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France
2Laboratoire de Probabilités et Modèles Aléatoires, Université Paris VI, 175 rue de Chevaleret,

75013 Paris, France. E-mail: butucea@ccr.jussieu.fr
3Technische Universität Braunschweig, Institut für Mathematische Stochastik, Pockelsstraße 14,

D-38106 Braunschweig, Germany. E-mail: mi.neumann@tu-bs.de

We derive sharp asymptotic minimax bounds (that is, bounds which concern the exact asymptotic

constant of the risk) for nonparametric density estimation based on discretely observed diffusion

processes. We study two particular problems for which there already exist such results in the case of

independent and identically distributed observations, namely, minimax density estimation in Sobolev

classes with L2-loss and in Hölder classes with L1-loss. We derive independently lower and upper

bounds for the asymptotic minimax risks and show that they coincide with the classic efficiency

bounds. We prove that these bounds can be attained by usual kernel density estimators. The lower

bounds are obtained by analysing the problem of estimating the marginal density in certain families of

processes, ffX
f
i g, f 2 F ng, which are shrinking neighbourhoods of some central process, fX

f0

i g, in

the sense that the set of densities F n forms a shrinking neighborhood centred around f0.
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1. Introduction

In this paper we study nonparametric estimation of the marginal density based on discrete

observations from a real-valued diffusion process. Such density estimators can either be

used themselves for further inference or be used as an intermediate step when one intends

to estimate the volatility function on the basis of discrete-time observations; see Aı̈t-Sahalia

(1996a). There are already many contributions related to our work from two different

communities. On the one hand, probabilists working in the field of stochastic processes have

studied parametric and nonparametric estimators of model parameters or related quantities

for continuous- or discrete-time observations from diffusion processes. On the other hand,

researchers from the statistical community have derived minimax results for nonparametric

estimators in various settings (regression, density estimation, spectral density estimation), up
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to the level of ‘exact asymptotics’ which concerns both the rate of convergence and the

asymptotic constant.

Some motivation for our work emerged from Aı̈t-Sahalia (1996a) who used

nonparametric diffusion processes in financial mathematics for modelling interest rate

processes. Because of the lack of continuous-time observations it was not possible to

estimate the model parameters (a drift function described by a finite-dimensional parameter

and a volatility function to be estimated nonparametrically) directly; instead, Aı̈t-Sahalia

proposed first to estimate this parameter and the stationary density and then to use these

results for estimating the volatility function. To estimate the density, he used standard kernel

methods on an ad hoc basis; however, theory supporting the appropriateness of these

methods is still lacking.

To determine whether the use of standard nonparametric estimators should be

recommended in the case of observations from diffusion processes, we intend to derive

the asymptotic minimax optimality of these methods. In other frameworks (regression,

density estimation, spectral density estimation), such results already exist in the statistical

literature. Most of these concern optimal rates of convergence in certain smoothness classes

(Hölder, Sobolev, Besov), for different loss functions. For a given class of functions, there is

usually a wide range of estimators that achieve such a minimax rate of convergence. For

example, for kernel estimators only some qualitative characteristics of the kernel function

(number of vanishing moments) are important, whereas there is still much freedom for the

particular shape of the kernel. To narrow down the set of methods which deserve the term

‘optimal’, a minimax theory which also focuses on the optimal asymptotic constant is

considered. There are several set-ups in nonparametric curve estimation where exact

asymptotic minimax results are known: ellipsoidal restrictions on the class of functions in

connection with the L2-loss (a case first studied by Pinsker 1980); Hölder restrictions

together with the L1-loss (initiated by Korostelev 1993) and with the Bahadur risk; and

finally, analytic functions with the L p and pointwise losses (Ibragimov and Hasminskii

1983; Golubev and Levit 1996), or more general classes of infinitely differentiable functions

known as supersmooth, or functions with rapidly decreasing Fourier transforms (Lepski and

Levit 1998).

We will develop exact minimax asymptotics for the first two of these classic cases. The

derivation of such results usually consists of two parts: first, a particular estimation

procedure is proposed, which attains the presumed optimal asymptotic risk bound; then it is

proven that this asymptotic bound cannot be improved by any other estimation method. The

analogy of the upper bounds to those known in the case of independent and identically

distributed (i.i.d.) observations is perhaps not very surprising. Indeed, it is known that

certain kernel estimators are asymptotically minimax in the i.i.d. case, and for such

estimators there is (for any fixed density f ) an equivalence of the (pointwise) asymptotic

behaviour between the two cases of independent and weakly dependent observations.

Actually, we derive the upper bounds in the more general context of absolutely regular (�-

mixing) processes. We devote some effort to showing that the efficiency bounds can be

achieved by standard kernel methods which form the most popular class of nonparametric

density estimators.

Lower bounds will be obtained by studying asymptotically least favourable parametric
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subexperiments. For this purpose, we consider statistical experiments based on discrete

observations from families of processes (X
f
t ) t>0, where the density f parametrizing this

class varies in certain subclasses F (2)
n or F (1)

n of the Sobolev or Hölder class, respectively.

The link to the case of Gaussian shift experiments is achieved by proving local asymptotic

normality for appropriate one-dimensional subexperiments. Since the corresponding families

of marginal densities are basically given by perturbations supported on subintervals of

decreasing (as n ! 1) length, one could already conjecture that some sort of whitening-by-

windowing effect is responsible for a behaviour of the likelihood processes that is

asymptotically equivalent to that in the case of independent observations.

The efficiency bounds obtained in this paper complement existing results concerning the

similar behaviour of nonparametric estimators in the cases of independent and weakly

dependent observations with the assertion that one cannot use partial knowledge about the

dependence structure to achieve essentially better results than in the case of independent

observations. This is particularly remarkable since Saavedra and Cao (1999) have shown in

the case of MA(1) processes that standard kernel estimators can be drastically outperformed

by certain convolution-type estimators which are
ffiffiffi
n

p
-consistent. Our results give strong

justification for the practical application of nonparametric methods that were usually

designed in the context of independent data. Furthermore, the coincidence of the first-order

minimax asymptotics sets a limitation to eventual improvements by specific modifications

that can possibly be devised in order to make use of some partial knowledge about the

dependence structure. As a by-product, since the minimax bounds are achieved by kernel

estimators with corresponding uniquely defined kernel functions, one can use such results as

an objective criterion for finding kernels that are optimal in some reasonable way. This

optimality goes beyond the well-known results on kernels that are optimal under additional

side conditions. Moreover, in view of the uniqueness of the optimum kernels, we deduce

that these estimators are asymptotically admissible in the class of kernel methods.

The paper is structured as follows. Since it may be of interest to researchers from

different communities – theoretical statisticians primarily interested in nonparametric curve

estimation as well as probabilists working in the field of statistics for stochastic processes –

we present in Section 2 an overview of existing results in both areas. In Section 3 we state

asymptotic lower bounds to the minimax risks. After describing appropriate subexperiments

that are difficult enough for generating the desired bounds, we first state approximations to

the likelihood ratios which are the basis for proving local asymptotic normality. Then we

formulate theorems with the lower risk bounds. In Section 4 we describe particular kernel

estimators which are asymptotically minimax and state upper risk bounds. Section 5

contains proofs of the technical local asymptotic normality results, of the lower and upper

risk bounds, and of a Bernstein-type inequality under mixing.

2. Overview of existing results

There are several set-ups in nonparametric curve estimation where exact asymptotic

minimax results are known: ellipsoidal restrictions on the class of functions in connection

with the L2-loss (the Pinsker case); Hölder restrictions together with the L1-loss
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(Korostelev case) and Hölder restrictions with the Bahadur risk, and supersmooth functions

with L p and pointwise losses.

Research in the first case was initiated by the seminal paper of Pinsker (1980), who had

already solved all essential problems in the particular context of signal estimation in

Gaussian white noise. Later, these results were transferred to spectral density estimation

(Efromovich and Pinsker 1982), density estimation (Efromovich and Pinkser 1983), and

nonparametric regression with Gaussian errors (Nussbaum 1985) respectively with non-

normal error distributions (Golubev and Nussbaum 1990). Other generalizations, for

example in Belitser and Levit (1995), consisted of studying the case of more general

ellipsoids and the second-order behaviour of the minimax risk. An extensive overview on

this topic is given in Nussbaum (1999).

Developments in the second case of L1-loss started with the paper by Korostelov (1993),

who found exact asymptotic efficiency bounds for nonparametric estimation in Hölder

classes with smoothness index 0 , � < 1. Using completely different arguments (issuing

from the theory of optimal recovery), Donoho (1994) extended these results to Hölder

classes with smoothness index � . 1. The same problem for density estimation from i.i.d.

observations and for � . 0 was solved by Korostelev and Nussbaum (1999).

Exact asymptotics in the third case were first developed by Korostelev (1996) in Gaussian

regression, and generalized by Korostelev and Leonov (1996) to the non-Gaussian case.

Density functions with analytic continuation on a strip around the real axis were estimated

in the minimax sharp approach by Ibragimov and Hasminskii (1983) with the L p-loss.

Efficient estimation of such functions was done in the Gaussian white noise model with L p

risk by Guerre and Tsybakov (1998), with pointwise and L1 risks by Golubev et al. (1996),

while density estimation with pointwise risk was given by Golubev and Levit (1996) and a

more general density estimation under random censorship by Belitser (1998). For a good

review of these results we refer to Ibragimov (2001). Recently, more general classes of

infinitely differentiable functions were considered and sharp estimation was given for the

pointwise risk in both the minimax and adaptive approaches by Lepski and Levit (1998) in

the Gaussian white noise model, and these results were translated to the density model by

Artiles (2001).

Estimation of diffusion processes was studied in both a parametric and a nonparametric

set-up. The available data are usually supposed to be continuous in time, or discrete with

time gap decreasing to 0, or constant. Efficient estimation in this context is based on the

local asymptotic normality (LAN) property. In the case of low-frequency data, the LAN

property with rate 1=
ffiffiffi
n

p
was established by Roussas (1972). Nevertheless, efficient

maximum likelihood estimators are not available since the explicit forms of transition

densities are unknown. Recently, the LAN property for general ergodic diffusions with high-

frequency data was proven by Gobet (2002) using Malliavin calculus.

Nonparametric estimation of the coefficients is usually done via the marginal density of

the process or the spectral decomposition of the infinitesimal generator. Estimation of the

marginal density of a process observed on an entire time interval has been studied

intensively since the work of Banon (1978) and Banon and Nguyen (1981), who found

consistent estimators. First, Castellanna and Leadbetter (1986) found superoptimal

estimation rates (parametric in the length of the time interval T ) in the case of very
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irregular sample path processes. Analogous results were obtained by Leblanc (1997) for

certain stationary processes and Kutoyants (1997) who gives efficiency bounds in the

context of ergodic diffusion processes. A review of available results on superoptimal rates in

density or regression estimation that are preserved under certain discretization models is

given in Bosq (1998). More recently, Dalalyan and Kutoyants (2002) established efficient

minimax estimation for the drift function, in the case of ergodic diffusion processes. For

nonparametric estimation of discretely observed diffusions with a decreasing time gap, we

refer to Kessler (1997), Hoffmann (1999) and references therein.

Spectral methods in parametric set-ups were developed in Hansen et al. (1998) and in

parallel by Kessler and Sørensen (1999). An extension of these methods to diffusions on a

compact interval with reflecting boundary conditions, observed discretely at low frequency,

can be found in Gobet et al. (2002).

3. Asymptotic lower bounds to the minimax risks

In this section, we derive asymptotic lower bounds to the minimax risks in estimating the

marginal density of a real-valued and stationary diffusion process which is observed at

equidistant time points. We basically show that we cannot do better than in the case of i.i.d.

observations, even if we have prior knowledge of the dependence mechanism. This case is

adequately modelled by a statistical experiment consisting of a family of discretely observed

diffusion processes with different marginal densities but one and the same copula function.

We devise efficiency bounds in two classic cases for which analogous bounds are already

known in the framework of i.i.d. data, that is, we derive exact asymptotic bounds for the L2

risk in Sobolev classes as well as for the L1 risk in Hölder classes.

In the former case, we assume that the marginal density f is in the class

F2 �, Lð Þ ¼ f 2 L2 �1, 1ð Þ :

ð1
�1

f xð Þdx ¼ 1, f xð Þ > 0 8x, and

ð1
�1

f (�)(x)
� �2

dx < L

� �
,

where � is an integer, � . 0. In the latter case, we assume that f lies in the class

F1 �, L, Bð Þ ¼
�

f :

ð1
�1

f xð Þdx ¼ 1, 0 < f xð Þ < B 8x, :

and j f (b�c)(x1) � f (b�c)(x2)j < Ljx1 � x2j��b�c8x1, x2

�
,

where b�c denotes the greatest integer strictly less than � (� . 0). We observe that results

similar to ours can be derived for Hölder classes without the additional parameter B.

Actually, it was shown in Korostelev and Nussbaum (1999) that densities satisfying a Hölder

condition for some � and L are uniformly bounded by some B� ¼ B�(�, L). We decided to

state the results for Hölder classes with the additional parameter B since this constant shows

up in the minimax bound, which makes the role played by k f k1 more transparent.

For any given f , we assume that n observations X
f
1 , . . . , X f

n are available, where the
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underlying process (in continuous time), (X
f
t ) t>0, is a real-valued and stationary diffusion

process obeying the Itô stochastic differential equation

dX
f
t ¼ � f (X

f
t ) dt þ � f (X

f
t ) dW t,

where (W t) t>0 is standard Brownian motion. Let us mention that usually these models are

indexed by the drift and the diffusion functions, viewed as parameters. Our choice is to

consider the marginal density as an underlying parameter, which is more convenient for our

purpose.

Lower bounds for the minimax risk are obtained by considering appropriate families of

diffusion processes, (X
f
t ) t>0, indexed by the corresponding marginal density f which varies

in appropriate subclasses F (2)
n and F (1)

n of the Sobolev or Hölder class, respectively. These

subclasses of densities are centred around suitable basic functions, f
(2)
0 and f

(1)
0 ,

respectively, which are the stationary densities of diffusion processes with sufficiently

regular drift and diffusion functions. For notational convenience and since no confusion

should occur, we drop the indices 2 and 1 referring to the two cases of L2 or L1 risk.

We begin by fixing a basic process (X
f0

t ) t>0. In order to ensure certain smoothness

properties of the conditional densities needed below, it is important to choose drift and

diffusion functions that are sufficiently regular. For positive constants �0, �0 and further

constants �1 , K1 , K2 , K3 , K4 , 1, we define

� f0 (x) � �0 (3:1)

and choose a three times continuously differentiable function � f0 with

� f0 (x)

¼ �0, x < K1,

2 [0, �0], x 2 (K1, K2),

¼ 0, x 2 [K2, K3],

2 [��0, 0], x 2 (K3, K4),

¼ ��0, x > K4:

8>>>>>><
>>>>>>:

(3:2)

According to Karlin and Taylor (1981, Section 15.5) and Aı̈t-Sahalia (1996b, p. 390), the

stationary density f 0 then satisfies

f 0(x) ¼ C0

(� f0 (x))2
exp

ðx

0

2� f0 (u)

(� f0 (u))2
du

� �
: (3:3)

This definition implies in particular that f 0 is monotonously non-decreasing on (�1, K2],

constant on [K2, K3], and non-increasing on [K3, 1). Choosing the above parameters �0 and

�0 accordingly, we can obtain basic functions that will turn out to be suitable for deriving the

desired lower bounds in the two cases, L2 risk combined with Sobolev classes and L1 risk

with Hölder classes. In the first case, we choose the parameters such that K3 � K2 is large

and
Ð1
�1( f

(�)
0 )2 is small; for more details see the proof of Theorem 3.1. In the second case,

the parameters will be chosen such that

j f (b�c)
0 (x1) � f

(b�c)
0 (x2)j < Ljx1 � x2j��b�c 8x1, x2

416 C. Butucea and M.H. Neumann



and, for some B in accordance with this restriction,

f 0(x) < B 8x and f 0(x) ¼ B 8x 2 [K2, K3]:

For any fixed choice of the above parameters, the process (X
f0

t ) t>0 is absolutely regular

(�-mixing) with exponentially decaying coefficients; see, for example, Veretennikov (1984,

Section 2). Furthermore, it is well known that (X
f0

t ) t>0 is Markovian.

The processes (X
f
t ) t>0, for f 2 F (2)

n or f 2 F (1)
n , respectively, are obtained by the

quantile transform as

X
f
t ¼ F�1(F0(X

f0

t )),

where F0 and F are the cumulative distribution functions corresponding to the densities f 0

and f , respectively. It is clear that (X
f
t ) t>0 is also a diffusion process and from Itô’s formula

we readily see that its drift and diffusion functions have the form

� f (x) ¼ q9f (q�1
f (x))� f0 (q�1

f (x)) þ 1
2
q 0f (q�1

f (x))(� f0 (q�1
f (x)))2,

� f (x) ¼ q9f (q�1
f (x))� f0 (q�1

f (x)),

with q f (x) ¼ F�1(F0(x)). The exact form of these functions is, however, not important for

what follows since the behaviour of the process (X
f
t ) t>0 is completely described by the

particular quantile transform and the copula function which is, of course, equal to that of the

basic process (X
f0

t ) t>0. For example, mixing properties of (X
f
t ) t>0 are exactly the same as

those of (X
f0

t ) t>0 since the dependence mechanism underlying both processes is the same.

3.1. Local asymptotic normality

As already mentioned, we derive lower bounds to the minimax risks by considering the

problem of estimating the marginal density for certain subfamilies of processes,

f(X
f
i )i¼1,...,n, f 2 F ng, where F n denotes either F (2)

n or F (1)
n , which are appropriate

parametric subclasses of F2(�, L) and F1(�, L, B), respectively.

For the case of L2 risk in Sobolev classes, a sequence of sufficiently hard subexperiments

is given by functions of the type

fŁ ¼ f
(2)
0 þ

Xs

j¼1

Xq n

k¼1

Ł j,k� j,k,n:

Here Ł ¼ (Ł j,k) parametrizes the class of functions under consideration based on the

perturbations

� j,k,n(x) ¼ n�1=2 h�1=2
n � j((x � ak,n)=hn) � r j,n f

(2)
0 (x),

where r j,n ¼ n�1=2 h1=2
n

Ð
� j(x) dx. The ak,n are chosen such that a1,n , . . . , aqn,n, s is large

enough and the sequences (qn)n2N and (h�1
n )n2N increase at rate n1=(2�þ1). An exact

description of the functions � j and � j,k,n is given in the proof of Theorem 3.1 below.

For the case of L1 risk in Hölder classes, a sequence of asymptotically least favourable

subexperiments is given by a class of functions of the type
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fŁ ¼ f
(1)
0 þ

XM n

j¼1

Ł jł j,n,

where Ł ¼ (Ł1, . . . , ŁM n
)T 2 f�1, 1gM n and

ł j,n(x) ¼ (ln(n))1=2 n�1=2 h�1=2
n ł((x � b j,n)=hn),

for a suitable function ł, b1,n , . . . , bM n,n and (hn)n2N tending to zero at rate

(ln(n)=n)1=(2�þ1). The exact choice of the function ł is described in the proof of Theorem

3.2 below.

Both families of functions (� j((� � ak,n)=hn)) and (ł j,n) have shrinking support and

shrinking uniform bound. Moreover, their integral is 0, so that the resulting functions fŁ are

density functions for large enough n.

The key step in deriving lower bounds to the risks consists of studying likelihood ratios

and then proving local asymptotic normality. We will actually show that the likelihood

ratios behave asymptotically as in the case of i.i.d. observations. The following lemma

provides an approximation which underlines this fact. We denote by p f (�j�) and p f (�, . . . , �)
conditional and joint densities of the process (X

f
i )i¼1,...,n, respectively.

Lemma 3.1. Let f 2 F n and f u ¼ f þ u�n, where �n is one of the perturbations, from

either the � j,k,n or the ł j,n, and where u is bounded. Then

p f u (xijxi�1)

p f (xijxi�1)
¼ f u(xi)

f (xi)
Rn(xi, xi�1),

where

jRn(xi, xi�1) � 1j < O n�1=2 h1=2
n exp �(yi � yi�1)2 þ �njyi � yi�1j

� �� 	
,

and yj ¼ F�1
0 (F(xj)), for j 2 fi � 1, ig. � . 0 is an arbitrarily small constant,

�n ¼ O(n�1=2 h1=2
n ).

The following proposition provides an approximation of the logarithmic likelihood ratio

of certain one-dimensional subexperiments. This result will be the basis for the LAN

property used in the proof of asymptotic lower risk bounds.

Proposition 3.1. Suppose that the assumptions of Lemma 3.1 are satisfied. Then

ln
p f u (x1, . . . , xn)

p f (x1, . . . , xn)
¼ u

Xn

i¼1

�n(xi)

f (xi)
� u2

2
nE f

�n(X
f
1 )

f (X
f
1 )

 !2

þRf ,u(x1, . . . , xn),

say, where, for any constant u0 , 1,

sup
f 2F n, juj<u0

Pf jRf ,u(X
f
1 , . . . , X f

n )j . Cºn�E
� 	n o

¼ O n�º
� �

holds for some E . 0 and arbitrary º , 1.
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The validity of this approximation does not depend on the particular form of the

perturbations � j,k,n and ł j,n. Analogous results can be expected whenever the basic process

is ‘regular enough’ and the perturbations have shrinking support.

3.2. Lower risk bounds

On the basis of the LAN property stated in the previous subsection, we are now in a

position to prove the desired asymptotic lower risk bounds in the two cases under

consideration.

Theorem 3.1. Suppose that a family of statistical experiments with observations (X
f
i )i¼1,...,n

is given, where these processes are constructed as described at the beginning of Section 3.

Then

lim inf
n!1

inf
~ff

sup
f 2F2(�,L)

fn2�=(2�þ1)E f k ~ff � f k2
L2
g > ª(�)L1=(2�þ1),

where ª(�) ¼ (2�þ 1)1=(2�þ1)[�=(�(�þ 1))]2�=(2�þ1) is Pinsker’s constant.

The next theorem states the asymptotic risk bound for the L1 case. Because of the

degenerate behaviour of the supremum deviation we can state the efficiency bounds for a

general loss function that may be not explicit.

Theorem 3.2. Suppose that a family of statistical experiments with observations (X
f
i )i¼1,...,n

is given, where these processes are constructed as described at the beginning of Section 3.

Let w be a continuous and monotone non-decreasing function. Then

lim inf
n!1

inf
~ff

sup
f 2F1(�,L,B)

E f w((n=log(n))�=(2�þ1)k ~ff � f k1) > w(k(�, L, B)),

where

k(�, L, B) ¼ A�
2(B ^ B�)L1=�

2�þ 1


 ��=(2�þ1)

,

A� ¼ maxfg(0)jkgkL2
< 1, jg(b�c)(x1) � g(b�c)(x2)j < jx1 � x2j��b�c 8x1, x2g

and

B� ¼ B�(�, L) ¼ maxfg(0)j jg(b�c)(x1) � g(b�c)(x2)j < Ljx1 � x2j��b�c 8x1, x2g:

The constant B ^ B� that appears in Theorem 3.2 requires a few words of explanation. In

the problem of estimating a density from i.i.d. data, this constant would be equal to

B�(�, L); see Korostelev and Nussbaum (1999). In our context, we have an additional

restriction since we define our basic process for technical reasons with constant diffusion

coefficient which, in turn, restricts the set of possible densities that fulfil (3.3).

The asymptotic lower risk bounds in Theorems 3.1 and 3.2 are the analogues to the well-
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known bounds in density estimation from i.i.d. data. This means that there is no gain in

knowing the particular dependence structure of the process; we can at best hope to obtain

the same efficiency bounds as in the i.i.d. case.

4. Asymptotic upper bounds to the minimax risks

In this section we describe kernel estimators which are optimal from the exact asymptotic

minimax point of view. We stress the fact that these methods attain the same upper bounds

in a more general context than in Section 3. The only condition on the dependence structure

is the following one.

Assumption 4.1. Let F k
j ¼ � (X j, . . . , X k) be the � -field generated by X j, . . . , X k. We

assume that the coefficients of absolute regularity (�-mixing),

�(k) ¼ max
j
fE ess supV2F n

jþ k
fjP(V jF j

1) � P(V )jgg,

satisfy

�(k) < C exp(�C1 k):

We assume, moreover, that the conditional densities are uniformly bounded,

sup
x, y2R

p f (yjx) < C2,

where C2 . 0 does not depend on f in the smoothness class.

It is well-known that Pinsker’s bound can be attained by certain kernel estimators; see

Golubev (1987) for nonparametric regression, and Schipper (1996) for density estimation.

To achieve the desired asymptotic bound in our context, we may employ exactly the same

estimator. Let us denote

f̂f
[2]
h n

xð Þ ¼ 1

nhn

Xn

i¼1

K�,2

X i � x

hn


 �
, (4:1)

where K�,2 is the kernel described by its Fourier transform F(K�,2)(t) ¼ (1 � jtj�)þ, (recall

that F Kð Þ tð Þ ¼
Ð1
�1 K yð Þei yt dy) and the bandwidth has the expression

hn ¼ �

�L �þ 1ð Þ 2�þ 1ð Þ


 �1= 2�þ1ð Þ
n�1= 2�þ1ð Þ:

The kernel function K�,2 can be obtained by the inverse Fourier transform

K�,2(x) ¼ � �!

�

X�
j¼1

sin ( j)(x)

(�� j)!x jþ1
: (4:2)

Note that K�,2(0) ¼ �=(�(�þ 1)), which can be obtained either by the previous formula or by
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direct integration of its Fourier transform, K�,2(0) ¼ ��1
Ð 1

0
(1 � t�)dt. The following theorem

states the efficiency of the given kernel estimator.

Theorem 4.1. Suppose that Assumption 4.1 is satisfied. Then

lim sup
n!1

sup
f 2F2(�,L)

fn2�=(2�þ1)E f k f̂f
[2]
hn

� f k2
L2
g < ª(�)L1=(2�þ1),

where ª(�) was defined in Theorem 3.1 above.

Similarly to the L2 case, a kernel estimator,

f̂f
[1]
hn

xð Þ ¼ 1

nhn

Xn

i¼1

K�,1
X i � x

hn


 �
,

will attain the efficiency bound in the L1 case. This time the optimal bandwidth is

hn ¼ 2(B ^ B�)

2�þ 1ð ÞL2

log n

n


 �1= 2�þ1ð Þ
:

An appropriate kernel is given by K�,1 tð Þ ¼ � tð Þ=
Ð
� xð Þdx, where � is the solution to the

optimization problem

� ¼ arg max
g

fg(0)jkgkL2
< 1, jg(b�c)(x1) � g(b�c)(x2)j < jx1 � x2j��b�c8x1, x2g:

Korostelev (1993) and Donoho (1994) have shown that, for 0 , � < 1,

A� ¼ � 0ð Þ ¼ 2�þ 1ð Þ �þ 1ð Þ
4�2


 ��= 2�þ1ð Þ
,

�(t) ¼ (�(0) � jtj�)þ,

K�,1 tð Þ ¼ 2�þ 1

2�
� 0ð Þð Þ�(�þ1)=�� tð Þ:

For � . 1, uniqueness of the solution � and compactness of its support are proven in Leonov

(1997). The explicit solution is then known only in the case of � ¼ 2.

In the context of density estimation from i.i.d. data supported on [0, 1], Korostelev and

Nussbaum (1999) used a different type of estimator whose risk attains the minimax bound.

They used the same kernel estimator f̂f
[1]
h n

as we do at certain grid points and interpolated

between these points with the aid of appropriate estimators of the derivatives up to the

order b�c.

Theorem 4.2. Suppose that Assumption 4.1 is satisfied. Let w be a continuous and monotone

non-decreasing function satisfying w(x) < C(1 þ jxjq) for all x . 0 and some q , 1. Then

Marginal density of discretely observed diffusion processes 421



lim sup
n!1

sup
f 2F1(�,L,B)

E f w((n=log(n))�=(2�þ1)k f̂f
[1]
hn

� f k1) < w(k(�, L, B)),

where k(�, L, B) was defined in Theorem 3.2 above.

Since in both cases the lower and upper efficiency bounds coincide, it follows that certain

kernel estimators are asymptotically minimax. In each case, there is a unique (up to scaling)

kernel function with which the optimum can be attained. Consequently, our minimax

approach defines a family of kernel functions which are optimal with respect to some well-

defined criterion. In practice, one still has to opt for one of these kernel functions and to

choose the bandwith on the basis of the information given by the data. We suggest using

cross-validation to make both choices in a reasonable data-driven way.

5. Proofs

5.1. Proofs of the results on local asymptotic normality

Proof of Lemma 3.1. First of all, from the equality

P(X
f
i < xijX f

i�1 ¼ xi�1)

¼ P(F�1(F0(X
f0

i )) < xijF�1(F0(X
f0

i�1)) ¼ xi�1)

¼ P(X
f0

i < F�1
0 (F(xi))jX f0

i�1 ¼ F�1
0 (F(xi�1))),

we immediately obtain that

p f (xijxi�1) ¼ d

dxi

P(X
f
i < xijX i�1 ¼ xi�1)

¼ p f0 (F�1
0 (F(xi))jF�1

0 (F(xi�1)))
f (xi)

f0(F�1
0 (F(xi)))

:

Analogously, with Fu(x) ¼
Ð x

�1 f u(y) dy, we obtain

p f u (xijxi�1) ¼ p f0 (F�1
0 (Fu(xi))jF�1

0 (Fu(xi�1)))
f u(xi)

f 0(F�1
0 (Fu(xi)))

:

Writing yi ¼ F�1
0 (F(xi)), yu

i ¼ F�1
0 (Fu(xi)), yi�1 ¼ F�1

0 (F(xi�1)) and yu
i�1 ¼ F�1

0 (Fu(xi�1)),

we obtain the following explicit form of the residual term:
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Rn(xi, xi�1) ¼ f 0(yi)

f0(yu
i )

p f0 (yu
i jyu

i�1)

p f0 (yijyi�1)

¼

1, if xi 62 supp(�n), xi�1 62 supp(�n),

p f0 (yijyu
i�1)

p f0 (yijyi�1)
, if xi 62 supp(�n), xi�1 2 supp(�n),

f0(yi)

f 0(yu
i )

p f0 (yu
i jyu

i�1)

p f0 (yijyi�1)
, if xi 2 supp(�n):

8>>>>>><
>>>>>>:

(5:1)

We have that

ªn :¼ jyi � yu
i j þ jyi�1 � yu

i�1j ¼
O((ln(n))1=2 n�1=2 h1=2

n ), if �n ¼ � j,k,n

O(n�1=2 h1=2
n ), if �n ¼ ł j,n:

(

It thus follows from the construction of f 0 that

f 0(yi)

f 0(yu
i )

¼ 1 þ O((ln(n))1=2 n�1=2 h1=2
n ) 8xi 2 supp(�n): (5:2)

Therefore, all we need to derive the desired bound for Rn are appropriate smoothness

properties of the conditional densities p f0 (�j�).
From Azencott (1984, p. 478), we obtain that, for any c1, c2 with c1 . 1=� 2

0 . c2, there

exist finite positive constants K1 and K2 such that

K1 t�(Æþ1)=2 exp �c1

(x � y)2

2t

� �
<

���� @Æ

@ yÆ
p

f0

t (xjy)

���� < K2 t�(Æþ1)=2 exp �c2

(x � y)2

2t

� �
, (5:3)

Æ 2 f0, 1g, t 2 (0, 1]. We also need such a result for the partial derivative with respect to x;

however, we could only find the following upper bound with a certain constant c3, not

necessarily close to the desired value 1=� 2
0:���� @@x

p
f0

t (xjy)

���� < K3 t�(Æþ1)=2 exp �c3

(x � y)2

2t

� �
, t 2 (0, 1];

see Friedman (1975, Section 6, Theorems 4.5 and 4.7). Indeed, the diffusion coefficient is a

constant function, and the drift together and its first derivative are bounded, continuous

functions and Hölder continuous of some exponent 0 , Æ , 1 (since the drift is supposed to

be three times continuously differentiable and non-constant only on compact sets). However,

putting these two estimates together, we readily obtain that���� @@x
p

f0

1 (xjy)

���� <
ð���� @@x

p
f0

t (xjz)

���� p f0

1� t(zjy) dz

< K2 K3 t�1=2

ð
t�1=2 exp �c3

(x � z)2

2t

� �
(1 � t)�1=2 exp �c2

(z � y)2

2(1 � t)

� �
dz:

Choosing t sufficiently small, we obtain for any c92 . c2 that there exists a finite constant K4

such that
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���� @@x
p

f0

1 (xjy)

���� < K4 exp �c92
(x � y)2

2

� �
: (5:4)

Equipped with the estimates (5.3) and (5.4) we can now find estimates for the ratios involving

conditional densities.

If xi 62 supp(�n) and xi�1 2 supp(�n), it follows from (5.3) that

���� p f0 (yijyu
i�1)

p f0 (yijyi�1)
� 1

���� <
K2

ð yi�1þªn

yi�1�ªn

exp �c2(yi � y)2=2
� �

dy

K1 exp �c1(yi � yi�1)2=2f g

¼ K2

K1

ð yi�1þªn

yi�1�ªn

exp �c2(yi � yi�1 þ yi�1 � y)2=2 þ c1(yi � yi�1)2=2
� �

dy

<
K2

K1

2ªn exp f(c1 � c2)(yi � yi�1)2=2 þ c2ªnjyi � yi�1jg: (5:5)

If xi 2 supp(�n) and xi�1 2 supp(�n), we obtain from (5.3) and (5.4) immediately that���� p f0 (yu
i jyu

i�1)

p f0 (yijyi�1)
� 1

���� ¼ O (ln(n))1=2 n�1=2 h1=2
n

� 	
: (5:6)

Finally, if xi 2 supp(�n) and xi�1 62 supp(�n), we obtain from (5.4) by complete analogy to

(5.5) that���� p f0 (yu
i jyi�1)

p f0 (yijyi�1)
� 1

���� < K2

K1

2ªn exp f(c1 � c29)(yi � yi�1)2=2 þ c29ªnjyi � yi�1jg: (5:7)

The assertion is now obtained from (5.1), (5.2), and (5.5)–(5.7). h

Proof of Proposition 3.1. Define �1,n ¼ f u(X
f
1 )= f (X

f
1 ) � 1 and, for 2 < i < n,

�i,n ¼ p f u (X
f
i jX

f
i�1)

p f (X
f
i jX

f
i�1)

� 1:

We obtain from a Taylor series expansion of ln(1 þ x) that

ln
p f u (X

f
1 , . . . , X f

n )

p f (X
f
1 , . . . , X f

n )
¼
Xn

i¼1

ln(1 þ �i,n)

¼
Xn

i¼1

�i,n �
1

2

Xn

i¼1

�2
i,n þ

Xn

i¼1

Æi,n�
3
i,n

¼ u
Xn

i¼1

�n(X
f
i )

f (X
f
i )

� u2

2
nE f

�n(X
f
1 )

f (X
f
1 )

 !2

þT1 þ T2 þ T3,
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say, where jÆi,nj , 1
3

and

T1 ¼
Xn

i¼2

�i,n � u
Xn

i¼2

�n(X
f
i )

f (X
f
i )

,

T2 ¼ u2

2
nE f

�n(X
f
1 )

f (X
f
1 )

 !2

� 1

2

Xn

i¼1

�2
i,n

T3 ¼
Xn

i¼1

Æi,n�
3
i,n:

From Lemma 3.1 we see that

�i,n �
u�n(X

f
i )

f (X
f
i )

¼ p f u (X
f
i jX

f
i�1)

p f (X
f
i jX

f
i�1)

� f u(X
f
i )

f (X
f
i )

¼ O((ln(n))1=2 n�1=2 h1=2
n expf�(X

f
i � X

f
i�1)2 þ �njX f

i � X
f
i�1jg):

Furthermore, it is obvious that E f [�i,n � u�n(X
f
i )= f (X

f
i )] ¼ 0. Therefore, we obtain by a

Rosenthal inequality for absolutely regular random variables (see Doukhan 1994, Theorem

1.4.1.2) that

T1 ¼ ~OO(n�E, n�º):

By the Cauchy–Schwarz inequality we obtain

E f T2 ¼ u2

2
nE f

�n(X
f
1 )

f (X
f
1 )

 !2

� 1

2

Xn

i¼1

E f

u�n(X
f
i )

f (X
f
i )

þ �i,n �
u�n(X

f
i )

f (X
f
i )

 !" #2

¼ O(n�E):

Again, by the Rosenthal inequality, we have that

T2 � E f T2 ¼ ~OO(n�E, n�º):

Since

f u(xijxi�1)

f (xijxi�1)
� 1 ¼ u�n(xi)

f (xi)
þ f u(xi)

f (xi)
[R(xi, xi�1) � 1]

we obtain, once more using the Rosenthal inequality, that

T3 ¼ ~OO(n�E, n�º),

which completes the proof. h

Marginal density of discretely observed diffusion processes 425



5.2. Proofs of the theorems on the lower bounds

Proof of Theorem 3.1. The basic idea of this proof is similar to that of the proof of the lower

minimax bound in Golubev and Nussbaum (1990). We include it since the case of density

estimation from dependent data requires some modifications.

Let � . 0 be arbitrary. We actually show that

Rn ¼ inf
~ff

sup
f 2F (2)

n

fn2�=(2�þ1)E f k ~ff � f k2
L2
g > ª(�)L1=(2�þ1) � �, (5:8)

for n > n�, where

F (n)
2 ¼ fŁ, Ł 2 ¨nf g

is an appropriate sequence of asymptotically least favourable parametric subclasses of

F2(�, L). These densities are of the form

fŁ xð Þ ¼ f 0 xð Þ þ
Xs

j¼1

Xq n

k¼1

Ł j,k� j,k,n xð Þ, (5:9)

where � j,k,n are perturbations described below.

To find an appropriate basis function f0, we first choose a second small constant �9 . 0

and an arbitrarily large constant A. We start with any choice of �0 and �0 in (3.1) and

(3.2), where we only assume that �0 is a sufficiently regular odd function. According to

(3.3), we obtain that the corresponding stationary density is an even function with

f 0(x) ¼ c0, for x 2 [�K, K], K ¼ �K2 ¼ K3. If we now replace � f0 (�) in (3.2) by

� f 90 ¼
h�1� f0 (x=h), if x 2 [�Kh, Kh],

h�1� f0 (x � Kh þ K), if x > Kh,

h�1� f0 (x þ Kh � K), if x < Kh

8>><
>>:

(take, for example, h ¼ c0(2A þ 1)), we obtain a stationary density f 90 satisfying

f 90(x) ¼

c0=h, if x 2 [�Kh, Kh],

h�1 f 0(x � Kh þ K), if x > Kh,

h�1 f 0(x þ Kh � K), if x < �Kh:

8>><
>>:

Hence, by choosing � f0 appropriately, we obtain a stationary density f 0 2 W
�
2 with

f 0(x) ¼ 1=(2A þ 1), for jxj < A, and
Ð

( f
(�)
0 (x))2 dx < �9=4.

The functions � j are members of the Sobolev space of periodic functions
8W

�
2 ¼ f� 2 L2 [0, 1]ð Þ : �(�) 2 L2 [0, 1]ð Þ, �(k)(0) ¼ �(k)(1) ¼ 0, k ¼ 0, . . . , �� 1g and are

solutions of the eigenvalue problem

(�1)��(2�)(x) ¼ º�(x)

with supp(�) � [0, 1] and the boundary conditions �(k)(0) ¼ �(k)(1) ¼ 0, for k ¼ 0,

. . . , �� 1. We arrange the solutions in such a way that the eigenvalues (º j) j2N are non-
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decreasing and choose the corresponding eigenfunctions (� j) j2N such that they are

orthonormal. (They are automatically so if they belong to different eigenvalues; otherwise

we can use the Gram–Schmidt othonormalization algorithm.) It is known that the eigenvalues

satisfy the asymptotic relation

º j ¼ (� j)2�(1 þ o(1)) as j ! 1;

see, for example, Section II.4.9 in Neumark (1960) for details. From integration by parts we

obtain that ð1

0

�(�)
j (x)�(�)

k (x) dx ¼ º j� j,k 8 j, k 2 N:

We define qn ¼ b2AKn1=(2�þ1)c, where

K2�þ1 ¼
L � 3

4
�9

s2�þ1

ð1

0

b(x)(1 � b(x))dx

and b xð Þ ¼ [1 � �xð Þ�]þ. With hn ¼ 2A=qn and ak,n ¼ 2 k � 1ð Þ � qnð ÞA=qn, for k ¼ 1,

. . . , qn, we define the perturbations as

� j,k,n xð Þ ¼ n�1=2 h�1=2
n � j x � ak,nð Þ=hnð Þ � r j,n f 0(x), (5:10)

where r j,n ¼ n�1=2 h1=2
n

Ð
� j(x) dx. Note that the density fŁ belongs to the class F2(�, L) if

and only if the parameter Ł ¼ Ł j,k

� �
j¼1,...,s;k¼1,...,qn

is contained in

¨n ¼ Ł 2 Rsqn

���� 1 �
Xs

j¼1

Xq n

k¼1

r j,nŁ j,k

 !2

k f
�ð Þ

0 k2
L2
þ
Xs

j¼1

Xq n

k¼1

Ł2
j,kº j

qn

2A

� 	2�
< L

8<
: g:

(5:11)

The left-hand side of (5.8) will be estimated by a certain Bayesian risk which will enable

us to calculate a lower efficiency bound explicitly. A sharp asymptotic risk bound will then

be obtained by taking a sequence of asymptotically least favourable prior distributions. In

view of available results in related settings, it could be anticipated that this can be achieved

by sequences of asymptotically normal priors.

Let �c, c . 0f g be a family of distributions with supp �cð Þ � �c, c½ �,
Ð

x�c(x)dx ¼ 0,Ð
x2�c dxð Þ ¼ 1 and �c !

P N 0, 1ð Þ, as c ! 1. Let �c, j be the distribution of a random

variable s j Zc, where Zc has law �c, s2
j ¼ a j=sð Þ= 2nAð Þ, j ¼ 1, . . . , s, and a xð Þ ¼

�xð Þ��
[1 � �xð Þ�]þ. As prior measure for the parameter vector Ł ¼ (Ł1,1, . . . , Ł1,q n

, . . . ,

Łs,1, . . . , Łs,qn
)T, we take the product measure � nð Þ

c ¼ �s
j¼1�

�qn

c, j , where Ł j,k � �c, j.

Now we obtain that

Rn > inf
~ff

n2�=(2�þ1)

ð
¨ n

E fŁk ~ff � fŁk2
L2
�(n)

c dŁð Þ
� �

> Rn,1 � Rn,2, (5:12)

say, where
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Rn,1 ¼ n2�=(2�þ1)inf
~ff

ð
supp(�( n)

c )

E fŁk ~ff � fŁk2
L2
�(n)

c dŁð Þ,

Rn,2 ¼ n2�=(2�þ1) sup
Ł1,Ł22supp(�( n)

c )

k fŁ1
� fŁ2

k2
L2

n o
� nð Þ

c ¨c
n

� �
:

(The second inequality in (5.12) follows from convexity of f fŁ, Ł 2 ¨ng which implies that

the Bayes estimator lies in this set.)

Since qn= 2Að Þð Þ2�þ1=n < K2�þ1, we obtain that

Xs

j¼1

Xq n

k¼1

E�c, j
Ł2

j,kº j

qn

2A

� 	2�
< s2�þ1 K2�þ1 1

s

Xs

j¼1

a j=sð Þ �
j

s


 �2�

< s2�þ1 K2�þ1 1

s

Xs

j¼1

1 � �
j

s


 ��
" #

þ

�
j

s


 ��

,

which tends to L � 3�9=4 as s ! 1.

Hence, it follows that, for s sufficiently large,

Xs

j¼1

Xq n

k¼1

E�c, j
Ł2

j,kº j

qn

2A

� 	2�
< L � �9=2,

which implies, in conjunction with
Ps

j¼1

Pq n

k¼1 r j,nŁ j,k ¼ OP(n�1=2), that

� nð Þ
c ¨c

n

� �
! 0, as n ! 1: (5:13)

Since n2�=(2�þ1)supŁ1,Ł22supp(�( n)
c )
k fŁ1

� fŁ2
k2

L2
¼ O(1), we obtain that

Rn,2 ! 0, as n ! 1: (5:14)

We now analyse the term Rn,1. To this end, we consider first the term

~RRn,1 ¼ n2�=(2�þ1)inf
~ff

ð
supp(�( n)

c )

E fŁ






 ~ff � f 0 �
Xs

j¼1

Xq n

k¼1

Ł j,kffiffiffiffiffiffiffiffi
nhn

p � j

� � ak,n

hn


 �





2

L2

�(n)
c (dŁ):

Using the orthonormality of the perturbations, we obtain that

~RRn,1 ¼ n2�=(2�þ1)
Xs

j¼1

Xq n

k¼1

inf
~ŁŁ j, k

ð
supp(�( n)

c )

EŁj~ŁŁ j,k � Ł j,k j2� nð Þ
c dŁð Þ

> n2�=(2�þ1)qn

Xs

j¼1

min
1<k<qn

inf
Łl, m2supp(�c, j),( l,m) 6¼( j,k)

inf
~ŁŁ j, k

ð
supp(�( n)

c )

EŁj~ŁŁ j,k � Ł j,k j2�c, j dŁ j,k

� �
,

(5:15)

that is, we can reduce our considerations to a separate analysis of certain one-dimensional

estimation problems.

To establish the link to Gaussian shift experiments whose analysis finally leads to explicit
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lower bounds, we will prove local asymptotic normality for the family of one-dimensional

subexperiments given by

f jð Þ
u ¼ f 0 þ

X
l,mð Þ: l,mð Þ6¼ j,k nð Þ

Ł j,nð Þ
l,m � l,m,n þ u� j,k n,n, u 2 �cs j, cs j

� �8<
:

9=
;,

where k n and (Ł( j,n)
l,m )( l,m) 6¼( j,k n) are sequences through which the minimum is attained on the

right-hand side of (5.15)

Using Proposition 3.1, we obtain that

¸ jð Þ
u ¼ log

p f
jð Þ

u X 1, . . . , X nð Þ
p f

jð Þ
0 X 1, . . . , X nð Þ

¼ u
Xn

i¼1

� j,k n,n X ið Þ
p f

jð Þ
0 X ið Þ

� u2

2
nE

f
jð Þ

0

� j,k n,n X1ð Þ
p f

jð Þ
0 X1ð Þ

 !2

þR jð Þ
n ,

where supjuj<u0
fP

f
( j)

0

(jR( j)
n j . EÞg ! 0, for all u0, E . 0.

Applying a central limit theorem for a triangular array of strongly mixing random

variables (see Politis et al. 1997, Theorem A.1), we obtain that

¸ jð Þ
u=
ffiffiffi
n

p �!d uZ j �
u2

2

1

2A þ 1
, (5:16)

where Z j � N 0, 1= 2A þ 1ð Þð Þ.
Now we can proceed in the same way as Golubev and Nussbaum (1990) in the proof of

their Theorem A1. Because of the LAN property (5.16), we obtain, for any fixed truncation

parameter c,

inf
~ŁŁ j, k n

ð
supp(�c, j)

EŁ( j) j~ŁŁ j,k n
� Ł j,k n

j2�c, j(dŁ j,k n
) > inf

~ŁŁ j

ð
supp(�c, j)

~EEŁ j
j~ŁŁ j � Ł jj2�c, j(dŁ j) þ o p(n�1),

(5:17)

where Ł( j) is the parameter vector consisting of (Ł( j,n)
l,m )( l,m) 6¼( j,k n) and Ł j,k n

, and ~EEŁ j
is the

expectation in a Gaussian shift experiment where

Y j ¼ Ł j þ � j (5:18)

is observed and � j � N 0, 1=(n(2A þ 1))ð Þ. Moreover, it follows from the arguments given in

the proof of Theorem A1 of Golubev and Nussbaum (1990) that the right-hand side in (5.17)

converges to the Bayesian risk for experiments (5.18) with normal priors � j � N (0, s2
j) as

the truncation parameter c tends to infinity; see also Theorem 3.1 of Neumann and Spokoiny

(1995). Therefore, we obtain that
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lim
c!1

inf
~ŁŁ j, k n

ð
supp(�c, j)

EŁ( j) j~ŁŁ j,k n
� Ł j,k n

j2�c, j dŁ j,k n

� �
> inf

~ŁŁ j

ð
~EEŁ j

j~ŁŁ j � Ł jj2 pN (0,s2
j
) Ł j

� �
dŁ j

>
1 � �9=2

nA

a j=sð Þ
1 þ a j=sð Þ ,

if A is sufficiently large.

Hence,

~RRn,1 >
1 � �9=2

nA
qn

Xs

j¼1

a j=sð Þ
1 þ a j=sð Þ

> 1 � �9ð Þ qns

nA

ð
1 � �xð Þ�
� 	

þ
dx

> ª �ð ÞL1= 2�þ1ð Þ � �=2, (5:19)

for �9 sufficiently small and s sufficiently large.

Moreover, it is easy to see that

n2�=(2�þ1)EŁ

Xs

j¼1

Xq n

k¼1

Ł j,k r j,k,n

 !2

k f0k2
L2
¼ O(n�1=(2�þ1)), (5:20)

which implies, in conjunction with (5.19), that

Rn,1 ¼ ~RRn,1 þ O n�1=(4�þ2)
� 	

: (5:21)

From (5.19) and (5.21) we obtain, for n sufficiently large,

Rn,1 > ª(�)L1=(2�þ1) � �: (5:22)

The assertion follows from (5.12), (5.14) and (5.19). h

Proof of Theorem 3.2. Let � . 0 be arbitrary. We will show that

inf
~ff

sup
f 2F (1)

n

E f w((n=log(n))�=(2�þ1)k ~ff � f k1) > (1 � �)w (1 � �)k(�, L, B)ð Þ (5:23)

holds for all n sufficiently large. Here the class F (1)
n � F1(�, L, B) is defined as

F n,1 ¼ fŁ ¼ f 0 þ
XM n

j¼1

Ł jł j,n, (Ł1, . . . , ŁM n
) 2 f�1, 1gM n

( )
,

where the basic density f 0 and the perturbations ł j,n are defined below.

Let �1, �2 2 (0, 1) be constants such that (1 � �)=[(1 � �1)(1 � �2)] , 1. Now we can

choose a density f 0 2 F1(�, L, B) such that f 0(x) ¼ (1 � �1)(B ^ B�) for all x 2 [0, T ]

and some T . 0.

According to Leonov (1997), there exists a compactly supported solution ł� to the

optimization problem
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maxfg(0)jkgkL2
< 1, jg(b�c)(x1) � g(b�c)(x2)j < jx1 � x2j��b�c 8x1, x2g,

where, in particular, ł�(0) ¼ A�. Hence, we can choose a function ł with compact support

[�D, D], satisfying the properties
Ð
ł(x)dx ¼ 0, jł(b�c)(x1) � ł(b�c)(x2)j <

jx1 � x2j��b�c 8x1, x2, kłkL2
¼ 1, and ł(0) ¼ (1 � �2)A�. We now define the perturbations

as

ł j,n(x) ¼ 1 � �

1 � �2

Lh�
nł((x � b j,n)=hn),

where b j,n ¼ (2 j � 1)hn D, for j ¼ 1, . . . , M n,

hn ¼ 2(B ^ B�)

2�þ 1ð ÞL2

log n

n


 �1= 2�þ1ð Þ

and

M n ¼ T

2Dhn

� �
:

It follows from the construction that F n,1 � F1(�, L, B).

We have that

Rn ¼ inf
~ff

sup
f 2F1(�,L,B)

w((1 � �)k(�, L, B))�1E f w((n=log(n))�=(2�þ1)k ~ff � f k1)

> inf
~ff

sup
f 2F1(�,L,B)

Pf [(n=log(n))�=(2�þ1)k ~ff � f k1 > (1 � �)k(�, L, B)]

> inf
~ff

sup
f 2F n,1

Pf max
j¼1,...,M n

fj ~ff (b j,n) � f (b j,n)jg > (1 � �)Lh�
nł(0)=(1 � �2)

� �
:

The latter inequality holds since (log(n)=n)�=(2�þ1)k(�, L, B) ¼ Lh�
nł�(0) ¼ Lh�

nł(0)=
(1 � �2).

Since estimation of f at the points y1,n, . . . , yM n,n is not harder than estimation of f in

the supremum norm, we obtain that

Rn > inf
~ŁŁ

sup
Ł2f�1,1gM n

PŁ max
j¼1,...,M n

j~ŁŁ j(X 1, . . . , X n) � Ł jj > 1

� �

> inf
~ŁŁ

1

2M n

X
Ł2f�1,1gM n

PŁ max
j¼1,... , M n

j~ŁŁ j(X1, . . . , X n) � Ł jj > 1

� �

¼ inf
~ŁŁ

1

2M n

ð
Rn

X
Ł2f�1,1gM n

I j~ŁŁ(x) � Łj1 > 1
� �

p fŁ(x) dx:

(The latter two terms are just the Bayes risk with a corresponding product prior.) Now it is

clear that the right-hand side is minimized by a maximum likelihood estimator. Hence,
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Rn >
1

2M n

X
Ł2f�1,1gM n

PŁ
p fŁ9 (X 1, . . . , X n)

p fŁ(X 1, . . . , X n)
. 1 for at least one Ł9 2 f�1, 1gM n

� �

> min
Ł2f�1,1gM n

PŁ max
1< l<M n

log
p fŁ(� j) (X1, . . . , X n)

p fŁ(X 1, . . . , X n)

� �
. 0

� �
, (5:24)

where Ł(� j) ¼ (Ł1, . . . , Ł j�1, �Ł j, Ł jþ1, . . . , ŁM n
). Now we obtain the desired result (5.23) if

the term on the right-hand side of (5.24) tends to 1 as n ! 1. To show this, we will use

Proposition 3.1 which allows us to approximate the logarithmic likelihoods by

ALL( j) ¼ �2Ł j

Xn

i¼1

ł j,n(X i)

fŁ(X i)
� 2nE fŁ

ł j,n(X1)

fŁ(X 1)


 �2

:

According to the whitening-by-windowing principle, it can be shown that each particular term

ALL( j) behaves asymptotically as if the X i were independent. In order to obtain an

asymptotic approximation to the distribution of the maximum of these terms, it would be

helpful if we could replace ALL(1), . . . , ALL(M n) by independent random variables. The

classic Poissonization method is, however, not applicable since the dependence between

X 1, . . . , X n does not allow it. Nevertheless, it is possible to approximate the unordered set

fX 1, . . . , X ng by a set of realizations from a Poisson process with intensity function nfŁ(x).

To this end, we successively embed the observations X 1, . . . , X n in a Poisson process N on

(0, 1) 3 R with intensity function p(x, y) � 1; see Neumann (1998, Section 2.2) for a

detailed description. Let (T1, Z1), (T2, Z2), . . . be a realization of N , ordered such that

T1= fŁ(Z1) < T2= fŁ(Z2) < . . . :

It is clear that Z1, Z2, . . . form a sequence of independent random variables with common

density fŁ. Let � ¼ #f j : T j < nfŁ(Z j)g. According to Proposition 2.1 in Neumann (1998),

we can embed the random variables X 1, . . . , X n in N such that

P 9 j 2 f1, . . . , M ng : # (fX 1, . . . , X ngnfZ1, . . . , Z�g) \ supp(ł j,n)
� �

. Cº
ffiffiffi
n

p
hn log(n)


 �

¼ O(n�º), (5:25)

where A1nA2 denotes the symmetric difference of the two sets A1 and A2. (The coupling is

organized in such a way that it may well happen that the X1, . . . , X n and the Z1, Z2, . . .
appear in a different chronological order; (5.25) merely means that the unordered sets

fX 1, . . . , X ng and fZ1, . . . , Z�g are nearly the same, which is sufficient for our purposes.)

We obtain by Proposition 3.1 that

PŁ

����log
p fŁ(� j) (X 1, . . . , X n)

p fŁ(X1, . . . , X n)
� �2Ł j

Xn

i¼1

ł j,n(X i)

fŁ(X i)
� 2nE f

ł j,n(X 1)

fŁ(X1)


 �2
" #���� . Cºn�E

 !

¼ O(n�º): (5:26)

Since kł j,n= fŁk1 ¼ O(h�
n), (5.25) implies that
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PfŁ

����Xn

i¼1

ł j,n(X i)

fŁ(X i)
�
X�
i¼1

ł j,n(Zi)

fŁ(Zi)

���� . Cº(log(n))3=2 h1=2
n

 !
¼ O(n�º): (5:27)

Furthermore, it is clear that

nE fŁ

ł j,n(X1)

fŁ(X1)


 �2

¼ n
(1 � �)2 L2 h2�þ1

n =(1 � �2)2

[(1 � �1)(B ^ B�)]2

¼ (1 � �)2

(1 � �1)2(1 � �2)2

2log(n)

2�þ 1
: (5:28)

Let Z
( j)
i be the jth member of the sequence Z1, Z2, . . . which falls into supp(ł j,n),

and � j ¼ #f1 < i < � : Zi 2 supp(ł j,n)g. It is clear that � j � Pois(nº j), where º j ¼Ð
supp(ł j, n)

fŁ(x) dx. Since P(j� j � [nº j]j . Cº
ffiffiffiffiffiffiffiffiffiffiffiffiffi
log(n)

p ffiffiffiffiffiffiffiffi
nhn

p
) ¼ O(n�º) and Z

( j)
1 , Z

( j)
2 , . . . form

a sequence of independent random variables, we obtain by Bernstein’s inequality (see, for

example, Shorack and Wellner 1986 p. 855) that

PŁ

����X�
i¼1

ł j,n(Zi)

fŁ(Zi)
�
X[nº j]

i¼1

ł j,n(Z
( j)
i )

fŁ(Z
( j)
i )

���� . Cº(nhn)�1=4(log(n))5=4

 !
¼ O(n�º): (5:29)

By (5.26)–(5.29) we obtain that

PfŁ max
1< j<M n

log
p fŁ(� j) (X1, . . . , X n)

p fŁ(X1, . . . , X n)

� �
. 0


 �

> PŁ max
1< j<M n

�Ł j

X[nº j]

i¼1

ł j,n(Z
( j)
i )

fŁ(Z
( j)
i )

( )
.

(1 � �)2

(1 � �1)2(1 � �2)2

2 log(n)

2�þ 1
þ Rn

 !

þ O(n�º), (5:30)

where Rn ¼ Cº[n�E þ (log(n))3=2 h1=2
n þ (nhn)�1=4(log(n))5=4]. It is clear from the above

construction that the terms
P[nº j]

i¼1 ł j,n(Z
( j)
i )= fŁ(Z

( j)
i ), j ¼ 1, . . . , M n, are independent.

Moreover, we obtain from Theorem 4 in Nagaev (1965) that

PŁ �Ł j

X[nº j]

i¼1

ł j,n(Z
( j)
i )

fŁ(Z
( j)
i )

. z
1 � �

(1 � �1)(1 � �2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log(n1=(2�þ1))

q !
¼ (1 ��(z))(1 þ o(1))

holds uniformly in 0 < z < C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
log(n)

p
for any C , 1. This implies that the right-hand side

of (5.30) converges to 1. Hence, we obtain the assertion. h

5.3. Proofs of the theorems on the upper bounds

Proof of Theorem 4.1. In order to prove the theorem, we use for the kernel estimator (4.1)

the decomposition into bias and variance terms,
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E f k f̂f
[2]
hn

� f k2
L2
¼ kE f f̂f

[2]
h n

� f k2
L2
þ E f k f̂f

[2]
h n

� E f f̂f
2½ �
h n
k2

L2
: (5:31)

The bias is treated analogously to the case of independent data, that is,

kE f f̂f
[2]
hn

� f k2
L2
¼ 1

2�
kF E f f̂f

[2]
h n

� 	
� F fð Þk2

L2

¼ 1

2�
k F K�,2

� �
hn�ð Þ � 1

� �
F fð Þk2

L2

<
1

2�

ð
jhnøj2�jF( f )(ø)j2dø < Lh2�

n , (5:32)

where we have used first the Plancherel formula for Fourier transforms and then the

expression for the kernel.

In the variance term, there are covariances that do not appear in the independent case.

Nevertheless, due to the weak dependence of data, the dominating term is the same as in

the independent case. We have

E f k f̂f
[2]
h n

� E f f̂f
[2]
h n
k2

L2
¼ 1

n
E f

ð
1

hn

K�,2

X 1 � x

hn


 �
� E f

1

hn

K�,2

X1 � x

hn


 �
 �2

dx

þ 1

nhnð Þ2

X
1<ji� jj<Cºlog(n)

ð
cov f K�,2

X i � x

hn


 �
, K�,2

X j � x

hn


 �
 �
dx

þ 1

nhnð Þ2

X
ji� jj.Cºlog(n)

ð
cov f K�,2

X i � x

hn


 �
, K�,2

X j � x

hn


 �
 �
dx

¼ T1 þ T2 þ T3, (5:33)

say. We have

T1 ¼ 1

n

kK�,2k2
L2

hn

� 1

2�
kF(K�,2)(hn�)F fð Þk2

L2

 !
<

kK�,2k2
L2

nhn

: (5:34)

Now kK�,2k1 < (2�)�1
Ð

(1 � jøj�)þ dø < 1=� implies in conjunction with (4.2) thatÐ
jK�,2(x)j dx , 1. Therefore, we obtain

T2 <
1

(nhn)2

X
1<ji� jj<Cºlog(n)

ððð����K�,2

xi � x

hn


 �
K�,2

xj � x

hn


 �����
3 p f (xjjxi) þ p f (xj)
� �

p f (xi) dxi dxj dx

¼ O(log(n)=n): (5:35)

Define
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H n(y, z) ¼
ð

K�,2

y � x

hn


 �
� E f K�,2

X1 � x

hn


 �� �
K�,2

z � x

hn


 �
� E f K�,2

X 1 � x

hn


 �� �
dx:

We can replace X j by some X 9j which has the same distribution as X j, is independent of X i,

and satisfies P(X j 6¼ X 9j) < �(ji � jj). Since E f H n(X i, X 9j) ¼ 0 and sup y,zfjH n(y, z)jg ¼
O(1) we obtain

T3 ¼ 1

(nhn)2

X
ji� jj.Cºlog(n)

E f [H n(X i, X j) � H n(X i, X 9j)]

¼ O(n�º), (5:36)

provided Cº is sufficiently large. Hence, we obtain from (5.33)–(5.36) that

E f k f̂f
[2]
hn

� E f f̂f
[2]
hn
k2

L2
<

kK�,2k2
L2

nhn

þ O
log(n)

n


 �
: (5:37)

Since kK�,2k2
L2
¼ kF(K�,2)k2

L2
= 2�ð Þ ¼ 2�2= � �þ 1ð Þ 2�þ 1ð Þð Þ, we obtain

Lh2�
n þ

kK�,2k2
L2

nhn

¼ �n�1

�L �þ 1ð Þ 2�þ 1ð Þ


 �2�= 2�þ1ð Þ
L þ 2�Lð Þ ¼ L1= 2�þ1ð Þª �ð Þn�2�=(2�þ1),

which yields the assertion in conjunction with (5.31), (5.32), and (5.37). h

Proof of Theorem 4.2. Let � . 0 be arbitrary. We will actually prove that, for rn ¼
(log(n)=n)�=(2�þ1),

lim sup
n!1

sup
f 2F1(�,L,B)

E f w(r�1
n k f̂f

[1]
h n

� f k1) < w (1 þ �)k(�, L, B)ð Þ (5:38)

holds for n > n0(�). The fact that we have the additional factor 1 þ � at our disposal

facilitates our task essentially: we are therefore not forced to undertake some sort of ‘exact

calculations’, and can actually apply rough exponential estimates in conjunction with a

suitable chaining technique.

We divide the constant k(�, L, B) describing the asymptotic size of r�1
n k f̂f

[1]
hn

� f k1 into

a term caused by stochastic fluctuations and a bias term, that is,

k(�, L, B) ¼ r�1
n � (n)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log(1=hn)

p
þ r�1

n Lh�
n B(�),

where

� (n) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B ^ B�

p
p

nhn

kK�,1k2:

Indeed, for all f 2 F1(�, L, B),

r�1
n kE f f̂f

[1]
hn

� f k1 < Lh�
n B(�), (5:39)

where
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B(�) ¼ sup
g2F1 �,1,Bð Þ

����
ð

K�,1 uð Þ g uð Þ � g 0ð Þ½ �du

���� (5:40)

and kK�,1k2 þ B(�) ¼ A�. We have, for some �9 to be chosen below,

E f w(r�1
n k f̂f

[1]
h n

� f k1)

< w((1 þ �)k(�, L, B))Pf (k f̂f
[1]
h n

� E f f̂f
[1]
h n

k1 < (1 þ �)� (n)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log(1=hn)

p
)

þ w((1 þ �9)k(�, L, B))

Pf ((1 þ �)� (n)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log(1=hn)

p
, k f̂f

[1]
h n

� E f f̂f
[1]
h n

k1 < (1 þ �9)� (n)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log(1=hn)

p
)

þ w(r�1
n [h�1

n kK�,1k1 þ Lh�
n B(�)])

Pf (k f̂f
[1]
hn

� E f f̂f
[1]
hn

k1 . (1 þ �9)� (n)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log(1=hn)

p
) (5:41)

According to this decomposition, we will prove (5.38), and hence the assertion of the

theorem, by deriving exponential inequalities for r�1
n k f̂f

[1]
hn

� E f f̂f
[1]
h n

k1.

Since the support of f is not necessarily restricted to a set of bounded size, we first

reduce the problem to the supremum deviation on a certain set with appropriately bounded

Lebesgue measure. This boundedness will be used later on; see the derivation of (5.46)

below. To this end, we consider overlapping intervals

I k ¼ [khn, (k þ 1)hn) 	 supp(K�,1(�=hn))

and restrict our primary attention to the set

X n ¼
[

k2I n

[khn, (k þ 1)hn), (5:42)

where

I n ¼ k : Pf (X i 2 I k) > n�1
� �

:

We decompose the set of remaining indices ZnI n into disjoint subsets J 1, . . . , J cn
such that

n�1 < Pf X i 2
[

j2J k

I j

 !
, 2n�1:

Using the Bernstein-type inequality given in Lemma 5.1, we obtain

P # i : X i 2
[

j2J k

I j

( )
. Cº log(n)

 !
¼ O(n�º),

which implies, by cn ¼ O(nk), that

P sup
x2RnX n

fj f̂f [1]
h n

(x) � E f f̂f
[1]
h n

(x)jg . Cº(nhn)�1 log(n)

 !
¼ O(n�º): (5:43)
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To obtain probabilistic bounds for the supremum deviation on X n, we apply a simple

chaining technique based on two grids, a coarse one with grid size g n,1 close to hn, and a

fine one with grid size g n,2 ¼ g n,1=K n, for some integer K n; that is, we define

xj ¼ g0 þ jg n,1, j 2 Z,

xj,k ¼ xj þ k gn,2, j 2 Z, k ¼ 1, . . . , K n:

Before we apply Lemma 5.1 to j f̂f [1]
h n

(xj) � E f f̂f
[1]
h n

(xj)j, we derive an upper estimate for

� 2
x ¼ n max

i,m

1

m
var

1

nhn

K�,1
x � X i

hn


 �
þ . . . þ K�,1

x � X iþm�1

hn


 �� �
 �� �
,

which determines the constant in the exponent of the Bernstein-type inequality given in

Lemma 5.1. Analogously to (5.37), we obtain the pointwise estimate

� 2
x ¼

1

nh2
n

kK�,1k2
2 � k f k1 þ O(log(n)=n) (5:44)

as well as the estimate ð1
�1

� 2
x dx ¼ 1

nh2
n

kK�,1k2
2 þ O(log(n)=n):

The latter relation implies that there exists a g0 such thatX
j2Z

� 2
x j
< C

1

ngn,1

:

Furthermore,

# j : xj 2 X n

� �
¼ O(nk),

for some k , 1. We obtain by Lemma 5.1 that, for n > n0,

P max
x j2X n

j f̂f [1]
h n

(xj) � E f f̂f
[1]
hn

(xj)j . u(1 þ �=3)� (n)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log(1=hn)

p
 �

<
X

j: x j2X n

4 exp �Tnf g þ O(n�º), (5:45)

where

T n ¼
(1 � �)(1 þ �=3)2u2� 2

(n) log(1=hn)

� 2
x j
þ Cº,�u(1 þ �=3)� (n)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log(1=hn)

p
log(n)=(nhn)

:

Since #f j : xj 2 X ng ¼ O(nk) we can use for those j where � x j
is below a certain threshold

the estimate X
j: x j2X n and � x j

<C3� 2
( n)

exp f�Tng ¼ O nk exp f�C4 log(n)gð Þ ¼ O(n�º), (5:46)
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provided the constant C3 is sufficiently small. For � 2
x j
. C3� 2

(n), we have that

� 2
x j
þ Cº,�u(1 þ �=3)� (n)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log(1=hn)

p
log(n)=(nhn)

<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ �=3

p
� 2

x j
< (1 þ �=3)� 2

(n) < (1 � �)(1 þ �=3)2u2� 2
(n)log(1=hn):

This implies, in conjunction with the inequality (1=x) exp(�c=x) < (1=x0) exp(�c=x0) which

holds for x < x0 < c, that

X
j: x j2X n and � x j

.C3� 2
( n)

exp f�Tng ¼ O expf�(1 � �)(1 þ �=3)u2 log(1=hn)g
X

j: x j2X n

� 2
x j

� 2
(n)

0
@

1
A

¼ O
hn

gn,1

h�(1��)(1þ�=3)u2

n


 �
: (5:47)

We choose � such that (1 � �)(1 þ �=3) . 1. Now we obtain from (5.45)–(5.47) that

P max
x j2X n

j f̂f [1]
h n

(xj) � E f f̂f
[1]
h n

(xj)j . (1 þ �=3)� (n)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log(1=hn)

p
 �
¼ o(1) (5:48)

if K n ¼ [nk] and k . 0 is sufficiently small. Furthermore, we have

P max
x j2X n

j f̂f [1]
h n

(xj) � E f f̂f
[1]
h n

(xj)j .
1 þ �9

1 þ �
(1 þ �=3)� (n)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log(1=hn)

p
 �
¼ O(n�º) (5:49)

if �9 is sufficiently large.

Since jxj � xj,k j < g n,1 and K�,1 is Lipschitz of order �, we obtain that




K�,1
xj � �

hn


 �
� K�,1

xj,k � �
hn


 �




1 ¼ O (gn,1=hn)�^1
� �

(5:50)

as well as 




K�,1
xj � �

hn


 �
� K�,1

xj,k � �
hn


 �





2

2

¼ O hn(gn,1=hn)2(�^1)
� �

:

The latter relation implies, by complete analogy with the derivation of (5.37), that

1

nh2
n

Xn

i9¼1

����cov K�,1
xj � X i

hn


 �
� K�,1

xj,k � X i

hn


 �
, K�,1

xj � X i9

hn


 �
� K�,1

xj,k � X i9

hn


 �
 �����
¼ O

1

nhn

(g n,1=hn)2(�^1) þ 1

log(n)
(gn,1=hn)2(�^1) þ n�º


 �
: (5:51)

From (5.50), (5.51), and the fact that #f( j, k) : xj,k 2 X ng ¼ O(nª) for some fixed ª . 0,

we obtain by Lemma 5.1 that
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P max
x j, k2X n

j[ f̂f
[1]
hn

(xj,k) � E f f̂f
[1]
h n

(xj,k)] � [ f̂f
[1]
h n

(xj) � E f f̂f
[1]
h n

(xj)]j .
�

3
� (n)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log(1=hn)

p
 �

¼ O(n�º): (5:52)

Finally, for x 2 [xj,k , xj,kþ1], we have the non-stochastic estimate

j f̂f [1]
hn

(x) � f̂f
[1]
hn

(xj,k)j ¼ O h�1
n (gn,2=hn)2(�^1)

� �
<

�

3
� (n)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log(1=hn)

p
(5:53)

if gn,2 ¼ O(n�k) and n > n0. Putting all things together, we obtain that

P sup
x2R

fj f̂f [1]
h n

(x) � E f f̂f
[1]
h n

(x)jg . (1 þ �)� (n)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log(1=hn)

p
 �
¼ o(1) (5:54)

and

P sup
x2R

fj f̂f [1]
hn

(x) � E f f̂f
[1]
hn

(x)jg . (1 þ �9)� (n)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log(1=hn)

p
 �
¼ O(n�º), (5:55)

provided �9 is sufficiently large. (5.38) now follows from (5.39), (5.41), (5.54) and (5.55).

h

5.4. A Bernstein-type inequality

The following lemma is adapted from Doukhan (1994, Theorem 1.4.2.4).

Lemma 5.1. Let X 1, . . . , X n be geometrically �-mixing. Then, for arbitrary º , 1 and

� . 0, there exist X 91, . . . , X 9n with

P((X 1, . . . , X n) 6¼ (X 91, . . . , X 9n)) ¼ O(n�º)

such that

P

����Xn

i¼1

g(X 9i)

���� > u

 !
< 4 exp � (1 � �)u2

2(n� 2
g þ uCº,� log(n)kgk1)

( )

holds for all functions g with Eg(X i) ¼ 0 for all i, where

� 2
g ¼ max

i,m

1

m
E g(X i) þ . . . þ g(X iþm�1)ð Þ2

� �
:

Note that there are two differences from Doukhan’s formulation. First, we make explicitly

clear that there exists some universal substitution of the sample X1, . . . , X n by X 91, . . . , X 9n
which does not depend on the particular function g. Therefore, the term of order n�º

occurs only once even when we apply the Bernstein-type inequality simultaneously to

several different g. Second, in Doukhan’s formulation, the term which plays the role of our

� 2
g was bounded from above by maxi,mf(1=m)E g(X i) þ . . . þ g(X iþm)ð Þ2g, that is, the

variance of m þ 1 successive observations was divided by m. Our slightly different
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formulation is actually crucial in our context, since we focus on the exact asymptotic

constant.

Proof of Lemma 5.1. The proof is of course similar to that in Doukhan (1994) and is only

included for completeness.

The basic reason why we obtain (up to the factor 1 � �) basically the same constant in

the exponent as in the case of independent random variables is that we split X1, . . . , X n

into alternating large and small blocks. Let ln ¼ [Cº,1 log(n)] be the length of the large

blocks and sn ¼ [Cº,2 log(n)] be the length of the small blocks (Cº,1 > Cº,2). (An

appropriate choice of these constants is described below.)

We define sets of indices

J ( l)
k ¼ f(k � 1)(l n þ sn) þ 1, . . . , (kln þ (k � 1)sn) ^ ng,

J (s)
k ¼ fkln þ (k � 1)sn þ 1, . . . , (k(ln þ sn)) ^ ng:

According to Lemma 2 in Doukhan et al. (1995), we can replace the large blocks

(X i, i 2 J ( l)
k ) by independent blocks (X 9i, i 2 J ( l)

k ) such that

(X i, i 2 J ( l)
k ) ¼d (X i9, i 2 J ( l)

k )

and

P((X i, i 2 J ( l)
k ) 6¼ (X 9i, i 2 J ( l)

k )Þ < �(sn þ 1):

Analogously, we can replace the small blocks (X i, i 2 J (s)
k ) by independent blocks

(X 9i, i 2 J (s)
k ) such that

(X i, i 2 J (s)
k ) ¼d (X 9i, i 2 J (s)

k )

and

P((X i, i 2 J (s)
k ) 6¼ (X 9i, i 2 J (s)

k )) < �(ln þ 1):

We choose Cº,2 such that �([Cº,2 log(n)] þ 1) ¼ O(n�º�1), which implies that

P (X1, . . . , X n) 6¼ (X 91, . . . , X 9n)ð Þ ¼ O(n�º): (5:56)

Applying Bernstein’s inequality for independent random variables (see, for example,

Shorack and Wellner 1986, p. 855) we obtain, with n( l) ¼
P

k#J ( l)
k and n(s) ¼

P
k#J (s)

k ,

that

P
X

k

X
i2J ( l)

k

g(X 9i)

������
������ > v

0
@

1
A < 2 exp � v2

2(n( l)� 2
g þ vlnkgk1=3)

( )
(5:57)

and
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P
X

k

X
i2J (s)

k

g(X 9i)

������
������ > w

0
@

1
A < 2 exp � w2

2(n(s)� 2
g þ wsnkgk1=3)

( )
: (5:58)

We choose Cº,1 such that

1 � �

2
¼

(
ffiffiffiffiffiffiffiffi
Cº,1

p
þ

ffiffiffiffiffiffiffiffi
Cº,2

p
)2

Cº,1 þ Cº,2

:

This implies that

�n ¼ 1 � (
ffiffiffiffiffiffiffi
n( l)

p
þ

ffiffiffiffiffiffiffi
n(s)

p
)2

n
< �

holds for n > n0(º, �). Therefore, we obtain from (5.57) and (5.58), with v ¼
u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � �n

p ffiffiffiffiffiffiffi
n( l)

p
=
ffiffiffi
n

p
and w ¼ u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � �n

p ffiffiffiffiffiffiffi
n(s)

p
=
ffiffiffi
n

p
, that

P

����Xn

i¼1

g(X 9i)

���� > u

 !
< 2 exp � u2(1 � �n)n( l)=n

2(n( l)� 2
g þ ulnkgk1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � �n

p
(
ffiffiffiffiffiffiffi
n( l)

p
=
ffiffiffi
n

p
)=3)

( )

þ 2 exp � u2(1 � �n)n(s)=n

2(n(s)� 2
g þ usnkgk1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � �n

p
(
ffiffiffiffiffiffiffi
n(s)

p
=
ffiffiffi
n

p
)=3)

( )

< 4 exp � u2(1 � �)

2(n� 2
g þ uCº,�kgk1)

( )
:

h
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