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G É R A R D B E N A RO U S 1 and MICHEL SORTAIS2

1Courant Institute of Mathematical Sciences, 251 Mercer Street, New York NY 10012, USA.

E-mail: benarous@cims.nyu.edu
2T.U. Berlin, Institut für Mathematik, MA 7-4, Strasse des 17. Juni 136, D-10623 Berlin,

Germany. E-mail: sortais@math.tu-berlin.de

We consider a Langevin dynamics associated with a d-dimensional Edwards–Anderson model having

Gaussian coupling variables, and show that the averaged law of the empirical process satisfies a large-

deviation principle according to a good rate functional I a having a unique minimizer Q1. The

asymptotic dynamics Q1 may be characterized as the unique weak solution corresponding to a non-

Markovian system of interacting diffusions having an infinite range of interaction. We then establish

that the quenched law of the empirical process also obeys a large-deviation process, according to a

(deterministic) good rate functional I q satisfying I q > I a, so that, for a typical realization of the

disorder variables, the quenched law of the empirical process also converges exponentially fast to a

Dirac mass concentrated at Q1.
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1. Introduction and statement of main results

The Edwards–Anderson model is a disordered spin system which was proposed in the

1970s as a mathematical model describing the magnetic behaviour of certain metallic alloys

known as ‘spin glasses’ (see Edwards and Anderson 1975). For a fixed cubic volume

¸ �� Zd , it has a random energy Hamiltonian defined on the space f�1g¸ by the

expression

H J
¸(�) ¼ �

X
fi, jg2¸�

Jfi, jg� i� j:

Here ¸� denotes the set consisting of all bonds fi, jg in ¸ (equipped, for example, with

periodic boundary conditions), and J ¼ (Jfi, jg)fi, jg2(Zd )� is a fixed realization corresponding

to an independent and identically distributed (i.i.d.) family of standard Gaussian random

variables indexed by all bonds in Zd .

Hitherto, studying the equilibrium properties of this short-range spin glass model has led

to conflicting predictions in the theoretical physics literature, and rigorous mathematical

results are quite rare. Indeed, there are several opinions as regards the number of ground

states that should emerge in such a disordered spin system considered in dimension d > 3

and in the low-temperature regime; during the last decade, C.M. Newman and D.L. Stein
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have given a precise mathematical formulation for some of these predictions, which we

shall now briefly present; see Newman and Stein (1998) for a clear survey containing

precise definitions and mathematical statements, as well as appropriate references to the

physics literature.

(i) According to the ‘droplet/scaling’ heuristic arguments developed mostly by Fisher

and Huse, there should be a convergence of the finite-volume Gibbs measure (with

periodic boundary conditions) corresponding to such spin system towards a convex

combination

1

2
r�J þ

1

2
r�J 9,

r�J and r�J 9 being the only two pure Gibbs states in infinite volume corresponding to

the realization J of all couplings, and these two pure states being related by the

global spin flip symmetry changing � into ��.

(ii) On the other hand, the mean-field prediction of G. Parisi and his co-workers asserts

that the structure of all such pure states should be roughly the same as the structure

appearing when considering the statics of the Sherrington–Kirkpatrick (mean-field)

model, so that the Gibbs measure in a large finite volume should asymptotically

resemble a countable sum X
Æ

WÆ
Jr

Æ
J ,

(rÆJ ) being a countable family of infinite-volume pure Gibbs states associated with

the couplings J , and (WÆ
J ) being a (random) sequence of weights.

(iii) Finally, in the ‘chaotic pairs of pure states’ prediction proposed by Newman and

Stein, there are also infinitely many pure states rÆJ corresponding to a given typical

realization J of the couplings, but these pure states do not appear in the same way

when one considers a large, finite-volume Gibbs measure pJ
¸; in this prediction, for a

given increasing sequence of volumes ¸L % Zd one instead has an approximate

decomposition,

pJ
¸L
� 1

2
(rÆL

J )þ 1

2
(rÆL

J )9,

for two pure states (rÆL

J ) and (rÆL

J )9 related by spin flip symmetry and depending

upon L.

Moreover, it is now widely believed that such disordered spin systems display a complex

dynamical behaviour in the low-temperature regime, with relaxation times that may become

astronomically large. In this respect, it has been argued that studying the equilibrium

properties of a spin glass might not be so relevant and that one should instead study their

dynamical behaviour, since the equilibrium properties might well never be observed in the

laboratory. At a theoretical level, such studies began essentially with the seminal paper by

Sompolinsky and Zippelius (1982), in which the authors considered a relaxational Langevin

dynamics scheme for the Sherrington–Kirkpatrick model and derived the limiting evolution
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of a single spin in the large-volume limit. Ben Arous and Guionnet (1997) and Guionnet

(1997) were then able to confirm some of the main predictions contained in Sompolinsky

and Zippelius (1982) by considering a system of interacting diffusions x ¼
f(xit)0< t<T ; i ¼ 1, . . . , Ng evolving according to such a Langevin dynamics scheme and

establishing the convergence of the law of the empirical measure

�̂�(N )
x ¼ 1

N

XN
i¼1

�xi:

towards a Dirac mass ��1 , with �1 a probability measure on path space C([0, T ]; R). To be

more precise, Ben Arous and Guionnet (1997) derive a large-deviation upper bound for the

law of the empirical measure �̂�(N )
x considered in the averaged regime, that is, when expected

values are taken not only with respect to the thermal noise driving the diffusions but also

with respect to the possible realizations of the disorder variables. This large-deviation upper

bound was established via a suitable adaptation of the Laplace–Varadhan method, and a

careful study of the corresponding variational principle then revealed that there can only be

one minimizing measure �1, which may be characterized as the unique weak solution of a

highly nonlinear stochastic differential equation in dimension 1. Unfortunately, such a large-

deviation bound could only be established under an assumption of ‘high temperature or short

terminal time’; nevertheless, Guionnet (1997) removed this technical obstacle by establishing

the validity of a law of large numbers for �̂�(N )
x at arbitrarily low temperatures and with

arbitrarily large terminal times.

At the same time, large-deviation techniques were also used by Grunwald (1996; 1998) in

his mathematical study of the asymptotic behaviour of a Glauber dynamics scheme

associated with the Sherrington–Kirkpatrick model. Instead of a high-dimensional diffusion,

Grunwald considered a continuous-time Markov chain � ¼ f(� i
t)0< t<T ; i ¼ 1, . . . , Ng with

values in f�1gN , and, using an alternative approach – mixtures of large-deviation systems,

as introduced by Dinwoodie and Zabell (1992) – he was able to come to an analogous

conclusion, namely the validity of a large-deviation upper bound for the empirical measure

�̂�(N )
� considered in the averaged regime. There again, it was proved that the corresponding

rate functional has a unique minimizer �1 that may be viewed as the law of the asymptotic

single-spin dynamics for the Sherrington–Kirkpatrick model; moreover, choosing such

bounded discrete spin variables enabled Grunwald to formulate a technically simpler proof,

and he was able, in particular, to establish the validity of such a large-deviation upper

bound for arbitrary temperatures and terminal times.

Our aim in the present paper is to return to the original short-ranged spin glass, namely

the Edwards–Anderson model introduced earlier, and to carry out again a large-deviations

analysis for the joint behaviour of such an assembly of spins considered in a large volume

and in a fixed, finite time horizon. For this purpose, we consider a Langevin dynamics

scheme where each spin variable is a diffusion process on the unit circle S1; this choice

may seem artificial at first, but it enables us to deal with compact spin variables instead of

unbounded ones, and at the same time one ends up with an asymptotic dynamics that may

be viewed as a non-Markovian diffusion in infinite dimensions, whose drift coefficient may

be computed explicitly. Our main result asserts that the empirical process associated with
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such interacting diffusions satisfies a full large-deviation principle (LDP), both in the

quenched regime (i.e., for a fixed, typical realization of the coupling variables J ) and in the

averaged regime, for arbitrary low temperatures and arbitrarily large values of the fixed

terminal time T . We come to this conclusion by considering these interacting diffusions first

in the averaged regime, where a Picard iteration method enables us to prove the validity of

a full LDP via an appropriate contraction principle (cf. Dembo and Zeitouni, 1998, Section

4.2). Such a contraction principle has the advantage of providing us immediately with a

characterization of the unique minimizer Q1 associated with the corresponding rate

functional I a: Q1 may be explicitly described as the unique weak solution corresponding

to an infinite-dimensional system of interacting diffusions. The validity of such an LDP in

the quenched regime then follows from earlier work by (Comets 1989), and we also know

that the corresponding quenched rate functional I q is bounded from below by I a, which

enables us to assert that Q1 is also the unique minimizer associated with I q.

We now come to a precise statement of our main results. Replacing the original discrete

spin variables � i 2 f�1g by circular spin variables xi ¼ (cos Łi, sinŁi), we shall be

considering a disordered energy landscape given by the Hamiltonian1

H J
¸(x) ¼ H J

¸(Ł) ¼ �
X
fi, jg2¸�

Jfi, jg cos(Łi � Ł j):

Differentiating with respect to Łi then gives

@Łi H
J
¸(Ł) ¼

X
j�i

Jfi, jg sin(Łi � Ł j),

the sum
P

j�i running over all nearest neighbours of i in ¸, so that the system of short-range

interacting diffusions (S J
¸) given by

dŁi
t ¼ dwi

t þ �
X
j�i

Jfi, jg sin(Ł j
t � Łi

t)dt, i 2 ¸, 0 < t < T ,

has the ¸-dimensional Gibbs measure (proportional to exp(��H J
¸(Ł))

Q
i2¸dŁi) as unique

invariant reversible measure. For the sake of simplicity, assume further that the vector of

diffusions f(Łi
t)0< t<T ; i 2 ¸g solving (S J

¸) has a ‘deep quench’ initial condition:

Law(Łj t¼0) ¼ u�¸0 ,

where u0 is, for example, the uniform probability distribution on the interval ]� �; �[, and

let PJ
¸ denote the law of f(Łi

t)0< t<T ; i 2 ¸g (PJ
¸ is a probability measure on W¸

T , WT being

the Wiener space of all continuous functions ø : [0; T ]! R).

The empirical process �̂�(¸)
Ł associated with a ¸-dimensional configuration of diffusions

Ł 2 W¸
T is then defined as the following spatial average of Dirac masses:

1 Adding an appropriate single site potential, one could also consider circular spin variables having a much better
resemblance with the original ones (see Section 4).
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�̂�(¸)
Ł ¼ 1

j¸j
X
i2¸

�Ł(¸),(i) ,

� ¼ Ł(¸) 2 WZd

T being the infinite-dimensional vector of diffusions obtained from Ł by

periodically reproducing on the lattice the information contained in the box ¸, and �(i) 2 �
being the new configuration obtained from � by ‘shifting the origin of the lattice at site i’:

(�(i)) j ¼ � jþi, 8 j 2 Zd

(�̂�(¸)
Ł is a shift-invariant probability measure on � ¼ WZd

T whose one site marginal is the

empirical measure associated with Ł).

Consider then the average of all probability measures PJ
¸ when J varies at random:

P¸(�) ¼
ð

dª(J )PJ
¸(:),

and let Ms(�) denote the set consisting of all shift-invariant probability measures on

� ¼ WZd

T . Our main results may be summarized as follows:

Theorem 1.1. (i) The law of the empirical process �̂�(¸)
Ł considered in the averaged regime

(i.e., under dP¸(Ł)) obeys a large-deviation principle on Ms(�), on the scale j¸j and
according to a good rate function I a : Ms(�)! [0; þ1] having a unique minimizer Q1.

(ii) Furthermore, almost surely in the realizations of the disorder variables J , the law of

the empirical process �̂�(¸)
Ł considered in the quenched regime (i.e., under dPJ

¸(Ł)) also

obeys a large-deviation principle on Ms(�), on the scale j¸j and according to a good rate

function I q satisfying I q > I a.

As a simple consequence of the preceding large-deviations results, one may, for example,

fix some bounded continuous functionals ji : WT ! R (1 < i < n) and some bounded

continuous F : Rn ! R to state that, for a typical realization of the disordered couplings J ,

the distribution of

F
1

j¸j
X
i2¸

j1(Łi), . . . ,
1

j¸j
X
i2¸

jn(Ł
i)

 !

under dPJ
¸(Ł) converges exponentially fast to a Dirac mass concentrated at

F

ð
j1 dQ1, . . . ,

ð
jn dQ1

� �

when ¸% Zd , with an exponential speed of convergence that may be bounded from below

uniformly in J by using the averaged large-deviations rate functional I a.

The asymptotic dynamics Q1 appearing above may be characterized as the unique weak

solution corresponding to an infinite-dimensional system of interacting diffusions that is

non-Markovian and has infinite range. This infinite-dimensional system of interacting

diffusions has a stochastic differential at site i 2 Zd which may be expressed as

dŁi
t ¼ dwi

t þ �2hFt(Ł
(i)
[0; t]); Gt(Ł

(i)
[0; t])i l1, l1 dt,
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Ft : �! l1((Zd)�), 0 < t < T , being a family of R(Zd )�-valued functionals such that

8t 2 [0; T ], 8ø 2 �, sup
fi, jg2(Zd )�

j(Ft(ø))fi, jgj , þ1,

and Gt : �! l1((Zd)�), 0 < t < T , being a family of R(Zd )�-valued functionals for which

8t 2 [0; T ], 8ø 2 �,
X

fi, jg2(Zd )�
j(Gt(ø))fi, jgj , þ1:

Precise expressions for the functionals Ft and Gt may be found at the end of Section 2.1;

both functionals actually depend on the shifted configuration of diffusions Ł(i) considered

during the whole time interval [0; t], which we emphasize here by writing Ft(Ł
(i)
[0; t]) and

Gt(Ł
(i)
[0; t]).

In order to establish these large-deviations results, we proceed as follows. In Section 2

we show that the finite-volume, averaged probability P¸ may be viewed as the law of a

system of long-range interacting diffusions that is spatially homogeneous. The next step

consists in proposing an appropriate extension of such a system of interacting diffusions to

infinite dimensions, the corresponding infinite-dimensional diffusion then being a natural

candidate for the asymptotic dynamics associated with our disordered spin system.

Surprisingly enough, there are actually several reasonable ways of extending the finite-

dimensional averaged dynamics to infinite dimensions; we opt for the most robust

extension, which may be considered without any restriction on the values of � and T, and

develop a Picard iteration method for the corresponding infinite-dimensional diffusion. Such

a method gives rise to some rather lengthy computations, but in the end it enables us to

establish the validity of a contraction principle for the law of the empirical process �̂�(¸)
Ł

considered in the averaged regime, and the corresponding good rate functional

I a : Ms(�)! [0; þ1] may then easily be seen to have a unique minimizer Q1, which

we characterize as the unique weak solution associated with some infinite-dimensional

system of long-range interacting diffusions.

In Section 3 we establish a quenched LDP for the empirical process �̂�(¸)
Ł ; our method of

proof follows Comets (1989). We show that, for a given typical J , the law of Ł under

dPJ
¸(Ł) may be described by making use of a Gibbsian interaction � ¼ (łA)A��Zd defined

on (WT 3 Rd)Z
d

. The Laplace–Varadhan method may then be applied quite straightfor-

wardly in order to prove a quenched LDP for the empirical process; the drawback here is

that the resulting (deterministic) rate functional I q : Ms(�)! [0; þ1] has a rather

complex expression, so that one is not in a position to state immediately that the set of all

minimizers associated with I q is again reduced to fQ1g. This last statement follows,

however, from the contraction principle developed in Section 2, combined with the uniform

domination I q > I a, which is a general fact for large-deviations asymptotics in random

media or disordered systems; see, for example, the introduction to Zeitouni (2001) for a

short proof.

Finally, in Section 4, we briefly show that such LDPs may also be proved in a more

general context: one may change to a certain extent the initial and boundary conditions

entering in the definition of PJ
¸; a self potential term such as
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�K
X
i2¸

sin(Łi)2n, K > 0, n 2 N,

may also be added to the original energy Hamiltonian H J
¸(Ł) in order to gain a better

resemblance with the original ‘hard spin’ situation, as well as a magnetic field term

�k
X
i2¸

cos(Łi):

2. Averaged large-deviations estimates

2.1. A convenient expression for the dynamics in the averaged regime

Recall that WT denotes the Wiener space consisting of all continuous functions

ø : [0; T ]! R (equipped with the topology of uniform convergence), and denote by RT

the Wiener measure on WT having initial condition u0 such that

RTfa < ø(0) < bg ¼ u0(]a; b[) ¼ b� a

2�
, 8 � � , a < b , �:

Recall also that PJ
¸ is a (spatially inhomogeneous) probability measure on W¸

T defined as the

weak solution corresponding to the short-range interacting diffusions system (S J
¸) given by

dŁi
t ¼ dwi

t þ �
X
j�i

Jfi, jg sin(Ł j
t � Łi

t)dt,

Law(Łj t¼0) ¼ u�¸0 , i 2 ¸, 0 < t < T :

Now the first step in the identification of the asymptotic dynamics Q1 will consist in viewing

the finite-volume, averaged probability measure

P¸(:) ¼ EJ [PJ
¸(:)]

as the law of a new stochastic differential system (S¸) that is non-Markovian and has a long-

range interaction.

Proposition 2.1. The probability measure P¸ may be viewed as the law of the following

system (S¸) of long-range interacting diffusions:

dŁi
t ¼ dwi

t þ �2
X
j�i

F
fi, jg
t (Ł)sin(Ł j

t � Łi
t)dt

Law(Łj t¼0) ¼ u�¸0 , i 2 ¸, 0 < t < T :

where F
fi, jg
t (Ł) is the fi, jg coordinate of the ¸�-dimensional real vector

Ft(Ł) ¼ C�, t(Ł)�1At(Ł),

At(Ł) is the ¸�-dimensional real vector with fi, jg coordinate
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A
fi, jg
t (Ł) ¼ [cos(Łi

t � Ł j
t)� cos(Łi

0 � Ł j
0)]þ

ð t
0

cos(Łi
s � Ł j

s)ds,

and C�, t(Ł) ¼ (Id þ �2Bt(Ł)) is the ¸� 3¸� real matrix such that

B
fi, jg,fk, lg
t (Ł) ¼ 0, if fi, jg and fk, lg are not adjacent,

B
fi, jg,fi, j9g
t (Ł) ¼

ð t
0

sin(Ł j
s � Łi

s)sin(Ł j9
s � Łi

s)ds, for j9 6¼ j,

B
fi, jg,fi, jg
t (Ł) ¼ 2

ð t
0

sin 2(Ł j
s � Łi

s)ds:

Proof. Let PJ
¸ and R�¸t be the law of the system considered during time [0, t], for � . 0

fixed and � ¼ 0, respectively. According to Girsanov’s theorem:

dPJ
¸

dR�¸t
(Ł) ¼ exp �

X
i2¸

ð t
0

X
j�i

Jfi, jg sin(Ł j
s � Łi

s)

( )
dwi

s

0
@

� �2

2

X
i2¸

ð t
0

X
j�i

Jfi, jg sin(Ł j
s � Łi

s)

( )2

ds

1
A

¼ exp �
X
fi, jg

Jfi, jg

ð t
0

sin(Ł j
s � Łi

s)(dw
i
s � dw j

s)

 

� �2

2

X
fi, jg

Jfi, jg
X

fk, lg�fi, jg
Jfk, lg

ð t
0

sin(Ł j
s � Łi

s)sin(Ł l
s � Łk

s )ds

1
A,

the sum
P
fk, lg�fi, jg running over all bonds fk, lg in ¸ that are adjacent to fi, jg (so that

k ¼ i or j ¼ l). By Fubini’s theorem,

dP¸

dR�¸t
(Ł) ¼ M¸

t (Ł) ¼ E
dPJ

¸

dR�¸t
(Ł)

" #
:

(M¸
t )0< t<T is a non-negative martingale under R�¸T , having mean 1, and since the Jfi, jgs

have a Gaussian distribution,
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M¸
t (Ł) ¼ E exp � �2

2
(J ; Bt(Ł)J )R¸�

� �� �

� E expf�(J ; At(Ł))R¸� g
exp � �2

2
(J ; Bt(Ł)J )R¸�

� �
Z¸

t (Ł)

2
64

3
75

,

log M¸
t (Ł) ¼mart

�2

2
E ((J ; At(Ł))R¸� )2 3

exp � �2

2
(J ; Bt(Ł)J )R¸�

� �
Z¸

t (Ł)

2
64

3
75

,

where:

• here and in the sequel, the sign ¼mart means that the two semimartingales under

consideration (on the left-hand side and on the right-hand side of the equality) have

the same martingale part;

• At(Ł) 2 R¸� , Bt(Ł) 2 R(¸��¸�),

A
fi, jg
t (Ł) ¼

ð t
0

sin(Ł j
s � Łi

s)(dw
i
s � dw j

s),

B
fi, jg,fk, lg
t (Ł) ¼ 0, if fi, jg and fk, lg are not adjacent,

B
fi, jg,fi, j9g
t (Ł) ¼

ð t
0

sin(Ł j
s � Łi

s)sin(Ł j9
s � Łi

s)ds, for j9 6¼ j,

B
fi, jg,fi, jg
t (Ł) ¼ 2

ð t
0

sin 2(Ł j
s � Łi

s)ds;

• Z¸
t (Ł) ¼ E[expf�(�2=2)(J ; Bt(Ł)J )R¸� g].

According to Itô’s formula, we have, under R�¸t ,

sin(Ł j
s � Łi

s)(dw
i
s � dw j

s) ¼ sinŁ j
s(cos Łi

s dwi
s)þ cos Łi

s(� sinŁ j
s dw j

s)

þ sinŁi
s(cos Ł j

s dw j
s)þ cos Ł j

s(� sin Łi
s dwi

s)

¼ sin Ł j
s(d(sin Łi)s þ 1

2
sin Łi

s ds)þ cos Łi
s(d(cos Ł j)s þ 1

2
cos Ł j

s ds)

þ sinŁi
s(d(sin Ł j)s þ 1

2
sinŁ j

s ds)þ cos Ł j
s(d(cos Łi)s þ 1

2
cos Łi

s ds),

so that

A
fi, jg
t (Ł) ¼ [cos(Łi

t � Ł j
t)� cos(Łi

0 � Ł j
0)]þ

ð t
0

cos(Łi
s � Ł j

s)ds:

Carrying on our computation of the martingale part of log M¸
t (Ł), we then have
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log M¸
t (Ł) ¼mart

�2

2

X
fi, jg

A
fi, jg
t (Ł)

X
fk, lg

E Jfi, jgJfk, lg

expf� �2

2
(J ; Bt(Ł)J )R¸� g

Z¸
t (Ł)

2
64

3
75Afk, lg

t (Ł)

8>><
>>:

9>>=
>>;:

But, for each t 2 Rþ, for each Ł 2 R¸, the matrix Bt(Ł) is in fact such that

8º 2 R¸� , (º; Bt(Ł)º)R¸� ¼
X
i2¸

ð t
0

X
j�i

ºfi, jg sin(Ł j
s � Łi

s)

( )2

ds,

so that Bt(Ł) is (symmetric) non-negative definite (in R(¸��¸�)), and

E Jfi, jgJfk, lg

exp � �2

2
(J ; Bt(Ł)J )R¸�

� �
Z¸

t (Ł)

2
64

3
75

is just the (fi, jg, fk, lg)th coefficient of the inverse matrix of

C�, t(Ł) ¼ (I þ �2Bt(Ł)):

Hence,

log M¸
t (Ł) ¼mart

�2

2

X
fi, jg

A
fi, jg
t (Ł)((C�, t(Ł))�1At(Ł))fi, jg

¼ �2

2
(At(Ł); C�, t(Ł)�1At(Ł))R¸� :

Since the family of matrices f(C�, t(Ł))�1g0< t<T is differentiable in t,

log M¸
t (Ł) ¼mart �

2

ð t
0

(C�,s(Ł)�1As(Ł); dAs(Ł))R¸�

¼mart �
2
X
i2¸

ð t
0

X
j�i

[C�,s(Ł)�1As(Ł)]fi, jg sin(Ł j
s � Łi

s)

( )
dwi

s,

and the proposition is proved. h

Interestingly, there are several ways of extending the system (S¸) to infinite dimensions.

Bearing in mind the methods devised by Ben Arous and Guionnet (1997; 1998) in the

mean-field context, one may first note that, for general configurations Ł 2 W¸
T (showing no

periodicity), the empirical process

�̂�(¸)
Ł ¼ 1

j¸j
X
i2¸

�Ł(¸),(i)

is a purely atomic measure with j¸j distinct masses, so that the Hilbert spaces R¸� and L
2

�̂�(¸)

Ł

(�; Rd) are canonically isomorphic; the canonical isomorphism � transforms a ¸-

dimensional real vector A into an L2

�̂�(¸)

Ł

functional a : �! Rd through the identities
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ak(Ł
(¸),(i)) ¼ Afi,iþekg

holding for each i 2 ¸ and each 1 < k < d, fe1, . . . , ek , . . . , edg being the canonical basis

in Zd .

So � : R¸� ! L
2

�̂�(¸)

Ł
(�; Rd) provides us with a way of viewing the inverse matrix

C�, t(Ł)�1 as the inverse of a symmetric, positive definite operator

C�, t : L2

�̂�(¸)

Ł

(�; Rd)! L2

�̂�(¸)

Ł

(�; Rd),

and the real vector At(Ł) may also be viewed as an L2
�̂�Ł

functional at : �! Rd , at being

given by

at(ø) ¼

[cos(øe1
u � øO

u )] t0 þ
ð t

0

cos(øe1

u � øO
u )du

..

.

[cos(øed
u � øO

u )] t0 þ
ð t

0

cos(øed
u � øO

u )du

0
BBBBB@

1
CCCCCA:

One is then in a position to give a new expression for the stochastic differential at site i in the

system (S¸), of the type

dŁi
t ¼ dwi

t þ �2 (st(Ł
(i)); [C�1

�, t at]Lb
(Ł(i)))Rd þ

Xd
k¼1

(s
(k)
t (Ł(i)); [C�1

�, t at]Lb
(Ł(i�ek )))Rd

( )
dt,

the functionals st, s
(k)
t 2 L2

�̂�Ł
being simply given by

st(ø) ¼
sin(øe1

t � øO
t )

..

.

sin(øed
t � øO

t )

0
B@

1
CA and s

(k)
t (ø) ¼

..

.

sin(ø�ekt � øO
t )

..

.

0
BB@

1
CCA, 1 < k < d:

At this stage one should also note that both at and st : �! Rd define bounded Lipschitz

functionals on �, when one is considering a reasonable distance on � (metrizing the product

topology), for example d t¼T : �! Rþ, the family of semidistances (d t)0< t<T being defined

by

8ø, � 2 �, d t(ø, �) ¼
X
i2Zd

rjij(køi � �ik1, t ^ 2),

for some fixed r 2]0; 1[ (k:k1, t denotes the seminorm of uniform convergence in [0; t], and

jij ¼ max(ji1j, . . . , jik j, . . . , jid j)).
On the other hand, the covariance operator

C�, t : L2

�̂�(¸)

Ł

(�; Rd)! L2

�̂�(¸)

Ł

(�; Rd)

is given as a sum

C�, t ¼ (Id þ �2B t),
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and the symmetric, non-negative definite operator B t : L
2

�̂�(¸)

Ł
! L

2

�̂�(¸)

Ł
may also be defined on

the Banach space Lb consisting of all bounded Lipschitz observables a : �! Rd . So for

small � and for t not too large, the covariance operators C�, t may also be viewed as

perturbations of the identity on Lb, and the drift term at site i may be given an expression of

the type

dŁi
t ¼ dwi

t þ �2 h[C�1
�, t at]Lb

(Ł(¸),(i)); st(Ł
(¸),(i))iRd dt þ

Xd
k¼1

(s
(k)
t (Ł(i)); [C�1

�, t at]Lb
(Ł(i�ek )))Rd

( )
dt:

Such a finite-dimensional system of interacting diffusions has an obvious extension to infinite

dimensions: one should simply let i vary in Zd and consider the system (S1) given by

dŁi
t ¼ dwi

t þ �2 (st(Ł(i)); [C�1
�, t at]Lb

(Ł(i)))Rd þ
Xd
k¼1

(s
(k)
t (Ł(i)); [C�1

�, t at]Lb
(Ł(i�ek )))Rd

( )
dt,

Law(Łj t¼0) ¼ u�Z
d

0 :

8>><
>>:

This extension of (S¸) to infinite dimensions has the advantage of providing us with a

reasonable estimation of the regularity of the drift term associated with the stochastic

differential dŁi
t; but for �2 � t	 1 the covariance operators C�, t might well become singular

when viewed as bounded linear operators on the Banach space Lb, so that one has to look for

another extension to infinite dimensions in the general situation where � and T take

arbitrarily large values.

The following elementary remarks are of great help in finding an alternative expression

for the stochastic differential corresponding to an infinite-dimensional extension of S¸. First

of all, in the original expression for the stochastic differential corresponding to a finite

volume, averaged dynamics,

dŁi
t ¼ dwi

t þ �2
X
j�i

(C�, t(Ł)�1 � At(Ł))fi, jg sin(Ł j
t � Łi

t)dt,

the covariance matrix C�, t(Ł)�1 is symmetric, so that one might just as well write

dŁi
t ¼ dwi

t þ �2hC�, t(Ł)�1 � S[i]
t (Ł); At(Ł)iR¸� dt,

S
[i]
t (Ł) being the ¸�-dimensional real vector such that

(S[i]
t (Ł))fk, lg ¼ 0 whenever k 6¼ i, l 6¼ i,

(S[i]
t (Ł))fi, jg ¼ sin(Ł j

t � Łi
t):

Secondly, for any ø 2 � and for i 2 Zd, 0 < t < T , one may define infinite-dimensional

vectors At(ø), S
[i]
t (ø) 2 R(Zd )� just as in the finite-dimensional setting:
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(At(ø))fi, jg ¼ [cos(ø j
u � øi

u)]
t
0 þ

ð t
0

cos(ø j
u � øi

u)du,

(S[i]
t (ø))fk, lg ¼ 0 whenever k 6¼ i, l 6¼ i,

(S[i]
t (ø))fi, jg ¼ sin(ø j

t � øi
t),

and observe that

8i 2 Zd , 8t 2 [0; T ], At(ø) 2 l1((Zd)�), S[i]
t (ø) 2 l1((Zd)�):

Similarly, the symmetric matrices Bt may be extended to infinite dimensions by letting

Bt(ø) : l2((Zd)�)! l2((Zd)�) denote the symmetric, non-negative definite operator such that

hBt(ø) � f fi, jg; f fk, lgi l2((Zd )�) ¼

0 if fi, jg and fk, lg
are not adjacent,ð t

0

sin(ø j
s � øi

s)sin(ø l
s � øi

s)ds for k ¼ i, l 6¼ j,

2

ð t
0

sin 2(ø j
s � øi

s)ds for k ¼ i, l ¼ j:

8>>>>>>><
>>>>>>>:

(( f fi, jg)fi, jg2(Zd )� is the canonical basis in l2((Zd)�)).
Thirdly, taking into account the fact that the vectors S

[i]
t (ø) 2 l1((Zd)�) have finite

support and that the infinite-dimensional matrices

C�, t(ø) ¼ (Id þ �2Bt(ø)) : l2((Zd)�)! l2((Zd)�)

are sparse, one may then prove that, for any ø, � 2 � and for any i 2 Zd, 0 < t < T , the

l2((Zd)�) vector

C�, t(ø)�1 � S[i]
t (�)

actually lies in l1((Zd)�), with an l1((Zd)�) norm that may be conveniently controlled. To be

more precise:

Lemma 2.1. For any ø, � 2 �, the l2((Zd)�) vector

C�, t(ø)�1 3 S[i]
t (�)

lies in l1((Zd)�) and has an l1((Zd)�) norm that is bounded from above by

Kd
�, t ¼

ffiffiffiffiffiffi
2d
p

(2(1þ º))d

for º ¼ 2þ 4�2 t.

Proof. For the sake of simplicity, we assume that i ¼ O. We also let jV jfk, lg denote the

absolute value of the fk, lg coordinate of a vector V 2 l2((Zd)�) and Pfk, lg denote the

projection of l2((Zd)�) corresponding to the fk, lg coordinate:

Pfk, lg(V ) ¼ hV ; f fk, lgi l2((Zd )�) � f fk, lg:
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We then have

jC�, t(ø)�1 3 S[O]
t (�)jfk, lg ¼ kPfk, lg[C�, t(ø)�1 3 S[O]

t (�)]k l2((Zd )�)

¼
�����Pfk, lg

X1
n¼0

(º� �2Bt(ø))n

(1þ º)nþ1
S[O]
t (�)

" #�����
l2((Zd )�)

¼
�����
X1
n¼0

Pfk, lg
(º� �2Bt(ø))n

(1þ º)nþ1
S[O]
t (�)

" #�����
l2((Zd )�)

,

and at this stage one should note that

Pfk, lg
(º� �2Bt(ø))n

(1þ º)nþ1
S[O]
t (�)

" #
¼ 0 whenever n , jfk, lgj ¼ (jkj ^ jlj),

so that

jC�, t(ø)�1 3 S[O]
t (�)jfk, lg ¼

�����Pfk, lg
X

n>jfk, lgj

(º� �2Bt(ø))n

(1þ º)nþ1
S[O]
t (�)

" #�����
l2((Zd )�)

<
X

n>jfk, lgj

����� (º� �2Bt(ø))n

(1þ º)nþ1
S[O]
t (�)

�����
l2((Zd )�)

<

ffiffiffiffiffiffi
2d
p

(1þ º)

X
n>jfk, lgj

º

1þ º

� �n

¼
ffiffiffiffiffiffi
2d
p º

1þ º

� �jfk, lgj
:

We then have

X
fk, lg
jC�, t(ø)�1 3 S[O]

t (�)jfk, lg ¼
X1
n¼0

X
jfk, lgj¼n

jC�, t(ø)�1 3 S[O]
t (�)jfk, lg

<
ffiffiffiffiffiffi
2d
p X1

n¼0

](fk, lg : jfk, lgj ¼ n) � º

1þ º

� �n

and

](fk, lg : jfk, lgj ¼ n) ¼ 2d nþ d � 1

n

� �
,

so that, finally,
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X
fk, lg
jC�, t(ø)�1 3 S[O]

t (�)jfk, lg <
2d

ffiffiffiffiffiffi
2d
p

(d � 1)!

X1
n¼0

(nþ d � 1) . . . (nþ 1)
º

1þ º

� �n

¼ 2d
ffiffiffiffiffiffi
2d
p

(1þ º)d :

h

Taking into account the preceding observations, one is then in a position to state that, for

arbitrarily large values of the inverse temperature parameter � and of the terminal time T ,

the infinite-dimensional system of long-range interacting diffusions (S1) given by

dŁi
t ¼ dwi

t þ �2hC�, t(Ł)�1 � S[i]
t (Ł); At(Ł)i l1, l1 dt,

Law(Łj t¼0) ¼ u�Z
d

0 , i 2 Zd , 0 < t < T ,

should have a unique weak solution Q1 2Ms(�). The next subsection is devoted to the

proof of a much stronger statement concerning the existence and uniqueness of a solution for

(S1).

2.2. Construction of an Itô map for (S1)

Our aim here is to establish that, for arbitrary values of � > 0 and T . 0, the infinite-

dimensional system of long-range interacting diffusions (S1) has a unique strong solution

Ł ¼ f(Łi
t)0< t<T ; i 2 Zdg, and that this solution may be constructed as the image

Ł ¼ �(w)

of the original infinite-dimensional Brownian motion w through a measurable transformation

� on � ¼ WZd

T that is Lipschitz continuous with respect to the metric dT introduced earlier.

We use a natural fixed-point method to construct the Itô map �: it consists in introducing

a measurable transformation � : �3�! �3� defined through the identities

f�(w; Ł)git ¼ wi
t; w

i
t þ �2

ð t
0

hAu(Ł); C�,u(Ł)�1S[i]
u (Ł)i l1, l1 du

� �

and showing that the successive iterates �(n)(w; Æ) of � on some initial configuration (w; Æ)

converge to some (w; Ł) 2 �2, the limiting configuration (w; Ł) 2 �2 depending on (w; Æ)

only through w. One may then define � : �! � simply through the equality

�(w) ¼ Ł

and establish the Lipschitz continuity of � on (�; dT ).

As a first step towards this goal, we introduce the ‘essential part’ of �, namely

j : �! � defined by

fj(Ł)git ¼ �2

ð t
0

hAu(Ł); C�,u(Ł)�1S[i]
u (Ł)i l1, l1 du,
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and show that j satisfies a kind of Gronwall inequality; we shall make use of the

semidistances

d t(ø, �) ¼
X
i2Zd

rjij(køi � �ik1, t ^ 2)

introduced after Proposition 2.1, the value r being carefully chosen so that

r0 , r , 1, for r0 ¼
º

1þ º

� �
and º ¼ º(�; T ) ¼ 2þ 4�2T :

Proposition 2.2. There exists a positive constant K ¼ K(d, �, T ) for which

d t(j(Ł); j(�)) < K �
ð t

0

du(Ł; �)du, 8t 2 [0; T ], 8Ł, � 2 �:

Obviously,

jfj(Ł)git � fj(�)gitj < (a)it þ (b)it þ (c)it

for

(a)it ¼
ð t

0

jhAu(Ł)� Au(�); C�,u(Ł)�1S[i]
u (Ł)i l1, l1 jdu ¼

ð t
0

�i
u(Ł; �)du,

(b)it ¼
ð t

0

jhAu(�); (C�,u(Ł)�1 � C�,u(�)�1)S[i]
u (Ł)i l1, l1 jdu ¼

ð t
0

	iu(Ł; �)du,

(c)it ¼
ð t

0

jhAu(�); C�,u(�)�1(S[i]
u (Ł)� S[i]

u (�))i l1, l1 jdu ¼
ð t

0


iu(Ł; �)du,

and we shall now give appropriate upper bounds enabling us to control �i
u, 	iu and 
iu suitably.

Lemma 2.2. For any choices of i 2 Zd, Ł, � 2 �,

jhAu(Ł)� Au(�); C�,u(Ł)�1S[i]
u (Ł)i l1, l1 j

<
ffiffiffiffiffiffi
2d
p

(2þ T )
X

fk, lg2(Zd )�
rjk�ij^j l�ij0 � ((kŁk � �kk1, t ^ 2)þ (kŁ l � � lk1, t ^ 2)):

Proof. This first inequality may be established by using the regularity of each functional

Afk, lg
u : �! R, as well as the fact that Bu(Ł) is an ‘infinite band matrix’, whereas S[i]

u (Ł) has

finite support, so that
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jC�,u(Ł)�1S[i]
u (Ł)jfk, lg ¼

�����Pfk, lg
X

n>jk�ij^j l�ij

(º� �2Bu(ø))n

(1þ º)nþ1
S[i]
u (�)

" #�����
l2((Zd )�)

<
X

n>jk�ij^j l�ij

����� (º� �2Bu(ø))n

(1þ º)nþ1
S[i]
u (�)

�����
l2((Zd )�)

<

ffiffiffiffiffiffi
2d
p

(1þ º)

X
n>jk�ij^j l�ij

º

1þ º

� �n

¼
ffiffiffiffiffiffi
2d
p

rjk�ij^j l�ij0 h

The following inequality may be proved along the same lines:

Lemma 2.3. For all i 2 Zd, for all fk, lg 2 (Zd)�, for all Ł, � 2 �,

jC�,u(�)�1 3 (S[i]
u (Ł)� S[i]

u (�))jfk, lg < rjk�ij^j l�ij0

� 2d(kŁi � �ik1,u ^ 2)þ
X
j�i

(kŁ j � � jk1,u ^ 2)

 !
:

Proof. Here again, one may observe that

jC�,u(�)�1 3 (S[i]
u (Ł)� S[i]

u (�))jfk, lg < kS[i]
u (Ł)� S[i]

u (�)k l2((Zd )�) �
X

n>jk�ij^j l�ij

ºn

(1þ º)nþ1
:

Using Minkowski’s inequality in R2dþ1, we also have that

kS[i]
u (Ł)� S[i]

u (�)k l2((Zd )�) < 2d(kŁi � �ik1,u ^ 2)þ
X
j�i

(kŁ j � � jk1,u ^ 2)

 !
,

which finishes the proof of the lemma. h

For fixed i 2 Zd and N > 1, we next define the linear operator P
[i]
N :

l2((Zd)�)! l2((Zd)�) as the sum of projectors

P
[i]
N ¼

X
jfk, lgji<N

Pfk, lg,

where

jfk, lgji ¼ jk � ij ^ jl � ij:

We now come to the control of 	iu(Ł; �).

Lemma 2.4. There exists a positive constant C1 (depending only on �, d and T) for which
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j(C�,u(Ł)�1 � C�,u(�)�1)S[i]
u (Ł)jfk, lg

< C1

X
n>jfk, lgji

nrn
0

X
jfk9, l9gji<nþ1

((kŁk9 � �k9k1,u ^ 2)þ (kŁ l9 � � l9k1,u ^ 2)):

Proof. Considering Taylor expansions around º � Id and using a chaining argument enables

one to express the difference

C�,u(Ł)�1 � C�,u(�)�1

as a series

X
n>1

1

(1þ º)nþ1

Xn�1

m¼0

(º� �2Bt(Ł))n�1�m � �2(Bt(�)� Bt(Ł)) � (º� �2Bt(�))m

converging absolutely with respect to the operator norm jjj:jjj l2((Zd )�). For each n > 1 and

each 0 < m < n� 1, we also know that

Pfk, lg[((º� �2Bt(Ł))n�1�m � �2(Bt(�)� Bt(Ł)) � (º� �2Bt(�))m) � S[i]
u (Ł)] ¼ 0

whenever n , jfk, lgji (since (º� �2Bt(Ł)) and (º� �2Bt(�)) both have a ‘short-range

property’). Hence:

j(C�,u(Ł)�1 � C�,u(�)�1)S[i]
u (Ł)jfk, lg

<
X

n>jfk, lgji

1

(1þ º)nþ1

Xn�1

m¼0

k(º� �2Bu(Ł))n�1�m � �2(Bu(�)� Bu(Ł)) � (º� �2Bu(�))m � S[i]
u (Ł)k l2

<
X

n>jfk, lgji

�2

(1þ º)nþ1

Xn�1

m¼0

ºn�1�mk(Bu(�)� Bu(Ł)) � (º� �2Bu(�))m � S[i]
u (Ł)k l2 :

At this stage one should also note that the infinite band matrix

(Bu(�)� Bu(Ł)) : l2((Zd)�)! l2((Zd)�)
satisfies

k(Bu(�)� Bu(Ł)) � Vk l2

<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d � 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
jfk9, l9gji<Nþ1

ðu
0

sin(Łk9
v � Ł l9

v )dv�
ðu

0

sin(�k9v � � l9v )dv

� �2
vuut 3 kVk l2

for any finitely supported vector V lying in P
[i]
N [l2((Zd)�)].

On the other hand, we certainly have

k(º� �2Bu(�))m � S[i]
u (Ł)k l2 < ºm

ffiffiffi
d
p

as well as

(º� �2Bu(�))m � S[i]
u (Ł) ¼ P

[i]
mþ1[(º� �2Bu(�))m � S[i]

u (Ł)]:
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Using the elementary estimateð t
0

sin(Łk9
u � Ł l9

u )du�
ð t

0

sin(�k9u � � l9u )du

� �2

< t2((kŁk9 � �k9k1, t ^ 2)þ (kŁ l9 � � l9k1, t ^ 2))2

and then Minkowski’s inequality, we obtain

k(Bu(�)� Bu(Ł)) � (º� �2Bu(�))m � S[i]
u (Ł)k l2

< 2ºmd � u �
X

jfk9, l9gji<mþ2

((kŁk9 � �k9k1,u ^ 2)þ (kŁ l9 � � l9k1,u ^ 2)):

Altogether, we now have:

j(C�,u(Ł)�1 � C�,u(�)�1)S[i]
u (Ł)jfk, lg

<
2�2ud

º(1þ º)

X
n>jfk, lgji

rn
0

Xn�1

m¼0

X
jfk9, l9gji<mþ2

((kŁk9 � �k9k1,u ^ 2)þ (kŁ l9 � � l9k1,u ^ 2))

<
2�2ud

º(1þ º)

X
n>jfk, lgji

nrn
0

X
jfk9, l9gji<nþ1

((kŁk9 � �k9k1,u ^ 2)þ (kŁ l9 � � l9k1,u ^ 2))

so that the inequality stated in the theorem holds true for C1 ¼ 2�2ud=(º(1þ º)). h

Corollary 2.1. There exists a positive C2 ¼ C2(�, d, T ) for which

jhAu(�); (C�,u(Ł)�1 � C�,u(�)�1)S[i]
u (Ł)i l1, l1 j < C2

X
k92Zd

(kŁk9 � �k9k1,u ^ 2)
X

n>jk9�ij�2

ndþ1rn
0 :

Proof. From Lemma 2.4 we obtain

jhAu(�); (C�,u(Ł)�1 � C�,u(�)�1)S[i]
u (Ł)i l1, l1 j

< C1 � (2þ T )
X
fk, lg

X
n>jfk, lgji

nrn
0

X
jfk9, l9gji<nþ1

((kŁk9 � �k9k1,u ^ 2)þ (kŁ l9 � � l9k1,u ^ 2))

< C1 � (2þ T ) � (2d)
X
k92Zd

(kŁk9 � �k9k1,u ^ 2) �
X

fk, lg2(Zd )�

X
(n>jfk, lgji)&(n>jk9�ij�2)

nrn
0

 !
,

and the inequality stated in the theorem follows from the elementary bound

](fk, lg : jfk, lgji < n) < 2d � nd : h

Proof of Proposition 2.2. Let us first give an appropriate estimate forX
i2Zd

rjij	iu(Ł; �):

Remembering that the parameter r (from the definition of d t) has been chosen in the interval

]r0; 1[, we may fix an auxiliary parameter r1 2]r0; r[ and state that
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X
n>N

ndþ1rn
0 < C3rN

1

for some C3 , þ1 independent of N . Corollary 2.1 may thus be modified into

jhAu(�); (C�,u(Ł)�1 � C�,u(�)�1)S[i]
u (Ł)i l1, l1 j < C4

X
k92Zd

rjk9�ij1 (kŁk9 � �k9k1,u ^ 2),

and we then haveX
i2Zd

rjij	iu(Ł; �) < C4

X
i2Zd

rjij
X
k92Zd

rjk9�ij1 (kŁk9 � �k9k1,u ^ 2)

¼ C4

X
k92Zd

(kŁk9 � �k9k1,u ^ 2)
X
i2Zd

rjk9�ij1 rjij
 !

< C5

X
k92Zd

rjk9j � (kŁk9 � �k9k1,u ^ 2)

¼ C5du(Ł; �),

the last inequality following from the existence of a C6 , þ1 such that

8k9 2 Zd ,
X
i2Zd

rjijrjk9�ij1 < C6 � rjk9j

((rjkj)k2Zd is subharmonic with respect to the kernel (rj lj1 ) l2Zd ).

According to Lemma 2.2,X
i2Zd

rjij	iu(Ł; �)

<
ffiffiffiffiffiffi
2d
p

(2þ T )
X
i2Zd

rjij
X

fk, lg2(Zd )�
rjk�ij^j l�ij0 � ((kŁk � �kk1,u ^ 2)þ (kŁ l � � lk1,u ^ 2))

< (2d)3=2
X
k2Zd

(kŁk � �kk1,u ^ 2)
X
i2Zd

rjk�ij^j l�ij0 rjij
 !

:

Using a subharmonic inequality for the sequence (rjij)i2Zd and the kernel (rj jj1 ) j2Zd , we then

obtain X
i2Zd

rjij	iu(Ł; �) < D �
X
k2Zd

rjkj � (kŁk � �kk1,u ^ 2) ¼ D � du(Ł; �):

Finally, according to Lemma 2.3,X
i2Zd

rjij
iu(Ł; �) < E1

X
i2Zd

rjij(kŁi � �ik1,u ^ 2)
X

fk, lg2(Zd )�
rjfk, lgji

0

 !
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for some E1 . 0, so that X
i2Zd

rjij
iu(Ł; �) < E2 � du(Ł; �)

for E2 ¼ E1 � (
P
fk, lg2(Zd )�r

jfk, lgji
0 ). Remembering that

d t(j(Ł); j(�)) <

ð t
0

X
i2Zd

rjij(�i
u(Ł; �)þ 	iu(Ł; �)þ 
iu(Ł; �))

" #
du

finishes the proof. h

The existence and Lipschitz continuity of the Itô map � : �! � are now a

straightforward consequence of Proposition 2.2.

Introducing the semidistances d
(2)
t : �2 ! Rþ defined by

d
(2)
t ((w; Æ), (w9; Æ9)) ¼ d t(w, w9)þ d t(Æ, Æ9),

we have

d
(2)
t (�(w; Æ), �(w9; Æ9)) < 2d t(w, w9)þ K

ð t
0

du(Æ, Æ9)du,

and successive iterations of the preceding inequality yield

d
(2)
t (�(n)(w; Æ), �(n)(w9; Æ9))

< 2d t(w, w9)þ K

ð t
0

2d t1 (w, w9)þ K

ð t1
0

2d t2 (w, w9) þ . . . þ K

ð t n�1

0

d tn(Æ, Æ9)dtn

� �
. . . dt2

� �
dt1

< 2d t(w, w9) 1þ Kt þ K2 t2

2
þ . . . þ (Kt)n�1

(n� 1)!

 !
þ (Kt)n

n!
d t(Æ, Æ9):

We may thus state the following:

Corollary 2.2. For any values of � > 0 and T . 0, the Itô map � : �! � is well defined

and satisfies

dT (�(w), �(w9)) < (2 eKT � 1)dT (w, w9):

So for arbitrarily large values of the inverse temperature parameter � and of the terminal

time T , the infinite-dimensional system of long-range interacting diffusions (S1) does

indeed have a unique strong solution Ł ¼ f(Łi
t)0< t<T ; i 2 Zdg.

2.3. Averaged large deviations of the empirical process

The first part of Theorem 1.1 is now a straightforward consequence of the existence and

continuity of �. Indeed, in the i.i.d. case (where � ¼ 0), we know that the law of the
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empirical process �̂�(¸)
Ł considered under dR�¸T (Ł) satisfies an LDP on Ms(�), on the scale

j¸j and according to a good rate functional

H
R�Z

d

T

: Ms(�)! [0; þ1]

known as the specific entropy functional (relative to R�Z
d

T ) and defined by

H
R�Z

d

T

(Q) ¼ lim
¸%Zd

1

j¸j H(Q¸jR�¸T ) ¼ sup
¸��Zd

1

j¸j H(Q¸jR�¸T ),

Q¸ denoting a projection of Q 2Ms(�) with respect to the ‘W¸
T -measurable’ events, and

H(Q¸jR�¸T ) denoting relative entropy with respect to R�¸T . A short proof for this LDP may

be found in Comets (1986), and Chapter 15 in Georgii (1988) establishes some of the most

important properties of the specific entropy functional H in a general setting.

Now for � . 0, we also know that the law of �̂�(¸)
Ł considered in the averaged regime

(i.e., under dP¸(Ł)) coincides with the law of �̂�(¸)

�(w(¸))
when w is distributed under dR�¸T (w).

We thus have

Lawd P̧ (Ł)(�̂�
(¸)
Ł ) ¼ LawdR�¸

T
(w)(

~��(�̂�(¸)
w )),

~�� : Ms(�)!Ms(�) being simply defined by

~��(�) ¼ � s ��1:

~�� certainly defines a continuous transformation on Ms(�) (equipped with its topology of

weak convergence) and we may now apply the contraction principle (a proof of which may be

found in Dembo and Zeitouni 1998, Section 4.2) in order to state that the law of the

empirical process �̂�(¸)
Ł under dP¸(Ł) obeys an LDP on Ms(�), on the scale j¸j and

according to the good rate functional I a : �! [0; þ1] defined by

I a(�) ¼ inf
~��(�)¼�

H
R�Z

d

T

(�):

The good rate functional I a certainly has Q1 ¼ ~��(R�Z
d

T ) as its unique minimizer (since

R�Z
d

T is the unique minimizer corresponding to H
R�Z

d

T

), and, as a straightforward application

of the Borel–Cantelli lemma (see Ben Arous and Guionnet 1995), one may then state that,

almost surely in the realizations of the disordered couplings J 2 R(Zd )� , the law of the

empirical process �̂�(¸)
Ł considered in the quenched regime (i.e., under dPJ

¸(Ł)) converges

weakly to the Dirac mass �Q1 . As we shall see in the next section, such a strong law of large

numbers may actually be reinforced into a quenched LDP for the empirical process.

3. Quenched large deviations estimates

Let us now consider a fixed (typical) realization J0 of the coupling variables; for

convenience’ sake we may also view J0 as an infinite configuration of d-dimensional

vectors indexed by the vertices of the lattice, so that

J0 ¼ (J0(i))i2Zd 2 (Rd)(Zd )
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for J0(i) ¼ (J0(fi, iþ e1g), . . . , J0(fi, iþ edg)); so we may now consider any couple (Ł; J )

as an infinite-dimensional spin configuration where each spin variable (Ł(i); J (i)) lies in

WT 3 Rd .

Let RJ0

¸ denote the joint law of Ł and J when Ł is distributed according to R�¸T and J is

fixed at the value J0 (or rather, at the projection of J0 onto R¸� , ¸ still being equipped

with its periodic boundary conditions). According to Theorem III.1 in Comets (1989), we

know that, almost surely in the realization J0, the law of the ‘joint empirical process’ �̂�(¸)
Ł,J

considered under dRJ0

¸ (Ł; J ) obeys an LDP on Ms((WT 3 Rd)(Zd )), on the scale j¸j and

according to the deterministic rate functional Hq given by

Hq(�) ¼
H

R�Z
d

T

(�Ł) if � has a second marginal �J coinciding with (N (0; 1)�d)�Z
d

,

þ1 otherwise:

8<
:

Let us now denote by P J0

¸ the joint law of Ł and J when Ł is distributed according to

dPJ0

¸ and J is fixed at the value J0. We also know that

dP J0

¸

dRJ0

¸

¼ exp
�

2

X
i2¸

X
j�i

Jfi, jg [cos(Ł j
t � Łi

t)]
T
0 þ

ðT
0

cos(Ł j
t � Łi

t)dt

 !0
@

1
A

8<
:

� �2

4

X
i2¸

X
j�i

X
k�i

Jfi, jgJfi,kg

ðT
0

sin(Ł j
t � Łi

t)sin(Łk
t � Łi

t)dt

 !)

¼ exp
X
i2¸
F i(Ł; J )

( )
,

the functional F i : (WT 3 Rd)(Zd ) ! R being of the form

F i ¼ �
X
A3i

łA

jAj

for some translation-invariant Gibbsian interaction � ¼ (łA)A��Zd on (WT 3 Rd)(Zd ). A

precise definition of translation-invariant Gibbsian interactions may be found in Comets

(1989); in the present case, � is such that

łfi, jg(Ł; J ) ¼ ��Jfi, jg [cos(Ł j
t � Łi

t)]
T
0 þ

ðT
0

cos(Ł j
t � Łi

t)dt

 !
þ �2J2

fi, jg

ðT
0

sin 2(Ł j
t � Łi

t)dt

if j � i,

łfi, j,kg(Ł; J ) ¼ �2

2
Jfi, jgJfi,kg

ðT
0

sin(Ł j
t � Łi

t)sin(Łk
t � Łi

t)dt, if j � i, k � i and k 6¼ j,

łA 
 0, for any other A:

Just as in Comets (1989), we may now use the fact that
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dP J0

¸

dRJ0

¸

(Ł; J ) ¼ exp j¸j
ð
F Od�̂�(¸)

Ł,J

� �
,

and applying the Laplace–Varadhan method in this context leads us to the statement that,

a.s. (J0), the law of the ‘joint empirical process’ �̂�(¸)
Ł,J under dP J0

¸ (Ł; J ) should satisfy

an LDP on the scale j¸j and according to the good rate function J q :

Ms((WT 3 Rd)(Zd ))�![0; þ1] given by

J q(�) ¼
Hq(�)�

ð
F Od� if Hq(�) , þ1,

þ1 otherwise:

8<
:

However, since F O is not bounded, some verifications are needed in order to apply the

Laplace–Varadhan method. The validity of the upper bound

(U ) : lim sup
¸%Zd

1

j¸j lnP
J0

¸ f�̂�
(¸)
: 2 Cg < �inf

�2C
J q(�),

for any closed set C � Ms((WT 3 Rd)(Zd )), follows from the existence of a � . 1 for which

A� ¼ lim sup
¸%Zd

1

j¸j ln
ð

dP J0

¸ expf� � j¸jhF O; �̂�(¸)ig , þ1:

The finiteness of A� may actually be proved for any � . 1 after decomposing the exponent

� � j¸jhF O; �̂�(¸)i into

X
i2¸

��

2

X
j�i

Jfi, jg

ðT
0

sin(Ł j
t � Łi

t)(dw
j
t � dwi

t)

 (

� �2�2

4

X
j�i

X
k�i

Jfi, jgJfi,kg

ðT
0

sin(Ł j
t � Łi

t)sin(Łk
t � Łi

t)dt

!)

þ (�2 � �)�2

4

X
i2¸

X
j�i

X
k�i

Jfi, jgJfi,kg

ðT
0

sin(Ł j
t � Łi

t)sin(Łk
t � Łi

t)dt

 !( )

and observing that the first term in the preceding sum is the logarithm of a unit martingale

while the second term is obviously bounded from above by

(�2 � �)�2T
X
fi, jg2¸�

J2
fi, jg:

Integrating with respect to first Ł first and then J , we then obtainð
dP J0

¸ expf� � j¸jhF O; �̂�(¸)ig <
ð

dP J0

¸ expf(�2 � �)�2T
X
fi, jg2¸�

J2
fi, jgg,

so that
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A� < (�2 � �)�2T � d, a:s: (J0):

A few remarks should also be made before establishing that the lower bound

(L): lim inf
¸%Zd

1

j¸j lnP
J0

¸ f�̂�(¸)
: 2 Og > � inf

�2O
J q(�)

holds for any open set O �Ms((WT 3 Rd)(Zd )).

First, it suffices to prove

(L9): lim inf
¸%Zd

1

j¸j lnP
J0

¸ f�̂�
(¸)
: 2 Ng > �J q(�)

whenever N is an open neighbourhood of �, � being such that J q(�) , þ1.

Secondly, since each of the functionals

F O, j(Ł) ¼ [cos(Ł j
t � ŁO

t )]T0 þ
ðT

0

cos(Ł j
t � ŁO

t )dt

 !
, for j � O,

and

F O, j,k(Ł) ¼
ðT

0

sin(Ł j
t � ŁO

t )sin(Łk
t � ŁO

t )dt, for j � O, k � O,

is uniformly bounded and continuous on �, we may consider an open neighbourhood UE of

�Ł (first marginal of �) such that:				
ð
F O, jd��

ð
F O, jd�

				 , E and

				
ð
F O, j,kd��

ð
F O, j,kd�

				 , E, 8 j, k � O,

whenever � has a Ł-marginal lying in UE (E . 0 is arbitrarily small and fixed).

Thirdly, since J0 is typical we may also choose ¸0 �� Zd such that				 1

j¸�j
X
fi, jg2¸�

Jfi, jg

				 , E and

				 1

j¸j
X
i2¸

Jfi,iþekgJfi,iþe lg � �k, l

				 , E

whenever ¸ � ¸0, for all 1 < k, l < d.

Setting

NE ¼ f(Ł, J )j�̂�(¸)
(Ł,J ) 2 N and �̂�(¸)

Ł 2 UEg

and decomposing the difference (hF O; �i � hF O; �i) intoð
d(� � �)(Ł1, J 1; Ł2, J 2)f(A)þ (A9)þ (B)þ (B9)g,

where
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(A) ¼ �

2

X
j�O

(J 1
fO, jg � J 2

fO, jg) � F O, j(Ł1),

(A9) ¼ �

2

X
j�O

J2
fO, jg � (F O, j(Ł1)� F O, j(Ł2)),

(B) ¼ � �2

4

X
j�O

X
k�O

(J 1
fO, jgJ

1
fO,kg � J 2

fO, jgJ
2
fO,kg) � F O, j,k(Ł1),

(B9) ¼ � �2

4

X
j�O

X
k�O

J2
fO, jgJ

2
fO,kg � (F O, j,k(Ł1)� F O, j,k(Ł2)),

one may then check that the inequality

jhF O; �̂�(¸)
(Ł,J )i � hF O; �ij < KE

holds for some constant K depending only on �, T and d, whenever (Ł, J ) is chosen in NE

and ¸ � ¸0.

Defining

N E ¼ N
\
f�j� has a first marginal lying in UEg,

we thus have

lim inf
¸%Zd

1

j¸j lnP
J0

¸ f�̂�
(¸)
: 2 Ng > lim inf

¸%Zd

1

j¸j lnP
J0

¸ f�̂�
(¸)
: 2 N Eg

¼ lim inf
¸%Zd

1

j¸j ln
ð
NE

expfj¸j � hF O; �̂�(¸)
(Ł,J )igdR

J0

¸ (Ł, J )

¼ hF O; �i þ lim inf
¸%Zd

1

j¸j ln
ð
NE

expfj¸j � (hF O; �̂�(¸)
(Ł,J )i � hF

O; �i)gdRJ0

¸ (Ł, J )

> hF O; �i � KEþ lim inf
¸%Zd

1

j¸j lnR
J0

¸ f�̂�(¸)
: 2 N Eg

> hF O; �i � KE� inf
�2N E

Hq(�)

 �

> �(Hq(�)� hF O; �i þ KE):

Letting E& 0 we obtain (L9), and the lower bound (L) is now also proved.

Such a quenched LDP for the joint empirical process �̂�(¸)
(Ł,J ) may naturally be contracted

to an LDP for the empirical process �̂�(¸)
Ł still considered in the quenched regime, that is,

946 G. Ben Arous and M. Sortais



under dP
J0

¸ ; one thus obtains part (ii) of Theorem 1.1: a.s. (J0), the law of the empirical

process �̂�(¸)
Ł under dPJ0

¸ obeys an LDP on Ms(�), on the scale j¸j and according to the

(deterministic) good rate functional I q : Ms(�)�![0; þ1] given by

I q(�) ¼ inf
1st marg( �)¼�

(J q(�)):

The preceding expression for I q does not enable one to see immediately that Q1 is also the

unique minimizer associated with I q; this fact follows, however, from the inequality

I q > I a > 0,

a proof of which may be found in Zeitouni (2001).

4. Miscellaneous generalizations

4.1. Addition of a self potential and of an external magnetic field

In this section we would first like to point out that one may choose a Langevin dynamics

framework using soft spins that have a better resemblance to the hard spins � i ¼ �1, and

still obtain the large deviation results described in Theorem 1.1. This may be done by a

change of the reference measure on S1 corresponding to our circular spins; for any positive

integer n, we may, for example, replace the uniform measure on S1 by

dm(Łi) ¼ e�2V (Łi)dŁi,

with V (Łi) ¼ K(sin Łi)2n, for some K . 0 and n 2 N. The reference measure RT on path

space WT is then replaced by the probability RV
T corresponding to the stochastic differential

equation

dŁi
t ¼ dwi

t � 2Kn sin(Łi
t)

2n�1 cos(Łi
t)dt

and having the initial condition

dm0(Łi) ¼ I��<Łi<�

Zn

dm(Łi), Zn ¼
ð�
��

e�2V (Ł)dŁ:

In this context, the Langevin dynamics corresponding to the random Hamiltonian H J
¸ is

given by the system of short-range interacting diffusions

dŁi
t ¼ dwi

t � 2Kn sin(Łi
t)

2n�1 cos(Łi
t)dt þ �

X
j�i

Jfi, jg sin(Ł j
t � Łi

t)dt,

Law(Łj t¼0) ¼ m�¸0 , i 2 ¸, 0 < t < T ,

8<
:

and one obtains the same expression when computing the Radon–Nikodym derivative

corresponding to the averaged regime,
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M¸
t (Ł) ¼ E

dPJ
¸

d(RV
t )�¸

(Ł)

" #

¼ E exp � �2

2
(J ; Bt(Ł)J )R¸�

� �� �

3 E expf�(J ; At(Ł))R¸� g
expf� �2

2
(J ; Bt(Ł)J )R¸� g

Z¸
t (Ł)

2
64

3
75,

although (M¸
t )0< t<T has now to be viewed as an (RV

T )�¸-martingale instead of an R�¸T -

martingale.

Using the very same methods as in the preceding section, we obtain an LDP for the

empirical process considered in the averaged regime, with a good rate function having a

unique minimizer QV
1. This time QV

1 may be presented as a continuous transform of the

new reference dynamics (RV
t )�Z

d

; under the very same condition of high temperature or

short terminal time as before, QV
1 may thus be viewed as the unique weak solution

corresponding to the infinite-dimensional system

dŁi
t ¼ dwi

t � 2Kn sin(Łi
t)

2n�1 cos(Łi
t)dt þ �2f(st(Ł(i)); [C�1

�, t at]Lb
(Ł(i)))Rd :

þ
Xd
k¼1

(s
(k)
t (Ł(i)); [C�1

�, t at]Lb
(Ł(i�ek )))Rd

)
dt, i 2 Zd , 0 < t < T ,

8>><
>>:

whereas for arbitrarily large � and T, QV
1 may also be presented as the unique weak solution

corresponding to

dŁi
t ¼ dwi

t � 2Kn sin(Łi
t)

2n�1 cos(Łi
t)dt þ �2hAt(Ł); C�, t(Ł)�1S

(i)
t (Ł)i l1, l1 dt,

i 2 Zd , 0 < t < T :

Let us now consider systems submitted to an external magnetic field. The Hamiltonian

H J
¸ considered since the beginning of Section 1 is now replaced by

H
J ,k
¸ (�) ¼ �

X
fi, jg2¸�

Jfi, jg�
i:� j � k

X
i2¸

� i

or, in the case of circular spins,

H
J ,k
¸ (Ł) ¼ �

X
fi, jg2¸�

Jfi, jg cos(Łi � Ł j)� k
X
i2¸

cos Łi,

k being some fixed real number.

Differentiating H
J ,k
¸ with respect to each of the Łi, we obtain the following system of

short-range interacting diffusions:
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dŁi
t ¼ dwi

t þ �f�k sin Łi
t þ
X
j�i

Jfi, jg sin(Ł j
t � Łi

t)gdt,

Law(Łj t¼0) ¼ u�¸0 , i 2 ¸, 0 < t < T ):

This time, the Radon-Nikodym derivative M¸,k
t ¼ dPk

¸=dR�¸t is such that

M¸,k
t (Ł) ¼ E exp �

X
i2¸

ð t
0

�k sinŁi
u þ

X
j�i

Jfi, jg sin(Ł j
u � Łi

u)

 !
dwi

u

8<
:

2
64

� �2

2

X
i2¸

ð t
0

�k sin Łi
u þ

X
j�i

Jfi, jg sin(Ł j
u � Łi

u)

 !2

du

9=
;
3
5

¼ exp ��k
X
i2¸

ð t
0

sin Łi
u dwi

u �
�2k2

2

X
i2¸

ð t
0

sin 2Łi
udu

 !

3 E exp �(J ; Ak, t(Ł))R¸� �
�2

2
(J ; Bt(Ł)J )R¸�

� �� �

for

Ak, t(Ł)fi, jg ¼ �

ð t
0

sin(Ł j
u � Łi

u)(dwi
u � dw j

u)þ �2k
ð t

0

sin(Ł j
u � Łi

u)(sin Łi
u � sin Ł j

u)du,

so that

log M¸,k
t (Ł) ¼mart � �k

X
i2¸

ð t
0

sin Łi
udw

i
u þ

1

2
(Ak, t(Ł); C�1

�, t(Ł)Ak, t(Ł))R¸�

¼mart

X
i2¸

ð t
0

��k sin Łi
u þ �

X
j�i

(C�1
�,u(Ł)Ak,u(Ł))fi, jg sin(Ł j

u � Łi
u)

( )
dwi

u:

Hence, the covariance matrices (C�, t(Ł))0< t<T are just the same as in the case of a zero

external magnetic field, and we simply need to define new l1((Zd)�)-valued functionals

Ak
t (Ł), given by

Ak
t (Ł)fi, jg ¼ �At(Ł)fi, jg þ �2k

ð t
0

sin(ø j
u � øi

u)(sinøi
u � sinø j

u)du:

For arbitrarily large � and T one may then define an Itô map �k : �! � similar to �,

except for the functionals At(Ł) which have to be replaced by Ak
t (Ł).

We may thus state the following proposition:

Proposition 4.1. Fix K . 0, k 2 R, n 2 N, and consider the system of randomly interacting

diffusions S J ,k
¸ given by
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dŁi
t ¼ dwi

t � 2Kn sin(Łi
t)

2n�1 cos(Łi
t)dt � �k sin Łi

tdt þ �
X
j�i

Jfi, jg sin(Ł j
t � Łi

t)dt

Law(Łj t¼0) ¼ m�¸0 , i 2 ¸, 0 < t < T ):

Let P
J ,k
¸ be the law of S J ,k

¸ , define Pk
¸ as the average of the P

J ,k
¸ when J varies at random,

Pk
¸ ¼

ð
dª(J )PJ ,k

¸

and let —k
¸ (or —J ,k

¸ ) denote the law of the empirical process under Pk
¸ (or P

J ,k
¸ ).

f—k
¸g¸��Zd and —J ,k

¸ both satisfy a large-deviation principle on Ms(�), on the scale

j¸j and according to some good rate functionals I ak and I qk such that

I qk > I ak > 0:

I ak and I ak have a (common) unique minimizer Qk
1 , which may be explicitly presented as the

unique weak solution corresponding to the following infinite-dimensional system of

interacting diffusions:

dŁi
t ¼ dwi

t � 2Kn sin(Łi
t)

2n�1 cos(Łi
t)dt � �k sin Łi

t dt þ �2hAk
t (Ł); C�, t(Ł)�1S

(i)
t (Ł)i l1, l1 dt

Law(Łj t¼0) ¼ m�Z
d

0 , i 2 Zd , 0 < t < T :

(

4.2. Change of the initial and boundary conditions

Let us briefly mention that the original quenched and averaged LDPs stated in Theorem 1.1

hold under much broader hypotheses on the initial and boundary conditions.

As regards the initial conditions, we may consider, for example, a summable, translation-

invariant interaction P on RZd

, that is, a family P ¼ (PA)A��Zd of continuous, real-valued

functionals defined on RZd

and such that:

• 8A �� Zd , PA : RZd ! R depends on ø 2 RZd

only through its projection on RA;

• 8A �� Zd , 8i 2 Zd , 8ø 2 RZd

, PiþA(ø) ¼ PA(ø(i));

•
P

A3O(supø2RZd jPA(ø)j) , þ1.

Fixing a finite volume ¸ ¼ [�N ; N ]d
T
Zd , we may then replace the original ‘deep quench’

initial condition m�¸0 by the finite-volume Gibbs measure �¸ corresponding to the interaction

P and to the reference measure m�Z
d

0 , ¸ still being equipped with its periodic boundary

conditions. We thus obtain a new ‘quenched’ system of interacting diffusions (S J
¸)9 having

initial condition �¸; we then let (PJ
¸)9 denote the corresponding probability law on W¸

T and

P9̧ ¼ EJ [(PJ
¸)9].

Letting —9̧ denote the law of the empirical process considered under P9̧ , we then have

d—9̧

d—¸
(�) ¼ exp j¸j

ð
RZd

v(ø)d�0(ø)

� �

whenever � ¼ �̂�(¸)
x for some x 2 �, �0 denoting the projection of � at time t ¼ 0 and v

being simply defined as
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v(ø) ¼ �
X
A3O

PA(ø)

jAj :

v defines a bounded continuous functional on RZd

(since P is summable) so that Varadhan’s

lemma may be applied directly in order to establish that (—9̧ ) also obeys an LDP on Ms(�),

on the scale j¸j and according to the good rate function I 9 : Ms(�)! [0þ1] given by

I 9(�) ¼ I (�)�
ð
RZ d

v d�0 � K,

where

K ¼ inf
�2Ms(�)

I (�)�
ð
RZ d

v d�0

� �
:

Here again, the set of all minimizers corresponding to I 9 will be reduced to a single

asymptotic dynamics fQ91g whenever the set of all infinite-volume Gibbs measures

corresponding to P and mZd

0 is reduced to a singleton f�1g, and we may also establish a

quenched LDP for the empirical process.

Let us finally show that these large-deviations results also hold when considering other

boundary conditions. For the sake of simplicity, we shall first consider the case where the

periodic boundary conditions on ¸ ¼ [�N ; N ]d
T
Zd are being replaced by zero boundary

conditions outside ¸. We then have to deal with a new ‘quenched’ system of interacting

diffusions (S J
¸) 0, whose probability law may be denoted by (PJ

¸) 0. We then let

P 0̧ ¼ EJ [(PJ
¸) 0] and — 0̧ ¼ LawdP 0̧ (x)(�̂�(¸)

x ), and we shall make an additional remark

before computing the Radon-Nikodym derivative d— 0̧ =d—¸(�) corresponding to some

� ¼ �̂�(¸)
x : letting @¸ denote the set consisting of all i 2 ¸ such that j =2 ¸ for some j � i,

we know that under the (usual) periodic boundary conditions, the contribution of the

‘boundary terms’ to the Girsanov exponent appearing in d—¸=d—�¼0
¸ (�) has a martingale

part summing to

X
i2@¸

ðT
0

X
j�i, j=2¸

Jfi 0, j 0g sin(Ł j-
t � Łi

t)

 !
dŁi

t,

i 0, j 0 and j- being given respectively by i 0 ¼ i, j 0 ¼ j and j- ¼ j� 2N � ek in the case

where j ¼ iþ ek , whereas i 0 ¼ j- ¼ jþ 2N � ek and j 0 ¼ jþ (2N þ 1) � ek in the case

where j ¼ i� ek , for some 1 < k < d (a convention of this kind is implicit in the whole

paper, but the sites i 0, j 0 and j- were not introduced earlier in order to make the notation

lighter).

On the other hand, in the case of zero boundary conditions on ¸, the aforementioned

martingale part is just

X
i2@¸

ðT
0

X
j�i, j=2¸

Jfi, jg sin(�Łi
t)

 !
dŁi

t,

so that
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d— 0̧

d—¸
(�) ¼E exp �

X
i2@¸

ðT
0

X
j�i, j=2¸

(Jfi, jg sin(�Łi
t)� Jfi, j 0g sin(Ł j-

t � Łi
t))dŁ

i
t

("

� �2

2

X
i2@¸

ðT
0

X
j�i, j=2¸

(Jfi, jg sin(�Łi
t)� Jfi, j 0g sin(Ł j-

t � Łi
t))

 !2

dt

9=
;
3
5

Introducing, further, the set ¸�� � (Zd)� consisting of all bonds fi, jg for which i 2 @¸ and

j =2 ¸, we then have

d— 0̧

d—¸
(�) ¼ expfhAT (Ł); C�,T (Ł)�1AT (Ł)iR¸�� g,

AT (Ł) being the ¸��-dimensional vector such that

A
fi, jg
T (Ł) ¼ �

ðT
0

� sin(Łi
t)dŁ

i
t � �

ðT
0

sin(Ł j-
t � Łi

t)(dŁ
j-
t � dŁi

t)

¼ �[cos Łi
t]
T
0 þ

�

2

ðT
0

cos Łi
tdt þ �[cos(Ł j-

t � Łi
t)]

T
0 þ �

ðT
0

cos(Ł j-
t � Łi

t)dt

in the case where j ¼ iþ ek for some 1 < k < d, whereas

A
fi, jg
T (Ł) ¼ �

ðT
0

� sin(Łi
t)dŁ

i
t

¼ �[cos Łi
t]
T
0 þ

�

2

ðT
0

cos Łi
tdt

in the case where j ¼ i� ek for some 1 < k < d, and C�,T (Ł)�1 being again a symmetric,

non-negative definite matrix whose eigenvalues lie in [0; 1].

We may subsequently observe that

8¸ �� Zd , 8Ł 2 W¸
T ,

d— 0̧

d—¸
(�̂�(¸)

Ł ) < expfK � j¸��jg ¼ expf2Kd � (2N þ 1)d�1g

for some constant K depending only on � and T . This last fact is certainly sufficient to

guarantee that (— 0̧ )¸��Zd satisfies the very same LDP as (—¸)¸��Zd ; we may observe, for

example, that (— 0̧ )¸��Zd remains exponentially tight and that, for any bounded continuous

functional F on Ms(�),

lim
¸%Zd

1

j¸j log

ð
Ms(�)

ej¸j�F (�)d— 0̧ (�)

exists and coincides with

lim
¸%Zd

1

j¸j log

ð
Ms(�)

ej¸j�F (�)d—¸(�) ¼ sup
�2Ms(�)

fF (�)� I (�)g,
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so that Bryc’s inverse Varadhan lemma (cf. Dembo and Zeitouni 1998, Section 4.4) applies to

(— 0̧ )¸��Zd .

In the preceding arguments we have only been using the fact that each of the coordinates

appearing in the ¸��-dimensional vector AT (Ł) may be integrated by parts, so that

jAfi, jgT (Ł)j has a uniform upper bound. This fact still holds when considering other (non-

zero) boundary conditions, for example, a boundary condition made of a fixed, typical

realization (� j
t)

j2¸c

0< t<T of i.i.d. Brownian motions.

Finally, we could also consider the situation where the ‘quenched’ system of interacting

diffusions has a stochastic differential at site i 2 @¸ such that

dŁi
t ¼ dwi

t þ �
X

j�i, j2¸
Jfi, jg sin(Ł j

t � Łi
t)dt þ �

X
j�i, j=2¸

Jfi, jg sin(
 j
t � Łi

t)dt

for some auxiliary Brownian motions (
 j
t)

j2¸c

0< t<T . In this situation the Radon–Nikodym

derivative

d— 0̧

d—¸
(� ¼ �̂�(¸)

Ł )

may be expressed as

d— 0̧

d—¸
(�) ¼ E�EJ exp �

X
i2@¸

ðT
0

X
j�i, j=2¸

(Jfi, jg sin(
 j
t � Łi

t)� Jfi, j 0g sin(Ł j-
t � Łi

t))dŁ
i
t

("

� �2

2

X
i2@¸

ðT
0

X
j�i, j=2¸

(Jfi, jg sin(
 j
t � Łi

t)� Jfi, j 0g sin(Ł j-
t � Łi

t))

 !2

dt

9=
;
3
5

¼ E�[expfhAT (Ł); C�,T (Ł)�1AT (Ł)iR¸�� g]

for some ¸��-dimensional vector AT (Ł) ¼ AT (Ł; �) whose coordinates may be bounded

uniformly in Ł and � and some symmetric, non-negative definite matrix

C�,T (Ł)�1 ¼ C�,T (Ł; �)�1 whose eigenvalues lie in [0; 1], which again shows that

(— 0̧ )¸��Zd satisfies the very same LDP as (—¸)¸��Zd .
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Guionnet, A. (1997) Averaged and quenched propagation of chaos for spin glass dynamics. Probab.

Theory Related Fields, 109, 183–215.

Newman, C.M. and Stein, D.L. (1998) Thermodynamic chaos and the structure of short-range spin

glasses. In A. Bovier and P. Picco (eds), Mathematical Aspects of Spin Glasses and Neural

Networks, Progr. Probab. 41, pp. 243–287. Boston: Birkhäuser.
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