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We present a moderate-deviations principle around non-degenerate attractors of the empirical measure

of random variables distributed according to a mean-field Gibbs measure. We state a result for a large

class of densities of the Gibbs measure. This result is an application of a rank-dependent moderate-

deviations principle for a collection of U -empirical measures. The results are applied to diffusion

processes with mean-field interaction leading to a McKean–Vlasov limit, and to the Curie–Weiss

model.
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1. Introduction

Let S be a Polish space furnished with the Borel �-algebra S and M1(S) be the set of

probability measures on (S, S ). For a function ˆ : M1(S)! R and for 	 2M1(S) we

consider the Gibbs measure Pn
ˆ defined by

Pn
ˆ(dX ) :¼ 1

Z n
ˆ

exp nˆ
1

n

Xn

i¼1

�xi

 !( )
d	�n(X ),

where X ¼ (x1, . . . , xn) 2 S n and

Z n
ˆ :¼

ð
exp nˆ

1

n

Xn

i¼1

�xi

 !( )
d	�n(X ):

We are interested in the asymptotic behaviour of Pn
ˆ when n goes to infinity. In this paper we

are concerned with moderate fluctuations (moderate-deviations principle) of the empirical

measure

	n :¼ 1

n

Xn

i¼1

�xi

under Pn
ˆ. Fluctuations for mean-field interacting particles have been widely studied; see, for
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example, Ben Arous and Brunaud (1989), Bolthausen (1986), Kusuoka and Tamura (1984),

McKean (1975), Sznitman (1984) and Tanaka (1984).

If ˆ is bounded and continuous on M1(S) furnished with the strong topology (which is

defined as the coarsest topology on M1(S) such that the map M1(S) 3 � 7!
Ð

S
j d� is

continuous for every bounded measurable function j : S ! R) it is known (see Ben Arous

and Brunaud 1989) that 	n under Pn
ˆ satisfies a large-deviations principle (LDP) – for a

definition see Dembo and Zeitouni (1998) and below – with a good rate function

H(�) :¼ H(�j	)� ˆ(�)� inf
~��2M1(S)

fH(~��j	)� ˆ(~��)g, (1:1)

where H(�j	) is the relative entropy of � with respect to 	:

H(�j	) ¼

ð
log

d�

d	
d� �0 	,

1 otherwise:

8<: (1:2)

In the so-called non-degenerate case (for a precise definition see (1.5) and thereafter) 	n

converges to a convex combination of the minimizers of H ; see Ben Arous and Brunaud

(1989) and Kusuoka and Tamura (1984). If H achieves its minimal value at a unique

probability measure 	� which is a non-degenerate minimum (this is, roughly speaking, the

property that H is strictly convex in a neighbourhood of 	�), then Gaussian fluctuations

around 	� are expected. The most general assumptions on ˆ to obtain Gaussian behaviour

can be found in Ben Arous and Brunaud (1989), Guionnet (1999) and Kusuoka and Tamura

(1984). The authors assume that ˆ is of the form

ˆ(	) ¼
Xr

k¼2

ð
Vk(x1, . . . , xk) d	�k(x1, . . . , xk), (1:3)

for a finite integer r and symmetric functions Vk on S k , so that there exist a compact metric

space Ck , a signed measure �k on Ck with bounded total variation and a real-valued bounded

continuous function gk : Ck 3 S ! R such that, for any k 2 f2, . . . , rg and any

(x1, . . . , xk) 2 S k ,

Vk(x1, . . . , xk) ¼
ð

gk(�, x1) g k(�, x2) � � � gk(�, xk) d�k(�): (1:4)

Guionnet (1999) assumed that V2 is symmetric and bounded and satisfies a special regularity

condition, and hence considered a larger class of functions ˆ.

The Hessian ˛ of ˆ is the symmetric operator in the subspace L2
0(	�) ¼

fj 2 L2(	�) :
Ð
j d	� ¼ 0g of L2(	�) so that, for any j 2 L2

0(	�) such that, for 
 2 R

small enough, (1þ 
j):	� 2 M1(S),

hj, ˛jiL2
0( 	�) :¼ lim


&0

1

2
2
ˆ((1þ 
j):	�)þ ˆ((1� 
j):	�)� 2ˆ(	�)
- .

: (1:5)

We remark that, for ˆ given in (1.3) with symmetric Vk ,
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hj, ˛jiL2
0( 	�) ¼

Xr

k¼2

k(k � 1)

ð
S k

j(x1)j(x2)Vk(x1, x2, y1, . . . , yk�2)d( 	�)�k :

If 	� is a minimizer of H , it is called non-degenerate if Id� ˛ is positive definite on

L2
0(	�).
We will assume the following:

Condition 1.1. H in (1.1) achieves its minimum value at a unique probability measure 	�,
and 	� is a non-degenerate minimum.

Throughout this paper we denote the space of bounded measurable functions on S by

B(S) and the space of bounded continuous functions by Cb(S).

Let us recall the definition of the moderate-deviations principle (MDP). A sequence of

probability measures f	ngn2N on a topological space X equipped with �-field B is said to

satisfy the LDP with speed an # 0 and good rate function I(�) if the level sets

fx : I(x) < Æg are compact for all Æ ,1, and for all B 2 B the lower bound

lim inf
n!1

an log 	n(B) > � inf
x2int(ˆ)

I(x),

and the upper bound

lim sup
n!1

an log 	n(B) < � inf
x2cl(ˆ)

I(x)

hold, where int(B) and cl(B) denote the interior and closure of B, respectively. We say that a

sequence of random variables satisfies the LDP provided the sequence of measures induced

by these variables satisfies the LDP. Let fbngn2N % (0, 1) be a sequence satisfying

lim
n!1

bn

n
¼ 0 and lim

n!1

n

b2
n

¼ 0: (1:6)

If X is a topological vector space, then a sequence of random variables fZ ngn2N satisfies the

MDP with speed n=b2
n and with good rate function I(�) if the sequence f(n=bn)Z ngn2N

satisfies the LDP in X with the good rate function I(�) and with speed n=b2
n.

We will prove an MDP for the laws of (1=n)
Pn

i¼1(�X i
� 	�) under Pn

ˆ if Condition 1.1

is fulfilled with Vk satisfying (1.4) for k > 3 and a symmetric, bounded V2 – that is, an

LDP of

M n :¼ M n(	�) :¼ 1

bn

Xn

i¼1

(�xi
� 	�) (1:7)

under Pn
ˆ. The assumption of regularity of V2 in Guionnet (1999) is relaxed here. Note that a

bounded and continuous V2 is regular but a bounded measurable V2 can fail to be regular by

Dembo and Zeitouni (1998, Exercise 7.3.18).

Consider the set M(S) of signed measures on (S, S) with finite total variation endowed

with the strong topology. Let 	 2 M1(S) be the law of an independent and identically

distributed (i.i.d.) sequence fX igi2N. In de Acosta (1994) it is proved that the sequence
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	̂	n :¼ 1

bn

Xn

i¼1

(�X i
� 	)

satisfies an LDP with speed n=b2
n in M(S) with respect to the strong topology for every (bn)

satisfying (1.6) with good rate function

I(�) ¼ 1

2

ð
S

d	

d�

� �2

d	,

if �(S) ¼ 0 and �0 	 and +1 otherwise.

Let us consider a Hamiltonian ˆ : M(S)! R given by

ˆ(�) ¼
ð

W (x, y) d�(x) d�(y):

If ˆ is assumed to be continuous with respect to the strong topology on M(S) we may hope

to obtain an LDP for the empirical measure 	̂	n under Pn
ˆ by applying the results of de Acosta

(1994) in the i.i.d. case and Dembo and Zeitouni (1998, Theorem 4.3.1 and Exercise 4.3.11).

There are at least two reasons why such an approach is not very useful. First, the map

M(S) 3 � 7! � � � is not continuous even in the case where M(S) and M(S2) are endowed

with the weak topology (see Fuglede 1960, Lemma 1.2.4, p. 148). Thus, in general, even the

class of bounded and continuous functions W is not included. Moreover, applying the results

of de Acosta (1994) and Dembo and Zeitouni (1998 Theorem 4.3.1 and Exercise 4.3.11) is

only of use for the bivariate case because otherwise the corresponding Gibbs measures are

not of the mean-field type we consider in this paper.

We therefore propose another method of proving the MDP for mean-field interacting

particle systems with bounded interaction. Besides applying standard techniques from large-

deviations theory (contraction principle, Varadhan’s lemma, Dawson–Gärtner projective

limit approach) the main tool in our proofs is to establish the MDP for a collection of so-

called rank-dependent U -statistics and U -empirical measures. For example, in the case

ˆ(	) ¼
Ð

W (x, y) d	(x) d	(y), 	 2M1(S), with bounded measurable W we will need the

LDP for

1

bn

Xn

i¼1

( f (X i)� 	�( f )),
1

b2
n

X
i6¼ j

W (X i, X j)

 !
, (1:8)

where fX igi2N is an i.i.d. sequence and f : S ! R is a bounded measurable function. In

Eichelsbacher and Schmock (2001) an LDP is proved for the second term in (1.8). The proof

of an LDP for the sequence (1.8) is far from obvious because of the dependency of the

entries in (1.8).

The paper is organized as follows. In Section 2 we state our main results. We also state

some exponential estimates deduced from results in Ben Arous and Brunaud (1989),

Guionnet (1999) and Kusuoka and Tamura (1984) which are proven by the control on U -

statistics developed in Arcones and Giné (1993) and de la Peña (1992) (decoupling and

randomization techniques; see de la Peña and Giné 1999). In Section 3 we state the rank-

dependent MDP for vectors of U -empirical measures in a general setting. In Section 4 we
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prove the MDP stated in Section 3, and in Section 5 we prove our main results. Finally, in

Section 6, we consider applications to the Curie–Weiss model and to diffusion processes

with mean-field interaction, considered in Ben Arous and Brunaud (1989), Ben Arous and

Zeitouni (1999), Kusuoka and Tamura (1984) and McKean (1975).

2. Moderate deviations for Gibbs measures

In this section we state the LDP for M n(	�) under Pn
ˆ in M(S) endowed with the strong

topology, where 	� is defined in Condition 1.1. First, we consider the case in which ˆ is

given by

ˆ(	) ¼
ð

W (x, y) d	(x) d	(y), 	 2M1(S): (2:1)

(Later, we allow for more general types of polynomial interaction.) We denote the Hessian ˛
in this case by 2W. Our first result is the following theorem:

Theorem 2.1. (Moderate deviations for bivariate potentials). If Condition 1.1 holds and W

in (2.1) is symmetric, bounded and measurable, then the sequence fM n(	�)g1n¼1 satisfies the

LDP under Pn
ˆ in M(S), equipped with the strong topology, with speed n=b2

n and with good

convex rate function

I(�) ¼
1

2

ð
S

d�

d	�
� �2

d	� �
ð

S2

W d� d� �(S) ¼ 0,

1 otherwise:

8><>: (2:2)

In the course of proving this theorem we will see that we obtain another form of the rate

function (2.2) using the projective limit approach (see (5.8)).

In the next theorem we will consider polynomial interactions. We will assume the

following:

Condition 2.1. Let ˆ have the form

ˆ(	) ¼
Xm

k¼2

ð
S k

W k(x1, . . . , xk)d	�k(x1, . . . , xk): (2:3)

Let W2 be a bounded measurable and symmetric function. For every k > 3, let W k be in
~��k
�Cb(S), the k-fold projective tensor product of Cb(S), and symmetric.

Remark 2.1. If ˆ satisfies Condition 2.1, by Corollary 1.6 in Ben Arous and Brunaud (1989),

there exists a compact metric space C and a signed measure � with finite total variation and a

bounded continuous function h : C 3 S ! R such thatXm

k¼3

ð
S k

W k(x1, . . . , xk)d	�k(x1, . . . , xk) ¼
ð

S m

W d	�m(x1, . . . , xm),
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with

W ¼
ð

C

h�m(�) �(d�): (2:4)

Theorem 2.2 (Moderate deviations for polynomial interaction). Assume that ˆ satisfies

Conditions 1.1 and 2.1. We then have the LDP holding for fM n(	�)g1n¼1 in M(S) equipped

with the strong topology with speed n=b2
n and with good convex rate function given by

I(�) ¼
1

2

ð
S

d�

d	�
� �2

d	� �
Xm

k¼2

k(k � 1)

2

ð
S k

W kd(	�)�k�2d� d� �(S) ¼ 0,

1 otherwise:

8><>: (2:5)

The following corollary presents a special case of Theorem 2.2 which we will apply in

Section 6.2.

Corollary 2.3. Suppose Condition 1.1 holds and W k ¼ 0, k ¼ 2, . . . , m� 1. Denoting

V ¼ W m, the sequence fM n(	�)gn>1 satisfies the LDP on M(S) equipped with the strong

topology with speed n=b2
n and good convex rate function

I(�) ¼
1

2

ð
S

d�

d	�
� �2

d	� � m(m� 1)

2

ð
S m

V d(	�)�m�2d� d� �(S) ¼ 0,

1 otherwise:

8><>:
To be able to apply Varadhan’s lemma we have to obtain strong upper bounds on

exponential moments of U -statistics. The following is based on results of de la Peña (1992)

and Arcones and Giné (1993) as well as the considerations in Eichelsbacher and Zajic

(2002) and Guionnet (1999). We need to prove the following lemma.

Lemma 2.4. Assume that ˆ satisfies Conditions 1.1 and 2.1. Then, for some ª . 1, one

obtains, in the notation of (3.9) below,

sup
n>1

E( 	�)� n exp ª
b2

n

n

Xr

k¼2

M k,2
n (W k)

 !" #
,1: (2:6)

Before we give the proof of the lemma let us remark that under the conditions for the

potential functions W , (W k)k>2 and V in Theorems 2.1 and 2.2 and Corollary 2.3

respectively, the LDP of 	n under Pn
ˆ holds. This follows basically from Theorems 1.7 and

1.19 and Lemma 1.21 in Eichelsbacher and Schmock (2002). The result is the following:

Theorem 2.5. Assume that the interaction ˆ is given by the right-hand side of (2.3) with

measurable and bounded functions W k. If M1(S) is furnished with the strong topology then

	n under Pn
ˆ satisfies an LDP with good rate function defined in (1.1).

Proof. The interaction can be written as a function ~̂̂ on M1(S m):
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~̂̂(	) ¼
Xm

k¼2

ð
S k

W k(x1, . . . , xk)d 	k(x1, . . . , xk),

where 	k denotes the marginal distribution of 	 on the first k components. If the spaces

M1(S k), k ¼ 2, . . . , m, are furnished with the strong topology as well, by our assumptions ~̂̂

is a continuous function. Hence, applying Theorem 2.9 in Eichelsbacher and Schmock

(2002), the sequence 	�m
n under Pn

ˆ satisfies and LDP. Since the projection map

M1(S m) 3 	 7! 	1 2 M1(S) is continuous, the contraction principle (see Dembo and

Zeitouni 1998, Theorem 4.2.1) implies the result. h

Remark 2.2. Actually the results in Eichelsbacher and Schmock (2002) give an LDP for 	n

under Pn
ˆ even for unbounded functions W k which satisfy some exponential moment

conditions; see Lemma 1.21 in Eichelsbacher and Schmock (2002).

Proof of Lemma 2.4. We would like to be able to replace W2 by a function ~WW2 of the form

(1.4) and maintain the positive definiteness of Id� ˛. If W2 were regular we could apply

Guionnet (1999, Lemma 3.1). However, the proof of the latter lemma continues to hold for

bounded measurable W2 if, in the proof of the latter lemma, we apply Sanov’s theorem for

products of empirical measures with a sufficiently strong topology (see Eichelsbacher and

Schmock 2002, Theorems 1.7 and 1.10, for such a topology) and apply the contraction

principle followed by Varadhan’s lemma to Theorems 1.7 and 1.10 of Eichelsbacher and

Schmock (2002) in order to obtain inequality (43) of Guionnet (1999). For details, see

Eichelsbacher and Zajic (2002). Let ~WW k ¼ W k , for 3 < k < r, and ~̂̂ ¼ ˆ with the Wi

replaced by ~WWi, 2 < i < r.

By Remark 2.1, ~̂̂ can be represented as ~̂̂(	) ¼ hW , 	�mi with W given in (2.4).

Consider B( ~̂̂) :¼ Lm(C, �) and T : M1(S)! B( ~̂̂) defined by T (	) ¼
Ð

S
h(x, �) d	(x); then

we define

B�(	�) :¼ f	 2M1(S) : kT (	� 	�)k , �g

with k�k ¼ k�kLm(�). Then B�(	�) is an open ball around 	� in the strong topology.

Proceeding as in Kusuoka and Tamura (1984, Section 4), we have that

E( 	�)� n 1(B�( 	�))c exp
b2

n

n

Xm

k¼2

M k,2
n (W k)

 !" #

¼ E	� n 1(B�( 	�))c exp
b2

n

n

Xm

k¼2

Lk
n(W k)

 !" #
exp (n(H(	�j	)� ˆ(	�)))

so that the LDP implies that, for any � . 0,

lim sup
n!1

1

n
log E( 	�)� n 1(B�( 	�))c exp

b2
n

n

Xm

k¼2

M k,2
n (W k)

 !" #
< � inf

�2(B�( 	�))c

H(�):

Using the fact that H is a good rate function and that 	� is a unique minimizer, we obtain

that there exists a positive constant c such that, for n large enough,
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�����E( 	�)� n exp
b2

n

n

Xm

k¼2

M k,2
n (W k)

 !" #
� E( 	�)� n 1(B�( 	�)) exp

b2
n

n

Xm

k¼2

M k,2
n (W k)

 !" #����� < exp (�cn):

Hence it remains to prove that

lim sup
n!1

E( 	�)� n 1(B�( 	�)) exp ª
b2

n

n

Xm

k¼2

M k,2
n ( ~WW k)

 !" #
,1:

But this follows from Kusuoka and Tamura (1984, Lemma 3.2, (3.28)) and Ben Arous and

Brunaud (1989, Theorem (B)iv, (3.4)). h

3. Rank-dependent moderate deviations

Let us state the moderate-deviations result for vectors of U -empirical measures of different

ranks. Let (S, S, 	) be a probability space, let (�, A, P) 	 (SN, S�N, 	�N) be the product

space, and let fX igi2N be the coordinate projections from � to S forming an i.i.d. sequence

with L(X i) ¼ 	. Let (E, k�kE) be a separable real Banach space with Borel �-algebra E.

Let m 2 N and M(S m) denote the set of signed measures with finite total variation on the

product space (S m, S�m). Let � be a collection of S�m –E-measurable and Bochner 	�m-

integrable functions j : S m ! E containing the set B(S m, E) of all bounded measurable

ones. We define the �-restricted set of signed measures by

M�(S m) ¼ � 2 M(S m)

����ð
S m

kjkEdj�j ,1 for every j 2 �

( )
,

where j�j denotes the total variation measure corresponding to �. Let ��(E) be the coarsest

topology on M�(S m) such that M�(S m) 3 � 7!
Ð

S m j d� is continuous for every j 2 �. If

� ¼ B(S m, E), then we write �(E) instead of ��(E). The �-algebra on M(S m) is defined to

be the smallest one containing M�(S m) such that all the maps M(S m) 3 � 7!
Ð

S m j d� with

j 2 B(S m, E) are measurable.

The U-empirical measure of order m is defined by

Lm
n ¼

1

n(m)

X
(i1,...,im)2 I(m,n)

�(X i1
,...,X i m ) (3:1)

for all integers n > m, where n(m) 	
Qm�1

k¼0 (n� k) and the set I(m, n) % f1, . . . , ngm

consists of all m-tuples with pairwise different components. Given a measurable function j
on S m, the U-statistic of order m with kernel function j is defined, for every n > m, as

U m
n (j) 	

ð
S m

j dLm
n ¼

1

n(m)

X
(i1,...,i m)2 I(m,n)

j(X i1 , . . . , X i m
): (3:2)

For the moderate deviations upper bound in Theorem 3.1 below, we have to formulate

moment conditions for the unbounded j 2 �. This in turn requires a decomposition, which
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for symmetric j is closely related to the Hoeffding decomposition for the corresponding

U -statistic.

Given j 2 L1(	�m, E) and a non-empty subset A of f1, . . . , mg, define jA 2
L1(	�jAj, E) by 	-integrating j(s1, . . . , sm) with respect to every si with i 2 f1, . . . ,

mgnA. By convention, j˘ 	
Ð

S m j d	�m 2 E. Furthermore, define ~jjA 2 L1(	�jAj, E) by

~jjA((si)i2A) ¼
X
B%A

(�1)jAnBjjB((si)i2B), (3:3)

for every non-empty A % f1, . . . , mg, and let ~jj˘ 	 j˘. Note that

~jjA((si)i2A) ¼
ð

S m

jd �
m

i¼1
(1A(i)(�si

� 	)þ 1Ac (i)	)

� �
: (3:4)

According to the inclusion–exclusion principle or the Möbius inversion formula,

j(s1, . . . , sm) ¼
X

A%f1,...,mg
~jjA((si)i2A)

for 	�m-almost all (s1, . . . , sm) 2 S m. Hence, for every n > m,ð
S m

j dLm
n ¼ ~jj0 þ

Xm

a¼1

ð
S a

~jja dLa
n (3:5)

P-almost surely, where, for every a 2 f0, 1, . . . , mg,

~jja 	
X

A%f1,...,mg
jAj¼a

~jjA: (3:6)

Due to (3.4), every ~jjA with non-empty A % f1, . . . , mg is 	-degenerate.

We can now state the moment conditions on j 2 � in terms of the corresponding 	-

degenerate functions ~jj1, . . . , ~jjm given via (3.3) and (3.6). Assume that fbngn2N % (0, 1)

satisfies (1.6). We make an effort to balance the moment conditions with the type of

Banach space E and the growth rate of fbngn2N.

Condition 3.1. For some rank r 2 f1, . . . , mg, � satisfies the following:

(i) The separable real Banach space E is of type p 2 [1, 2].

(ii) � % L2(	�m, E).

(iii) If r ¼ 1 then, for every j 2 �,

(a)
Ð

S
k ~jj1k2

Ed	 ,1, and

(b) limn!1(n=b2
n) log (nP(k ~jj1(X i)kE > bn)) ¼ �1.

(iv) For every a 2 fr, . . . , mg with a > 2 there exists pa 2 (1, p] such that

(a) pr ¼ 2 and limn!1na�r=b2a= pa�r
n ¼ 1 if a > r þ 1, and

(b) for every j 2 � there exists at least one Æa,j . 0 such that
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ð
Sa

exp(Æa,jk ~jjak pa

E )d	�a ,1: (3:7)

If � ¼ B(S m, E), then all corresponding 	-degenerate functions are bounded and

Conditions 3.1(iii) and (iv)(b) certainly hold. Unless r ¼ 1, the Banach space E has to be of

type 2 due to Condition 3.1 (iv)(a). In the case pa ¼ 2, the limit in Condition 3.1(iv)(a)

reduces to the first condition in (1.6). For a > r þ 1, a choice pa , 2 allows us to balance

a weaker moment condition (3.7) with a slower growth of the sequence fbngn2N. Note that

for the case of rank r ¼ 1 we do not need E to be of type 2.

Let us define the moderate U -empirical measures of general rank r 2 f1, . . . , mg. Given

a 2 f1, . . . , mg and A ¼ fi1, . . . , iag with 1 < i1 , i2 , . . . , ia < m, let 1 < iaþ1 ,

. . . , im < m denote the indices in f1, . . . , mgnA. Define the permutation �A of

f1, . . . , mg such that �A(i j) ¼ j for every j 2 f1, . . . , mg. For every map � : f1, . . . ,

mg ! f1, . . . , mg we define �� : S m ! S m by ��(s) ¼ (s�(1), . . . , s�(m)) for every

s ¼ (s1, . . . , sm) 2 S m. Using �A, define the mapping ªA,m : M(Sa)!M(S m) by

ªA,m(�) ¼ (� � 	�m�a)��1
�A

for all � 2M(Sa).

The marginal measure of ªA,m(�), corresponding to the ordered indices in A, is then

given by �; all other one-component marginals equal 	. Related to (3.3), define

~ªªA,m : M(Sa)!M(S m) by

~ªªA,m(�) ¼ (�1)jAj	�m þ
X

B%A,B 6¼˘
(�1)jAnBjªB,m(�A,B), (3:8)

where �A,B denotes the marginal � j1,..., jb
of � 2 M1(Sa), when B ¼ fi j1 , . . ., i jb

g with

1 < j1 , . . . , jb < a. For n > m define the moderate U -empirical measure M m,r
n of rank

r 2 f1, . . . , mg by

M m,r
n ¼ n

bn

� �r

Lm
n � 	�m �

X
A%f1,...,mg
1<jAj<r�1

~ªªA,m(LjAjn )

0@ 1A: (3:9)

Using (3.3)–(3.6), it follows from these definitions that, for every j 2 L1(	�m, E),ð
S m

j dM m,r
n ¼ n

bn

� �rXm

a¼r

ð
Sa

~jja dLa
n P-a:s:, (3:10)

which means that M m,r
n extracts from j the components of higher rank.

Let us assume that for every unbounded j 2 �, every non-void A 6� f1, . . . , mg and

every (xi)i2A 2 S A, the function Sf1,...,mgnA 3 (xi)i2f1,...,mgnA 7! j(x1, . . . , xm) is Bochner

	�m�jAj-integrable. This avoids measurability problems.

For m ¼ (m1, m2) 2 N2 and r ¼ (r1, r2) 2 N2 we define the rate function I m,r :

M(S m1 ) 3M(S m2 )! [0, 1] for the moderate deviations of rank r 2 f1, . . . , m1g 3
f1, . . . , m2g by

I m,r(�1, �2) ¼ 1

2

ð
S

d~��

d	

� �2

d	 (3:11)

if there exists a ~�� 2M(S) satisfying ~��(S) ¼ 0 and ~��0 	 such that, for i ¼ 1, 2,
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�i ¼
X

A%f1,...,mig
jAj¼ri

ªA,mi
(~���ri ) ¼

X
A%f1,...,mig
jAj¼ri

�
j2f1,...,mig

(1A( j)~��þ 1Ac ( j)	); (3:12)

and we define I m,r(�1, �2) ¼ 1 otherwise. In the case ri ¼ 1, equation (3.12) reduces to

�i ¼
Pm

j¼1	
� j�1 � ~�� � 	�m� j and every one-component marginal of �i is equal to ~��. For

every l 2 [0, 1), let K(I m,r, l ) ¼ f(�1, �2) 2M(S m1 ) 3M(S m2 )jI m,r(�1, �2) < lg denote

the corresponding level set. For B %M(S m1 ) 3M(S m2 ), define I m,r(B) ¼ inf �2B I m,r(�). The

space M(S m1 ) 3M(S m2 ) is equipped with the product topology and the appropriate product

�-field. For � ¼ (�1, �2) % L2(	�m1 , E) 3 L2(	�m2 , E), in the following the ��(E)-

topology denotes the corresponding product topology.

Theorem 3.1 Rank-dependent moderate deviations. The following assertions hold for every

r ¼ (r1, r2) 2 f1, . . . , m1g3 f1, . . . , m2g:

(a) If � ¼ (�1, �2) % L2(	�m1 , E) 3 L2(	�m2 , E), then the level set K(I m,r, l) %
M�1 (S m1 ) 3M�2 (S m2 ) for every l 2 [0, 1).

(b) If � ¼ (�1, �2) % L2(	�m1 , E) 3 L2(	�m2 , E), then K(I m,r, l) is ��(E)-compact for

every l 2 [0, 1).

(c) Assume that there exists a p 2 (1, 2] such that the Banach space (E, k�kE) is of type

p and limn!1n=b p
n ¼ 0. If �i % L p(	�mi , E) in the case mi ¼ ri, i ¼ 1, 2, or if

�i % L2(	�mi , E) in the case ri , mi, i ¼ 1, 2, then

lim inf
n!1

n

b2
n

logP((M m1,r1

n , M m2,r2

n ) 2 B) > �I m,r(int��(E)(B)) (3:13)

for every measurable B %M(S m1 ) 3M(S m2 ), where int��(E)(B) denotes the interior

of the set B \ (M�1 5(S m1 ) 3M�2 (S m2 )) with respect to the ��(E)-topology.

(d) If �i satisfies Condition 3.1 for ri, i ¼ 1, 2, then

lim sup
n!1

n

b2
n

logP((M m1,r1

n , M m2,r2

n ) 2 B) < �I m,r(cl��(E)(B)) (3:14)

for every measurable B %M(S m1 ) 3M(S m2 ), where cl��(E)(B) denotes the closure of

the set B \ (M�1 (S m1 ) 3M�2 (S m2 )) with respect to the ��(E)-topology.

Remark 3.1. It is obvious from the proof of Theorem 3.1 that we have an MDP for a vector

of a finite number of U -empirical measures.

The following corollary is an immediate consequence:

Corollary 3.2. For r ¼ (1, 2) and m ¼ (1, k), the rate function is

I(�, �2) ¼ 1

2

ð
S

d�

d	

� �2

d	

if �(S) ¼ 0, �0 	 and �2 is given by (3.12) with r2 ¼ 2 and m2 ¼ k, and +1 otherwise. In

the case k ¼ 2 we obtain �2 ¼ � � �.
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4. Proof of the rank-dependent moderate deviations

In the proof of Theorem 3.1 we will several times apply the following Bernstein-type

inequality proved in Eichelsbacher and Schmock (2001):

Theorem 4.1. (Bernstein-type inequality). Let (E, k�kE) be a separable Banach space of

type p 2 (1, 2] and let r 2 N. Then there exist constants c3, c4 2 [1, 1) such that for every

symmetric, Bochner 	�r-integrable, completely 	-degenerate function j : S r ! E with an

Æ . 0 satisfying

~aa 	
ð

S r

exp (Ækjk p
E) d	�r ,1, (4:1)

there exists a constant cj 2 (0, 1) such that, for all x . 0 and all integers n > r,

P(knæU r
n(j)kE > x) < c3 exp � x p=r

c4� p=r þ cj(x p=r=n)1=(rþ1)

 !
, (4:2)

where � 	 kjkL p( 	� r ,E) and æ 	 r(1� 1=p).

Furthermore, we will use the following approximation result (see, for example,

Eichelsbacher and Schmock 2001).

Lemma 4.2. Let � . 0, p > 1, r 2 N, and let j 2 L p(	�r, E) be a symmetric and

completely 	-degenerate function. Then there exist k 2 N, vectors �1, . . . , �k 2 E and

bounded measurable functions f1, . . . , f k : S ! R with
Ð

S
f i d	 ¼ 0 for all i 2 f1, . . . , kg

such that j� 	
Pk

i¼1�i f �r
i satisfies kj� j� kL p( 	� r ,E) < � , where f �r

i (s1, . . . , sr) 	Qr
j¼1 f i(s j) for all s1, . . . , sr 2 S.

Let I mi,ri
: M(S mi )! [0, 1] be defined by

I mi,ri
(�i) ¼

1

2

ð
S

d~��

d	

� �2

d	 (4:3)

if there exists a ~�� 2M(S) satisfying ~��(S) ¼ 0 and ~��0 	 such that �i satisfies (3.12), and

I mi,ri
(�i) ¼ 1 otherwise. Then it is easy to see that

K(I m,r, l) % K(I m1,r1
, l) 3 K(I m2,r2

, l) (4:4)

for every l 2 [0, 1).

Proof of Theorem 3.1. (a) and (b). Using (4.4), (a) follows from Theorem 2.14(a) in

Eichelsbacher and Schmock (2001).

By Theorem 2.14(b) in Eichelsbacher and Schmock (2001) we know that K(I mi,ri
, l) is

��(E)-compact for i ¼ 1, 2. Using (4.4), to prove (b) it therefore suffices to show that I m,r

is lower semicontinuous, which is left to the reader. h
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Proof of Theorem 3.1. (c). Consider a measure � ¼ (�1, �2) 2 int��(E)(B) with I m,r(�) ,1.

Then � 2M�1 (S m
1 ) 3M�2 (S m

2 ) by the definition of the ��(E)-interior of the set B, henceÐ
S m

i
kjikE dj�ij ,1 for every ji 2 �i. By the definition of the ��(E)-product topology,

there exist � . 0, k1, k2 2 N and j1,1, . . . , j1,k1
2 �1, j2,1, . . . , j2,k2

2 �2 such that the

��(E)-open set

C((�1, �2), 2�) :¼ C(�1, 2�) 3 C(�2, 2�)

with

C(�i, 2�) ¼ �9i 2M�i (S mi )j
��������ð

S m
i

ji, j d(�i � �9i)

��������
E

, 2� for every j 2 f1, . . . , kig
)(

is contained in int��(E)(B). Since I m,r(�) ,1, a measure ~�� 2M(S) for the representation

(3.12) and a density ~gg 	 d~��=d	 exist, but both might not be unique, as the discussion after

(3.12) showed. The density ~gg satisfies
Ð

S
~gg d	 ¼ 0 and

Ð
S
~gg2 d	 ¼ 2 I m,r(�) ,1.

Furthermore, a density of �i with respect to 	�mi is given by

d�i

d	�mi
(s1, . . . , smi

) ¼
X

A%f1,...,mig
jAj¼ri

Y
i2A

d~��

d	
(si), �	�mi -a:s:, (4:5)

and, for every ji 2 �i,ð
S mi

kj(s1, . . . , smi
)kE

Ymi

j¼1

j ~gg(s j)j	�mi (ds1, . . . , dsmi
) ¼

ð
S mi

kjkE dj�ij ,1

in the case mi ¼ ri; otherwise, when �i % L2(	�mi , E),ð
S mi

kj(s1, . . . , smi
)kE

X
A%f1,...,mig
jAj¼ri

Y
j2A

j ~gg(s j)j 	�mi (ds1, . . . , dsmi
)

<
mi

ri

� �
kjikL2( 	�mi ,E)(2I m,r(�))r

i ,1

by the Cauchy–Schwarz inequality. Define ~gg
(s) ¼ maxf
 ~gg(s), 0g for s 2 S. It follows

from the dominated convergence theorem that there exist constants c
 2
[0, k ~gg
kL1( 	)) [ f0g such that the truncated function g 	 minfcþ, maxf�c�, ~gggg satisfiesÐ

S
g d	 ¼ 0 and ð

S mi

kj j,ikE dj�i � �ij < �, j 2 f1, . . . , kig, i 2 f1, 2g, (4:6)
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where �i 2 M(S mi ) is determined by

d�i

d	�mi
(s1, . . . , smi

) ¼
X

A%f1,...,mig
jAj¼ri

Y
j2A

g(s j), (s1, . . . , smi
) 2 S mi :

Since g is bounded and �i % L1(	�mi , E), the measure �i is actually in M� i (S mi ).

Note that C((�1, �2), �) % C((�1, �2), 2�) by (4.6). Furthermore, C((�1, �2), �) is a

measurable subset of M(S m1 ) 3M(S m2 ) because M�i (S mi ) is measurable for every i by

definition. Define the function Fn(s) ¼
Qn

j¼1(1þ (bn=n)g(s j)) for all s ¼ (s j) j2N 2 SN. Due

to (1.6) there exists, for every 
 2 (0, 1), an n
 > m such that bnc�=n < 
 for all n > n
.

Define Pn 2 M1(�) by dPn=dP ¼ Fn for all these n. Then

P((M m1,r1

n , M m2,r2

n ) 2 B) > P((M m1,r1

n , M m2,r2

n ) 2 C((�1, �2), �)) ¼
ð

Dn

1

Fn

dPn, (4:7)

where Dn 	 f(M m1,r1
n , M m2,r2

n ) 2 C((�1, �2), �)g. Defining an ¼ Pn(Dn) and using Jensen’s

inequality, we obtain, for every n > n
,

log

ð
Dn

1

Fn

dPn ¼ log an �
1

an

ð
Dn

Fn log Fn dP: (4:8)

Since x log x > �1=e for x > 0 and
Ð

S
g d	 ¼ 0, it follows that, for all n > n
,ð

Dn

Fn log Fn dP <
1

e
þ b2

n

(1� 
)n
I m,r(�), (4:9)

where we have used the estimate (1þ x) log(1þ x) < xþ x2=(2(1� 
)) for all x > �
 for

the second inequality. If we can show that limn!1 an ¼ 1, then (1.6), (4.7), (4.8) and (4.9)

together imply

lim inf
n!1

n

b2
n

logP((M m1,r1

n , M m2,r2

n ) 2 B) > � I m,r(�)

1� 

,

which in turn implies (3.13). Since, for every i 2 f1, 2g,

lim
n!1

Pn(M mi,ri

n 2 C(�i, �)) ¼ 1

(see the proof of Theorem 2.14(c) in Eichelsbacher and Schmock 2001, pp. 13 and 14) we

obtain limn!1an ¼ 1. The proof in Eichelsbacher and Schmock (2001) depends strongly on

quite sharp moment inequalities for Banach-space-valued U -statistics using decoupling

inequalities and the hypercontractive method in moment inequalities. h

Proof of Theorem 3.1 (d). Let C denote the ��(E)-closure of B \ (M�1 (S m1 ) 3M�2 (S m2 )).

The pair of moderate U -empirical measures f(M m1,r1
n , M m2,r2

n )gn>(m1^m2) take values in

M�1 (S m1 ) 3M�2 (S m2 ). It suffices to consider only the case I m,r(C) . 0. Choose

l 2 (0, I m,r(C)). Let F i denote the family of all finite, non-empty subsets of �i, i ¼ 1, 2.

For every (F1, F2) 2 F1 3 F2 define
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—(F1,F2) : M�1 (S m1 ) 3M�2 (S m2 )! EF1 3 EF2

by

—(F1,F2)(�1, �2) ¼
ð

S m1

j d�1

� �
j2F1

3

ð
S m2

~jj d�2

� �
~jj2F2

:

—F1 (—F2 ) denotes the restriction of —(F1,F2) to the first m1 (last m2) coordinates. Note that

EFi with kykE Fi :¼
P

ji2Fi
kyji
kE for y ¼ (yji

)ji2Fi
2 EFi, i ¼ 1, 2, is a Banach space, as is

the product space EF1 3 EF2 . Following the proof of Theorem 2.14(d) in Eichelsbacher and

Schmock (2001), there exist an F ¼ (F1, F2) 2 F1 3 F2 and an open set U in EF1 3 EF2

such that —�1
(F1,F2)(U ) covers K(I m,r, l) and is disjoint from C. The construction of U uses the

closeness of C as well as the compactness of K(I m,r, l). Define


 :¼ dist(—(F1,F2)(K(I m,r, l)), U c), where dist is a distance in EF1 3 EF2 . We choose the

supremum of distances disti, i ¼ 1, 2, in EFi , which metrizes the product topology in

EF1 3 EF2 . Since —(F1,F2)(K(I m,r, l)) is a compact subset of the open set U , it follows that


 . 0 and that

A
 :¼ f(x, y) 2 EF1 3 EF2 : dist((x, y), —(F1,F2)(K(I m,r, l))) , 
g

is an open set contained in U . We rewrite A
 as

A
 ¼ f(x, y) 2 EF1 3 EF2 : dist1(x, —F1 (�1)) , 
, dist2(y, —F2 (�2)) , 
,

with (�1, �2) 2 K(I m,r, l)g:
Thus we can find (F1, F2) 2 F1 3 F2 and an open (possibly non-convex) 
-neighbour-

hood A
 % EF1 3 EF2 of —(F1,F2)(K(I m,r, l)) such that

f(M m1,r1

n , M m2,r2

n ) 2 Bg % f(M m1,r1

n , M m2,r2

n ) 2 Cg
% f—(F1,F2)(M m1,r1

n , M m2,r2

n ) 2 EF1 3 EF2nA
g, (4:10)

for all n > m1 ^ m2. Using (3.10), it follows that

P —(F1,F2)(M m1,r1

n , M m2,r2

n ) 2 EF1 3 EF2nA


� �
<

Xm1

a¼r1þ1

P
n

bn

� �r1

k—F1,a
(La

n)kE F1 >



4m

 !

þ
Xm2

a¼r2þ1

P
n

bn

� �r2

k—F2,a
(La

n)kE F2 >



4m

 !
(4:11)

þ P
n

bn

� �r1

—F1, r1
(Lr1

n ),
n

bn

� �r2

—F2, r2
(Lr2

n )

 !
2 EF1 3 EF2nA
=2

 !
,

where Fi,a 	 f ~jji,agji2Fi
for a 2 fri, ri þ 1, . . . , mig, i ¼ 1, 2, with the notation from (3.6).

We will assume in the following (without loss of generality) that Fi, and therefore Fi,ri
up to

Fi,mi
, consist of symmetric functions. In order to see that the terms with a > ri þ 1 in (4.11)

do not contribute to the moderate-deviations upper bound (3.14), it suffices to prove that
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lim sup
n!1

n

b2
n

logP
n

bn

� �ri

kU a
n( ~jji,a)kE > �

 !
¼ �1 (4:12)

for every a 2 fri þ 1, . . . , mig, � . 0 and ~jji,a 2 Fi,a. This follows from an application of

the Bernstein-type inequality (4.2) (for details, see Eichelsbacher and Schmock 2001).

Choose � i . 0 so that 
=(4jFij� i) . (maxfc4, 2gl)ri=2, for i ¼ 1, 2, with c4 as in (4.2). For

every ~jji,ri
corresponding to a ji 2 Fi, we can find a function ~jji,ri ,� i

as described in Lemma

4.2 such that k ~jji,ri
� ~jji,ri ,� i

kL2( 	� ri ,E) < � i. Define Fi,ri ,� i
¼ f ~jji,ri ,� i

gji2Fi
. Then

P
n

bn

� �r1

—F1, r1
(Lr1

n ),
n

bn

� �r2

—F2, r2
(Lr2

n )

 !
2 EF1 3 EF2nA
=2

 !

<
X2

i¼1

X
ji2Fi

P
n

bn

� �ri

kU ri

n ( ~jji,r � ~jji,ri,� i
)kE >




8jFij

 !

þ P
n

bn

� �r1

—F1, r1,� 1
(Lr1

n ),
n

bn

� �r2

—F2, r2,� 2
(Lr2

n )

 !
2 EF1 3 EF2nA
=4

 !
: (4:13)

In order to show that, for every ji 2 Fi,

lim sup
n!1

n

b2
n

logP
n

bn

� �ri

kU ri

n ( ~jji,r � ~jji,ri ,� i
)kE >




8jFij

 !
< �l, (4:14)

apply the Bernstein-type inequality (4.2) (for details, see Eichelsbacker and Schmock 2001);

(4.14) is determined by the choice of the � i, which measures the quality of the

approximation.

To treat the last term in (4.13), we need to prove that

lim sup
n!1

n

b2
n

logP
n

bn

� �ri

k—Fi, ri ,� i
(Lri

n � L�ri

n )kE Fi >



8

 !
¼ �1 (4:15)

for i ¼ 1, 2. Due to the form of the functions in Fi,ri ,� i
, as described in Lemma 4.2, it suffices

to show that

lim sup
n!1

n

b2
n

logP
n

bn

� �ri

jU ri

n ( f �ri )� (U 1
n( f ))ri )j > �

 !
¼ �1 (4:16)

for every � . 0 and every bounded measurable function f : S ! R satisfying
Ð

S
f d	 ¼ 0.

When proving (4.16) we assume that ri > 2, i ¼ 1, 2, and we use the arguments in the proof

of Theorem 2.14 in Eichelsbacher and Schmock (2001). We skip the details.

To treat the last term in (4.11) in the case ri 2 f2, 3, . . . , mig, combining (4.11)–(4.15),

it remains to show that
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lim sup
n!1

n

b2
n

logP
n

bn

� �r1

—F1, r1,� 1
(L�r1

n ),
n

bn

� �r2

—F2, r2,� 2
(L�r2

n )

 !
2 EF1 3 EF2nA
=4

 !
< �l:

(4:17)

For this purpose, we assume without loss of generality that there exist k1, k2 2 N such

that every ~jji,ri ,� i
with ji 2 Fi used in (4.13) and described in Lemma 4.2 is of the form

~jji,ri ,� i
¼
Pk i

j¼1�ji , j f
�ri

ji , j where �ji, j 2 E and fji , j : S ! R is bounded and 	-degenerate for

all j 2 f1, . . . , kig and ji 2 Fi. Define the map łi : S ! (Rk i )Fi by łi(s) ¼
( fji ,1(s), . . . , fji ,k i

(s))ji2Fi
and the map T : (Rk1 )F1 3 (Rk2 )F2 ! EF1 3 EF2 by

T ((xj1,1, . . . , xj1,k1
)j12F1

, (xj2,1, . . . , xj2,k2
)j22F2

)

¼
Xk1

j¼1

�j1, jx
r1

j1, j

0@ 1A
j12F1

,
Xk1

j¼1

�j2, jx
r2

j2, j

0@ 1A
j22F2

0B@
1CA:

Then, for every n 2 N,

n

bn

� �r1

—F1, r1,� 1
(L� r1

n ),
n

bn

� �
r2—F2, r2,� 2

(L�r2

n )

 !
2 EF1 3 EF2nA
=4

( )

¼
ð

S

ł1 dM1,1
n ,

ð
S

ł2 dM1,1
n

� �
2 T�1 EF1 3 EF2nA
=4


 �� �
: (4:18)

Since T is continuous, T�1(EF1 3 EF2nA
=4) is closed in (Rk1 )F1 3 (Rk2 )F2 and the

moderate-deviations upper bound in the �-topology onM(S) from de Acosta (1994, Theorem

3.1) implies that

lim sup
n!1

n

b2
n

logP

ð
S

ł1 dM1,1
n ,

ð
S

ł2 dM1,1
n

� �
2 T�1(EF1 3 EF2nA
=4)

� �

< �inf I1,1(~��)j~�� 2Mg(S),

ð
S

ł1 d~��,

ð
S

ł2 d~��

� �
2 T�1(EF1 3 EF2nA
=4)

� �
(4:19)

with I1,1 as in (4.3). Note that

T

ð
S

ł1 d~��,

ð
S

ł2 d~��

� �
¼ (—F1, r1,� 1

(~���r1 ), —F2, r2,� 2
(~���r2 ))

for all ~�� 2M(S). Hence, to derive (4.17) from (4.18) and (4.19), it suffices to show that

—F1, r1,� 1
(~���r1 ), —F2, r2,� 2

(~���r2 )
� �

2 A
=4 for all ~�� 2 K(I1,1, l).

Consider any ~�� 2 K(I1,1, l). Define �i 2M(S mi ) by (3.12). According to (3.11) and (4.3),

I mi,ri
(�i) ¼ I1,1(~��), hence �i 2 K(I mi ,ri

, l) %M�i (S mi ). With the arguments given in the

proof of Theorem 2.14(d) in Eichelsbacher and Schmock (2001), it follows that

k—Fi (�i)�—Fi, ri ,� i
(~���ri )kE Fi < � ijFij(2l)ri=2 , 
=4. This shows that

(—F1, r1,� 1
(~���r1 ), —F2, r2,� 2

(~���r2 )) 2 A
=4,
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which finishes the proof of the moderate-deviations upper bound (3.14) for ri 2
f2, 3, . . . , mig.

Let us now consider the case r1 ¼ r2 ¼ 1. Note that

n

bn

—F1,1
(L1

n),
n

bn

—F2,1
(L1

n)

� �
¼ —F1,1

M1,1
n

� �
, —F2,1

M1,1
n

� �� �
is the sum of n independent and identically distributed EF1 3 EF2 -valued random vectors of

mean zero. Condition 3.1(iii)(a) and Hölder’s inequality imply that, for every i ¼ 1, 2,Ð
S
k( ~jji)ji2Fi

k2
E Fi d	 ,1 and thereforeð

S

k( ~jj1)j12F1
, ( ~jj2)j22F2

k2
E

F1 3 EF2 d	 ,1:

Condition 3.1(iii)(b) for �i, i ¼ 1, 2, implies that

lim
n!1

n

b2
n

log nP(k( ~jj1(X i))j12F1
, ( ~jj2(X i))j22F2

kE F13E F2 > bn

� �
Þ ¼ �1:

Therefore, it follows from Eichelsbacher and Schmock (2001, Theorem 2.17) and from

Arcones (1999, Theorem 2.4) that

lim sup
n!1

n

b2
n

logP((—F1,1
(M1,1

n ), —F2,1
(M1,1

n )) 2 EF1 3 EF2nA
=4)

< �inffI1,1(~��)j~�� 2M(S), (—F1,1
(~��), —F2,1

(~��)) 2 EF1 3 EF2nA
=4g:

It suffices to show that (—F1,1
(~��), —F2,1

(~��)) 2 A
=4 for all ~�� 2 K(I1,1, l). Consider any

~�� 2 K(I1,1, l). Define �i 2M(S mi ) by (3.12). We know that I mi ,ri
(�i) ¼ I1,1(~��) and therefore

(�1, �2) 2 K(I m,(1,1), l). Thus we obtain

lim sup
n!1

n

b2
n

logP (—F1,1
(M1,1

n ), —F2,1
(M1,1

n )) 2 EF1 3 EF2nA
=4


 �
< �l

and, together with (4.10) and (4.11), this estimate implies (3.14) for r1 ¼ r2 ¼ 1.

Finally, let us consider the case r1 ¼ 1 and r2 > 2. Here it remains to show that

lim sup
n!1

n

b2
n

logP
n

bn

� �
—F1,1

(Ln),
n

bn

� �r2

—F2, r2,� 2
(L�r2

n )

 !
2 EF1 3 EF2nA
=4

 !
< �l:

(4:20)

For this purpose define the map ł2 : S ! (Rk2 )F2 as above and the map T̂T : EF13

(Rk2 )F2 ! EF1 3 EF2 by

T̂T (y, (xj2,1, . . . , xj2,k2
)j22F2

) ¼ y,
Xk1

j¼1

�j2, jx
r2

j2, j

0@ 1Aj2 2 F2

0@ 1A:

Then, for every n 2 N,
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n

bn

� �
—F1,1

(Ln),
n

bn

� �r2

—F2, r2,� 2
(L�r2

n )

 !
2 EF1 3 EF2nA
=4

( )

¼ n

bn

� �
—F1,1

(Ln),

ð
S

ł2 dM1,1
n

 !
2 T̂T�1(EF1 3 EF2nA
=4)

( )
: (4:21)

Since T̂T is continuous, T̂T�1(EF1 3 EF2nA
=4) is closed in EF1 3 (Rk2 )F2 and the moderate-

deviations upper bound in the ��-topology onM(S) from Eichelsbacher and Schmock (2001,

Theorem 2.17) and Arcones (1999, Theorem 2.4) implies that

lim sup
n!1

n

b2
n

logP —F1,1
(M1,1

n ),

ð
S

ł2 dM1,1
n

� �
2 T̂T�1(EF1 3 EF2nA
=4)

� �
< �inf I1,1(~��)j~�� 2M(S), —F1,1(~��),

ð
S

ł2 d~��

� �
2 T̂T�1(EF1 3 EF2nA
=4)

� �
: ð4:22Þ

Note that

T̂T —F1,1
(~��),

ð
S

ł2 d~��

� �
¼ —F1,1

(~��), —F2, r2,� 2
(~���r2 )


 �
for all ~�� 2 M(S). We are done if we can show that —F1,1

(~��), —F2, r2,� 2
(~���r2 )

� �
2 A
=4 for all

~�� 2 K(I1,1, l). But this follows from our previous results: consider any ~�� 2 K(I1,1, l) and

define �i 2 M(S mi ) by (3.12). We know already that k—F2 (�2)�—F2, r2,� 2
(~���r2 )kE F2 , 
=4 for

a �2 2 K(I m2,r2
, l) and that —F1,1

(~��) 2 —F1 (K(I m,r, l)). This finishes the proof of the

moderate-deviations upper bound. h

5. Proofs of the mean-field moderate deviations

We begin our examination of the LDP of fM ngn>1 for ˆ given by (2.1) by considering the

LDP of fM n(�)gn>1 where � 2 B(S) is fixed. The following proposition follows from

Theorem 3.1, Corollary 3.2, the contraction principle and Varadhan’s lemma.

Proposition 5.1. If Condition 1.1 holds and W : S2 ! R is symmetric, for every fixed

� 2 B(S) the sequence fM n(�)g1n¼1 satisfies the LDP in R with speed n=b2
n and with good

rate function

I�(y) ¼ inf
1

2

ð
S

d�

d	�
� �2

d	� �
ð

S2

W d� d� :

ð
S

� d� ¼ y, �(S) ¼ 0

( )
:

Proof. To obtain the MDP we first demonstrate the upper bound. We apply Theorem 3.1 for

r ¼ (1, 2), m ¼ (1, 2), � ¼ (B(S), B(S2)), and M(S) 3M(S2) endowed with the product

topology of the strong topologies of the components. By Corollary 3.2 and the contraction

principle (see Dembo and Zeitouni 1998, Theorem 4.2.1), the LDP holds for every � 2 B(S)
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for f(M1,1
n (�), M2,2

n (W )g1n¼1 ¼ f(M n(�), M2,2
n (W ))g1n¼1 under the distribution 	��1 in R2

with good rate function

I W ,�(y, x) ¼ inf
1

2

ð
S

d�

d	�
� �2

d	�j�(S) ¼ 0,

ð
S2

W d� d� ¼ x,

ð
S

�d� ¼ y

( )
:

For C � R a fixed closed set, define the upper semicontinuous function � : R2 ! R by

�(y, x) ¼ x y 2 C,

�1 otherwise:

�
(5:1)

We obtain

lim sup
n!1

n

b2
n

log Pn
ˆ M n(�) 2 Cð Þ

¼ lim sup
n!1

n

b2
n

log EPn
ˆ

exp
b2

n

n
�(M n(�), 0)

� �� 	

¼ lim sup
n!1

n

b2
n

log E	� n exp
b2

n

n
� M n(�),

n

bn

� �2

L2
n(W )

 ! !" #
=Z n

ˆ

¼ lim sup
n!1

n

b2
n

log E	�� n exp
b2

n

n
�(M n(�), M2,2

n (W ))

� �� 	
=(Z n

ˆ)�,

where (Z n
ˆ)� ¼

Ð
exp fnˆ((1=n)

P
i�xi

)g d(	�)�n(X ). By Varadhan’s lemma (see, in parti-

cular, Dembo and Zeitouni 1998, Lemmas 4.3.4, 4.3.6 and 4.3.8) we obtain the upper bound

lim sup
n!1

n

b2
n

log Pn
ˆ M n(�) 2 Cð Þ

< sup
( y,x)2R2

f�(y, x)� I W ,�(y, x)g � sup
x2R
fx� I W (x)g

¼ � inf
( y,x)2C3R

fI W ,�(y, x)� xg þ inf
x2R
fI W (x)� xg: (5:2)

Here

I W (x) ¼ inf
1

2

ð
S

d�

d	�
� �2

d	�j�(S) ¼ 0,

ð
S2

W d� d� ¼ x

( )
,

so that the second term in (5.2) becomes

inf
1

2

ð
S

d�

d	�
� �2

d	� �
ð

S2

W d� d�j�(S) ¼ 0

( )
: (5:3)

To apply Varadhan’s lemma with the function �(�, �) we have to check the following moment

condition: for some ª . 1,
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lim sup
n!1

n

b2
n

log E( 	�)�n exp ª
b2

n

n
�(M n(�), M2,2

n (W ))

� �� 	
,1: (5:4)

That (5.4) holds follows from Hölder’s inequality and Lemma 2.12.

Since Id� 2 W is positive definite on L2
0(	�), we have that (5.3) is zero. More explicitly,

the bounded operator defined by

(Id� 2 W )(g) ¼
ð

S

g2(x)d	�(x)�
ð

S2

2 W (x, y)g(x)g(y)d	�(x)d	�(y),

for g 2 L2
0(	�), is positive definite (this operator appears, for example, in (1.4) of Kusuoka

and Tamura 1984). Hence, we have, for some c . 0, that

(Id� 2 W )(g) > c 8g 2 L2
0(	�) : kgkL2( 	�) ¼ 1,

which implies

(Id� 2 W )(g) > c

ð
S

g2(x)d	�(x) 8 g 2 L2
0(	�):

Choose, in particular, � 2M(S) such that �(S) ¼ 0 and d�=d	� 2 L2
0(	�), we have that

(Id� 2 W )
d�

d	�

¼
ð

S

d�

d	�
� �2

(x)d	�(x)�
ð

S2

2 W (x, y)
d�

d	� (x)
d�

d	� (y) d	�(x)d	�(y)

¼
ð

S

d�

d	�
� �2

(x)d	�(x)�
ð

S2

2 W (x, y) d�(x)d�(y)

> c

ð
S

d�

d	�
� �2

(x) d	�(x):

From this we see that the quantity (5.3) must be zero. That the first term in the right-hand

side of (5.2) equals �inf y2C I�(y) is clear. Hence we have the desired upper bound. The

lower bound is obtained in an analogous manner (using the same exponential moment

estimations as in the proof of the upper bound) and we omit the proof.

To see that the proposed rate function is lower semicontinuous, note that I W ,�(y, x),

being a rate function, is lower semicontinuous, while the function x is continuous. Hence

subtracting the latter from the former, lower semicontinuity is maintained.

To see that the proposed rate function is good, consider a fixed level set

y : I�(y) ¼ inf
x2R
fI W ,�(y, x)� xg < Æ

n o
,

where Æ > 0 is fixed. Suppose this set is not compact. There then exists a sequence y n, with

y n !1, such that I�(y n) < Æ (note that we may pick the y n positive as I�(y) ¼ I�(�y)).

Hence, for each n there exists � such that
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1

2

ð
S

d�

d	�
� �2

d	� �
ð

S2

W d� d� < 2Æ (5:5)

and ð
S

�d� ¼ y n:

However, as Id� 2 W is positive definite on L2
0(	�) we have, for some c . 0,

1

2

ð
S

d�

d	�
� �2

d	� �
ð

S2

W d� d� > c

ð
S

d�

d	�
� �2

d	� (5:6)

and, by Hölder’s inequality, we have

1 y n ¼
ð

S

�d�� <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið

S

�2d	�
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið

S

d�

d	� d	�
s

: (5:7)

As y n . 0 we cannot have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ

S
�2d	�

q
¼ 0 and it suffices to note that (5.5), (5.6) and (5.7)

lead to an absurdity. h

The following extension of Proposition 5.1 is also true. We omit the proof as it is quite

similar to that of the previous proposition. Fix �i 2 B(S), i ¼ 1, . . . , d, where d is a

positive integer.

Proposition 5.2. If Condition 1.1 holds and W is symmetric, then the sequence

f(M n(�1), . . . , M n(�d))g1n¼1 satisfies the MDP in Rd with speed n=b2
n and good rate

function

I�1,...,�d
(y) ¼ inf

x2R
fI W ,�1,...,�d

(y, x)� xg,

where

I W ,�1,...,�d
(y, x)¼ inf

1

2

ð
S

d�

d	�
� �2

d	� : �(S)¼ 0,

ð
S2

W d�d�¼ x,

ð
S

�i d�¼ yi, i¼ 1, . . . , d

( )
:

The following theorem now follows from results regarding large deviations for projective

limits due to Dawson and Gärtner: we have in mind here Dembo and Zeitouni (1998,

Theorem 4.6.9).

Theorem 5.3. If Condition 1.1 holds and W is symmetric, then the sequence fM ng1n¼1

satisfies the LDP in M(S) equipped with the strong topology with speed n=b2
n and with good

rate function

I(�) ¼ sup
d2Zþ

sup
f�1,...,�d2B(S)g

I�1,...,�d
(h�1, �i, . . . , h�d , �i), (5:8)

where h�i, �i denotes
Ð

S
�i d�.
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Remark 5.1. Note that Theorem 5.3 provides a proof of Theorem 2.1 modulo the form of the

rate function.

Proof of Theorem 2.1. Given uniqueness of rate functions and Proposition 5.2, it suffices to

show that the relevant upper and lower bounds hold and that I(�) is lower semicontinuous.

By the contraction principle and Corollary 3.2, the MDP holds for the sequence

f(M n, M2,2
n (W ))g1n¼1 under the distribution 	��1 in M(S) 3 R, endowed with the

topology given by the product of the strong topology on M(S) and the usual topology on

R. The good rate function is

I W (�, x) ¼ 1

2

ð
S

d�

d	�
� �2

d	�, �(S) ¼ 0,

ð
S2

W d� d� ¼ x:

For C �M(S) a fixed closed set, define the upper semicontinuous function � by

�(�, x) ¼ x � 2 C,

�1 otherwise:

�
By Varadhan’s lemma (in particular, Dembo and Zeitouni 1998, Lemma 4.3.4, Lemma 4.3.6)

and (5.4) we have

lim sup
n!1

n

b2
n

log Pn
ˆ M n 2 Cð Þ ¼ lim sup

n!1

n

b2
n

log EP n
ˆ

exp
b2

n

n
�(M n, 0)

� �� 	

¼ lim sup
n!1

n

b2
n

log E	� n exp
b2

n

n
� M n,

n

bn

� �2

L2
n(W )

 ! !" #
=Z n

ˆ

¼ lim sup
n!1

n

b2
n

log E	�� n exp
b2

n

n
� M n, M2,2

n (W )
� �� �� 	

=(Z n
ˆ)�

< sup
(�,x)2(S)3R

f�(�, x)� I W (�, x)g � sup
x2R
fx� I W (x)g

¼ � inf
(�,x)2C3R

fI W (�, x)� xg þ inf
x2R
fI W (x)� xg:

Here I W (x) is as in the proof of Proposition 5.1 and inf x2RfI W (x)� xg ¼ 0. The lower

bound is obtained in an analogous manner.

To see that the proposed rate function is lower semicontinuous, note that I W (�, x), a rate

function, is lower semicontinuous and hence, as �x is clearly lower semicontinuous, the

sum of these two functions is also lower semicontinuous. h

Proof of Theorem 2.2. We proceed as in the proof of Theorem 2.1. By Corollary 3.2 and the

contraction principle (see Dembo and Zeitouni 1998, Theorem 4.2.1), the LDP holds for

every � 2 B(S) for

f(M n(�), M2,2
n (W2), M3,2

n (W3), . . . , M m,2
n (W m))g1n¼1
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under the distribution 	��1 in Rm. Again by the contraction principle the LDP holds for

M n(�),
Xm

k¼2

M k,2
n (W k)

 !( )1
n¼1

with good rate function

I W ,�(y, x)

¼ inf
1

2

ð
S

d�

d	�
� �2

d	�j�(S) ¼ 0,
Xm

k¼2

k(k � 1)

2

ð
S k

W k d� d� d(	�)�k�2 ¼ x,

ð
S

�d� ¼ y

( )
:

For C � R a fixed closed set and � given by (5.1), the upper bound is given by

lim sup
n!1

n

b2
n

log Pn
ˆ M n(�) 2 Cð Þ < sup

( y,x)2R2

f�(y, x)� I W ,�(y, x)g � sup
x2R
fx� I W (x)g

¼ � inf
( y,x)2C3R

fI W ,�(y, x)� xg þ inf
x2R
fI W (x)� xg: (5:9)

Here

I W (x) ¼ inf
1

2

ð
S

d�

d	�
� �2

d	�j�(S) ¼ 0,
Xm

k¼2

k(k � 1)

2

ð
S k

W kd� d� ¼ x

( )
:

Analogously to the proof of Proposition 5.1, the second term in (5.9) becomes 0, using the

positive definiteness of Id� ˛. To be in the situation of Lemma 4.3.6 in Dembo and Zeitouni

(1998) for the function �(�, �) we have to check the following moment condition (see Dembo

and Zeitouni 1998 Lemma 4.3.8): for some ª . 1

lim sup
n!1

n

b2
n

log E( 	�)� n exp ª
b2

n

n
� M n(�),

Xm

k¼2

M k,2
n (W k)

 ! !" #
,1:

But this is true by Lemma 2.4. Now we proceed as in the proof of Proposition 5 to obtain the

lower bound and the properties of the rate function. h

6. Applications

6.1. Curie–Weiss model

In the Curie–Weiss model, S ¼ f�1, þ1g, 	 ¼ 1
2
(��1 þ �1) and

ˆ(�) ¼ �̂,h(�) :¼ �h�, xi2 þ hh�, xi,

hence

Pn
ˆ(dX ) ¼ 1

Z n
ˆ

exp �
1

n

Xn

i, j¼1

xixj þ h
Xn

j¼1

xj

( )
d	�n(X );
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� . 0 is called inverse temperature and h . 0 the strength of an external magnetic field.

Define

H(x) ¼ ��x2 � hxþ 1� x

2
log (1� x)þ 1þ x

2
log (1þ x),

if jxj < 1, and +1 otherwise; the rate function of the LDP is given by H(x)� inf x H(x). It is

well known (see, for example, Ellis 1985, Section IV.4) that in the case h ¼ 0 and � , 1
2

or in

the case h 6¼ 0 there is a unique minimizer 	� of H(�) which is non-degenerate. In the case

h ¼ 0 and � . 1
2

there are two non-degenerate minima 	�1 , 	�2 . The case h ¼ 0 and � ¼ 1
2

is

degenerate. In all cases and for any minimum, 	�(1) satisfies the relation

log
	�(1)

1� 	�(1)

 !
¼ 4 �(2	�(1)� 1)þ 2h	�(1),

with 	�(1) ¼ 1
2

for h ¼ 0 and � < 1
2
. For 0 , � , 1

2
and h ¼ 0 in Ellis and Newman (1978)

the central limit theorem is proved:Xn

i¼1

X iffiffiffi
n
p ! N (0, � 2(�))

in distribution with respect to the Curie–Weiss finite-volume Gibbs states with

� 2(�) ¼ (4(1� 2�))�1.

Theorem 2.1 presents a MDP for the Curie–Weiss model. The rate function is

I(x) ¼ 2x2 � 4�x2:

6.2. Diffusion processes with mean-field interaction

6.2.1. McKean type

We now consider an application of Corollary 2.3 to the empirical distribution of the

stochastic differential equation

dX i
n(t, w) ¼ dBi(t, w)þ 1

n

Xn

j¼1

grad�(X i
n(t, w)� X j

n(t, w))dt

X i
n(0, w) ¼ Y i(w), i ¼ 1, . . . , n,

where Bi(t, w), i ¼ 1, 2, . . . , are independent Rd-valued Brownian motions, Y i are i.i.d. Rd-

valued random variables with E[kY1k2] ,1 and � is a rapidly decreasing smooth function

on Rd satisfying �(z) ¼ �(�z), z 2 Rd . With S the Polish space of Rd-valued continuous

functions on [0, T ], T 2 R, denoted by C([0, T ], Rd), it is known (cf. Kusuoka and Tamura

1984; McKean 1967) that, for any bounded continuous function f on S k , k > 1,
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lim
n!1

E[ f (X 1
n(�, w), . . . , X k

n(�, w))] ¼
ð

S k

f (w1, . . . , w k)
Yk

i¼1

R0(dwi):

Here R0 denotes the distribution on S induced by the solution of the following stochastic

differential equation of McKean type:

dX (t, w) ¼ dB1(t, w)þ
ð
Rd

grad�(X (t, w)� z)ut(dz)

� �
dt

X (0, w) ¼ Y 1(w),

where ut(dz) is the probability distribution of X (t, w).

Suppose that 	 is the probability on S induced by Y 1(w)þ B1(t, w), 0 < t < T . Let �n,

n 2 N, be the probability distribution on S n induced by (X 1
n(t, w), . . . , X n

n(t, w)),

0 < t < T . Then by the Cameron–Martin formula one obtains the mean-field character

of the model:

d�n

d	�n
(wn) ¼ exp

1

n

Xn

i, j¼1

ðT

0

grad�(wi(t)� w j(t)) dwi(t)

 

� 1

2n2

Xn

i¼1

ðT

0

��������Xn

j¼1

grad(wi(t)� w j(t))

��������2 dt

!
,

where w n ¼ (w1, . . . , w n) 2 S n and the first integral is an Itô integral.

Theorem 6.1. The sequence of empirical measures fM n(R0)gn>1 satisfies the LDP with

speed n=b2
n and with good convex rate function

I(�) ¼ 1

2

ð
S

d�

dR0

� �2

dR0 � 3

ð
V d� d� dR0,

where

V (x, y, z) :¼ 1

3
fV2(x, y)þ V2(y, z)þ V2(z, x)g þ 1

3
fV3(x, y, z)þ V3(y, z, x)þ V3(z, x, y)g,

V2(x, y) ¼ 1

2
�(x(T )� y(T ))��(x(0)� y(0))�

ðT

0

˜�(x(t)� y(t))dt

( )
,

V3(x, y, z) ¼ � 1

2

ðT

0

grad�(x(t)� y(t)) grad�(x(t)� z(t)) dt:

(

Proof. We apply Corollary 2.3 with m ¼ 3. Condition 1.1 follows from Theorems 3 and 4

and the proof of Theorem 5 in Kusuoka and Tamura (1984). The boundedness is easily
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verified. V even satisfies the conditions assumed in Ben Arous and Brunaud (1989), which

are like (1.4). h

6.2.2. Langevin dynamics with McKean–Vlasov limit

Next we apply the results to the Langevin dynamics of a system of interacting particles

leading to a McKean–Vlasov limit. Let X i
n(t, �) satisfy the system of stochastic differential

equations as in Ben Arous and Brunaud (1989):

dX i
n(t, ø) ¼ dBi

n(t, ø)� =U (X i
n(t, ø)) dt þ 1

n

X
i< j<n

=1V (X i
n(t, ø), X j

n(t, ø)) dt:

Again the (Bi
n)1<i<n are n independent Rd-valued Brownian motions, U : Rd ! Rd is a C2

b

function and V 2 ~��2
�C2

b(Rd , R), where ~��2
� denotes the two-fold projective tensor product of

C2
b(Rd , R). V is assumed to admit the representation

V ¼
ð

C

g(�, �)�2 v(d�)

with (C, v) a compact space and g : Rd 3 C ! R differentiable in its first coordinate for all

� 2 C. It is known that V has such a representation with continuous g; see Ben Arous and

Brunaud (1998, Corollary 1.6). Finally, we assume for the initial law of (X i
n(0, �))1<i<n that

	n
0 ¼ law(fX i

n(0, �)g1<i<n)

¼ Z�1
n exp n1�r

X
1<i1<...<i r

S(xi1 , . . . , xi r
)

 !
d	�n

0 (dx1, . . . , dxn)

with S 2 ~��r
�Cb(Rd , R), r > 2. Denote by �k,n 2 M1(C([0, T ], (Rd)k)) the law of

(X 1
n, . . . , X k

n). The empirical measure of the X i
n converges to Dirac measure concentrated

in the solution of the following SDE. Let Bt denote an Rd-valued Brownian motion,

independent of X 0, and for 	 2 M1(Rd) let

dX t ¼ dBt � =U (X t) dt þ
ð
=1V (X t, y) ut(dy) dt

with ut the law of X t, u0 ¼ 	. Then it is known that under our assumptions the process X t

exists and is well defined. It is the McKean–Vlasov nonlinear diffusion; see Funaki (1984).

Let PT (	) 2 M1(C([0, T ], Rd)) ¼: S denote its law. We are now ready to state the result for

this model:

Theorem 6.2. Let s ¼ r _ 3. The sequence of empirical measures fM n(PT (	))gn>1 satisfies

the LDP with speed n=b2
n and with good convex rate function

I(�) ¼ 1

2

ð
S

d�

dPT (	)

� �2

dPT (	)� s(s� 1)

2

ð
S s

ª0,T d� d� d(PT (	))�s�2,
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where ª0,T : Ss ! R is a symmetric function defined by (2.5) in Ben Arous and Brunaud

(1989) (depending on V and S).

Proof. By calculations in Ben Arous and Brunaud (1989) we see that the law �n,n is of mean-

field Gibbs type with respect to PT (	)�n. The potential function ª0,T is in the space ~��s
�Cb(S)

(see Ben Arous and Brunaud 1989, (3.6) and Corollary 3.21). That ª0,T possesses a unique

non-degenerate minimizer of the LDP rate function which is PT (	) is proved in Ben Arous

and Brunaud (1989, Corollary 3.10 and Theorem 2.7). h
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