 shows the results for 10 000 samples of size n ¼ 250. The smoothing parameter was
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h ¼ 0:42 and the number of bins used in presmoothing was Ln ¼ 12. The bandwidth

h ¼ 0:42 minimizes the mean integrated squared error of the oracle estimate m̂m. Its value was

determined by simulations. The number of backfitting steps in the presmoothing of the

calculation of ~mm1 was 7. We show estimates constructed from three Monte Carlo samples.

The samples were chosen so that they correspond to the sample quantiles of the normalized

difference of the integrated squared error

ndISE ¼
ð1

0

(m1 � ~mm1)2 �
ð1

0

(m1 � m̂m1)2

� �
ð1

0

(m1 � m̂m1)2:

The 0.25, 0.5 and 0.75 quantiles are shown.

Figure 2 shows the results for 10 000 samples of size n ¼ 500. The smoothing parameter

was h ¼ 0:34 and the number of bins in presmoothing was Ln ¼ 16. Again the 0.25, 0.5

and 0.75 quantiles are shown. The bandwidth h ¼ 0:34 minimizes the mean integrated

squared error of the oracle estimate m̂m and was determined by simulations.

The simulations show that the two-step procedure works quite well. We conjecture that

the finite-sample performance of the two-step procedure could be improved by using some

��� ��� ���

Figure 1. Results for sample size n ¼ 250; three estimates of m1 from three Monte Carlo samples: (a)

0.25 quantile; (b) 0.5 quantile; (c) 0.75 quantile. The dashed line shows ~mm1, the thin solid line shows

m̂m1, the dotted line shows m1, and the thick solid line shows m1.

��� ��� ���

Figure 2. Results for sample size n ¼ 500; three estimates of m1 from three Monte Carlo samples: (a)

0.25 quantile; (b) 0.5 quantile; (c) 0.75 quantile. The dashed line shows ~mm1, the thin solid line shows

m̂m1, the dotted line shows m1, and the thick solid line shows m1.
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more refined methods. In particular, more advanced smoothing methods could be used in

the presmoothing instead of our crude piecewise constant estimate. Our presmoothing

method was chosen mainly to allow a rather general and simple asymptotic theory.

Furthermore, a smaller bandwidth should be used in the second step to account for the

smoothing of the first step. We conjecture that then the two step estimate will be closer to

the oracle estimate. Note that the bandwidth was optimized for the oracle estimate.

Figure 3 shows the effect of the number of bins used in the presmoothing. We draw the

simulated means of ndISE as function of the number of bins. The open circles show the

results for sample size n ¼ 250 and the filled circles show the results for sample size

n ¼ 500. The smoothing parameters were, as before, h ¼ 0:42 for n ¼ 250 and h ¼ 0:34

for n ¼ 500. We generated 10 000 samples. The performance of the two-step estimate

depends on the choice of Ln. For both sample sizes there is a clear minimum. For n ¼ 250

the best number of bins is about Ln ¼ 12, and for n ¼ 500 the best number is about

Ln ¼ 16. It is an open problem how Ln can be chosen depending on the data. Theoretically

this is a very technical problem because the optimal choice depends on second-order

properties of the two-step procedure. Practically it is complicated by the fact that the

optimal Ln depends on the bandwidth h chosen in the second step (and the optimal h

depends on Ln).

8. Proofs

8.1. Proof of Theorem 1

We start by decomposing Y i and Z i into signal and error components:

Y i ¼ Y þ T i
1 þ T i

2 þ �i � �, (8:1)

Z i ¼ Z þ U i
1 þ U i

2 þ �i � �, (8:2)

Figure 3. The ndISE as a function of the number of bins Ln.

Optimal estimation in additive regression models 285



where

T i
1 ¼ m1(X i

1) � m1 � �̂�1,i þ . . . þ mD(X i
D) � mD � �̂�D,i,

U i
1 ¼ m1(X i

1) � m1 � �̂�1,i,

md ¼ 1

n

Xn

i¼1

md(X i
d),

�̂�d,i ¼
Pn

r¼1 md(X r
d) � md

� �
I l(X r

d)Pn
r¼1 I l(X r

d)
, for X i

d 2 I l,

T i
2 ¼ �̂�1,i þ . . . þ �̂�D,i,

U i
2 ¼ �̂�1,i,

� ¼ 1

n

Xn

i¼1

� i:

Note that for d ¼ 1, . . . , D, the function �̂�d,i (as a function of X i
d) is a piecewise constant fit

of md(X i
d) � md (as ẐZ i is of Zi � Z).

For a vector V ¼ (V i)n
i¼1 we introduce linear transformations S and R. The ith element

of S(V ) is defined by

S(V )i ¼
Pn

r¼1(V r � V )I l(X r
1)Pn

r¼1 I l(X r
1)

, for X i
1 2 I l:

Here V is defined as n�1
Pn

i¼1V i. Note that ẐZ ¼ S(Z).

The ith element of R(V ) is defined by

R(V )i ¼
XLn

l¼1

�1, l I1(X i
1),

where �1,1, . . . , �D,Ln
minimizes

Xn

i¼1

V i � V �
XD

d¼1

XLn

l¼1

�d, l I d(X i
d)

" #2

:

Note that ŶY ¼ R(Y ).

Because R and S are linear operators we have that

ŶY ¼ R(T1) þ R(T2) þ R(�), (8:3)

ẐZ ¼ S(U1) þ S(U2) þ S(�): (8:4)

For part (i) of the theorem we have to show that

E�kŶY � ẐZk2 ¼ OP(L�2
n ), (8:5)
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where kVk2 ¼ n�1
Pn

i¼1(V i)2. We will show that

E�kR(T1)k2 ¼ OP(L�2
n ), (8:6)

E�kS(U1)k2 ¼ OP(L�2
n ), (8:7)

R(T2) ¼ S(U2), (8:8)

E�kR(�) � S(�)k2 ¼ OP(L�2
n ): (8:9)

These claims immediately imply (8.5) and therefore statement (i) of Theorem 1. Claim (8.8)

directly follows from the definition of the operators S and R and the structure of U2 and T2.

Note that R(T2)i ¼ �̂�1,i ¼ U i
2 ¼ S(U2)i. For the proof of (8.7) note that E�kU1k2 ¼ OP(L�2

n ).

Because S is a projection, kS(U1)k < kU1k. This implies (8.7). For the proof of statement (i)

of Theorem 1 it remains to show (8.6) and (8.9). For the proof of (8.9) we apply Theorems 1

and 2 in Mammen et al. (1999). We will show that

sup
1< l<Ln





Ln n�1
Xn

i¼1

I l(X i
d) � f d(l=Ln)





 ¼ oP(1), for 1 < d < D, (8:10)

sup
1< l,r<Ln





L2
n n�1

Xn

i¼1

I l(X i
d)I r(X i

d9) � f d,d9(l=Ln, r=Ln)





 ¼ oP(1), for 1 < d , d9 < D,

(8:11)

E�kWd,d9k2 ¼ OP(n�1), for d 6¼ d9, (8:12)

where Wd,d9 is defined by

W i
d,d9 ¼ n�1

Xn

j¼1

� jar,d,d9(X
j
d), for X i

d9 2 I r, (8:13)

ar,d,d9(x) ¼ n
XLn

l¼1

Xn

k¼1

I l(x)I l(X k
d)I r(X k

d9)Pn
t¼1 I l(X t

d)
Pn

t¼1 I r(X t
d9)

:

Claims (8.10) and (8.11) imply that R(�) can be calculated by backfitting. The backfitting

algorithm converges with exponential rate. Compare (8.10) and (8.11) with conditions A1–

A2 in Mammen et al. (1999) and apply their Theorem 1. Terms of type Wd,d9 appear in the

first step of the backfitting algorithm for the calculation of R(�) if one starts the algorithm

with S(�) as starting value. If these terms are of higher order then the difference

kR(�) � S(�)k is of the same higher order; see the proof of (93) in the proof of Lemma 4 in

Mammen et al. (1999). This can be used to show that (8.10)–(8.12) imply (8.9). Claims

(8.10)–(8.12) also imply that the backfitting operator has operator norm strictly less than 1;

see Lemma 2 in Mammen et al. (1999). For this reason claim (8.6) follows from

E�kT1k2 ¼ OP(L�2
n ). So for the first part of Theorem 1 it remains to check (8.10)–(8.12).
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Claims (8.10)–(8.11) follow by application of Bernstein’s inequality; see Shorack and

Wellner (1986). For a proof of (8.12) one uses

sup
r,d,d9,x

jar,d,d9(x)j ¼ OP(1): (8:14)

We now come to the proof of part (ii) of Theorem 1. We again use decomposition (8.3)–

(8.4). Claim (2.4) follows from (8.8) and

kR(T1)k1 ¼ OP(L�1
n ), (8:15)

kS(U1)k1 ¼ OP(L�1
n ), (8:16)

kR(�) � S(�)k1 ¼ OP

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !
, (8:17)

where kVk1 ¼ max1<i<njV ij denotes the supremum norm. Claim (8.16) directly follows

from kU1k1 ¼ OP(L�1
n ). Claim (8.15) can be shown by using kT1k1 ¼ OP(L�1

n ),

kT1k2 ¼ OP(L�2
n ) and the fact that the backfitting operator has norm strictly less than 1

(see above) and maps functions with bounded L2 norm into functions with bounded L1
norm; see equation (86) in Mammen et al. (1999). For a proof of (8.17) one checks first that

kWd,d9k1 ¼ OP

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !
: (8:18)

Then with (8.10)–(8.11) and our assumptions, claim (8.17) follows by Theorem 2 in

Mammen et al. (1999). It remains to check (8.18). This can be done by replacing � i in (8.13)

by variables that are absolutely bounded by n1=2�ª for a ª . 0 small enough and by using

(8.14). Then claim (8.18) follows by application of the Bernstein inequality.

8.2. Proof of Theorem 2

For the proof of (3.4), note first that

ð
m̂mK (x) � ~mmK (x)½ �2 dx < 2

ð
1

n

Xn

i¼1

wi(x) Z i � Z � ẐZ i
� �" #2

dx

þ 2

ð
1

n

Xn

i¼1

wi(x) ẐZ i � ŶY i
� �" #2

dx:

The second term on the right-hand side can be bounded by

2 sup
0<x<1

1

n

Xn

i¼1

jwi(x)j
ð

1

n

Xn

i¼1

jwi(x)j ẐZ i � ŶY i
� �2

dx:
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This is of order OP(L�2
n ) by condition (A5) and Theorem 1. It remains to bound the first term

on right-hand side of (8.19). By definition of ẐZ i, we obtain

1

n

Xn

i¼1

wi(x) Z i � Z � ẐZ i
� �

(8:19)

¼ 1

n

Xn

i¼1

wi(x) � wi(x)½ � Z i � Z � ẐZ i
� �

¼ 1

n

Xn

i¼1

wi(x) � wi(x)½ �Z i

¼ 1

n

Xn

i¼1

wi(x) � wi(x)½ �m1(X i
1) þ 1

n

Xn

i¼1

wi(x) � wi(x)½ ��i,

where

wi(x) ¼
Pn

r¼1wr(x)I l(X r
1)Pn

r¼1 I l(X r
1)

for X i
1 2 I l. Thus for (3.4) it suffices to show that

ð
1

n

Xn

i¼1

wi(x) � wi(x)½ �m1(X i
1)

" #2

dx ¼ OP(L�2
n ), (8:20)

ð
1

n

Xn

i¼1

wi(x) � wi(x)½ �� i

" #2

dx ¼ OP(L�2
n r2

n n�1): (8:21)

Claim (8.21) immediately follows from (A6). For the proof of claim (8.20) we make use of

(A3).

For the proof of claim (3.5) we note first that (see (8.19))

m̂mK (x) � ~mmK(x) ¼ 1

n

Xn

i¼1

wi(x) ẐZ i � ŶY i
� �

þ 1

n

Xn

i¼1

wi(x) � wi(x)½ �m1(X i
1) þ 1

n

Xn

i¼1

wi(x) � wi(x)½ ��i:

The supremum norm on the terms of the right-hand side can be easily bounded by using the

results of Theorem 1 or condition (A4) for the first or second term, respectively. For the third

term one uses condition (A7). This term can be bounded by first replacing � i by variables that

are absolutely bounded by nª9 for a ª9 , ª. Then by application of the Bernstein inequality

one can show that the term is of order OP(L�1
n rn n�1=2

ffiffiffiffiffiffiffiffiffiffi
log n

p
).
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8.3. Proof of Theorem 3

Note that

h j m̂m
j
LP,q,h(x)

� �
j¼0,...,q

¼ P̂Ph(x)�1 r̂r
j
h(x)

� �
j¼0,...,q

,

h j ~mm j
LP,q,h(x)

� �
j¼0,...,q

¼ P̂Ph(x)�1 ~rr j
h(x)

� �
j¼0,...,q

,

where

r̂r
j
h(x) ¼ n�1

Xn

i¼1

(X i
1 � x) j h� j K h(X i

1 � x)(Z i � Z i),

~rr j
h(x) ¼ n�1

Xn

i¼1

(X i
1 � x) j h� j K h(X i

1 � x)ŶY i,

and where P̂Ph(x) is a (q þ 1) 3 (q þ 1) matrix with elements

P̂Ph(x) j,k ¼ n�1
Xn

i¼1

(X i
1 � x) jþk h� j�k K h(X i

1 � x)

for 0 < j, k < q. Using standard smoothing theory, one can show that

sup
0<x<1,c1 n�Æ1<h<c2 n�Æ2

jP̂Ph(x) � E[P̂Ph(x)]j ¼ oP(1),

where j(aij)j ¼ supi, jjaijj for a matrix (aij). The matrices E[P̂Ph(x)] have eigenvalues that are

uniformly bounded from below and from above. Thus,

sup
0<x<1,c1 n�Æ1<h<c2 n�Æ2

jP̂Ph(x)�1 � E[P̂Ph(x)]�1j ¼ oP(1):

Therefore it suffices for (3.6) and (3.7) thatð1

0

r̂r
j
h(x) � ~rr j

h(x)
� �2

dx ¼ OP(L�2
n ) (8:22)

or

sup
0<x<1,c1 n�Æ1<h<c2 n�Æ2

j r̂r j
h(x) � ~rr j

h(x)j ¼ OP(L�1
n ), (8:23)

respectively. We now verify the conditions of Theorem 2. By standard smoothing theory one

can check that under condition (A8) for a fixed sequence of bandwidths h with

c1 n�Æ1 < h < c2 n�Æ2 the weights wi(x) ¼ (X i
1 � x) j h� j K h(X i

1 � x) satisfy (A5) and (A6)

with rn ¼ n3Æ1=2. Because of r2
n n�1 ! 0, by (A9), application of Theorem 2(i) gives (8.22).

For the proof of (8.23) note first that, for sequences of bandwidths h with

c1 n�Æ1 < h < c2 n�Æ2 , (A8) and (A10) imply (A7), again with rn ¼ n3Æ1=2. Therefore we

obtain from Theorem 2(ii) for a fixed sequence of bandwidths that
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sup
0<x<1

j r̂r j
h(x) � ~rr j

h(x)j ¼ OP(L�1
n ):

By using a generalization of Theorem 2 which states uniformity over classes of weight

functions one shows (8.23). This generalization can be proved by a slight change of the

arguments in the proof of Theorem 2.

8.4. Proof of Theorem 4

For M i
1 ¼ m1(X i

1) define

M̂M i
1 ¼

Pn
r¼1(M r

1 � M1)I l(X r
1)Pn

r¼1 I l(X r
1)

for X i
1 2 I l, where M1 denotes the overall average n�1

Pn
i¼1 M i

1. Similarly, define �̂�. With this

notation we can write ẐZ ¼ M̂M1 þ �̂�.

Put

m̂mU ¼ arg min
m

V (U , m),

where

V (U , m) ¼ kU � mk2
n þ º2

n J2
k(m):

Then

m̂mS ¼ m̂m
Z�Z

,

~mmS ¼ m̂mŶY :

Now because of kŶY � ẐZk2
n ¼ OP(L�2

n ) – see Theorem 1 – we obtain

k ~mmS � m̂m ẐZk
2
n ¼ km̂mŶY � m̂m ẐZk

2
n ¼ OP(L�2

n ):

So it remains to compare m̂m ẐZ ¼ m̂mM̂M1
þ m̂m�̂� with m̂mS ¼ m̂m Z�Z ¼ m̂mM1�M1

þ m̂m���. It follows

from (A3) that kM1 � M1 � M̂M1k2 ¼ OP(L�2
n ). So we have

km̂m
M1�M1

� m̂mM̂M1
k2

n ¼ OP(L�2
n ):

So for (4.3) it suffices to show that

km̂m�̂� � m̂m���k2
n ¼ OP(n�1=2 L�(2k�1)=(2k)

n ): (8:24)

For the proof of (8.24) we show first that, for all c . 0,

sup
m2Mc





V (�� �, m) � V (�̂�, m) � ˜





 ¼ OP(n�1=2 L�(2k�1)=(2k)
n ), (8:25)

where ˜ ¼ k�� �k2
n � k�̂�k2

n and Mc is the class of all functions m with J 2
k(m) < c and

kmk2
n < c.

For the proof we use the following notation. For a function m the vector M m is defined

by M i
m ¼ m(X i

1) – for example, then M i
m1

¼ M i
1. The vector M̂M m is defined as M̂M1 but
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with (the true first component) m1 replaced by (a varying function) m. Furthermore h�, �in is

the empirical scalar product hA, Bin ¼ n�1
Pn

i¼1 Ai Bi: With this notation we obtain

V (�� �, m) � V (�̂�, m) � ˜ ¼ 2h�̂�� �þ �, M min

¼ 2h�̂�� �þ �, M m � M̂M min

¼ 2h�, M m � M̂M min:

We now use the fact that the same entropy bound as for M m applies for M m � M̂M m. Arguing

as in Section 10.1 in van de Geer (2000), we obtain

sup
m2Mc

jh�, M m � M̂M minj
kM m � M̂M mk(2k�1)=(2k)

n

¼ OP(n�1=2):

Claim (8.25) now follows from kM m � M̂M mkn ¼ OP(L�1
n ). This holds because

supm2Mc

Ð
m9(u)2 du , 1.

Equation (8.25) and the definition of m̂mS and ~mmS imply

V (�� �, m̂m�̂�) � V (�� �, m̂m���) (8:26)

< V (�̂�, m̂m�̂�) � V (�̂�, m̂m���) þ OP(n�1=2 L�(2k�1)=(2k)
n )

¼ OP(n�1=2 L�(2k�1)=(2k)
n ):

Claim (4.3) now follows from

V (�� �, m̂m�̂�) � V (�� �, m̂m���) ¼ km̂m�̂� � m̂m���k2
n þ º2

n J2
k m̂m�̂� � m̂m���ð Þ: (8:27)

Equation (8.27) follows from

h�� �� m̂m���, m̂m�̂� � m̂m���in � º2
n

ð
m̂m

(k)

���(u) m̂m
(k)
�̂� (u) � m̂m

(k)

���(u)
h i

du ¼ 0: (8:28)

Claim (8.28) immediately follows from the fact that m��� minimizes V (�� �, m). This shows

claim (4.3). Claim (4.5) follows by similar arguments and use of (8.27). For the proof of

claim (4.4) note first that by application of Lemma 5.16 in van de Geer (2000) one obtains

from (4.3) and (4.5) thatð1

0

m̂mS(x) � ~mmS(x)½ �2 p1(x)dx ¼ OP(n�1=2 L�(2k�1)=(2k)
n þ L�2

n ):

This implies (4.4) because the density p1 is bounded according to assumption (A2).

8.5. Proof of Theorem 5

We rewrite the functional (5.2) as

kZ � Z � BŁk2
n,
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where the matrix B has elements Bi, j ¼ en, j(X i
1). Then

Ł̂Ł ¼ 1

n
BT B

� ��1
1

n
BT Z � Z
� �

and

m̂mO ¼ B¸
1

n
BT B

� ��1
1

n
BT Z � Z
� �

, (8:29)

where ¸ is a diagonal matrix with diagonal elements ºn, j and where, in an abuse of notation,

for a function m the vector with elements m(X i
1) is also denoted by m. For simplicity of

notation here we have sometimes omitted the index n.

We start by showing that n�1 BT B has eigenvalues stochastically bounded from above and

away from zero. For the proof denote the matrix with elements

C j, j9 ¼ E en, j(X i
1)en, j9(X i

1)
� �

by C. Then with constants c1, c2 . 0,

sup
a:kak¼1





aT 1

n
BT Ba � aTCa





 ¼ oP(1), (8:30)

c1 < inf
a:kak¼1

aTCa < sup
a:kak¼1

aTCa < c2, (8:31)

where for a vector a ¼ (a1, . . . , aJ ) we write kak2 ¼
PJ

j¼1a2
j . Claim (8.31) immediately

follows from C j, j9 ¼
Ð

en, j(x)en, j9(x) p1(x)dx and the facts that en, j are orthonormal functions

and that p1 is bounded from above and below; see (A2). For the proof of (8.30) note that

E sup
a:kak¼1





aT 1

n
BT Ba � aTCa






" #

< E
X
j, j9

1

n

Xn

i¼1

en, j(X i
1)en, j9(X i

1) � E en, j(X i
1)en, j9(X i

1)
� �" #2

<
X
j, j9

E
1

n2

Xn

i¼1

e2
n, j(X i

1)e2
n, j9(X i

1)

" #

<
X
j, j9

1

n
c3

ð
e2

n, j(x)e2
n, j9(x)dx,

for a constant c3. Thus (8.30) follows from (A12).

Now because n�1 BT B has stochastically bounded eigenvalues it suffices to show that

kŁ̂Ł� ~ŁŁk2 ¼ OP(L�2
n þ Dn L�2

n Jn�1):

This claim follows from
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����� 1

n
BT Z � Z � ŶY
� ������

2

¼ OP(L�2
n þ Dn L�2

n Jn�1);

see the definitions of Ł̂Ł and ~ŁŁ. Because kŶY � ẐZk2 ¼ OP(L�2
n ) it remains to show that����� 1

n
BT Z � Z � ẐZ
� ������

2

¼ OP(L�2
n þ Dn L�2

n Jn�1): (8:32)

We now put

B̂Bi, j ¼
Pn

r¼1(Br, j � Bj)I l(X r
1)Pn

r¼1 I l(X r
1)

,

M̂M i ¼
Pn

r¼1(M r � M)I l(X r
1)Pn

r¼1 I l(X r
1)

,

for X i
1 2 I l with M i ¼ m1(X i

1). Here M ¼ n�1
Pn

i¼1 M i and Bj ¼ n�1
Pn

i¼1 Bi, j. With this

notation we obtain

1

n
BT Z � Z � ẐZ
� �

¼ 1

n
(BT � B̂BT) Z � Z � ẐZ

� �

¼ 1

n
(BT � B̂BT)�þ 1

n
BT M � M � M̂M
� �

:

Because
Ð

m91(x)2 dx is bounded the second term on the right-hand side has norm bounded by

OP(L�1
n ). It remains to bound the norm of the first term. Note that with a constant c4,

E�
����� 1

n
(BT � B̂BT)�

�����
2

¼ E�
XJ

j¼1

1

n

Xn

i¼1

(Bi, j � B̂Bi, j)�
i

" #2

< c4

1

n2
E�
XJ

j¼1

Xn

i¼1

(Bi, j � B̂Bi, j)
2

¼ OP(Dn L�2
n Jn�1),

because of (A12).

8.6. Proof of Proposition 1

The proof is based on Pinsker (1980). Because m1 2 S1 the local Fourier coefficients Łts of

m1 lie in an ellipsoid. More precisely, there exist coefficients Łts (1 < t < T , s > 0) such

that

m1(x) ¼
XT

t¼1

X1
s¼0

Łtsets(x): (8:33)
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Because m1 2 S1 the coefficients fulfil

XT

t¼1

X1
s¼1

s2r1Ł2
ts < C1(�T )�2r1 : (8:34)

Define

S0( p1) ¼ cT

Æ( p1) � 2�2r1

C1

r1

(r1 þ 1)(2r1 þ 1)

� 	�1=(2r1þ1)

, (8:35)

where Æ( p1) ¼
ð1

0

p�1
1 . Define

ŜS0 ¼ S0( p̂p1) (8:36)

where p̂p1 is an estimator of p1, based on observations X 1
1, . . . , X 1

n. We may assume that p̂p1

satisfies

Æ( p1) � Æ( p̂p1) ¼ o p(1):

Then S0( p̂1p1) � S0( p1) ¼ o p(1): Choose S such that S > S0( p1) þ 1 for all p1 2 F1. Then

S0( p̂1p1) < S with probability tending to 1.

Choose the shrinking coefficients of the estimate as

º ts ¼ max 0, 1 � (s=ŜS0)r1
� �

,

where ŜS0 is defined in (8.36).

For m1 2 S1 we have

˜ ¼
ð1

0

(m1(x) � m̂mO(x))2 dx ¼
XT

t¼1

X1
s¼0

Łts � º tsŁ̂Łts

� �2

: (8:37)

Then

E�(˜) ¼
XT

t¼1

X1
s¼0

1 � º tsð Þ2Ł2
ts þ E�

XT

t¼1

XS

s¼0

º2
ts Ł̂Łts � Łts

� �2

(8:38)

¼ ˜1 þ E�˜2:

By application of (8.34),

˜1 ¼
XT

t¼1

X
s<ŜS0

s

ŜS0

� 	2r1

Ł2
ts þ

XT

t¼1

X
s.ŜS0

Ł2
ts (8:39)

<
XT

t¼1

X1
s¼0

s

ŜS0

� 	2r1

Ł2
ts

< ŜS�2r1

0 C1(�T )�2r1

¼ S�2r1

0 C1(�T )�2r1 (1 þ o p(1)):
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We now treat the second term on the right-hand side of (8.38). With slight changes of the

notation at the beginning of Section 5 – see in particular (8.29) – we have that

˜2 ¼ k¸(Ł̂Ł� Ł)k2

¼
�����¸ 1

n
BT B

� ��1
1

n
BT �� �½ �

�����
2

:

Here, for example, Ł̂Ł and Ł are vectors with double index (t, s) running over

1 < t < T , 0 < s < ŜS0. It is easy to check that

E�
�����¸ 1

n
BT B

� ��1
1

n
BT�

�����
2

¼ OP

1

n

� 	
:

This shows that

E�˜2 ¼ E�
�����¸ 1

n
BT B

� ��1
1

n
BT�

�����
2

þ OP

1

n

� 	
(8:40)

¼ trace ¸
1

n
BT B

� 	�1
1

n2
BT B

1

n
BT B

� 	�1

¸

" #
� 2 þ OP

1

n

� 	

¼ 1

n
trace ¸

1

n
BT B

� 	�1

¸

" #
� 2 þ OP

1

n

� 	
:

Because of (8.30) we have that

sup
a:kak¼1

����� 1

n
BT Ba � ˆa

����� ¼ oP(1),

where ˆ is a (T [ŜS0 þ 1]) 3 (T [ŜS0 þ 1]) diagonal matrix with diagonal elements ˆts, ts ¼
p1(t=T ). This implies that

sup
a:kak¼1

����� 1

n
BT B

� ��1

a � ˆ�1a

����� ¼ oP(1):

This shows that

trace ¸
1

n
BT B

� 	�1

¸

" #
¼
XT

t¼1

XŜS0

s¼0

p1(t=T )�1º2
ts þ oP(T ):

By plugging this into the right-hand side of (8.40) we obtain
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E�˜2 ¼ 1

n
� 2
XT

t¼1

p1

t

T

� ��1XŜS0

s¼0

1 � s

ŜS0

� �r1
� 	2

þ oP

T

n

� 	
(8:41)

¼ T ŜS0

n
� 2

ð
p1(u)�1 du

ð
1 � vr1ð Þ2

dvþ oP

T

n

� 	

¼ T ŜS0

n
� 2Æ( p1)

2r2
1

(r1 þ 1)(2r1 þ 1)
þ oP

T

n

� 	

¼ TS0

n
� 2Æ( p1)

2r2
1

(r1 þ 1)(2r1 þ 1)
þ oP

T

n

� 	
:

The theorem now follows from (8.38), (8.39), (8.41) and the definition of S0; see (8.35).
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	1.&X;Introduction
	Equation 1
	Equation 2
	2.&X;Preconditioning by presmoothing
	Equation 4
	Equation 5
	Equation 6
	Equation 7
	3.&X;Kernel smoothing in additive models
	Equation 10
	Equation 11
	Equation 12
	Equation 13
	Equation 14
	4.&X;Smoothing splines in additive models
	5.&X;Orthogonal series estimates in additive models
	Equation 20
	Equation 21
	Equation 22
	6.&X;Asymptotic minimax estimation in additive models
	Equation 29
	Equation 30
	Equation 31
	7.&X;Simulations
	Figure 1
	Figure 2
	8.&X;Proofs
	8.1.&Y;Proof of Theorem 1

	Figure 3
	Equation 36
	Equation 45
	Equation 49
	8.2.&Y;Proof of Theorem 2
	8.3.&Y;Proof of Theorem 3

	Equation 53
	Equation 54
	8.4.&Y;Proof of Theorem 4

	Equation 55
	Equation 56
	Equation 58
	Equation 59
	8.5.&Y;Proof of Theorem 5

	Equation 60
	Equation 61
	Equation 62
	Equation 63
	8.6.&Y;Proof of Proposition 1

	Equation 64
	Equation 65
	Equation 66
	Equation 67
	Equation 68
	Acknowledgements
	References
	mkr1
	mkr2
	mkr3
	mkr4
	mkr5
	mkr6
	mkr7
	mkr8
	mkr9
	mkr10
	mkr11
	mkr12
	mkr13
	mkr14
	mkr15
	mkr16
	mkr17
	mkr18

