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1. Introduction

Response-adaptive design involves the sequential selection of design points chosen

depending on the outcomes at previously selected design points. The response-adaptive

design has been extensively studied in the literature; see Rosenberger (1996), Flournoy and

Rosenberger (1995) and Hu and Ivanova (2004) for details.

An important family of adaptive designs can be developed from the generalized

Friedman’s urn (GFU) model; see Athreya and Karlin (1968) and Rosenberger (2002). It is

also called the generalized Pólya urn (GPU) model in the literature. The model is described

as follows. Consider an urn containing balls of K types, representing K ‘treatments’ in a

clinical trial. Initially the urn contains Y0 ¼ (Y01, . . . , Y0K) balls, where Y0k denotes the

number of balls of type k, k ¼ 1, . . . , K. At stage i, i ¼ 1, . . . , n, a ball is drawn from the

urn and replaced. If the ball is of type k, then treatment k is assigned to the ith patient,

i ¼ 1, . . . , n. We then wait to observe a random variable �i, the response of the treatment

by patient i. After that, an additional Dk,q(i) balls of type q, q ¼ 1, . . . , K, are added to the

urn, where Dk,q(i) is some function of �i. This procedure is repeated for n stages. After n

stages, the urn composition is denoted by the row vector Yn ¼ (Yn1, . . . , YnK ), where Ynk

represents the number of balls of type k in the urn after the nth addition of balls. This

relation can be written as the recursive formula

Yn ¼ Yn�1 þ XnDn, (1:1)

where Dn ¼ D(�n) ¼ (Dk,q(n))Kk,q¼1 is a K 3 K random matrix with (k, q)th element Dk,q(n),

and Xn is the result of the nth draw, distributed according to the urn composition at the
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previous stages – that is, if the nth draw is a ball of type k, then the kth component of Xn is

1 and the other components are 0.

Furthermore, write Nn ¼ (Nn1, . . . , NnK ), where Nnk is the number of times a ball of

type k is drawn in the first n stages. In clinical trials, Nnk represents the number of patients

assigned to treatment k in the first n trials. Obviously,

Nn ¼
Xn
k¼1

Xn: (1:2)

Moreover, denote Hi ¼ (E(Dk,q(i)))Kk,q¼1, i ¼ 1, . . . , n. The matrices Di are called the

addition rules and fHig are the generating matrices. A GFU model is said to be

homogeneous if Hi ¼ H for all i ¼ 1, . . . , n.

Athreya and Karlin (1968) first considered the asymptotic properties of the GFU model

with homogeneous generating matrices. Smythe (1996) defined the extended Pólya urn

(EPU) model (a special class of the GFU model) and considered its asymptotic normality.

For non-homogeneous generating matrices, Bai and Hu (1999) establish strong consistency

and asymptotic normality of Yn in the GFU model.

Typically, clinical trials do not result in immediate outcomes – that is, individual patient

outcomes may not be immediately available prior to the randomization of the next patient.

Consequently, the urn cannot be updated immediately, but can be updated when the

outcomes become available; see Wei (1988) and Bandyopadhyay and Biswas (1996) for

further discussion. A motivating example was studied in Tamura et al. (1994). Recently, Bai

et al. (2002) established the asymptotic distribution of the urn composition Yn under very

general delay mechanisms. But they did not obtain the asymptotic normality of the sample

fractions Nn.

In a clinical trial, Nn represents the number of patients assigned to each treatment. The

asymptotic distribution of Nn is essential to determine the required sample size of adaptive

designs (Hu, 2003). In this paper, we establish the asymptotic normality of Nn with delayed

responses. We also obtain the law of the iterated logarithm of both Yn and Nn. The

technique used in this paper is an approximation of Gaussian processes, which is different

from the martingale approximation in Bai et al. (2002). Some applications of the theorems

are discussed in the remarks.

In this paper, we only consider urn models where the urn will be updated by adding a

fixed total number � ( � . 0) of balls when an outcome becomes available. The randomized

Pólya urn (RPU) design of Durham et al. (1998) differs from such models in that the

number of balls added into the urn after an outcome can be zero and the urn composition

only changes after each success. Our techniques cannot be directly used to study the RPU

design with delayed responses.

2. Main results

In many clinical trials, some outcomes may not be immediately available prior to the

randomization of the next patient. Consequently, we can update the urn when outcomes
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become available (Wei, 1988). In this paper, we consider such trials, and assume that the

delayed times of outcomes are not very long compared with the time interval between

patients entering the trial. More precisely, we define an indicator function � jk , j , k, that

takes the value 1 if the response of patient j occurs before patient k is assigned and 0

otherwise. We assume that P(� jk ¼ 0) ¼ o((k � j)ª) as k � j ! 1 for some ª . 0 (see

Assumption 2.1). In clinical trials, it is sometimes important to consider censored

observations. However, in this paper our main concern is with the asymptotic properties,

and so we assume each response will ultimately occur even though its occurrence may take

a very long time. We leave consideration of trials with censored observations to future

studies, since censored observations will make the model more complex.

To describe the model clearly, we use the notation of Bai et al. (2002). Assume a

multinomial response model with responses �n ¼ l if patient n gave response l,

l ¼ 1, . . . , L, where f�n, n ¼ 1, 2, . . . , g is a sequence of independent random variables.

Let J n be the treatment indicator for the nth patient, that is, J n ¼ j if patient n was

randomized to treatment j ¼ 1, . . . , K. Then Xn ¼ (X n1, . . . , X nk) has X nJ n
¼ 1 and all

other elements 0. We assume that the entry time of the nth patient is tn, where ftn � tn�1g
are independent for all n. The response time of the nth patient on treatment j with response

l is denoted by �n( j, l ), whose distribution can depend on both the treatment assigned and

the response observed. Let M jl(n, m) be the indicator function taking the value 1 if

tn þ �n( j, l ) 2 (t nþm, t nþmþ1] m > 0, and 0 otherwise. By definition, for every pair of n

and j, there is only one pair (l, m) such that M jl(n, m) ¼ 1 and M jl9(n, m9) ¼ 0 for all

(l, m) 6¼ (l9, m9). Also, for fixed n and j, if the event f�n ¼ lg occurs, that is, the response

of the nth patient is l, then there is only one m such that M jl(n, m) ¼ 1; while if the event

f�n ¼ lg does not occur, then M jl(n, m) ¼ 0 for all m. Consequently,

X1
m¼0

M jl(n, m) ¼ If�n ¼ lg for j ¼ 1, . . . , K, l ¼ 1, . . . , L, n ¼ 1, 2, . . . : (2:3)

We can define � jlm(n) ¼ EfM jl(n, m)g as the probability that the nth patient on treatment j

with response l will respond after m more patients are enrolled and before mþ 1 more

patients are enrolled. Then

X1
m¼0

� jlm(n) ¼ P(�n ¼ l ) for j ¼ 1, . . . , K, l ¼ 1, . . . , L,

and X
l,m

� jlm(n) ¼ 1 for j ¼ 1, . . . , K:

If we assume that fM jl(n, m), n ¼ 1, 2, . . . , g are independent and identically distributed

(i.i.d.) for fixed j, l, and m, then � jlm(n) ¼ � jlm does not depend on n.

For patient n, after observing �n ¼ l, J n ¼ i, we add dij(�n ¼ l ) balls of type j to the

urn, where the total number of balls added at each stage is constant; that is,PK
j¼1dij(l ) ¼ �, where � . 0. Without loss of generality, we can assume � ¼ 1. Let

D(�n) ¼ (dij(�n), i, j ¼ 1, . . . , K). So, for given n and m, if M jl(n, m) ¼ 1, then we add
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balls at the (nþ m)th stage (i.e., after the (nþ m)th patient is assigned and before the

(nþ mþ 1)th patient is assigned) according to XnD(l ). Since M jl9(n, m) ¼ 0 for all l9 6¼ l,

XnD(l ) ¼
PL

l9¼1M jl9(n, m)XnD(l9). Consequently, the numbers of balls of each type added

to the urn after the nth patient is assigned and before the (nþ 1)th patient is assigned are

Wn ¼
Xn�1

m¼0

XL
l¼1

MJn�m, l(n� m, m)Xn�mD(l ) ¼
Xn
m¼1

XL
l¼1

MJm, l(m, n� m)XmD(l ):

Let Yn ¼ (Yn1, . . . , YnK ) be the urn composition when the (nþ 1)th patient arrives to be

randomized. Then

Yn ¼ Yn�1 þWn: (2:4)

Note (2.3). By (2.4) we have

Yn � Y0 ¼
Xn
k¼1

Wk ¼
Xn
k¼1

Xk
m¼1

XL
l¼1

MJm , l(m, k � m)XmD(l )

¼
Xn
m¼1

Xn
k¼m

XL
l¼1

MJm, l(m, k � m)XmD(l )

¼
Xn
m¼1

Xn�m

k¼0

XL
l¼1

MJm , l(m, k)XmD(l )

¼
Xn
m¼1

XL
l¼1

X1
k¼0

MJm, l(m, k)XmD(l ) �
XL
l¼1

Xn
m¼1

X1
k¼n�mþ1

MJm, l(m, k)XmD(l )

¼
Xn
m¼1

XL
l¼1

If�m ¼ lgXmD(l ) �
XL
l¼1

Xn
m¼1

X1
k¼n�mþ1

MJm, l(m, k)XmD(l )

¼
Xn
m¼1

XmD(�m) �
XL
l¼1

Xn
m¼1

X1
k¼n�mþ1

MJm, l(m, k)XmD(l ):

That is,

Yn ¼ Y0 þ
Xn
m¼1

XmD(�m) þ Rn, (2:5)

where

Rn ¼ �
XL
l¼1

Xn
m¼1

X1
k¼n�mþ1

MJm, l(m, k)XmD(l ): (2:6)

If there is no delay, that is, MJm, l(m, k) ¼ 0 for all k > 1 and all m and l, then Rn ¼ 0 and

(2.5) reduces to
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Yn ¼ Y0 þ
Xn
m¼1

XmD(�m), (2:7)

which is just model (1.1). We will show that Rn is small. So, it is natural that stochastic

staggered entry and delay mechanisms do not affect the limiting distribution of the urn.

However, we shall see that the distance between Yn in (2.5) and that in (2.7) is not Rn, since

the distributions of Xn (with and without delayed responses) are different. So, the asymptotic

properties of the model when delayed responses occur do not simply follow from those when

delayed responses do not appear.

For simplicity, we assume that the responses f�n, n ¼ 1, 2, . . .g are i.i.d. random

variables and let H ¼ E[D(�n)]; that is, we only consider the homogeneous case. For the

non-homogeneous case, if there exist Vqij, q, i, j ¼ 1, . . . , K, and H such that

covfdqi(�n), dqj(�n)g ! Vqij, q, i, j ¼ 1, . . . , K,

and

Xn
n¼1

kE[D(�n)] �Hk ¼ o(n1=2),

then we have the same asymptotic properties.

To give asymptotic properties of Nn, first we will require the following assumptions

(which are the same as Assumptions 1 and 2 of Bai et al. (2002):

Assumption 2.1. For some ª 2 (0, 1),

X1
i¼m

� jli(n) ¼ o(m�ª) uniformly in n:

The left-hand side of the above equality is just the probability of the event that the nth patient

on treatment j has response l after at least another m patients are assigned.

Assumption 2.1 states that response time intervals are not very long compared with the

entry time intervals. This assumption is satisfied if the entry times tn are such that t2 � t1,

t3 � t2, . . . , are i.i.d. random variables with E(t2 � t1)2 , 1, and the response times

�n( j, l ) are such that supn Ej�n( j, l )jª9 , 1 for each j, l and some ª9 . ª (see Bai et al.

2002).

Assumption 2.2. Let 1 ¼ (1, . . . , 1). Note that H19 ¼ 19. We assume that H has the following

Jordan decomposition:

T1HT ¼ diag[1, J2, . . . , Js],

where Js is a � t 3 � t matrix, given by
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J t ¼

º t 1 0 . . . 0

0 º t 1 . . . 0

0 0 º t . . . 0

..

. ..
. ..

.
. . . ..

.

0 0 0 . . . º t

0
BBBBB@

1
CCCCCA:

Let v be the normalized left eigenvector of H corresponding to its maximal eigenvalue 1. We

may select the matrix T so that its first column is 19 and the first row of T�1 is v. Let

º ¼ maxfRe(º2), . . . , Re(ºs)g and � ¼ max jf� j : Re(º j) ¼ ºg.

We also denote H ¼ H� 19v, �1 ¼ diag(v) � v9v and �2 ¼ E[(D(�n) �H)9diag(v)

(D(�n) �H)]. We have the following asymptotic normality for (Yn, Nn).

Theorem 2.1. Under Assumptions 2.1 and 2.2, if ª , 1=2 and º , 1=2 , then

n1=2(Yn=n� v, Nn=n� v) !D N (0, ¸),

where the 2K 3 2K matrix ¸ depends on �1 , �2 and H , and is specified in (3.15).

Remark 2.1. The condition ª , 1=2 ensures the asymptotic normality of n1=2(Nn=n� v).

This condition implies that the probability that a patient will give a response (delayed) after

at least m patients are assigned converges to 0 with speed m�ª (ª , 1
2
). This condition is not

necessary for strong consistency of Nn=n (Theorem 2.2). º , 1
2

is a standard condition in urn

models (see Rosenberger, 2002).

Remark 2.2. The covariance matrix ¸ has a very complicated form in Theorem 2.1 under the

general conditions. If the matrix H has a simple Jordan decomposition, the explicit form of ¸
can be obtained. Based on this asymptotic covariance matrix, we can determine the requisite

sample size of a clinical trial as in Hu (2003).

Remark 2.3. Recently, Hu and Rosenberger (2003) explicitly obtained the relationship

between the power of a test and the variability of a randomization procedure (asymptotic

covariance of Nn) for binary responses, under the condition of asymptotic normality of Nn.

Theorem 2.1 ensures the results of Hu and Rosenberger (2003) with delayed responses.

Therefore, it is important to calculate the covariance matrix. From (3.15), the asymptotic

covariance matrix ¸22 ¼ �(1)
1 þ �(2)

2 does not depend on the delay mechanism. Also ¸22 is

usually difficult to calculate. In practice, we need to estimate ¸22 based on the delay

mechanism M jl(n, m). The procedure is given in Remark 2.4.

Remark 2.4. From the proof of Theorem 2.1, ¸22, the asymptotic covariance matrix of

n1=2Nn, is a limit of
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n�1
Xn
m¼1

B9n,m�1Bn,m þ n�1
Xn�1

m¼1

Xn�1

j¼m

1

jþ 1
B j,m

0
@

1
A9�2

Xn�1

j¼m

1

jþ 1
B j,m

0
@

1
A

8<
:

9=
;

¼ n1(I� v91)
Xn
m¼1

B9n,m�1Bn,m

" #
(I� 19v)

þ n1(I� v91)
Xn�1

m¼1

Xn�1

j¼m

1

jþ 1
B9j,m

0
@

1
A�2

Xn�1

j¼m

1

jþ 1
B j,m

0
@

1
A

8<
:

9=
;(I� 19v),

where Bn,i ¼
Qn

j¼iþ1(Iþ j1H) and Bn,i ¼
Qn

j¼iþ1(Iþ j1H).

We may estimate ¸22 based on the following procedure:

(i) Let na ¼
Pn

i¼2

Pi�2
m¼0MJi�m�1,�i�m�1

(i� m� 1, m) represent the total number of

responses before the nth stage. Estimate H by

ĤH ¼ n�1
a

Xn
i¼2

Xi�2

m¼0

MJi�m�1,�i�m�1
(i� m� 1, m)diag(Xi�m�1)D(�i�m�1),

where MJi�m�1,�i�m�1
(i� m� 1, m), Xi�m�1 and D(�i�m�1) are observed during the

trial.

(ii) Let Wi be the number of balls added to the urn after each response, as observed

during the trial. Estimate �1 and �2 by

�̂�1 ¼ diag(Yn=jYnj) � Y9nYn=jYnj2

and

�̂�2 ¼ n�1
a

Xn
i¼1

(Wi �W)9 diag(Yn=jYnj)(Wi �W),

respectively, where W ¼ n�1
a

Pna
i¼1Wi and jYnj ¼

PK
j¼1Ynj is the total number of

balls in the urn after the nth draw.

(iii) Define Bn,i ¼
Qn

j¼iþ1(Iþ j�1ĤH) and estimate ¸22 by

^̧̧
22 ¼ n1 (I� (Y9n=jYnj)1)

Xn
m¼1

B9n,m�̂�1Bn,m

" #
(I� 19Yn=jYnj)

(

þ (I� Y9n=jYnj)1)
Xn�1

m¼1

Xn�1

j¼m

( jþ 1)�1B9j,m]�̂�2

Xn�1

j¼m

( jþ 1)�1b̂b j,m

2
4

3
5(I� 19Yn=jYnj)

2
4

9=
;:

8<
:

Based on ^̧̧
22, we can assess the variation of designs. Bai et al. (2002) provide an estimator

of ¸11 (the asymptotic covariance matrix of n1=2Yn=jYnj).
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Theorem 2.2. Under Assumptions 2.1 and 2.2, if º , 1 , then for any k . (1
2
) _ º _ (1 � ª),

almost surely,

n�k(Yn � nv) ! 0 and n�k(Nn � nv) ! 0:

Further, if ª , 1
2
and º , 1

2
, then, almost surely,

Yn � nv ¼ O(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n log log n

p
) and Nn � nv ¼ O(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n log log n

p
):

Remark 2.5. Bai et al. (2002) establish the strong consistency of both Yn and Nn. Here we

obtain the rate of strong consistency as well as the law of the iterated logarithm for both Yn

and Nn. The result is new and can also be applied in cases without delayed responses.

3. Proofs

In this section, C0, C, etc. denote positive constants whose values may differ from line to

line. For a vector x in RK , we let kxk be its Euclidean norm, and define the norm of a

K 3 K matrix M by kMk ¼ supfkxMk=kxk : x 6¼ 0g. It is obvious that, for any vector x

and matrices M, M1,

kxMk < kxk � kMk, kM1Mk < kM1k � kMk:

To prove the main theorems, we show the following two lemmas first.

Lemma 3.1. If Assumption 2.1 is true, then

Rn ¼ o(n1�ª) in L1 and Rn ¼ o(n1�ª9) a:s: 8ª9 , ª: (3:1)

Proof. For some constant C,

max
i<n

kRik < max
l

kD(l )kfmax
i<n

So,

E max
i<n

kRik < C
X
j, l

Xn
m¼1

X1
k¼n�mþ1

� jlk(m) ¼
Xn
m¼1

o((n� m)ª) ¼ o(n1�ª):

It also follows that

P max
2i<n<2iþ1

kRnk
n1�ª9

> E

� �
< C

E max
n<2 iþ1

kRnk

2i(1�ª9)
¼ o(2i(ª9�ª)),

which is summable, whence (3.1) follows by the Borel–Cantelli lemma. h

Note that jYnj ¼ nþ Y019þ Rn19. From Lemma 3.1, we obtain the following corollary,

which is Lemma 1 of Bai et al. (2002).
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Corollary 3.1. If Assumption 2.1 is true,

n�1jYnj ¼ 1 þ o(n�ª) in L1 and n�1jYnj ¼ 1 þ o(n�ª9) a:s: 8ª9 , ª:

Lemma 3.2. Let Bn,i ¼
Qn

j¼iþ1(Iþ j�1H). Suppose matrices Qn and Pn satisfy Q0 ¼ P0 ¼ 0

and

Qn ¼ Pn þ
Xn�1

k¼1

Qk

k þ 1
H: (3:2)

Then

Qn ¼
Xn
m¼1

˜PmBn,m ¼ Pn þ
Xn�1

m¼1

Pm

H

mþ 1
Bn,mþ1, (3:3)

where ˜Pm ¼ Pm � Pm�1. Also, for some constant C ,

kBn,mk < C(n=m)º log��1(n=m) for all m ¼ 1, . . . , n, n > 1: (3:4)

Proof. By (3.2),

Qn ¼ Pn � Pn�1 þ
Qn�1

n
þ Pn�1 þ

Xn�2

k¼0

Qk

k þ 1
H

¼ ˜Pn þQn�1(Iþ n1H)

¼ ˜Pn þ ˜Pn�1(Iþ n�1H) þQn�2(Iþ n�1H)(Iþ (n� 1)�1H)

¼ . . . ¼
Xn
m¼1

˜PmBn,m

¼
Xn
m¼1

PmBn,m �
Xn�1

m¼1

PmBn,mþ1 ¼ Pn þ
Xn�1

m¼1

Pm(Bn,m � Bn,mþ1)

¼ Pn þ
Xn�1

m¼1

Pm

H

mþ 1
Bn,mþ1,

and (3.3) is proved. For (3.4), first notice that

T�1HT ¼ diag[0, J2, . . . , Js],
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T�1Bn,mT ¼
Yn

j¼mþ1

(Iþ j�1 diag[0, J2, . . . , Js])

¼ diag 1,
Yn

j¼mþ1

(Iþ j�1J2), . . . ,
Yn

j¼mþ1

(Iþ j�1Js)

" #
: (3:5)

Also, recalling (2.6) of Bai and Hu (1999), as n . j ! 1, the (h, hþ i)th element of the

block matrix
Qn

j¼mþ1(Iþ j�1J t) is

1

i!

n

m

� �
Re(ºT ) logi n

m

� �
1 þ o(1)ð Þ:

It follows that �����
Yn

j¼mþ1

(Iþ j�1J t)

����� < C
n

m

� �
Re(ºT ) log� t�1 n

m

� �
: (3:6)

Combining (3.5) and (3.6) yields (3.4).

Proof of Theorem 2.1. Let F n ¼ � (Y0, . . . , Yn, �1, . . . , �n) be the sigma algebra generated

by the urn compositions fY0, . . . , Yng and the responses f�1, . . . , �ng. Denote

En�1f�g ¼ Ef�jF n�1g, qn ¼ Xn � En�1fXng, Qn ¼ XnD(�n) � En�1fXnD(�n)g. Then

f(Qn, qn), F ; n > 1g is a sequence of R2K -valued martingale differences, and �n is

independent of F n�1. Recall that jYnj ¼
PK

j¼1Ynj is the total number of balls in the urn after

the nth draw. Since the probability that a ball of type k is drawn from the urn equals the

number of balls of type k divided by the total number of balls, that is,

P(X nk ¼ 1) ¼ Yn�1,k=jYn�1j, k ¼ 1, . . . , K, it is easily seen that En�1fXng ¼ Yn�1=jYn�1j
and En�1fXnD(�n)g ¼ (Yn�1=jYn�1j)H. Notice that vH ¼ v and (Yn=jYnj � v)19 ¼
1 � 1 ¼ 0. From (2.5), it follows that

Yn � nv ¼
Xn
m¼1

Qm þ
Xn
m¼1

Ym�1

jYm�1j
Hþ Y0 þ Rn � nvH

¼
Xn
m¼1

Qm þ
Xn�1

m¼0

Ym

jYmj
� v

� �
Hþ Y0 þ Rn

¼
Xn
m¼1

Qm þ
Xn�1

m¼0

Ym

jYmj
� v

� �
Hþ Y0 þ Rn

¼
Xn
m¼1

Qm þ
Xn�1

m¼0

Ym � mv

mþ 1
Hþ R(1)

n , (3:7)

where
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R(1)
n ¼ Rn þ Y0 þ

Xn�1

m¼0

Ym

jYmj
� v

� �
1 � jYmj

mþ 1

� �
H�

Xn
m¼1

1

m
v: (3:8)

Also from (1.2), it follows that

Nn ¼
Xn
m¼1

[Xm � Em�1(Xm)] þ
Xn�1

m¼0

Ym

jYmj

¼
Xn
m¼1

qm þ
Xn�1

m¼0

Ym

mþ 1
þ
Xn�1

m¼0

Ym

jYmj
1 � jYmj

mþ 1

� �
: (3:9)

By (3.8), Lemma 3.1 and Corollary 3.1,

R(1)
n ¼ o(n1�ª) in L1 and R(1)

n ¼ o(n1�ª9) a:s: 8ª9 , ª: (3:10)

On the other hand, for the martingale difference sequence fQng, we have, for some constants

C0 and C1,

EfkQnk4kg < 4EkD(�n)k4 < C0 (3:11)

and

En�1fQnQ9ng ¼ En�1fkQnk2g < 2EkD(�n)k2 < C1:

So

Xn
m¼1

En�1fQmQ9mg < C1n: (3:12)

It follows that

E

�����
Xn
m¼1

Qm

�����
2

¼ E
Xn
m¼1

En�1fQmQ9mg
" #

< C1n:

Hence

Xn
m¼1

Qm ¼ O(n1=2) in L2:

Also, by (3.12) and the law of the iterated logarithm for martingales, we have

Xn
m¼1

Qm ¼ O((n log log n)1=2) a:s:

With the above two equations for
Pn

m¼1Qm, by (3.7) and Lemma 3.2 we conclude that
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kYn � nvk ¼
�����
Xn
i¼1

Qi þ R(1)
n

 !
þ
Xn�1

m¼1

Xm
i¼1

Qi þ R(1)
m

 !
H

mþ 1
Bn,mþ1

�����
<

�����
Xn
i¼1

Qi þ R(1)
n

�����þ
Xn�1

m¼1

�����
Xm
i¼1

Qi þ R(1)
m

����� kHk
mþ 1

kBn,mþ1k

< C
Xn
m¼1

�����
Xm
i¼1

Qi þ R(1)
m

�����
0
@

1
A 1

mþ 1

n

m

� �º

log��1 n

m

� �

¼ OL1
(1)
Xn
m¼1

(m1=2 þ o(m1�ª))
1

mþ 1

n

m

� �º

log��1 n

m

� �

¼ O(n1=2)(1 þ nº�1=2 log� nþ o(n1=2�ª)) ¼ O(n1=2)

and

kYn � nvk ¼ O((n log log n)1=2)(1 þ nº�1=2 log� nþ o(n1=2�ª9)) (3:13)

¼ O((n log log n)1=2) a:s:,

where 1
2
, ª9 , ª. It follows that

Yn

jYnj
� v ¼ O(n1=2) in L1 and

Yn

jYnj
� v ¼ O

log log n

n

� �1=2
 !

a:s:

Now, recalling �1 ¼ diag(v) � v9v and �2 ¼ E[(D(�n) �H)9diag(v)(D(�n) �H)], we have

En�1[Q9nQn] ¼
XL
l¼1

D(l )9diag
Yn�1

jYn�1j

� �
D(l )P(�n ¼ l ) �H9

Y9n�1

jYn�1j
Yn�1

jYn�1j
H

¼ E[(D(�n)9diag(v)D(�n)] �H9v9vHþ O(n1=2) in L1

¼ �2 þH9�1Hþ O(n1=2),

En�1[q9nqn] ¼ diag
Yn�1

jYn�1j

� �
� Y9n�1

jYn�1j
Yn�1

jYn�1j
¼ �1 þ O(n1=2) in L1

and

En�1[q9nQn] ¼ diag
Yn�1

jYn�1j

� �
H� Y9n�1

jYn�1j
Yn�1

jYn�1j
H ¼ �1Hþ O(n1=2) in L1:

Recall (3.11) and notice that kqnk < 2. By using Theorem 8 of Monrad and Philipp (1991),

one can find two independent sequences fZ(1)
n g and fZ(2)

n g of i.i.d. d-dimensional standard

normal random variables such that
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Xn
m¼1

Qm ¼
Xn
m¼1

(Z(2)
m �1=2

2 þ Z(1)
m �1=2

1 H) þ o(n1=2��) a:s:,

Xn
m¼1

qm ¼
Xn
m¼1

Z(1)
m �1=2

1 þ o(n1=2��) a:s:

(3:14)

Here � . 0 depends only on d. Without loss of generality, we assume � , (ª� 1
2
) ^ (1

2
� º). If

we define G(i)
n by G

(i)
0 ¼ 0 and

G(i)
n ¼

Xn
m¼1

Z(i)
m�

1=2
i þ

Xn�1

m¼1

G(i)
m

mþ 1
H,

i ¼ 1, 2, then by (3.7), (3.8), (3.10) and (3.14),

Yn � nv� (G(2)
n þG(1)

n H) ¼
Xn�1

m¼1

Ym � mv� (G(2)
m þG(1)

m H)

mþ 1
Hþ o(n1=2��) a:s:

By Lemma 3.2 again,

Yn � nv� (G(2)
n þG(1)

n H) ¼
Xn
m¼1

o(m1=2��)
1

mþ 1

n

m

� �º

log��1 n

m

� �
¼ o(n1=2��) a:s:

And then by (3.9) and Corollary 3.1,

Nn � nv ¼
Xn
m¼1

qm þ
Xn�1

m¼1

Ym � mv

mþ 1
þ o(n1�ª9) a:s:

¼
Xn
m¼1

Z(1)
m �1=2

1 þ
Xn�1

m¼1

G(1)
m

mþ 1
Hþ

Xn�1

m¼1

G(2)
m

mþ 1
þ o(n1��) a:s:

¼
Xn
m¼1

Z(1)
m �1=2

1 þ
Xn�1

m¼1

G(1)
m

mþ 1
Hþ

Xn�1

m¼1

G(2)
m

mþ 1
þ o(n1��) a:s:

¼ G(1)
n þ

Xn�1

m¼1

G(2)
m

mþ 1
þ o(n1��) a:s:,

where we use the fact G(1)
n 19 ¼ 0, which is implied by �119 ¼ 0. Note that G(i)

n andPn�1
m¼1(mþ 1)1G(i)

m , i ¼ 1, 2, are normal random variables. To finish the proof, it suffices to

calculate their covariances. Note that Bn,m ¼ (n=m)H(1 þ o(1)), where aH is defined to beP1
i¼0(1=i!)H i logi a. Notice that k(n=m)Hk < (n=m)º log��1(n=m). By (3.3),
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var(G(i)
n ) ¼

Xn
m¼1

var(Z(i)
m�

1=2
i Bn,m) ¼

Xn
m¼1

B9n,m�iBn,m

¼
Xn
m¼1

n

m

� �H9

�i

n

m

� �H

þo(1)
Xn
m¼1

n

m

� �2º

log2(��1) m

m

� �

¼
Xn
m¼1

n

m

� �H9

�i

n

m

� �H

þo(n)

¼ n

ð1

0

1

y

� �H9

�i

1

y

� �H

þo(n) ¼: n�(i)
1 þ o(n):

Also,

var
Xn�1

m¼1

G(i)
m

mþ 1

 !
¼
Xn�1

m¼1

var Z(i)
m�

1=2
i

Xn�1

j¼m

1

jþ 1
B j,m

0
@

1
A

¼
Xn�1

m¼1

Xn�1

j¼m

1

jþ 1
B j,m

0
@

1
A9�i

Xn�1

j¼m

1

jþ 1
B j,m

0
@

1
A

¼ n

ð1

0

dx

ð1

x

1

v

1

v

� �H9

dv�i

ð1

x

1

u

1

u

� �H

duþ o(n) ¼: n�(i)
2 þ o(n)

and

cov G(i)
n ,
Xn�1

m¼1

G(i)
m

mþ 1

 !
¼
Xn�1

m¼1

B9n,m�i

Xn�1

j¼m

1

jþ 1
B j,m

0
@

1
A

¼ n

ð1

0

1

x

� �H9

dx�i

ð1

x

1

u

1

u

� �H

duþ o(n) ¼: n�(i)
3 þ o(n):

Note that k(1=y)Hk < c(1=y)º log��1(1=y) for 0 , y < 1, and º , 1
2
. The above integrals are

well defined. So

n1=2(Yn=n� v, Nn=n� v) !D N (0, ¸), (3:15)

where

¸ ¼ ¸11, ¸12

¸21, ¸22

� �
, ¸11 ¼ �(2)

1 þH9�(1)
1 H, ¸22 ¼ �(1)

1 þ �(2)
2

and

¸12 ¼ �(1)
1 Hþ �(2)

3 : h
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Proof of Theorem 2.2. By (3.12),

Yn � nv ¼ O((n log log n)1=2)(1 þ nº�1=2 log�nþ o(n1=2�ª9)) 8ª9 , ª

¼
o(nk) a:s:, if k . 1

2
_ º _ (1 � ª),

O((n log log n)1=2) a:s:, if º , 1
2

and ª , 1
2
:

8<
:

Then, by (3.9) and Corollary 3.1, it follows that

Nn � nv ¼
Xn
m¼1

qm þ
Xn�1

m¼0

Ym � mv

mþ 1
þ
Xn
m¼1

o(m�ª9) 8ª9 , ª

¼ O(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n log log n

p
) þ

Xn�1

m¼0

o(mk)

mþ 1
þ o(n1�ª9) 8ª9 , ª

¼ o(nk) a:s:

whenever k . 1
2
_ º _ (1 � ª), and

Nn � nv ¼ O(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n log log n

p
) þ

Xn�1

m¼0

o(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m log log m

p
)

mþ 1
þ o(n1�ª9) 8ª9 , ª

¼ O(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n log log n

p
) a:s:

whenever º , 1
2

and ª , 1
2
. h

Remark 3.1. Write T��(i)
1 T ¼ (� ghi, g, h ¼ 1, . . . , s) and T ¼ (19, T2, . . . , Ts), where T is

defined in Assumption 2.2. Note that

T��(i)
1 T ¼

ð1

0

1

y

� �diag[0,J�2 ,...,J�s ]

T��iT
1

y

� �
diag[0,J2,...,Js] dy

¼
ð1

0

diag 1,
1

y

� �J�2
, . . . ,

1

y

� �J�s
" #

T��iTdiag 1,
1

y

� �
J2 , . . . ,

1

y

� �
Js

� �
dy:

Also

1

y

� �
J t ¼ 1

y

� �
º t

X� t�1

a¼0

ĴJat
a!

loga 1

y

� �
,

where

ĴJ t ¼

0 1 0 . . . 0

0 0 1 . . . 0

..

. ..
. ..

.
. . . ..

.

0 0 0 . . . 0

0
BB@

1
CCA, ĴJ2

t ¼

0 0 1 . . . 0

0 0 0 . . . 0

..

. ..
. ..

.
. . . ..

.

0 0 0 . . . 0

0
BB@

1
CCA, . . . :
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So for g, h ¼ 2, . . . , s, �11i ¼ 1�i19 ¼ 0, ��1 gi ¼ � g1i ¼
Ð 1

0
(1=y)J

�
gT�g�i19dy ¼ 0, and, the

(a,b)th element of matrix � ghi ¼
Ð 1

0
(1=y)J

�
gT�g�iTh(1=y)J h dy is

Xa�1

a9¼0

Xb�1

b9¼0

1

a9!b9!

ð1

0

1

y

� �
º gþºh loga9þb9 1

y

� �
[T�g�iTh]a�a9,b�b9

¼
Xa�1

a9¼0

Xb�1

b9¼0

(a9þ b9)!

a9!b9!(1 � º g � ºh)a9þb9þ1
[T�g�iTh]a�a9,b�b9:

This agrees with the results of Bai and Hu (1999) and Bai et al. (2002). One can calculate

�(i)
2 and �(i)

3 similarly.
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