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1. Introduction

One of the key statistics for testing hypotheses in parametric models is the Wald statistic. It

has long been known that Wald statistics have the serious drawback that their values depend

on the parametrization of the statistical model. As it is customary to compare the value of

the Wald statistic with its limiting large-sample null distribution, which does not depend on

the parametrization, different parametrizations can easily lead to contradictory conclusions.

Parametrization-invariant versions of Wald tests which have been suggested previously

include those of Le Cam (1990) and Critchley et al. (1996). A considerable disadvantage of

these tests is that, in general, computation of the statistics is complicated. For Le Cam’s

tests, which are based on Hellinger distance, the complexity arises from the need to

integrate a product of square roots of probability density functions. For the tests of

Critchley et al., which are based on geodesic distance, the complexity arises from the need

to integrate a second-order differential equation.

The aim of this paper is to introduce much simpler parametrization-invariant versions of

Wald statistics. These new statistics are called ‘geometric Wald statistics’. Like the statistics

of Critchley et al., the geometric Wald statistics are based on some differential-geometric

ideas. The reason why the geometric Wald statistics are simpler than those of Critchley et

al. is that our construction exploits the linear structure of a vector space (a tangent space to

the parameter space), whereas theirs takes place in the parameter space itself. Under the

null hypothesis, the large-sample distributions of the geometric Wald statistics are chi-

squared. The chi-squared approximation can be improved by generalized Bartlett cor-

rections, which are given in the case of simple null hypotheses.

In Section 2 a geometric interpretation of the Wald statistic is given, and in Section 3 a

family of geometric Wald statistics is defined. The geometric Wald statistics are based on
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canonical local coordinate systems which are provided automatically by the parametric

model under consideration. The construction can be expressed neatly in terms of expected

and observed likelihood yokes (Barndorff-Nielsen and Cox 1994, Section 5.6), and can be

extended readily to the setting of general yokes. In Section 4 this construction is illustrated

by deriving explicit expressions for the geometric Wald statistics for three particular

parametric models. In Section 5 generalized Bartlett corrections are given for the geometric

Wald statistics in the special case of simple null hypotheses.

We conclude this section 1 by introducing some terminology and notation. Consider a

parametric statistical model with probability density function p(x; Ł) with respect to some

dominating measure. The parameter Ł runs through the parameter space ¨, which is, in

general, a manifold but may be considered locally as an open subset of Rr, so that

Ł ¼ (Ł1, . . . , Łr) in some parametrization of ¨. Let ł be a p-dimensional interest

parameter and let � be a q-dimensional nuisance parameter, such that Ł ¼
(ł1, . . . , ł p, �1, . . . , �q). Because there is usually no canonical choice of nuisance

parameters, only interest-respecting reparametrizations of ¨ are considered – that is, under

reparametrization of (ł, �) to (�, �), the new interest parameter � depends only on ł and

not on �. The null hypothesis considered is H0 : ł ¼ ł0, which is to be tested against the

alternative hypothesis H1 : Ł 2 ¨.

The log-likelihood function based on independent observations x1, . . . , xn from the

distribution with probability density function p(x; Ł) is denoted by l(Ł; x1, . . . , xn). The

maximum likelihood estimates of Ł under the alternative hypothesis and under the null

hypothesis are denoted by Ł̂Ł ¼ (ł̂ł, �̂�) and ~ŁŁ ¼ (ł0, ~��), respectively. It is required throughout

that the Fisher information is defined and that the maximum likelihood estimators are

consistent. In Section 5 it is assumed further that the log-likelihood functions are at least

four times continuously differentiable with respect to Ł, and that all relevant moments of

the derivatives of the log-likelihood functions exist.

2. Wald tests

The Wald statistic for testing the simple null hypothesis H0 : Ł ¼ Ł0 against H1 : Ł 2 ¨ is

W ¼ n (Ł̂Ł� Ł0 )i(Ł̂Ł)(Ł̂Ł� Ł0)T, (2:1)

where i(Ł) denotes the (per-observation) Fisher information matrix, which has elements

ii, j(Ł) ¼ E[�@2 l(Ł; x)=@Łi@Ł j]. The two standard generalizations of (2.1) for testing the

composite null hypothesis H0 : ł ¼ ł0 against H1 : Ł 2 ¨ are

W ¼ n(Ł̂Ł� ~ŁŁ)i(Ł̂Ł)(Ł̂Ł� ~ŁŁ)T (2:2)

and

W ¼ n(ł̂ł� ł0)iłł(Ł̂Ł)(ł̂ł� ł0)T, (2:3)

where iłł(Ł) denotes the interest part of i(Ł). The intuitive idea of (2.2) is that W is the

squared distance between the two maximum likelihood estimates Ł̂Ł and ~ŁŁ, where distance is
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measured using the Fisher information metric at Ł̂Ł; whereas the intuitive idea of (2.3) is that

it is the squared distance between the maximum likelihood estimate ł̂ł and the hypothesized

value ł0 of the interest parameter ł, where distance is measured using the interest part of the

Fisher information metric at Ł̂Ł. In general, (2.2) and (2.3) are different. However, they

coincide when the parameter space ¨ splits as ¨ ¼ 
3 X and ~�� ¼ �̂�. In particular, this

occurs for models with cuts. Cuts are generalizations of sufficient statistics and of ancillary

statistics. The definition and examples of cuts can be found in Barndorff-Nielsen and Cox

(1994, p. 38) and Lindsey (1996, Section 6.2). For ease of presentation, we shall consider

only Wald tests of the form (2.2), unless otherwise specified, although similar results hold for

(2.3) throughout. Under H0, W is asymptotically �2-distributed with p degrees of freedom,

with error of order O(n�1=2), in the sense that P(W . x) ¼ P(�2
p . x)þ O(n�1=2).

It is well known that, for any given set of data, the value of the Wald statistic W depends

on the parametrization used. Indeed, for any given data set, the parametrization can be

chosen to give W any positive value. See, for example, Breusch and Schmidt (1988),

Gregory and Veall (1985) or Phillips and Park (1988). This lack of parametrization

invariance is a considerable disadvantage, because the statistic W is usually compared with

its asymptotic �2 null distribution, which does not depend on the parametrization. Thus the

conclusions drawn from any data set depend on the parametrization of the model. In the

next section, we introduce geometric Wald statistics, which are parametrization-invariant

analogues of W . As indicated in Remark 3.3, parametrization-invariant analogues of the

‘interest-parameter Wald statistic’ (2.3) can be obtained by using profile likelihood.

3. Geometric Wald tests

The reason for the lack of invariance of the Wald statistic W under reparametrization from

Ł to �, say, is that, whereas the Fisher information at Ł̂Ł changes in a bilinear way by

i(�̂�) ¼ @Ł

@�T
(�̂�)i(Ł̂Ł)

@ŁT

@�
(�̂�),

the discrepancy between the unrestricted and the restricted maximum likelihood estimates

changes from Ł̂Ł� ~ŁŁ to �̂��~�� in a much more complicated way, so that these changes do not

‘cancel out’. A more geometrical description of this is that the Fisher information at Ł̂Ł is a

tensor on the tangent space TŁ̂Ł¨ to the parameter space ¨ at Ł̂Ł, and so does not depend on

the parametrization Ł, whereas Ł̂Ł� ~ŁŁ takes values in a space unrelated to TŁ̂Ł¨ and does

depend on the parametrization.

The key to obtaining the parametrization-invariant versions of Wald statistics considered

here is to measure the discrepancy between the unrestricted maximum likelihood estimate Ł̂Ł
and the restricted maximum likelihood estimate ~ŁŁ by some vector ˆŁ̂Ł(~ŁŁ) which changes

linearly under reparametrization from Ł to � by

ˆ�̂�(~��) ¼ ˆŁ̂Ł(~ŁŁ)
@�

@ŁT
(Ł̂Ł): (3:1)

Then, under reparametrization, the changes in (3.1) cancel with the changes in the matrix
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expression for the Fisher information to yield the parametrization-invariant scalar

ˆŁ̂Ł(~ŁŁ)i(Ł̂Ł)ˆŁ̂Ł(~ŁŁ)T. The ˆŁ̂Ł can be regarded as a local coordinate system which takes values

in the tangent space TŁ̂Ł¨ to ¨ at Ł̂Ł. We now show how suitable ˆŁ̂Ł are given naturally by the

model itself.

A standard way of measuring the ‘distance’ between two points Ł and Ł9 in the parameter

space of a parametric statistical model is by the Kullback–Leibler divergence

K(Ł, Ł9) ¼ EŁfl(Ł; x)� l(Ł9; x)g:
For our purposes, it is useful to consider instead the expected likelihood yoke of the model,

which is the function f on ¨3¨ given by

f (Ł; Ł9) ¼ EŁ9fl(Ł; x)� l(Ł9; x)g, (3:2)

so that f (Ł; Ł9) ¼ �K(Ł9, Ł). It is straightforward to verify that the functions ˆ
1

Ł defined by

ˆ
1

Ł(Ł9) ¼ @ f

@Ł
(Ł9; Ł)i(Ł)�1 (3:3)

satisfy (3.1). Since ˆ
1

Ł has non-singular derivative at Ł, it is a local coordinate system in some

neighbourhood of Ł. The Kullback–Leibler divergence is not symmetrical in its arguments,

and we could just as well differentiate it with respect to the first argument instead of the

second. This yields another set of functions ˆ
�1

Ł
given by

ˆ
�1

Ł(Ł9) ¼ @ f

@Ł
(Ł; Ł9)i(Ł)�1, (3:4)

which satisfy (3.1) and form local coordinate systems around Ł. Taking appropriate linear

combinations of (3.3) and (3.4) yields the one-parameter family ˆ
Æ

Ł of local coordinate

systems on ¨ around Ł, defined by

ˆ
Æ

Ł(Ł9) ¼ 1þ Æ

2
ˆ
1

Ł(Ł9)þ 1� Æ

2
ˆ
�1

Ł(Ł9), (3:5)

for any real Æ.

Note that the per-observation Fisher information i(Ł) satisfies

i(Ł) ¼ @2

@Ł@Ł9T
f (Ł; Ł9)jŁ9¼Ł:

Thus, the statistics ˆŁ̂Ł(~ŁŁ)i(Ł̂Ł)ˆŁ̂Ł(~ŁŁ)T are defined entirely in terms of the expected likelihood

yoke (3.2). The appropriate setting for these statistics is that of general yokes. A yoke on a

parameter space ¨ is a real-valued function g on ¨3¨ such that

@

@Ł
g(Ł; Ł9)jŁ9¼Ł ¼ 0 (3:6)

and

ª(Ł) ¼ @2

@Ł@Ł9T
g(Ł; Ł9)jŁ9¼Ł is non-singular, (3:7)

for all Ł in ¨. The geometrical interpretation of the second mixed derivative ª is that it is the
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semi-Riemannian metric determined by g. See Barndorff-Nielsen and Cox (1994, Section

5.6) and Barndorff-Nielsen et al. (1994, Section 3.3). A yoke g on ¨ is called normalized if

g(Ł; Ł) ¼ 0 (3:8)

for all Ł in ¨.

Remark 3.1. Every yoke gives rise to a preferred point geometry (in a slightly weaker sense

than that of Critchley et al., 1993; 1994). The precise relationship between yokes and

preferred point geometries can be found in Remark 3.1 of Barndorff-Nielsen and Jupp

(1997).

For any yoke g, local coordinate systems ˆ
1

Ł which satisfy (3.1) can be defined by

ˆ
1

Ł(Ł9) ¼ @ g

@Ł
(Ł9; Ł)ª(Ł)�1, (3:9)

where ª is given by (3.7). Differentiating with respect to the first argument instead of the

second yields the local coordinate system ˆ
�1

Ł
with

ˆ
�1

Ł(Ł9) ¼ @ g

@Ł
(Ł; Ł9)ª(Ł)�1: (3:10)

The coordinate systems ˆ
1

Ł and ˆ
�1

Ł arise naturally from the yoke g. They are special cases of

a one-parameter family ˆ
Æ

Ł
of local coordinate systems on ¨ around Ł, defined by

ˆ
Æ

Ł(Ł9) ¼ 1þ Æ

2
ˆ
1

Ł(Ł9)þ 1� Æ

2
ˆ
�1

Ł(Ł9), (3:11)

for any real Æ. If g is the expected likelihood yoke (3.2) then (3.9)–(3.11) become (3.3)–

(3.5).

It follows from (3.6) and (3.8) that, for any normalized yoke and for all Æ,

ˆ
Æ

Ł(Ł) ¼ 0, (3:12)

so that, in the local coordinate system ˆ
Æ

around Ł, Ł behaves as the origin. Further details of

the ˆ
Æ

Ł coordinate systems can be found in Barndorff-Nielsen and Cox (1994, Section 5.6)

and Barndorff-Nielsen et al. (1994, Section 3.3). Geometrically minded readers may wish to

note that, in contrast to more familiar coordinate systems which map ¨ to a fixed vector

space, ˆ
Æ

Ł maps ¨ to the tangent space TŁ¨ at Ł, and this is a vector space which depends on

Ł.

Two natural choices of Æ are Æ ¼ 1 and Æ ¼ �1, which give rise to the local coordinate

systems ˆ
1

Ł
and ˆ

�1

Ł
, respectively. Any value of Æ between 1 and �1 corresponds to a

weighted average of these two local coordinate systems, with the special case Æ ¼ 0 giving

equal weight to both. It is observed in Section 5 that the values Æ ¼ 
1
3

have some nice

properties, as do Æ ¼ 
1.

Remark 3.2. There is no relationship between the ˆ
Æ

Ł local coordinate systems and the
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parametrizations of one-parameter curved exponential models considered by Hougaard (1982)

and Kass (1984). Note that the ˆ
Æ

Ł exist for all parametric models and depend on the point Ł.

The fact that the ˆ
Æ

Ł̂Ł(~ŁŁ) in (3.11) obey (3.1) suggests the following general definitions.

Let g be any yoke on ¨. Then, for any real Æ, the correponding geometric Wald statistic

W
Æ

is

W
Æ
¼ nˆ

Æ

Ł̂Ł(~ŁŁ)ª(~ŁŁ)ˆ
Æ

Ł̂Ł(~ŁŁ)T (3:13)

where ª is given in (3.7). The statistic W
Æ

is parametrization-invariant, and it follows from

(3.12) that if ~ŁŁ ¼ Ł̂Ł then W
Æ
¼ 0 for all Æ. Equations (3.12) and (3.13) show that W

Æ
can be

regarded as using the metric ª to measure a squared distance between ~ŁŁ and Ł̂Ł. In this

respect, it retains the idea of the traditional Wald statistic (2.2). Note that equation (3.13) can

be considered as a quadratic approximation to the likelihood ratio statistic, w ¼ 2

fl(Ł̂Ł; x)� l(~ŁŁ; x)g, in the ˆ
Æ

Ł̂Ł coordinate system.

Apart from the expected likelihood yokes, the main yokes of interest in parametric

inference are the observed likelihood yokes. They, too, arise naturally from the model. An

observed likelihood yoke requires an auxiliary statistic a such that (Ł̂Ł, a) is minimal

sufficient for Ł. For each fixed value of a, the observed likelihood yoke g is given by

g(Ł; Ł9) ¼ n�1fl(Ł; x1, . . . , xn)� l(Ł9; x1, . . . , xn)g
¼ n�1fl(Ł; Ł9, a)� l(Ł9; Ł9, a)g, (3:14)

where (x1, . . . , xn) satisfies Ł̂Ł(x1, . . . , xn) ¼ Ł9. The observed likelihood yoke is usually

defined as l(Ł; x1, . . . , xn)� l(Ł9; x1, . . . , xn), but it is convenient to use definition (3.14)

here, in order to make g(Ł; Ł9) of order O(1) for any fixed (Ł, Ł9). Note that the derivative

@ g(Ł; Ł̂Ł, a)=@Ł is the per-observation score vector, and the metric ª obtained from the

observed likelihood yoke is the per-observation observed information

j(Ł) ¼ @2

@Ł@Ł9T
g(Ł; Ł9)jŁ9¼Ł: (3:15)

When it is necessary to emphasize which likelihood yoke is employed in constructing the

geometric Wald statistics, subscripts will be used, so that, for example, W
Æ

e
and W

Æ

o
denote

geometric Wald statistics based on the expected and observed likelihood yokes, respectively.

If the auxiliary statistic a is ancillary, or approximately ancillary to the extent specified in

Barndorff-Nielsen and Cox (1994, pp. 176–177), then standard results (Barndorff-Nielsen

and Cox, 1994, p. 158) on the closeness of observed and expected likelihood yokes show that

W , W
Æ

e
and W

Æ

o
are equal to order OP(n�1=2).

Remark 3.3. The geometric Wald statistics defined in (3.13) are like the Wald statistic (2.2)

in being based on the full parameter Ł. Geometric Wald statistics which are analogous to the

‘interest-parameter Wald statistic’ (2.3) in being based only on the interest parameter ł can

be constructed from any suitable pseudo-likelihood on the space 
 of interest parameters.

The construction uses the yoke on 
 given by the pseudo-likelihood. For models with cuts,

the geometric Wald statistics constructed using the profile likelihood yoke coincide with
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those constructed using the observed likelihood yoke. The geometric Wald statistic W
1

o

constructed using the profile likelihood yoke occurs in the expression in Barndorff-Nielsen

and Cox (1994, equation (6.140)) for the part zINF of the Pierce and Peters (1992)

decomposition of the modified directed likelihood r�.
A variant of the Wald statistic W is the modified Wald statistic ~WW of Hayakawa and Puri

(1985), which is obtained from (2.2) by interchanging Ł̂Ł and ~ŁŁ, that is,

~WW ¼ n(Ł̂Ł� ~ŁŁ)i(~ŁŁ)(Ł̂Ł� ~ŁŁ)T: (3:16)

The value of ~WW (like the value of W ) depends on the parametrization. Invariant versions of

this modified test statistic can be provided by interchanging Ł̂Ł and ~ŁŁ in (3.13), resulting in the

modified geometric Wald statistic

eWWÆ ¼ nˆ
Æ

~ŁŁ(Ł̂Ł)ª(~ŁŁ)ˆ
Æ

~ŁŁ(Ł̂Ł)T: (3:17)

Note that (3.17) can be considered as a quadratic approximation to the likelihood ratio

statistic, w ¼ 2fl(Ł̂Ł; x)� l(~ŁŁ; x)g, in the ˆ
Æ

~ŁŁ
coordinate system. First-order Taylor expansions

show that the traditional Wald statistics W and ~WW, and the geometric Wald statistics W
Æ

e
andeWWÆ e

, are all equal to order OP(n�1=2). If the auxiliary statistic a is ancillary, or approximately

ancillary, then W , ~WW , W
Æ

e, eWWÆ e
, W

Æ

o and eWWÆ o
are all equal to order OP(n�1=2).

An important special case of the modified geometric Wald tests occurs when the yoke g

is the observed likelihood yoke (3.14). Then

eWW�1

o ¼ n
1

n

@ l

@Ł
(~ŁŁ)

� �
j(~ŁŁ)�1 1

n

@ l

@ŁT
(~ŁŁ)

� �
, (3:18)

which can be regarded as a variant of the quadratic score statistic

S ¼ @ l

@Ł
(~ŁŁ)fni(~ŁŁ)g�1 @ l

@ŁT
(~ŁŁ), (3:19)

obtained by using the observed information instead of the Fisher information. Thus, in

models for which the observed information j is equal to the expected information i, eWW�1

o
¼ S.

In particular, this is true for full exponential models. Moreover, for multivariate normal

distributions with known variance, it is straightforward to see that, for either likelihood yoke

and for any Æ, W
Æ
¼ eWWÆ ¼ S ¼ w. Note that, in general, eWW�1

e
can be regarded as an ‘expected’

analogue of S. Thus the class of geometric Wald statistics includes statistics in the spirit of

both Wald statistics and quadratic score statistics.

In general, W
Æ

and eWWÆ are different and depend on Æ. There are two reasons why the

choice of Æ is not crucial. Firstly, if the yoke g is symmetrical, in that g(Ł, Ł9) ¼ g(Ł9, Ł),

then neither W
Æ

nor eWWÆ depends on Æ. Secondly, the generalized Bartlett corrections W
Æ � andeWWÆ � of W

Æ
and eWWÆ , introduced in Section 5, have distributions which depend on Æ only to

order O(n�2). Since neither W
Æ

nor its modified version eWWÆ seems to have a general

distributional advantage over the other, it is sensible to use the one which is easier to

compute in any given problem.

Parametrization-invariant Wald tests 173



4. Examples

In this section three examples are used to illustrate the construction and properties of the

geometric Wald statistics W
Æ

and eWWÆ .

Example 1. Full exponential models. Consider a full exponential model with density function

p(x; Ł) ¼ expfŁt(x)T � k(Ł)g, (4:1)

where t is the canonical statistic and Ł is the canonical parameter. Let � be the expectation

parameter, that is, � ¼ �(Ł) ¼ EŁft(X )g, and let i(Ł) denote the Fisher information matrix in

the Ł-parametrization. Since � ¼ @k(Ł)=@Ł, the Fisher information matrix in the

�-parametrization is i(�) ¼ i(Ł)�1. The two likelihood yokes coincide and are equal to

g(Ł; Ł9) ¼ n�1 (Ł� Ł9)
@k
@Ł

(Ł9)� k(Ł)þ k(Ł9)

� �
:

Then the special local coordinate systems given by (3.9) and (3.10) take the forms

ˆ
1

Ł(Ł9) ¼ n�1(Ł9� Ł)

and

ˆ
�1

Ł(Ł9) ¼ n�1(�9� �)i(Ł)�1,

so that these coordinate systems are affine functions of the canonical parametrization and the

expectation parametrization, respectively, of the exponential model. Thus, for full exponential

models, the local coordinate systems ˆ
1

Ł
and ˆ

�1

Ł
are actually global coordinate systems.

Calculation shows that the geometric Wald statistics are

W
Æ
¼ n

1þ Æ

2
(Ł̂Ł� ~ŁŁ)i(Ł̂Ł)þ 1� Æ

2
(~��� �̂�)

� �
i(Ł̂Ł)�1 1þ Æ

2
(Ł̂Ł� ~ŁŁ)i(Ł̂Ł)þ 1� Æ

2
(~��� �̂�)

� �T

,

and the modified geometric Wald statistics are

eWWÆ ¼ n
1þ Æ

2
(~ŁŁ� Ł̂Ł)i(~ŁŁ)þ 1� Æ

2
(�̂�� ~��)

� �
i(~ŁŁ)�1 1þ Æ

2
(~ŁŁ� ~ŁŁ)i(~ŁŁ)þ 1� Æ

2
(�̂�� ~��)

� �T

,

In particular,

W
1

¼ n(Ł̂Ł� ~ŁŁ)i(Ł̂Ł)(Ł̂Ł� ~ŁŁ)T and W
�1

¼ n(�̂��~��)i(�̂�)(�̂��~��)T

are the traditional Wald statistics (2.2) using the canonical and expectation parametrization,

respectively. Furthermore,
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W
1

¼ n(Ł̂Ł� ~ŁŁ)i(~ŁŁ)(Ł̂Ł� ~ŁŁ)T and eWW�1

¼ S ¼ n(�̂��~��)i(~��)(�̂��~��)T

are the modified traditional Wald statistics (3.16) in the canonical and expectation

parametrization, respectively.

Example 2. Simple linear regression. Let Y1, . . . , Yn be independent normal random

variables with unknown variances � 2 and means E(Yi) ¼ Æþ �(xi � x), respectively, where

x1, . . . , xn are known constants. The expected and observed likelihood yokes coincide and

are given by

f (Ł; Ł9) ¼ 1

2
log� 92 � log� 2 þ 1� � 92

� 2

� �
� 1

2� 2
f(Æ9� Æ)2 þ (�9� �)2Sxxg,

where x ¼ n�1
Pn

i¼1xi and Sxx ¼ n�1
Pn

i¼1(xi � x)2. Calculation shows that the geometric

Wald statistics (3.13) are

W
ª

¼ n�̂� 2 1þ ª

2~�� 2
þ 1� ª

2�̂� 2

� �2

f(~ÆÆ� Æ̂Æ)2 þ ( ~��� �̂�)2Sxxg

þ n

2

~�� 4 � �̂� 4 � ª( ~�� 2 � �̂� )2

2~�� 2�̂� 2
þ 1� ª

2�̂� 2
f(~ÆÆ� Æ̂Æ)2 þ ( ~��� �̂�)2Sxxg

� 	2

:

The modified geometric Wald statistics (3.17) follow by interchanging Ł̂Ł and ~ŁŁ in the above

formula, so that

eWWª ¼ n~�� 2 1þ ª

2�̂� 2
þ 1� ª

2~�� 2

� �2

f(~ÆÆ� Æ̂Æ)2 þ ( ~��� �̂�)2Sxxg

þ n

2

�̂� 4 � ~�� 4 � ª(~�� 2 � �̂� 2)2

2~�� 2�̂� 2
þ 1� ª

2~�� 2
f(~ÆÆ� Æ̂Æ)2 þ ( ~��� �̂�)2Sxxg

� 	2

:

When the null hypothesis is H0 : � ¼ 0, the geometric Wald statistics and modified

geometric Wald statistics reduce to

W
ª

¼ n
r2f1� (1þ ª)r2=2g2

1� r2
þ r4f3� ª� (1þ ª)r2g2

8(1� r2)2

" #

and

eWWª ¼ n
r2f1� (1� ª)r2=2g2

(1� r2)2
þ r4(1þ ª)2

8(1� r2)2

" #
,
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where r denotes the sample correlation coefficient. In four important cases these simplify to

W
1

¼ nr2 1� r2

2

� �
, W

�1

¼ nr2(1þ r2)

(1� r2)2
,

eWW�1

¼ nr2(1þ r2=2)

(1� r2)2
, eWW�1

¼ S ¼ nr2:

The final example concerns a simple model in which the expected and observed

likelihood yokes differ.

Example 3. Fisher’s gamma hyperbola. Let Xi and Yi (i ¼ 1, . . . , n) be independent

exponentially distributed random variables with E(Xi) ¼ 1=Ł and E(Yi) ¼ Ł, Ł . 0

(Barndorff-Nielsen and Cox 1994, p. 193). Then the log-likelihood function is

l(Ł; x1, . . . , xn, y1, . . . , yn) ¼ �n Łxþ 1

Ł
y

� �
,

where x ¼ n�1
Pn

i¼1xi and y ¼ n�1
Pn

i¼1 yi. The log-likelihood function can be expressed in

terms of Ł̂Ł ¼ (y=x)1=2 and the ancillary a ¼ (xy)1=2 by

l(Ł; Ł̂Ł, a) ¼ �na
Ł

Ł̂Ł
þ Ł̂Ł

Ł

 !
:

Then the expected likelihood yoke (3.2) is

f (Ł; Ł9) ¼ 2� Ł

Ł9
� Ł9

Ł
,

and the observed likelihood yoke (3.14) is

g(Ł; Ł9) ¼ a 2� Ł

Ł9
� Ł9

Ł

� �
¼ af (Ł; Ł9):

Both likelihood yokes are symmetric in Ł and Ł9, so that the ˆ
Æ

Ł of (3.11) do not depend on

the value of Æ. Thus, in either geometry, the geometric Wald statistics W
Æ

and eWWÆ are equal

and do not depend on Æ. Straightforward calculations show that the geometric Wald statistics

based on expected geometry are

We ¼ ~WWe ¼
n

2

~ŁŁ2 � Ł̂Ł2

~ŁŁŁ̂Ł

 !2

(4:2)

and the geometric Wald statistics based on observed geometry are
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Wo ¼ ~WWo ¼
n

2
a

~ŁŁ2 � Ł̂Ł2

~ŁŁŁ̂Ł

 !2

: (4:3)

In comparsion, the score statistic (3.19) is

S ¼ n

2
a2

~ŁŁ2 � Ł̂Ł2

~ŁŁŁ̂Ł

 !2

,

so that S ¼ aWo ¼ a2We. Thus changes in the ancillary a have a greater effect on the score

statistic than on the geometric Wald statistics. Since (x, y) tends almost surely to (1=Ł, Ł),

the ratios Wo=We and S=Wo tend to 1 almost surely as n tends to infinity.

5. Generalized Bartlett correction

For any statistic S having a �2
p null distribution with error of order O(n�1=2), that

is, P(S . x) ¼ P(�2
p . x)þ O(n�1=2) under the null hypothesis, Cordeiro and Ferrari

(1991) showed that there is a polynomial modification S� of S satisfying

P(S� . x) ¼ P(�2
p . x)þ O(n�3=2):

They also showed that when S is the score statistic, S� is a cubic function of S, of the form

S� ¼ 1� 1

n
(cþ bS þ aS2)

� �
S, (5:1)

for suitable coefficients a, b and c. An argument similar to that of Barndorff-Nielsen and

Hall (1988) shows that (5.1) has error of order O(n�2) rather than O(n�3=2), that is,

P(S� . x) ¼ P(�2
p . x)þ O(n�2): (5:2)

The method of Cordeiro and Ferrari (1991) and the argument of Barndorff-Nielsen and

Hall (1988) can be extended to give generalized Bartlett corrections W
Æ � and eWWÆ � of the

geometric Wald statistics W
Æ

and eWWÆ of the form

W
Æ � ¼ 1� 1

n
(cþ bW

Æ
þaW

Æ
2)

� �
W
Æ

, (5:3)

eWWÆ � ¼ 1� 1

n
~ccþ ~bb eWWÆ þ~aa eWWÆ 2

� �� � eWWÆ , (5:4)

and with errors of order O(n�2).

For simplicity, the coefficients a, b, c and ~aa, ~bb, ~cc are given here only in the case of

simple null hypotheses. It is intended that the general results will be presented elsewhere.
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To express the coefficents a, b and c concisely, it is convenient to use some tensors

derived from the yoke g; see Blæsild (1991). These tensors are defined by

Tijk(Ł) ¼ gi; jk(Ł; Ł)� g jk;i(Ł; Ł) (5:5)

¼ �gij;k(Ł; Ł)[3]ijk � gijk;(Ł; Ł),

Tij;kl(Ł) ¼ gij;kl(Ł; Ł)� gij;m(Ł; Ł)gm;n(Ł)gn;kl(Ł; Ł), (5:6)

Ti; jkl(Ł) ¼ gi; jkl(Ł; Ł)� g jkl;i(Ł; Ł)� Tijm(Ł)gm;n(Ł)gkl;n(Ł; Ł)[3] jkl, (5:7)

Tijkl;(Ł) ¼ �Ti; jkl(Ł)� Tij;kl(Ł)[3] jkl, (5:8)

where gm;n denotes the (m, n)th element of the inverse of the matrix of second mixed

derivatives of g, and the subscripts of g denote the mixed derivatives, for example,

gi; jk(Ł1; Ł2) ¼ @3 g

@Łi
1@Ł

j
2@Ł

k
2

(Ł1; Ł2),

gij;kl(Ł1; Ł2) ¼ @4 g

@Łi
1@Ł

j
1@Ł

k
2@Ł

l
2

(Ł1; Ł2):

In (5.5)–(5.8), the Einstein summation convention has been used and the notation [3]ijk

indicates a sum over the indicated number of terms obtained by permuting the subscripts. The

tensors (5.5)–(5.8) have proved invaluable in concise invariant expressions (Blæsild 1991;

Barndorff-Nielsen and Cox 1994, Section 5.3) for Bartlett corrections of likelihood ratio

statistics.

Because the generalized Bartlett corrections involving expected likelihood yokes are

based on the unconditional asymptotic distribution of the score (Barndorff-Nielsen and Cox

1989, Section 6.3), whereas the corrections involving observed likelihood yokes are based

on the conditional asymptotic distribution of the score given an ancillary statistic (Mora,

1992), the formulae for the coefficients take slightly different forms in the two cases.

In the case of a simple null hypothesis, H0 : Ł ¼ Ł0, the generalized Bartlett correction

for the geometric Wald statistics based on the expected likelihood yoke (3.2) can be written

in terms of the tensors (5.5)–(5.8) obtained from the expected likelihood yoke, and the

tensors

�i, j,k, l(Ł) ¼ EŁ
@ l

@Łi
(Ł; x)

@ l

@Ł j
(Ł; x)

@ l

@Łk
(Ł; x)

@ l

@Ł l
(Ł; x)

� 	
� i(Ł)i, j i(Ł)k, l[3]ijk

�ij,kl(Ł) ¼ EŁ
@2 l

@Łi@Ł j
(Ł; x)

@ l

@Łk@Ł l
(Ł; x)

� �

� EŁ
@2 l

@Łi@Ł j
(Ł; x)

@ l

@Łm
(Ł; x)

� �
i(Ł)m,nEŁ

@ l

@Łn
(Ł; x)

@2 l

@Łk@Ł l
(Ł; x)

� 	
þ i(Ł)i, j i(Ł)k, l:
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The coefficients a, b and c in (5.3) obtained from the expected likelihood yoke are given

by

a ¼ (1� 3Æ)2

48 p( pþ 2)( pþ 4)
i(Ł0)i, j i(Ł0)k, l

3 3fTijm(Ł0)i(Ł0)m,nTnkl(Ł0)þ 2Tikm(Ł0)i(Ł0)m,nT njl(Ł0)g,

b ¼ 1

12 p( pþ 2)
i(Ł0)i, j i(Ł0)k, lf3�i, j,k, l(Ł0)� 6(1� 2Æ)Ti; jkl(Ł0)

þ 3(1� 2Æ� 2Æ2)Tijm(Ł0)i(Ł0)m,nTnkl(Ł0)

þ (5� 12Æ� 3Æ2)Tikm(Ł0)i(Ł0)m,nTnjl(Ł0)g,

c ¼ 1

12 p
i(Ł0)i, j i(Ł0)k, lf�3�i, j,k, l(Ł0)� 12Tij;kl(Ł0)þ 12�ik, jl(Ł0)

þ 3Tijm(Ł0)i(Ł0)m,nTnkl(Ł0)þ 2Tikm(Ł0)i(Ł0)m,nTnjl(Ł0)g,

and the coefficients ~aa, ~bb and ~cc in (5.4) obtained from the expected likelihood yoke are given

by

~aa ¼ (1þ 3Æ)2

48 p( pþ 2)( pþ 4)
i(Ł0)i, j i(Ł0)k, l

3 f3Tijm(Ł0)i(Ł0)m,nTnkl(Ł0)þ 2Tikm(Ł0)i(Ł0)m,nTnjl(Ł0)g,

~bb ¼ 1

12 p( pþ 2)
i(Ł0)i, j i(Ł0)k, lf3�i, j,k, l(Ł0)� 6(1þ Æ)Ti; jkl(Ł0)

þ 3(1� 2Æ� 2Æ2)Tijm(Ł0)i(Ł0)m,nT nkl(Ł0)

þ (5� 12Æ� 3Æ2)Tikm(Ł0)i(Ł0)m,nTnjl(Ł0)g,

~cc ¼ c:

For the geometric Wald statistics based on the observed likelihood yoke, the coefficients

a, b and c in (5.3) and ~aa, ~bb and ~cc in (5.4) depend only on the tensors (5.5)–(5.8) obtained

from the observed likelihood yoke (3.14). Here, it is required that the auxiliary statistic in

the observed yoke (3.14) is ancillary, at least approximately. The coefficients in (5.3)

constructed from the observed likelihood yoke are given by
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a ¼ (1� 3Æ)2

48 p( pþ 2)( pþ 4)
j(Ł0)i, j j(Ł0)k, l

3 f3Tijm(Ł0) j(Ł0)m,nTnkl(Ł0)þ 2Tikm(Ł0) j(Ł0)m,nTnjl(Ł0)g,

b ¼ 1

12 p( pþ 2)
j(Ł0)i, j j(Ł0)k, lf3Tijkl;(Ł0)þ 12ÆTi; jkl(Ł0)

þ 3(1� 2Æ� 2Æ2)Tijm(Ł0) j(Ł0)m,nT nkl(Ł0)

þ (5� 12Æ� 3Æ2)Tikm(Ł0) j(Ł0)m,nTnjl(Ł0)g,

c ¼ 1

12 p
j(Ł0)i, j j(Ł0)k, lf3Tijkl;(Ł0)þ 12Tik; jl(Ł0)þ 3Tijm(Ł0) j(Ł0)m,nTnkl(Ł0)

þ 2Tikm(Ł0) j(Ł0)m,nTnjl(Ł0)g:

Similarly, the coefficients ~aa, ~bb and ~cc for the modified geometric Wald statistic (5.4) based on

the observed likelihood yoke are

~aa ¼ (1þ 3Æ)2

48 p( pþ 2)( pþ 4)
j(Ł0)i, j j(Ł0)k, l

3 f3Tijm(Ł0) j(Ł0)m,nTnkl(Ł0)þ 2Tikm(Ł0) j(Ł0)m,nTnjl(Ł0)g,

~bb ¼ 1

12 p( pþ 2)
j(Ł0)i, j j(Ł0)k, lf3Tijkl;(Ł0)� 6ÆTi; jkl(Ł0)

þ 3(1þ Æ� 2Æ2)Tijm(Ł0) j(Ł0)m,nTnkl(Ł0)

þ (5þ 6Æ� 3Æ2)Tikm(Ł0) j(Ł0)m,nTnjl(Ł0)g,

~cc ¼ c:

Comparison of the coefficients in the expected and observed cases shows that these

coefficients can be expressed in very similar ways in terms of tensors obtained from the

expected and observed likelihood yokes, respectively. Many of the coefficients in the

expected case coincide with the quantities formed by using the expected yoke instead of

the observed likelihood yoke in the formulae for the coefficients in the observed case. The

others differ only by terms which vanish for full exponential models. Thus, for full

exponential models, W
Æ

e ¼ W
Æ

o
�� and eWWÆ e

� ¼ eWWÆ o
�.

In the case of a one-dimensional parametric statistical model, the coefficients a, b, c and

~aa, ~bb, ~cc obtained from the expected likelihood yoke simplify to
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a ¼ (1� 3Æ)2

144
i(Ł0)�3T111(Ł0)2,

b ¼ 1

36
i(Ł0)�2f3�1,1,1,1(Ł0)� 6(1� 2Æ)T1;111(Ł0)þ (8� 18Æ� 9Æ2)i(Ł0)�1T111(Ł0)2g,

c ¼ 1

12
i(Ł0)�2f�3�1,1,1,1(Ł0)� 12�11,1,1(Ł0)þ 5i(Ł0)�1T111(Ł0)2g

and

~aa ¼ (1þ 3Æ)2

144
i(Ł0)�3T111(Ł0)2,

~bb ¼ 1

36
i(Ł0)�2f3�1,1,1,1(Ł0)� 6(1þ Æ)T1;111(Ł0)þ (8þ 9Æ� 9Æ2)i(Ł0)�1T111(Ł0)2g,

~cc ¼ c:

The coefficients a, b, c and ~aa, ~bb, ~cc obtained from the observed likelihood yoke simplify to

a ¼ (1� 3Æ)2

144
j(Ł0)�3T111(Ł0)2,

b ¼ 1

36
j(Ł0)�2f3T1111;(Ł0)þ 12ÆT1;111(Ł0)þ (8� 18Æ� 9Æ2) j(Ł0)�1T111(Ł0)2g,

c ¼ 1

12
j(Ł0)�2f3T1111;(Ł0)þ 12T11;11(Ł0)þ 5 j(Ł0)�1T111(Ł0)2g

and

~aa ¼ (1þ 3Æ)2

144
j(Ł0)�3T111(Ł0)2,

~bb ¼ 1

36
j(Ł0)�23T1111;(Ł0)� 6ÆT1;111(Ł0)þ (8þ 9Æ� 9Æ2) j(Ł0)�1T111(Ł0)2g,

~cc ¼ c:
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