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The log-concave projection is an operator that maps a d-dimensional distribution P to an approximating log-
concave density. It is known that, with suitable metrics on the underlying spaces, this projection is continuous, but
not uniformly continuous. In this work, we prove a local uniform continuity result for log-concave projection – in
particular, establishing that this map is locally Hölder-(1/4) continuous. A matching lower bound verifies that this
exponent cannot be improved. We also examine the implications of this continuity result for the empirical setting
– given a sample drawn from a distribution P , we bound the squared Hellinger distance between the log-concave
projection of the empirical distribution of the sample, and the log-concave projection of P . In particular, this yields
interesting statistical results for the misspecified setting, where P is not itself log-concave.

Keywords: Hellinger distance; Hölder continuity; log-concavity; maximum likelihood estimation; Wasserstein
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1. Introduction

In nonparametric statistics and inference, many problems are formulated in terms of shape constraints.
Examples include isotonic regression and convex regression (for supervised learning problems, placing
constraints on the shape of the regression function relating the response to the covariates), and mono-
tone or log-concave density estimation (for unsupervised learning problems, placing constraints on a
distribution that is the target we wish to estimate).

Among these examples, log-concave density estimation is especially challenging in that it cannot be
formulated as an L2-projection onto a convex constraint set. Remarkably, projection onto the space of
log-concave densities can still be uniquely defined, but unlike a convex projection, this operation is not
uniformly continuous (Dümbgen, Samworth and Schuhmacher [15]) and its mathematical and statisti-
cal properties are therefore difficult to analyze. In this work, we examine the continuity properties of
log-concave projection more closely to establish locally uniform convergence, and study the statistical
implications of these results.

1.1. Background

We begin by establishing some notation used throughout the paper, and then give background on log-
concave projection and its known properties.
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1.1.1. Notation

Throughout the paper, ‖·‖ denotes the usual Euclidean norm. For a distribution P , we write EP [·]
and PP {·} to denote expectation or probability taken with respect to a random variable or vector X

drawn from distribution P , and μP := EP [X] denotes its mean. We will analogously write Ef [·],
Pf {·}, and μf for a density f . We say a distribution, density, or random vector is isotropic if it has
zero mean and identity covariance matrix. Given x ∈ R

d and r > 0, we write Bd(x, r) := {y ∈ R
d :

‖y − x‖ ≤ r} for the closed Euclidean ball of radius r centered at x, Bd(r) = Bd(0, r) for the closed
Euclidean ball of radius r centered at zero, and Sd−1(r) := {y ∈R

d : ‖y‖ = r} for the sphere of radius r

centered at zero. For the unit ball and unit sphere we write Bd = Bd(1) and Sd−1 = Sd−1(1). For x ∈R,
(x)+ denotes max{x,0}, and (x)− denotes max{−x,0}. For independent observations X1, . . . ,Xn ∈
R

d , we will write P̂n to denote the empirical distribution. We write Lebd for Lebesgue measure on
R

d .
The L1-Wasserstein distance dW is defined for two distributions P , Q on R

d as

dW(P,Q) := inf

{
E

P̃

[‖X − Y‖] : Distributions P̃ on (X,Y ) ∈R
d ×R

d

such that marginally X ∼ P and Y ∼ Q

}
∈ [0,+∞].

For any distributions P , Q on R
d , this infimum is attained for some coupling P̃ (Villani [50], Theo-

rem 4.1). We will also use the Hellinger distance dH, defined for densities f , g on R
d as

d2
H(f, g) :=

∫
Rd

(√
f (x) −√g(x)

)2
dx.

The Hellinger distance is known to satisfy 0 ≤ d2
H(f, g) ≤ min{2,dKL(f ‖ g)} for any densities f ,

g, where dKL(f ‖ g) := Ef [log(f (X)/g(X))] is the Kullback–Leibler divergence. Both dW and dH
satisfy the triangle inequality, while dKL does not.

1.1.2. The log-concave projection

For any d ∈N, let Pd denote the set of probability distributions P on R
d satisfying EP [‖X‖] < ∞ and

PP {X ∈ H } < 1 for every hyperplane H ⊆Rd , that is, P does not place all its mass in any hyperplane.
Further, let Fd denote the set of all upper semi-continuous, log-concave densities on R

d . Then, by
Dümbgen, Samworth and Schuhmacher [15], Theorem 2.2, there exists a well-defined projection ψ∗ :
Pd →Fd , given by

ψ∗(P ) := argmax
f ∈Fd

EP

[
logf (X)

]
.

When P ∈ Pd has a (Lebesgue) density fP satisfying EfP
[| logfP (X)|] < ∞, we can see that ψ∗(P )

is the (unique) minimizer over f ∈ Fd of the Kullback–Leibler divergence from fP to f – since the KL
divergence acts as a sort of distance, we can think of f = ψ∗(P ) as the “closest” log-concave density
to fP , which explains the use of the terminology ‘projection’ to describe this map. In particular, if fP

itself is log-concave, then ψ∗(P ) = fP .
To see the gain of defining ψ∗ more broadly (i.e., on all distributions P ∈ Pd , rather than only on

distributions with densities), consider the empirical setting, where P̂n is the empirical distribution of
a sample. Then the result of Dümbgen, Samworth and Schuhmacher [15], Theorem 2.2, tells us that,
provided the convex hull of the data is d-dimensional, there exists a unique log-concave maximum
likelihood estimator. We can therefore carry out log-concave density estimation via maximum likeli-
hood in much the same way as if the class Fd were a standard parametric model. To understand the
estimation properties of this procedure, suppose we metrise Pd with the L1-Wasserstein distance dW,
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and metrise Fd with the Hellinger distance dH. Then, by Dümbgen, Samworth and Schuhmacher [15],
Theorem 2.15, the map ψ∗ is continuous. For the empirical distribution P̂n obtained by drawing a

sample X1, . . . ,Xn
iid∼ P , we therefore have

dH
(
ψ∗(P̂n),ψ

∗(P )
) a.s.→ 0.

(This follows from the above continuity result because, by Varadarajan’s theorem (Dudley [13], Theo-
rem 11.4.1) and the strong law of large numbers, it holds that dW(P̂n,P )

a.s.→ 0.) Thus, if P ∈ Pd has a
log-concave density, then the log-concave maximum likelihood estimator is strongly consistent – and
moreover, even if the log-concavity is misspecified, then the estimator ψ∗(P̂n) still converges to the
log-concave projection ψ∗(P ) of P . In this sense, then, the log-concave maximum likelihood estimator
converges to the closest element of Fd to P , so can be regarded as robust to misspecification.

Despite these positive results establishing continuity and consistency of ψ∗, however, the situation
appears much less promising when it comes to obtaining rates of convergence (e.g., via a Lipschitz-
type property of the map). Indeed, we cannot hope for Lipschitz continuity of this map, since the
review article by Samworth [39] gives the following example to show that ψ∗ is not even uniformly
continuous: let P (n) = Unif[−1/n,1/n] and Q(n) = Unif[−1/n2,1/n2]. Then dW(P (n),Q(n)) → 0,
but since P (n) and Q(n) have log-concave densities f (n) := n

2 1[−1/n,1/n] and g(n) := n2

2 1[−1/n2,1/n2]
respectively, we deduce that

dH
(
ψ∗(P (n)

)
,ψ∗(Q(n)

))= dH
(
f (n), g(n)

)
� 0. (1)

Summary of contributions. While we have seen that log-concave projection does not satisfy uniform
continuity, a natural question is whether it may be possible to place further restrictions on the class
Pd to obtain a result of this type. Moreover, from the statistical point of view, we would like to find
a uniform rate of convergence for dH(ψ∗(P̂n),ψ

∗(P )), where P̂n is the empirical distribution of a
sample of size n drawn from P ∈ Pd , which again might require stronger assumptions than simply
P ∈ Pd .

The first main result of this paper (Theorem 2) reveals that the metric space map ψ∗ : (Pd , dW) →
(Fd ,dH) is locally Hölder-(1/4) continuous, which establishes a precise understanding of the continu-
ity properties of log-concave projection. Theorem 4 establishes a matching lower bound, revealing that
the exponent 1/4 cannot be improved. Next, we specialise to the empirical setting, proving a bound
on EP [d2

H(ψ∗(P̂n),ψ
∗(P ))] in Theorem 5. For d ≥ 2, this result is a straightforward consequence of

combining our main result in Theorem 2 with the recent work of Lei [34], which bounds dW(P̂n,P ) in
expectation, while the case d = 1 requires a completely different approach. To the best of our knowl-
edge, this work provides the first understanding of the range of possible rates of convergence of the
log-concave maximum likelihood estimator in the misspecified setting.

1.2. Outline of paper

The remainder of the paper is organized as follows. In Section 2, we present our main results, estab-
lishing the local Hölder continuity of log-concave projection, and examining the empirical setting, as
described above. We review prior work on log-concave projection and related problems in Section 3.
The proofs of our main results are presented in Section 4, with technical details deferred to the Ap-
pendix.
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2. Main results

As mentioned in Section 1, Dümbgen, Samworth and Schuhmacher [15], Theorem 2.15, show that the
log-concave projection operator ψ∗ satisfies continuity with respect to appropriate metrics:

The log-concave projection ψ∗ : (Pd ,dW) → (Fd ,dH) is a continuous map. (2)

Our main results examine the continuity of the log-concave projection operator ψ∗ more closely, and
establish local uniform continuity results. To do this, we first introduce, for any distribution P on R

d

with EP [‖X‖] < ∞, the quantity

εP := inf
u∈Sd−1

EP

[∣∣u�(X − μP )
∣∣].

The quantity εP can be thought of as a robust analogue of the minimum eigenvalue of the covariance
matrix of the distribution P (note that its definition does not require P to have a finite second moment).
We can also interpret εP as measuring the extent to which P avoids placing all its mass on a single
hyperplane.

First, we verify that εP is positive for all P ∈ Pd , and is Lipschitz with respect to the Wasserstein
distance.

Proposition 1. We have εP > 0 for any P ∈ Pd . Furthermore, |εP − εQ| ≤ 2dW(P,Q) for any distri-
butions P , Q on R

d with EP [‖X‖],EQ[‖X‖] < ∞.

We now present our first main result, which shows that εP allows for a more detailed analysis of the
continuity of the map ψ∗.

Theorem 2. For any d ≥ 1 and P,Q ∈ Pd ,

dH
(
ψ∗(P ),ψ∗(Q)

)≤ Cd ·
[

dW(P,Q)

max{εP , εQ}
]1/4

,

where Cd > 0 depends only on d .

This upper bound immediately implies the continuity result (2), but more importantly, to the best of
our knowledge, this is the first general, quantitative statement about the local continuity of log-concave
projection. Another consequence is that, when d = 1, the uniform continuity counterexample in (1) is
in some sense canonical: if (P (n)) and (Q(n)) are sequences in P1 satisfying dW(P (n),Q(n)) → 0 and
lim infn→∞ max{εP (n) , εQ(n)} > 0, then dH(ψ∗(P (n)),ψ∗(Q(n))) → 0.

2.1. Extension to affine transformations

By Dümbgen, Samworth and Schuhmacher [15], Remark 2.4, log-concave projection commutes with
affine transformations; that is, if ψ∗(P ) = f then ψ∗(A ◦ P) = A ◦ f for any invertible matrix A,
where A ◦ P denotes the distribution obtained by drawing X ∼ P and returning AX, and similarly
A ◦ f denotes the density of the random variable obtained by drawing X according to density f and
returning AX.

Turning to the terms appearing in Theorem 2, the Hellinger distance is invariant to affine transfor-
mations, but the terms on the right-hand side – namely, dW(P,Q) and max{εP , εQ} – are not. By
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considering affine transformations, we obtain the following corollary to Theorem 2, which we state
without further proof.

Corollary 3. For any d ≥ 1 and P,Q ∈ Pd ,

dH
(
ψ∗(P ),ψ∗(Q)

)≤ Cd · inf
A∈Rd×d ,rank(A)=d

[
dW(A ◦ P,A ◦ Q)

max{εA◦P , εA◦Q}
]1/4

,

where Cd > 0 depends only on d .

2.2. A matching lower bound

To see that our main result in Theorem 2 is optimal in terms of its dependence on the Wasserstein dis-
tance dW(P,Q) and on the terms εP , εQ, we now construct an explicit example to provide a matching
lower bound.

Theorem 4. Fix any d ≥ 1, ε > 0, and δ > 0. Then there exist distributions P,Q ∈ Pd with εP , εQ ≥ ε

and dW(P,Q) ≤ δ, such that

dH
(
ψ∗(P ),ψ∗(Q)

)≥ cd · min
{
1, (δ/ε)1/4},

where cd > 0 depends only on dimension d .

The theorem will be proved using the following construction: Let P ∈ Pd be the uniform distribution
on the sphere Sd−1(ρ), where ρ ∝ ε, and let Q ∈ Pd be the mixture distribution that, with probability
β ∝ δ/ε, draws uniformly from Sd−1(2ρ), and with probability 1 − β draws uniformly from Sd−1(ρ).
Then dW(P,Q) = ρβ ∝ δ, and we will see that dH(ψ∗(P ),ψ∗(Q)) ∝ (δ/ε)1/4, as desired.

2.3. Bounds for empirical processes

Now let X1, . . . ,Xn
iid∼ P ∈Pd , with corresponding empirical distribution function P̂n. Under an addi-

tional moment assumption on P , we consider the problem of bounding d2
H(ψ∗(P̂n),ψ

∗(P )). However,
to be fully precise, we need to consider the possibility that ψ∗(P̂n) may not be defined – specifically,
if P places positive probability on some hyperplane H ⊆ Rd , then it is possible that the empirical
distribution P̂n may place all its mass on this hyperplane, in which case we have P̂n /∈ Pd and ψ∗(P̂n)

is not defined. In a slight abuse of notation, for such a case we will interpret d2
H(ψ∗(P̂n),ψ

∗(P )) as
the maximum possible squared Hellinger distance (i.e., 2).

Theorem 5. Fix any P ∈Pd , and assume that

EP

[‖X‖q
]1/q ≤ Mq

for some q > 1. Let X1, . . . ,Xn
iid∼ P for some n ≥ 2, and let P̂n denote the corresponding empirical

distribution. Then

E
[
d2

H

(
ψ∗(P̂n),ψ

∗(P )
)]≤ Cd,q ·

√
Mq

εP

· log3/2 n

n
min{ 1

2d
, 1

2 − 1
2q

} ,

where Cd,q > 0 depends only on d and q .
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Proof of Theorem 5. First, we consider the case d ≥ 2. The result will follow by combining the bound
(4), obtained from Theorem 2, together with a bound on the expected Wasserstein distance between P̂n

and P (Lei [34]). Specifically, Lei [34], Theorem 3.1, establishes that1

E
[
dW(P̂n,P )

]≤ C̃qMq · log2 n

n
min{ 1

2 , 1
d
,1− 1

q
} (3)

for some C̃q > 0 depending only on q . Furthermore, on the event that P̂n ∈Pd (i.e., P̂n does not place
all its mass in any hyperplane), then by applying Theorem 2 with Q = P̂n we have

d2
H

(
ψ∗(P̂n),ψ

∗(P )
)≤ C2

d · d1/2
W (P̂n,P )

max{ε1/2
P , ε

1/2
P̂n

}
.

If instead P̂n does place all its mass in a hyperplane and so ψ∗(P̂n) is undefined, then in this case we
have εP̂n

= 0, and so by Proposition 1, 2dW(P̂n,P ) ≥ |εP̂n
− εP | = εP . Recalling from above that we

interpret d2
H(ψ∗(P̂n),ψ

∗(P )) as equal to 2 in the case where P̂n /∈Pd , we can see that in either case, it
holds that

d2
H

(
ψ∗(P̂n),ψ

∗(P )
)≤ max

{
C2

d ,
√

8
} · d1/2

W (P̂n,P )

ε
1/2
P

. (4)

Now, taking the expected value and combining the bounds (3) and (4), we obtain

E
[
d2

H

(
ψ∗(P̂n),ψ

∗(P )
)]≤ E

[
max

{
C2

d ,
√

8
} · d1/2

W (P̂n,P )

ε
1/2
P

]

≤ max
{
C2

d ,
√

8
} ·
[
E[dW(P̂n,P )]

εP

]1/2

≤ max
{
C2

d ,
√

8
}√

C̃q ·
√

Mq

εP

· logn

n
min{ 1

4 , 1
2d

, 1
2 − 1

2q
} .

Choosing Cd,q = max{C2
d ,

√
8} ·
√

C̃q , this proves the desired result for the case d ≥ 2.
For the case d = 1, the result cannot be proved with the same argument, as the exponent on n in the

bound above is at best 1/4, which does not lead to the desired scaling if q > 2. We establish the desired
bound for d = 1 in Section 4.4, using a more technical argument. �

We remark that, if X is additionally assumed to be subexponential, then Lei [34], Corollary 5.2,
establishes exponential tail bounds for dW(P̂n,P ); under this stronger assumption, the results of The-
orem 5 could then be strengthened to give a tail bound for d2

H(ψ∗(P̂n),ψ
∗(P )), in place of the bound

on expected value.

1In fact, Lei [34], Theorem 3.1, shows that the log2 n term may be reduced to (logn)1{d=1,q=2} + (logn)1{d=2,q>2} +
(log2 n)1{d=2,q=2} + (logn)1{d≥3,q=d/(d−1)} . Since poly-logarithmic factors are not our primary concern in this work, how-
ever, we will present simpler bounds based on (3).
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2.3.1. Lower bounds for the empirical setting

Our final main result studies the optimality of the power of n appearing in Theorem 5.

Theorem 6. For any d ≥ 1 and q > 1, there exist ε∗
d , cd > 0, depending only on d , such that

sup
P∈Pd :EP [‖X‖q ]≤1,εP ≥ε∗

d

E
[
d2

H

(
ψ∗(P̂n),ψ

∗(P )
)]≥ cd · n−min{ 2

d+1 , 1
2 − 1

2q
}
.

Ignoring a logarithmic factor in n, the first term, namely n− 2
d+1 , is the known minimax rate for

any estimator under the well-specified case where P is itself log-concave, for any d ≥ 2 (Kim and
Samworth [31], Kur, Dagan and Rakhlin [33]). The second term is a new result and will be proved via
a misspecified construction where P is not log-concave: the distribution is given by X = R · U , where
U is drawn uniformly from the unit sphere Sd−1, while the radius R is drawn independently with

R =
{

1/2, with probability 1 − 1/2n,

n1/q, with probability 1/2n.

The intuition is that, with positive probability, the empirical distribution P̂n (and, therefore, its log-
concave projection ψ∗(P̂n)), is supported on the ball of radius 1/2; on the other hand, we will see in

the proof that ψ∗(P ) places ∼ n
− 1

2 + 1
2q mass outside this ball, leading to a lower bound on the Hellinger

distance between these two log-concave projections.
A consequence of this last result in dimension d = 1 is that rates of convergence in log-concave

density estimation can be much slower in the misspecified setting, with a minimax rate of n−1/2 at
best, as compared to the well-specified setting when P is assumed to have a log-concave density,
where the corresponding rate is n−4/5 (Kim and Samworth [31]).

2.3.2. A gap for dimension d ≥ 2

Comparing the lower bound established in Theorem 6 with the upper bound given in Theorem 5, we see

that for the case d = 1 the two bounds match, as they both scale as n
− 1

2 + 1
2q (ignoring poly-logarithmic

factors). For d ≥ 2, however, there is a gap – for sufficiently large q (i.e., a sufficiently strong moment

condition), the upper bound scales as n− 1
2d (up to poly-logarithmic factors) while the lower bound has

the faster rate n− 2
d+1 . We also remark that the optimal dependence of the minimax rate on d remains

unknown as well.

3. Relationship with prior work

Log-concave density estimation is a central problem within the field of nonparametric inference un-
der shape constraints. Entry points to the field include the book by Groeneboom and Jongbloed [22],
as well as the 2018 special issue of the journal Statistical Science (Samworth and Sen [40]). Other
important shape-constrained problems that could benefit from the perspective taken in this work in-
clude decreasing density estimation (Grenander [20], Prakasa Rao [38], Groeneboom [21], Birgé [4],
Jankowski [29]), isotonic regression (Barlow et al. [2], Zhang [56], Chatterjee, Guntuboyina and Sen
[7], Durot and Lopuhaä [16], Bellec [3], Yang and Barber [55], Han et al. [25]) and convex regres-
sion (Hildreth [28], Seijo and Sen [44], Cai and Low [5], Guntuboyina and Sen [23], Han and Wellner
[26], Fang and Guntuboyina [17]), among many others. In these cases, the analysis is likely to be more
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straightforward, since the canonical least squares/maximum likelihood estimator can be characterised
as an L2-projection onto a convex set. By contrast, the class Fd is not convex, and the Kullback–Leibler
projection ψ∗ is considerably more involved.

Early work on log-concave density estimation includes Walther [52], Pal, Woodroofe and Meyer
[36], Dümbgen and Rufibach [14], Walther [53], Cule, Samworth and Stewart [11], Cule and Samworth
[10], Schuhmacher, Hüsler and Dümbgen [43], Samworth and Yuan [41] and Chen and Samworth [8].
Sometimes, the class is considered as a special case of the class of s-concave densities (Koenker and
Mizera [32], Seregin and Wellner [45], Han and Wellner [27], Doss and Wellner [12], Han [24]). For
the case of correct model specification, where P has density fP ∈ Fd and f̂n := ψ∗(P̂n), it is now
known (Kim and Samworth [31], Kur, Dagan and Rakhlin [33]) that

sup
fP ∈Fd

E
[
d2

H(f̂n, fP )
]≤ Kd ·

{
n−4/5 when d = 1

n−2/(d+1) logn when d ≥ 2,

where Kd > 0 depends only on d , and that this risk bound is minimax optimal (up to the logarithmic
factor when d ≥ 2). See also Carpenter et al. [6] for an earlier result in the case d ≥ 4, and Xu and
Samworth [54] for an alternative approach to high-dimensional log-concave density estimation that
seeks to evade the curse of dimensionality in the additional presence of symmetry constraints. It is
further known that when d ≤ 3, the log-concave maximum likelihood estimator can adapt to certain
subclasses of log-concave densities, including log-concave densities whose logarithms are piecewise
affine (Kim, Guntuboyina and Samworth [30], Feng et al. [18]). Although these recent works provide
a relatively complete picture of the behaviour of the log-concave maximum likelihood estimator when
the true distribution has a log-concave density, there is almost no prior work on risk bounds under model
misspecification. The only exception of which we are aware is Kim, Guntuboyina and Samworth [30],
Theorem 1, which considers a univariate case where the true distribution has a density that is very close
to log-affine on its support.

One feature that distinguishes our contributions from earlier work on rates of convergence in log-
concave density estimation in the correctly specified setting is that our arguments avoid entirely no-
tions of bracketing entropy, as well as empirical process arguments that control the behaviour of M-
estimators in terms of the entropy of a relevant function class (e.g., van der Vaart and Wellner [49],
van de Geer [48]). It turns out that, for non-convex classes of densities, these ideas are not well suited
to the misspecified setting.2 Instead, our main tool is a detailed and delicate analysis of the Lipschitz
approximations to concave functions introduced in Dümbgen, Samworth and Schuhmacher [15]. In
their original usage, these were employed in conjunction with asymptotic results such as Skorokhod’s
representation theorem to derive the consistency and robustness results described above. By contrast,
our analysis facilitates the direct inequality established in Theorem 2.

Another role of this work is to advocate for the benefits of regarding an estimator as a function of
the empirical distribution, as opposed to the more conventional view where it is seen as a function on
the sample space. The empirical distribution P̂n of a sample X1, . . . ,Xn encodes all of the information
in the data when we regard it as a multi-set {X1, . . . ,Xn}, that is, when we discard information in the
ordering of the indices. It follows that any statistic θ̂n = θ̂n(X1, . . . ,Xn) that is invariant to permuta-
tion of its arguments can be thought of as a functional θ(P̂n) of the empirical distribution. Frequently,
the definition of θ can be extended to a more general class of distributions P , and we may regard θ

2See Patilea [37], Proposition 4.1, for applications of entropy methods to studying rates of convergence of maximum likelihood
estimators for convex classes of densities. However, the class of densities f that are log-concave is not a convex class; if we
instead consider the class of concave log-densities (i.e., logf , where f is a log-concave density), then this class is also not
convex, because of the need for the exponentials of these log-densities to integrate to 1.
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as a projection from P onto a model, or parameter space, �. This perspective, which was pioneered
by Richard von Mises in the 1940s (von Mises [51]) and described in Serfling [46], Chapter 6, offers
many advantages to the statistician. In particular, once the analytical properties (e.g., continuity, differ-
entiability) of θ are understood, key statistical properties of the estimator (consistency, robustness to
misspecification, rates of convergence), can often be deduced as simple corollaries of basic facts about
the convergence of empirical distributions.

4. Proofs of upper bounds

In this section, we prove Theorem 2 (for arbitrary dimension d), and complete the proof of Theorem 5
(for the remaining case of dimension d = 1). In Section 4.1, we review some known properties of
log-concave projection, and in Section 4.2 we establish a key lemma that will be used in both proofs.
In Section 4.3, we complete the proof of Theorem 2, and in Section 4.4 we complete the proof of
Theorem 5 for the remaining case d = 1.

4.1. Background on log-concave projection

We begin by reviewing some known properties of log-concave projection, and computing some new
bounds.

4.1.1. Moment inequalities

The log-concave projection ψ∗ is known to satisfy a useful convex ordering property (Dümbgen, Sam-
worth and Schuhmacher [15], Eqn. (3)): for any P ∈Pd and for f = ψ∗(P ),

Ef

[
h(X)

]≤ EP

[
h(X)

]
for any convex function h :Rd → (−∞,∞]. (5)

In particular, this implies that

Ef

[∣∣v�(X − μP )
∣∣]≤ EP

[∣∣v�(X − μP )
∣∣] for all v ∈R

d .

The following lemma establishes that, up to a constant, this inequality is tight for all vectors v ∈ R
d .

Lemma 7. Fix any P ∈ Pd , and let f = ψ∗(P ). Then

Ef

[∣∣v�(X − μP )
∣∣]≥ cd ·EP

[∣∣v�(X − μP )
∣∣] for all v ∈ R

d ,

where cd ∈ (0,1] depends only on d .

By Dümbgen, Samworth and Schuhmacher [15], Eqn. (4), log-concave projection preserves the
mean, that is,

μP = EP [X] = Ef [X].
We can also define the covariance matrix 	 = Covf (X), which is finite (since all moments of a log-
concave distribution are finite) and strictly positive definite. Lemma 7 immediately implies bounds on
the eigenvalues of 	.
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Corollary 8. Fix any P ∈ Pd , let f = ψ∗(P ), and let 	 = Covf (X) be the covariance matrix of the
distribution with density f . Then for all v ∈Rd ,

c2
d

{
EP

[∣∣v�(X − μP )
∣∣]}2 ≤ v�	v ≤ 16

{
EP

[∣∣v�(X − μP )
∣∣]}2

,

where cd ∈ (0,1] is taken from Lemma 7. In particular, this implies that

λmin(	) ≥ (cdεP )2,

where λmin(	) denotes the smallest eigenvalue of 	.

Proof of Corollary 8. First, for the lower bound, by Lemma 7 and Cauchy–Schwarz,

c2
d

{
EP

[∣∣v�(X − μP )
∣∣]}2 ≤ {Ef

[∣∣v�(X − μP )
∣∣]}2 ≤ Ef

[∣∣v�(X − μP )
∣∣2]= v�	v.

Next, for the upper bound,

v�	v = Ef

[∣∣v�(X − μP )
∣∣2]≤ 16

{
Ef

[∣∣v�(X − μP )
∣∣]}2 ≤ 16

{
EP

[∣∣v�(X − μP )
∣∣]}2

,

where the first inequality is due to Lovász and Vempala [35], Theorem 5.22, while the second is by (5)
(Dümbgen, Samworth and Schuhmacher [15], Eqn. (3)). �

4.1.2. A lower bound on a ball

Next we show that for any P , its log-concave projection f = ψ∗(P ) is lower bounded on a ball of
radius of order εP .

Lemma 9. Fix any P ∈ Pd , and let f = ψ∗(P ). Then there exist bd, rd ∈ (0,1], depending only on d ,
such that

f (x) ≥ bd · sup
x′∈Rd

f
(
x′) for all x ∈ Bd(μP , rdεP ).

Proof of Lemma 9. Let 	 = Covf (X), and define the isotropic, log-concave density g(x) =
f (	1/2x + μP )det1/2(	). By Lovász and Vempala [35], Theorem 5.14(a) and (b),

inf
x:‖x‖≤1/9

g(x) ≥ bd sup
x∈Rd

g(x),

where bd ∈ (0,1] depends only on d . This immediately implies that

f (x) ≥ bd sup
x′∈Rd

f
(
x′) for all x ∈R

d with
∥∥	−1/2(x − μP )

∥∥≤ 1/9.

But ‖	−1/2(x − μP )‖ ≤ λ
−1/2
min (	)‖x − μP ‖ ≤ ‖x − μP ‖/(cdεP ) by Corollary 8, so the result holds

with rd = cd/9. �

4.2. Key lemma: The Lipschitz majorization

Let

�d :=
{
φ : Rd → [−∞,∞) : φ is a proper concave, upper semi-continuous function,

and φ(x) → −∞ as ‖x‖ → ∞
}
,
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and define the function φ∗ : Pd → �d that maps a distribution P to the log-density φ = φ∗(P ) given
by φ(x) = log[ψ∗(P )](x). Dümbgen, Samworth and Schuhmacher [15], Theorem 2.2, establishes that
the log-density φ = φ∗(P ) maximizes 
(φ,P ) := EP [φ(X)]−∫

Rd eφ(x) dx +1 over �d . We now show
that this maximum can be nearly attained by a Lipschitz function. In particular, for any φ ∈ �d and
any L > 0, define its L-Lipschitz majorization φL :Rd → R by

φL(x) := sup
y∈Rd

{
φ(y) − L‖x − y‖}. (6)

It can easily be verified that this function is concave, L-Lipschitz, and satisfies φL(x) ≥ φ(x) for all x ∈
R

d . Furthermore, it holds that
∫
Rd eφL(x) dx < ∞ (this follows from the fact that there exist constants

a ∈R, b > 0 such that φ(y) ≤ a −b‖y‖ for all y ∈R
d (Dümbgen, Samworth and Schuhmacher [15])),

and moreover
∫
Rd eφL(x) dx > 0.

Next we normalize to produce a log-density. For any φ ∈ �d , we define

φ̃L(x) := φL(x) − log

(∫
Rd

eφL(x) dx

)
. (7)

The following result proves that, if φ = φ∗(P ), then for L sufficiently large, φ̃L ∈ �d is nearly
optimal for P (in the sense of maximizing 
(·,P )).

Lemma 10. Fix any P ∈ Pd , let φ = φ∗(P ), and let φL and φ̃L be defined as in (6) and (7). Then for
any L ≥ 2d

rdεP
,



(
φ̃L,P

)≥ 

(
φL,P

)≥ 
(φ,P ) − 4d

LbdrdεP

,

where rd , bd ∈ (0,1] are taken from Lemma 9. In particular, this implies that

EP

[
φ̃L(X)

]≥ EP

[
φ(X)

]− 4d

LbdrdεP

.

4.2.1. Bounding the Hellinger distance

Now we apply Lemma 10 to the problem of bounding Hellinger distance.

Corollary 11. Fix any P,Q ∈ Pd , and define ε = min{εP , εQ} > 0. Let φP = φ∗(P ) and φQ =
φ∗(Q), and let fP = ψ∗(P ) and fQ = ψ∗(Q) be the corresponding density functions. Let φL

P and
φL

Q be the L-Lipschitz majorizations of φP and φQ, respectively, as defined in (6), for some L ≥ 2d
rdε

,
where rd ∈ (0,1] is taken from Lemma 9. Then

d2
H(fP ,fQ) ≤ 16d

Lbdrdε
+ (EP

[
φL

P (X)
]−EQ

[
φL

P (X)
])+ (EQ

[
φL

Q(X)
]−EP

[
φL

Q(X)
])

,

where bd ∈ (0,1] is taken from Lemma 9.

Proof of Corollary 11. Let φ̃L
P , φ̃L

Q be defined as in (7), and let f̃ L
P , f̃ L

Q be the corresponding densities,

that is, f̃ L
P (x) = eφ̃L

P (x) and similarly for f̃ L
Q . We first calculate

dKL
(
fP ‖ f̃ L

P

)= EfP

[
φP (X) − φ̃L

P (X)
]≤ EP

[
φP (X) − φ̃L

P (X)
]
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and

dKL
(
fP ‖ f̃ L

Q

)= EfP

[
φP (X) − φ̃L

Q(X)
]≤ EP

[
φP (X) − φ̃L

Q(X)
]
,

where the inequalities hold by Dümbgen, Samworth and Schuhmacher [15], Remark 2.3. The same
bounds hold with the roles of P and Q reversed. Furthermore, by the triangle inequality,

d2
H(fP ,fQ) = 1

2
d2

H(fP ,fQ) + 1

2
d2

H(fP ,fQ)

≤ 1

2

{
dH
(
fP , f̃ L

P

)+ dH
(
fQ, f̃ L

P

)}2 + 1

2

{
dH
(
fP , f̃ L

Q

)+ dH
(
fQ, f̃ L

Q

)}2

≤ d2
H

(
fP , f̃ L

P

)+ d2
H

(
fQ, f̃ L

P

)+ d2
H

(
fP , f̃ L

Q

)+ d2
H

(
fQ, f̃ L

Q

)
≤ dKL

(
fP ‖ f̃ L

P

)+ dKL
(
fQ ‖ f̃ L

P

)+ dKL
(
fP ‖ f̃ L

Q

)+ dKL
(
fQ ‖ f̃ L

Q

)
,

where the last step holds by the standard inequality relating KL divergence with Hellinger distance
(i.e., d2

H ≤ dKL). Combining all these calculations, and then rearranging terms, we see that3

d2
H(fP ,fQ) ≤ EP

[
φP (X) − φ̃L

P (X)
]+EQ

[
φQ(X) − φ̃L

P (X)
]

+EP

[
φP (X) − φ̃L

Q(X)
]+EQ

[
φQ(X) − φ̃L

Q(X)
]

= 2
(
EP

[
φP (X) − φ̃L

P (X)
]+EQ

[
φQ(X) − φ̃L

Q(X)
])

+ (EP

[
φ̃L

P (X)
]−EQ

[
φ̃L

P (X)
])+ (EQ

[
φ̃L

Q(X)
]−EP

[
φ̃L

Q(X)
])

= 2
(
EP

[
φP (X) − φ̃L

P (X)
]+EQ

[
φQ(X) − φ̃L

Q(X)
])

+ (EP

[
φL

P (X)
]−EQ

[
φL

P (X)
])+ (EQ

[
φL

Q(X)
]−EP

[
φL

Q(X)
])

,

where the last step holds since φ̃L
P , φ̃L

Q are simply shifts of the functions φL
P , φL

Q, respectively. Finally,
applying Lemma 10 concludes the proof. �

4.3. Completing the proof of Theorem 2

We will now apply Corollary 11 to prove Theorem 2, bounding d2
H(fP ,fQ) in terms of the Wasserstein

distance. Define

L =
√

8d

rdbd min{εP , εQ}dW(P,Q)
,

where rd , bd ∈ (0,1] are taken from Lemma 9. Take a coupling (X,Y ) of d-dimensional random vec-
tors with marginal distributions X ∼ P and Y ∼ Q, such that E[‖X − Y‖] = dW(P,Q), which is
guaranteed to exist by Villani [50], Theorem 4.1. Then, since φL

P is L-Lipschitz, we have

E
[
φL

P (X)
]−E

[
φL

P (Y )
]≤ E

[
L‖X − Y‖]= LdW(P,Q),

3All expectations in this display are finite, because, e.g., supx∈Rd φP (x) = supx∈Rd φL
P

(x) < ∞; moreover, EP [φL
P

(X)] ≥
EP [φP (X)] > −∞ because P ∈ Pd , and EP [φL

Q
(X)] > −∞ because φL

Q
is Lipschitz and P has a finite first moment.
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and similarly

E
[
φL

Q(Y )
]−E

[
φL

Q(X)
]≤ LdW(P,Q).

If L ≥ 2d
rd min{εP ,εQ} , then applying Corollary 11, we have

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤ 16d

Lbdrd min{εP , εQ} + 2LdW(P,Q) =
√

128ddW(P,Q)

rdbd min{εP , εQ} .

If instead L < 2d
rd min{εP ,εQ} , then dbddW(P,Q)

2rd min{εP ,εQ} > 1. Since Hellinger distance is always bounded by
√

2,
we then have

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤ 2 ≤
√

2dbddW(P,Q)

rd min{εP , εQ} ≤
√

2ddW(P,Q)

rdbd min{εP , εQ} ,

where the last step holds trivially since bd ≤ 1. Thus, in either case, we have

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤√128d

rdbd

·
√

dW(P,Q)

min{εP , εQ} .

We now split into cases. If dW(P,Q) ≤ max{εP , εQ}/4, then

dW(P,Q)

min{εP , εQ} = dW(P,Q)

max{εP , εQ} − |εP − εQ| ≤ dW(P,Q)

max{εP , εQ} − 2dW(P,Q)
≤ 2dW(P,Q)

max{εP , εQ} ,

where the second step applies Proposition 1. If instead dW(P,Q) > max{εP , εQ}/4, then we will
instead use the trivial bound

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤ 2 ≤ 4

√
dW(P,Q)

max{εP , εQ} ≤ 4

√
d

rdbd

·
√

dW(P,Q)

max{εP , εQ}
where the last step is trivial since d ≥ 1 and rd, bd ∈ (0,1]. Thus, in both cases, we have

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤ 16

√
d

rdbd

·
√

dW(P,Q)

max{εP , εQ} .

This proves the theorem, when we choose Cd = 4( d
rdbd

)1/4.

4.4. Completing the proof of Theorem 5: The case d = 1

Before proving the theorem, we first state several supporting lemmas. First we state a deterministic
result.

Lemma 12. Let P,Q ∈P1 satisfy max{EP [|X|q ]1/q,EQ[|X|q ]1/q} ≤ Mq for some q > 1. Define

�CDF(P,Q)

:= max
{

sup
t∈R

∣∣√PP {X > t} −√PQ{X > t}∣∣, sup
t∈R

∣∣√PP {X < t} −√PQ{X < t}∣∣}.
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Then

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤ C∗

√
Mq

max{εP , εQ} · {�CDF(P,Q) · log
(
e/�CDF(P,Q)

)}1−1/q
,

for a universal constant C∗ > 0.

Next, in order to prove Theorem 5, we will want to apply this result with Q = P̂n, i.e., we
want to bound �CDF(P̂n,P ). Let F denote the distribution function of P , and, for t ∈ (0,1), let
F−1(t) := inf{x : F(x) ≥ t}. Then, with U ∼ Unif[0,1], we know that F−1(U) ∼ P . We may there-

fore assume that X1, . . . ,Xn are generated as Xi = F−1(Ui), where U1, . . . ,Un
iid∼ Unif[0,1]. Since

F−1 is monotonic, we have

�CDF(P̂n,P ) ≤ �CDF
(
Ûn,Unif[0,1]), (8)

where Ûn is the empirical distribution of U1, . . . ,Un. Therefore, it suffices to consider the case that P

is the uniform distribution. We now apply results from Shorack and Wellner [47] to prove a tail bound
on �CDF(Ûn,Unif[0,1]).

Lemma 13. Fix any n ≥ 2, and let Ûn be the empirical distribution of U1, . . . ,Un
iid∼ Unif[0,1]. Then,

for any c > 0,

P

{
�CDF

(
Ûn,Unif[0,1])≤ c′

√
logn

n

}
≥ 1 − n−c,

where c′ > 0 depends only on c.

With these lemmas in place, we are now in a position to prove Theorem 5. Let Mq,n =
( 1
n

∑n
i=1 |Xi |q)1/q and � = �CDF(P̂n,P ). If P̂n ∈ P1 (that is, P̂n does not place all its mass on a

single point), then we have

d2
H

(
ψ∗(P̂n),ψ

∗(P )
)≤ min

{
2,C∗

√
max{Mq,Mq,n}

max{εP , εP̂n
} · (� log(e/�)

)1−1/q
}

(9)

by applying Lemma 12 with Q = P̂n. On the other hand, if P̂n does place all its mass on one point, then
recall that ψ∗(P̂n) is not defined but we take d2

H(ψ∗(P̂n),ψ
∗(P )) = 2 by convention. For this case, we

can trivially calculate

� ≥ min
{√

PP {X > μP },√PP {X < μP }}.
We will now need an additional lemma.

Lemma 14. Fix any P ∈ P1 and any q > 1. Suppose Mq = EP [|X|q ]1/q < ∞. Then

min
{
PP {X > μP },PP {X < μP }}≥

(
εP

4Mq

) q
q−1

.
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This implies

� ≥
(

εP

4Mq

) q
2(q−1)

for the case where P̂n /∈P1 (i.e., P̂n is supported on a single point). Since also � ≤ 1 by definition, this
means that √

max{Mq,Mq,n}
εP

· (� log(e/�)
)1−1/q ≥ 1

2
= d2

H(ψ∗(P̂n),ψ
∗(P ))

4
.

Combining this with (9) for the case P̂n ∈P1, we see that

d2
H

(
ψ∗(P̂n),ψ

∗(P )
)≤ min

{
2,max{C∗,4}

√
max{Mq,Mq,n}

εP

· (� log(e/�)
)1−1/q

}
holds for both cases.

Next, we will combine this calculation with Lemma 13, applied with c = 1/2. Let c′ be the constant

from Lemma 13. First, if c′
√

logn
n

> 1, then

E
[
d2

H

(
ψ∗(P̂n),ψ

∗(P )
)]≤ 2 ≤ 2

(
c′
√

logn

n

)1−1/q

≤ 2c′1−1/q

(log 2)1−1/q

log
3
2 (1−1/q) n

n
1
2 − 1

2q

≤ 2c′1−1/q

(log 2)1−1/q
·
√

2Mq

ε
· log

3
2 (1−1/q) n

n
1
2 − 1

2q

,

where the last step holds since

εP = EP

[|X − μP |]≤ EP

[|X|]+ |μP | ≤ 2EP

[|X|]≤ 2
{
EP

[|X|q]}1/q ≤ 2Mq. (10)

If instead c′
√

logn
n

≤ 1, then we have

E
[
d2

H

(
ψ∗(P̂n),ψ

∗(P )
)]

≤ E

[
min

{
2,max{C∗,4}

√
max{Mq,Mq,n}

max{εP , εP̂n
} · (� log(e/�)

)1−1/q
}]

≤ 2P

{
� > c′

√
logn

n

}
+E

[
max{C∗,4}

√
Mq + Mq,n

εP

·
{
c′
√

logn

n
log

(
e

c′
√

logn
n

)}1−1/q]

≤ 2n−1/2 + max{C∗,4}
√

Mq +E[Mq,n]
εP

·
{
c′
√

logn

n
log

(
e

c′
√

logn
n

)}1−1/q

≤ 2n−1/2 + max{C∗,4}
√

2Mq

εP

·
{
c′
√

logn

n
log

(
e

c′
√

logn
n

)}1−1/q
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≤
√

2Mq

εP

·
[

2n−1/2 + max{C∗,4}
{
c′
√

logn

n
log

(
e

c′
√

logn
n

)}1−1/q]
,

where the third-to-last step applies Jensen’s inequality, the second-to-last step holds because E[Mq,n] ≤
Mq , and the last step holds by (10). After simplifying, we obtain

E
[
d2

H

(
ψ∗(P̂n),ψ

∗(P )
)]≤ C1,q

√
Mq

εP

· log
3
2 (1−1/q) n

n
1
2 − 1

2q

for all n ≥ 2 when C1,q is chosen appropriately. This completes the proof of Theorem 5 for the case
d = 1.

Appendix: Additional proofs

A.1. Proof of Proposition 1

First fix any distribution P on R
d with EP [‖X‖] < ∞. Observe that u �→ EP [|u�(X − μP )|] is a

continuous function on Sd−1, since for any u,v ∈ Sd−1, we have∣∣EP

[∣∣u�(X − μP )
∣∣]−EP

[∣∣v�(X − μP )
∣∣]∣∣≤ EP

[∣∣(u − v)�(X − μP )
∣∣]

≤ ‖u − v‖ ·EP

[‖X − μP ‖]≤ ‖u − v‖ · 2EP

[‖X‖],
and EP [‖X‖] < ∞ by assumption. Therefore, u �→ EP [|u�(X − μP )|] must attain its infimum, that
is,

εP = inf
u∈Sd−1

EP

[∣∣u�(X − μP )
∣∣]= EP

[∣∣u�
0 (X − μP )

∣∣]
for some u0 ∈ Sd−1.

Next, suppose P ∈ Pd . We will show that εP > 0. As above, we have εP = EP [|u�
0 (X − μP )|]

for some u0 ∈ Sd−1. If εP = 0, then this implies that u�
0 (X − μP ) = 0 with probability 1, meaning

that P places all its mass on a single hyperplane H = {x ∈ R
d : u�

0 x = u�
0 μP }. This contradicts the

assumption P ∈Pd , thus proving the first claim.
Finally, consider distributions P , Q on R

d with EP [‖X‖],EQ[‖X‖] < ∞. By Villani [50], Theo-
rem 4.1, we can find a pair of d-dimensional random vectors X and Y such that marginally X ∼ P ,
Y ∼ Q and E[‖X − Y‖] = dW(P,Q). Let u0 be defined as above, so that εP = E[|u�

0 (X − μP )|].
Then

εQ − εP = inf
u∈Sd−1

E
[∣∣u�(Y − μQ)

∣∣]−E
[∣∣u�

0 (X − μP )
∣∣]

≤ E
[∣∣u�

0 (Y − μQ)
∣∣]−E

[∣∣u�
0 (X − μP )

∣∣]
≤ E

[∣∣u�
0 (X − Y)

∣∣]+ ∣∣u�
0 (μP − μQ)

∣∣
≤ E

[‖X − Y‖]+ ‖μP − μQ‖
≤ 2E

[‖X − Y‖]
= 2dW(P,Q).
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An identical argument proves the reverse bound, and we deduce that |εP − εQ| ≤ 2dW(P,Q), as de-
sired.

A.2. Proof of Lemma 7

Let 	 = Covf (X) and define an isotropic log-concave density g on R
d by g(x) = f (	1/2x +

μP )det1/2(	). Note that, if X ∼ f , then 	−1/2(X − μP ) ∼ g. Hence,

Ef

[∣∣v�(X − μP )
∣∣]= Ef

[∣∣(	1/2v
)�(

	−1/2(X − μP )
)∣∣]= Eg

[∣∣(	1/2v
)�

X
∣∣]

≥ 1

4

(
Eg

[((
	1/2v

)�
X
)2])1/2 = 1

4

∥∥	1/2v
∥∥,

where the inequality applies Lovász and Vempala [35], Theorem 5.22, and the last step holds because
g is isotropic.

Next, define a distribution Q obtained by drawing X ∼ P and then taking the affine transformation
	−1/2(X − μP ). By definition of Q, we have

EP

[∣∣v�(X − μP )
∣∣]= EP

[∣∣(	1/2v
)�(

	−1/2(X − μP )
)∣∣]

= EQ

[∣∣(	1/2v
)�

X
∣∣]≤ ∥∥	1/2v

∥∥ ·EQ

[‖X‖].
Since log-concave projection commutes with affine transformations, we have

ψ∗(Q) = g,

which is an isotropic log-concave density. Lemma 15 below establishes that EQ[‖X‖] ≤ ad , where
ad > 0 depends only on d . Therefore, we have proved that, for any v ∈R

d ,

EP

[∣∣v�(X − μP )
∣∣]≤ ∥∥	1/2v

∥∥ · ad

while

Ef

[∣∣v�(X − μP )
∣∣]≥ 1

4

∥∥	1/2v
∥∥.

Setting cd = 1
4ad

establishes the desired result.

A.2.1. Supporting lemma for Lemma 7

Lemma 15. There exists ad > 0, depending only on d , such that, for any isotropic log-concave density
f on R

d and any P ∈Pd with ψ∗(P ) = f ,

EP

[‖X‖]≤ ad .

Proof of Lemma 15. By Fresen [19], Lemma 13, since f is an isotropic log-concave density, it holds
that

f (x) ≤ eβd−αd‖x‖ for all x ∈R
d ,

where αd > 0 and βd ∈ R depend only on d . We can therefore calculate

EP

[
logf (X)

]≤ EP

[
βd − αd‖X‖]= βd − αdEP

[‖X‖].
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On the other hand, consider the log-concave density

g(x) =
(

dd

EP [‖X‖]d(d − 1)!Sd−1

)
· exp

{
− d‖x‖
EP [‖X‖]

}
,

where Sd−1 denotes the surface area of the unit sphere Sd−1 in R
d (with S0 = 2). We have

EP

[
logg(X)

]= log

(
dd

EP [‖X‖]d(d − 1)!Sd−1

)
− d.

But, since f = ψ∗(P ), it must hold that

EP

[
logf (X)

]≥ EP

[
logg(X)

]
,

and so

βd − αdEP

[‖X‖]≥ log

(
(d/e)d

(d − 1)!Sd−1

)
− d logEP

[‖X‖].
The result follows. �

A.3. Proof of Lemma 10

We will prove below that, when L ≥ 2d
rdεP

, the function φL(x) = supy∈Rd {φ(x) − L‖x − y‖} satisfies∫
Rd

eφL(x) dx ≤ 1 + 4d

LbdrdεP

. (11)

Assuming this holds, we then have



(
φL,P

)= EP

[
φL(X)

]− ∫
Rd

eφL(x) dx + 1 ≥ EP

[
φL(X)

]− 4d

LbdrdεP

≥ EP

[
φ(X)

]− 4d

LbdrdεP

= 
(φ,P ) − 4d

LbdrdεP

,

where the last inequality holds since φL ≥ φ pointwise. Finally, normalizing to φ̃L can only improve
the objective function, since



(
φ̃L,P

)= EP

[
φ̃L(X)

]= EP

[
φL(X)

]− log

(∫
Rd

eφL(x) dx

)
≥ 

(
φL,P

)
,

because log t ≤ t − 1 for all t > 0.
From this point on, we only need to prove (11) in order to complete the proof of the lemma. For any

x ∈ Rd , we will write yx to denote a point attaining the supremum, that is, φL(x) = φ(yx)−L‖x − yx‖
(Lemma 16 below verifies the existence and measurability of such a map x �→ yx ).

We now derive the desired bound (11). We have∫
Rd

eφL(x) dx =
∫
Rd

eφ(yx) · e−L‖x−yx‖ dx
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=
∫
Rd

(∫ φ(yx)

−∞
et dt

)
·
(∫ ∞

L‖x−yx‖
e−s ds

)
dx

=
∫ Mφ

−∞

∫ ∞

0
et−s

(∫
Rd

1
{
φ(yx) ≥ t,‖x − yx‖ ≤ s/L

}
dx

)
ds dt,

where the last step follows by Fubini’s theorem, and where Mφ = supx∈Rd φ(x) (note that we must have
Mφ < ∞ by definition of �d ). We now examine this indicator function. For t ∈ R define the super-
level set Dt = {x : φ(x) ≥ t}. Note that Dt is convex for any t by concavity of φ, and furthermore is
bounded since φ is a log-density. Moreover, we can observe that Dt has non-empty interior for any
t < Mφ , since φ is concave and is a log-density.

Now, for any compact, convex set C ⊆R
d and any δ > 0, define the δ-neighborhood of C by

Nbd(C, δ) := {x ∈ R
d : dist(x,C) ≤ δ

}
,

where dist(x,C) := miny∈C ‖x − y‖. (If C is the empty set, then this neighborhood is also defined to
be the empty set.) If x ∈ R

d is such that φ(yx) ≥ t , then yx ∈ Dt , and if, furthermore, ‖x − yx‖ ≤ s/L,
then

x ∈ Nbd(Dt , s/L).

Hence, ∫
Rd

eφL(x) dx ≤
∫ Mφ

−∞

∫ ∞

0
et−s · Lebd

(
Nbd(Dt , s/L)

)
ds dt.

On the other hand, we have∫ Mφ

−∞

∫ ∞

0
et−s · Lebd(Dt )ds dt =

∫ Mφ

−∞
et · Lebd(Dt )dt =

∫ Mφ

−∞
et

(∫
Rd

1
{
φ(x) ≥ t

}
dx

)
dt

=
∫
Rd

∫ φ(x)

−∞
et dt dx =

∫
Rd

eφ(x) dx = 1, (12)

by again applying Fubini’s theorem. Therefore, to prove (11), we only need to show that∫ Mφ

−∞

∫ ∞

0
et−s · Lebd

(
Nbd(Dt , s/L)\Dt

)
ds dt ≤ 4d

LbdrdεP

. (13)

Next we will use a basic result about neighborhoods of convex sets – Lemma 17 verifies that

δ �→ Lebd(Nbd(C, δ)\C)

δ

is a non-decreasing function for any compact, convex set C ⊆ R
d with non-empty interior. Therefore,

for any t < Mφ , it holds that

Lebd

(
Nbd(Dt , s/L)\Dt

)≤ 2d

LrdεP

· Lebd

(
Nbd

(
Dt,

srdεP

2d

)
\Dt

)
since we have assumed L ≥ 2d

rdεP
. We also have Dt ⊆ Dt+logbd

, where bd ∈ (0,1] is the constant
appearing in Lemma 9, and so

Lebd

(
Nbd

(
Dt,

srdεP

2d

)
\Dt

)
≤ Lebd

(
Nbd

(
Dt,

srdεP

2d

))
≤ Lebd

(
Nbd

(
Dt+logbd

,
srdεP

2d

))
.
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Recall from Lemma 9 that DMφ+logbd
contains Bd(μP , rdεP ). Therefore, for any t < Mφ , Dt+logbd

⊇
DMφ+logbd

also contains this ball, and so

Nbd

(
Dt+logbd

,
srdεP

2d

)
= Dt+logbd

+ s

2d
·Bd(μP , rdεP )

⊆ Dt+logbd
+ s

2d
· Dt+logbd

=
(

1 + s

2d

)
· Dt+logbd

,

where for two sets A,B ⊆ R
d , we write A + B := {x + y : x ∈ A,y ∈ B} to denote their Minkowski

sum. Therefore,

Lebd

(
Nbd

(
Dt+logbd

,
srdεP

2d

))
≤ Lebd(Dt+logbd

) ·
(

1 + s

2d

)d

≤ Lebd(Dt+logbd
) · es/2

for any t < Mφ . Combining this with our work above, we obtain

Lebd

(
Nbd(Dt , s/L)\Dt

)≤ 2d

LrdεP

· Lebd(Dt+logbd
) · es/2 (14)

for any t < Mφ . Therefore,

∫ Mφ

−∞

∫ ∞

0
et−s · Lebd

(
Nbd(Dt , s/L)\Dt

)
ds dt

≤
∫ Mφ

−∞

∫ ∞

0
et−s · 2d

LrdεP

· Lebd(Dt+logbd
) · es/2 ds dt

= 2d

LrdεP

·
(∫ Mφ

−∞
et · Lebd(Dt+logbd

)dt

)
·
(∫ ∞

0
e−s · es/2 ds

)
= 4d

LrdεP

·
∫ Mφ

−∞
et · Lebd(Dt+logbd

)dt

= 4d

LbdrdεP

·
∫ Mφ

−∞
et+logbd · Lebd(Dt+logbd

)dt

= 4d

LbdrdεP

·
∫ Mφ+logbd

−∞
et · Lebd(Dt )dt

≤ 4d

LbdrdεP

·
∫ Mφ

−∞
et · Lebd(Dt )dt

= 4d

LbdrdεP

,

where for the last step we again apply (12). This completes the proof of Lemma 10.
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A.3.1. Supporting lemmas for Lemma 10

Lemma 16. For any x ∈ R
d and any φ ∈ �d , there exists a Borel measurable map x �→ yx such that

yx attains supy∈Rd {φ(y) − L‖x − y‖}.
Proof of Lemma 16. Let Mφ := supx∈Rd φ(x), and let xφ ∈ argmaxx∈Rd φ(x) (note that, by definition
of �d � φ, Mφ must be finite, and xφ must exist). Define

Y = {y ∈ R
d : φ(y) ≥ φ

(
y′)− L

∥∥y − y′∥∥ for all y′ ∈ R
d
}
.

Note that Y is non-empty, since trivially xφ ∈ Y .
Next define h : Rd ×Y → R as h(x, y) = φ(y) − L‖x − y‖. For each x ∈R

d , define

S(x) = Y ∩Bd

(
x,‖x − xφ‖).

Note that, for any x, we have xφ ∈ S(x) by definition.
Now we will apply Aliprantis and Border [1], Theorem 18.19, which guarantees the existence of a

Borel measurable function x �→ yx ∈ S(x) such that, for each x,

yx ∈ argmax
y∈S(x)

h(x, y),

as long as we verify the following conditions:

• R
d is a measurable space, and Y is a separable metrizable space. This holds trivially.

• h is a Carathéodory function (i.e., x �→ h(x, y) is measurable for any y ∈ Y , and y �→ h(x, y) is
continuous for almost every x ∈ R

d ). It holds trivially that x �→ h(x, y) is measurable. To check
that y �→ h(x, y) is continuous for any fixed x, it is sufficient to verify that φ is continuous on Y .
In fact, examining the definition of Y , we can see that φ is L-Lipschitz on Y by definition, thus
ensuring continuity.

• S(x) is non-empty and compact for any x ∈R
d . We have already seen that xφ ∈ S(x) for all x. To

check compactness, it is sufficient to verify that Y is closed, which follows immediately from the
definition of Y along with the fact that φ is upper semi-continuous (by definition of φ ∈ �d ).

• In the terminology of Aliprantis and Border [1], the correspondence X � Y , mapping x �→
S(x) ⊆ Y , is weakly measurable, meaning that the set XA := {x ∈Rd : S(x) ∩ A �=∅} is measur-
able for any open subset A ⊆ Y . Aliprantis and Border [1], Lemma 18.2, establishes that, since
Y is metrizable, this is implied by the stronger condition that XA is measurable for every closed
subset A ⊆ Y , so we will check this stronger condition.

Let A ⊆ Y be a closed subset. Consider any x, x1, x2, . . . ∈ R
d such that xi ∈ XA for all

i ≥ 1 and such that limi→∞ xi = x. Let R = supi ‖xi − xφ‖, which is finite since the sequence
converges. This means that S(xi) ⊆ Bd(xφ,2R) for all i. For each i, xi ∈ XA implies that
S(xi) ∩ A �= ∅, and so we can find some yi ∈ S(xi) ∩ A ⊆ Bd(xφ,2R). Therefore, we can find
some convergent subsequence, that is, i1, i2, . . . such that limj→∞ yij = y for some y ∈ R

d . By
assumption, A is a closed subset of Y , and we have already shown that Y is a closed subset of Rd .
Therefore, A ⊆R

d is closed, and so we must have y ∈ A. Now we check that y ∈ S(x). We know
that y ∈ A ⊆ Y , and so we only need to check that y ∈ Bd(x,‖x − xφ‖). This holds because, for
each j ≥ 1, yij ∈ S(xij ) ⊆ Bd(xij ,‖xij − xφ‖), and so

‖y − x‖ = lim
j→∞‖yij − xij ‖ ≤ lim

j→∞‖xij − xφ‖ = ‖x − xφ‖.

We have now seen that y ∈ S(x) ∩ A, proving that S(x) ∩ A �= ∅ and so x ∈ XA. Therefore, we
have established that XA is closed, and is therefore measurable.
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Finally, we check that, for any x,

sup
y∈Rd

{
φ(y) − L‖x − y‖}= sup

y∈S(x)

{
φ(y) − L‖x − y‖}.

First, for any y /∈ Bd(x,‖x − xφ‖), we have ‖x − y‖ > ‖x − xφ‖, and so since φ(y) ≤ φ(xφ) by defi-
nition of xφ , it holds that

φ(y) − L‖x − y‖ < φ(xφ) − L‖x − xφ‖.
Therefore,

sup
y∈Rd

{
φ(y) − L‖x − y‖}= sup

y∈Bd (x,‖x−xφ‖)
{
φ(y) − L‖x − y‖}.

Next, since φ is upper semi-continuous, the supremum on the right-hand side is attained, that is, there
exists some y1 ∈ Bd(x,‖x − xφ‖) such that

φ(y1) − L‖x − y1‖ = sup
y∈Bd (x,‖x−xφ‖)

{
φ(y) − L‖x − y‖}= sup

y∈Rd

{
φ(y) − L‖x − y‖}.

Now we verify that y1 ∈ Y . To see this, fix any y′ ∈R
d . Then

φ
(
y′)− L

∥∥x − y′∥∥≤ sup
y∈Rd

{
φ(y) − L‖x − y‖}= φ(y1) − L‖x − y1‖

and so

φ(y1) ≥ φ
(
y′)− L

∥∥x − y′∥∥+ L‖x − y1‖ ≥ φ
(
y′)− L

∥∥y1 − y′∥∥.
Since this holds for all y′ ∈ R

d , we have established that y1 ∈ Y . Therefore, y1 ∈ S(x), which verifies
supy∈Rd {φ(y) − L‖x − y‖} = supy∈S(x){φ(y) − L‖x − y‖}. �

Lemma 17. Let C ⊆Rd be any compact, convex set with non-empty interior. Then

δ �→ Lebd(Nbd(C, δ)\C)

δ

is a non-decreasing function of δ > 0.

Proof of Lemma 17. This result follows immediately from Steiner’s formula (Schneider [42], Chap-
ter 4), which states that for all ε ≥ 0,

Lebd

(
Nbd(C, ε)

)= Lebd(C) +
d∑

k=1

Vd−k(C) · Lebk(Bk) · εk,

where Vd−k(C) ≥ 0 is the (d − k)-th intrinsic volume of C. Rearranging, we have

Lebd(Nbd(C, ε)\C)

ε
=

d∑
k=1

Vd−k(C) · Lebk(Bk) · εk−1,

which is a non-decreasing function of ε. �
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A.4. Proof of Lemma 12

First, we consider the bounded case. Suppose that P and Q are both supported on [−R,R] for some
R > 0. Write � = �CDF(P,Q) and ε = min{εP , εQ}. Let r1, b1 ∈ (0,1] be the universal constants
defined in Lemma 9 (for dimension d = 1), and fix any L ≥ 4

r1ε
. By Corollary 11, we have

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤ 16

Lb1r1ε
+ (EP

[
φL

P (X)
]−EQ

[
φL

P (X)
])+ (EQ

[
φL

Q(X)
]−EP

[
φL

Q(X)
])

.

Now we bound the two differences. For any φ ∈ �d define Mφ = supx∈Rd φ(x) (note that Mφ is finite
by definition of �d ). We note that MφP

= MφL
P

by definition of φL
P , and that φL

P (X) ≥ MφP
− 2LR

with probability 1 under either P or Q, since the distributions are supported on [−R,R] and so φP

must attain its maximum somewhere in this range. We then have

EP

[
φL

P (X)
]−EQ

[
φL

P (X)
]= EQ

[
MφP

− φL
P (X)

]−EP

[
MφP

− φL
P (X)

]
=
∫ 2LR

0

(
PQ

{
MφP

− φL
P (X) ≥ t

}− PP

{
MφP

− φL
P (X) ≥ t

})
dt.

It is trivial to verify that ∣∣√PP {X /∈ C} −√PQ{X /∈ C}∣∣≤ �
√

2

for any convex set (i.e., an interval) C ⊆R, by definition of � (this follows from the fact that |√a + c−√
b + d|2 ≤ |√a −√

b|2 +|√c −√
d|2 for any a, b, c, d ≥ 0). Since φL

P is concave, the set {x : MφP
−

φL
P (x) < t} is convex, and so

PQ

{
MφP

− φL
P (X) ≥ t

}≤
(√

PP

{
MφP

− φL
P (X) ≥ t

}+ �
√

2
)2

and so, since it also holds that φL
P ≥ φP pointwise, we have

PQ

{
MφP

− φL
P (X) ≥ t

}− PP

{
MφP

− φL
P (X) ≥ t

}≤ �
√

8 ·
√
PP

{
MφP

− φP (X) ≥ t
}+ 2�2.

Lemma 18 below will establish that, for t ≥ 8R
r1ε

, we have PP {MφP
− φP (X) ≥ t} ≤ 32

b1r1ε
· R

t2 . Applying
this bound, we have

EP

[
φL

P (X)
]−EQ

[
φL

P (X)
]

≤
∫ 2LR

0

(
�

√
8 ·
√
PP

{
MφP

− φP (X) ≥ t
}+ 2�2)dt

= �
√

8
∫ 2LR

0

√
PP

{
MφP

− φP (X) ≥ t
}

dt + 4LR�2

= �
√

8

(∫ 8R
r1ε

0

√
PP

{
MφP

− φP (X) ≥ t
}

dt +
∫ 2LR

8R
r1ε

√
PP

{
MφP

− φP (X) ≥ t
}

dt

)
+ 4LR�2

≤ �
√

8

√
8R

r1ε
·
(∫ 8R

r1ε

0
PP

{
MφP

− φP (X) ≥ t
}

dt

)1/2

+ �
√

8
∫ 2LR

8R
r1ε

√
32

b1r1ε
· R

t2
dt + 4LR�2
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≤ �
√

8

√
8R

r1ε
·
√
EP

[
MφP

− φP (X)
]+ �

√
8

√
32R

b1r1ε
log(Lr1ε/4) + 4LR�2

≤ �
√

8

√
8Rh1

r1ε
+ �

√
8

√
32R

b1r1ε
log(Lr1ε/4) + 4LR�2,

where the last step applies Lemma 19 below, which will establish that EP [φ(X)] ≥ Mφ − h1 for a
universal constant h1. By symmetry the same bound holds for EQ[φL

Q(X)] −EP [φL
Q(X)]. Combining

all our work so far, then,

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤ 16

Lb1r1ε
+ 2

{
�

√
8

(√
8Rh1

r1ε
+
√

32R

b1r1ε
log(Lr1ε/4)

)
+ 4LR�2

}
.

Next, we split into cases. If 1
�

√
Rε

≥ 4
r1ε

, then setting L = 1
�

√
Rε

we apply this bound to obtain

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤ C′�
√

R/ε max

{
1, log

(
1

�
√

R/ε

)}
,

for a universal constant C′. Since ε ≤ 2R by definition, and � ≤ 1, we can relax this to

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤ C′�
√

R/ε log(e/�).

If instead 1
�

√
Rε

< 4
r1ε

, then

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤ 2 ≤ 8

r1
�
√

R/ε.

Therefore, combining both cases, we have

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤ C′′�
√

R

min{εP , εQ} log(e/�) (15)

for a universal constant C′′ = max{C′,8/r1}. Next, we will need to relate min{εP , εQ} with
max{εP , εQ}. Without loss of generality, suppose that μP ≥ μQ. We then have

εQ

2
= 1

2
EQ

[|X − μQ|]= EQ

[
(X − μQ)+

]
≥ EQ

[
(X − μP )+

]= ∫ R

μP

PQ{X > t}dt

≥
∫ R

μP

PP {X > t} − 2�
√
PP {X > t}dt

≥
∫ R

μP

PP {X > t}dt − 2�
√

R − μP

√∫ R

μP

PP {X > t}dt

≥ EP

[
(X − μP )+

]− 2�
√

2R

√
EP

[
(X − μP )+

]
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= εP

2
− 2�

√
R · εP ,

where the final inequality follows because |μP | ≤ R. We can similarly calculate

εP

2
= 1

2
EP

[|X − μP |]= EP

[
(X − μP )−

]≥ εQ

2
− 2�

√
R · εQ.

Combining these two bounds, then,

max{εP , εQ} = min{εP , εQ} + |εP − εQ| ≤ min{εP , εQ} + 4�CDF(P,Q) ·√R · max{εP , εQ}. (16)

Now we work with the general case, where P , Q may not have bounded support. Fix any R > 0.
For any x ∈R define

[x]R :=

⎧⎪⎨⎪⎩
−R, x < −R,

x, |x| ≤ R,

R, x > R,

(17)

the truncation of x to the range [−R,R]. Let [P ]R denote the distribution of [X]R when X ∼ P ,

and same for [Q]R . Lemma 20 below calculates that dW(P, [P ]R) ≤ M
q
q

Rq−1 . Applying Theorem 2 to
compare the distributions P and [P ]R , then, we have

d2
H

(
ψ∗(P ),ψ∗([P ]R

))≤ C2
1

√
dW(P, [P ]R)

max{εP , ε[P ]R } ≤ C2
1

√
M

q
q

ε[P ]RRq−1
,

and the same bound holds with Q in place of P . Therefore, by the triangle inequality,

d2
H

(
ψ∗(P ),ψ∗(Q)

)
≤ {dH

(
ψ∗(P ),ψ∗([P ]R

))+ dH
(
ψ∗(Q),ψ∗([Q]R

))+ dH
(
ψ∗([P ]R

)
,ψ∗([Q]R

))}2

≤ 3d2
H

(
ψ∗(P ),ψ∗([P ]R

))+ 3d2
H

(
ψ∗(Q),ψ∗([Q]R

))+ 3d2
H

(
ψ∗([P ]R

)
,ψ∗([Q]R

))
≤ 6C2

1

√
M

q
q

min{ε[P ]R , ε[Q]R }Rq−1
+ 3d2

H

(
ψ∗([P ]R

)
,ψ∗([Q]R

))
. (18)

We now need to apply the bound (15) to the bounded distributions [P ]R and [Q]R , in order to bound
this last term. Combining (15) with (18), we obtain

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤ 6C2
1

√
M

q
q

min{ε[P ]R , ε[Q]R }Rq−1

+ 3C′′�CDF
([P ]R, [Q]R

)√ R

min{ε[P ]R , ε[Q]R } log
(
e/�CDF

([P ]R, [Q]R
))

.

Now fix

R = Mq

{
�CDF

([P ]R, [Q]R
)

log
(
e/�CDF

([P ]R, [Q]R
))}−2/q

.
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This yields

d2
H

(
ψ∗(P ),ψ∗(Q)

)
≤ C′∗

√
Mq

min{ε[P ]R , ε[Q]R } ·
{
�CDF

([P ]R, [Q]R
)

log

(
e

�CDF([P ]R, [Q]R)

)}1−1/q

,

when the universal constant C′∗ > 0 is chosen appropriately. Next, it holds trivially that �CDF([P ]R,

[Q]R) ≤ �CDF(P,Q), and since t �→ t log(e/t) is increasing on t ∈ (0,1], we therefore have

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤ C′∗

√
Mq

min{ε[P ]R , ε[Q]R } · {�CDF(P,Q) log
(
e/�CDF(P,Q)

)}1−1/q
.

Finally, we need to lower bound ε[P ]R and ε[Q]R . First, we relate min{ε[P ]R , ε[Q]R } to max{ε[P ]R ,

ε[Q]R }. Applying (16) from above, along with the fact that �CDF([P ]R, [Q]R) ≤ �CDF(P,Q), we have

max{ε[P ]R , ε[Q]R } ≤ min{ε[P ]R , ε[Q]R } + 4�CDF(P,Q)
√

R · max{ε[P ]R , ε[Q]R }.

If 8�CDF(P,Q)
√

R ≤√max{ε[P ]R , ε[Q]R }, then this proves that

max{ε[P ]R , ε[Q]R } ≤ 2 min{ε[P ]R , ε[Q]R }
and so

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤ C′∗

√
2Mq

max{ε[P ]R , ε[Q]R } · {�CDF(P,Q) log
(
e/�CDF(P,Q)

)}1−1/q
.

If instead 8�CDF(P,Q)
√

R >
√

max{ε[P ]R , ε[Q]R }, then we have

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤ 2 ≤ 16�CDF(P,Q)
√

R√
max{ε[P ]R , ε[Q]R } .

Plugging in the definition of R and combining both cases, we obtain

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤ C′′∗

√
Mq

max{ε[P ]R , ε[Q]R } · (�CDF(P,Q) log
(
e/�CDF(P,Q)

))1−1/q

for an appropriately chosen universal constant C′′∗ . The last step is to relate max{ε[P ]R , ε[Q]R } to
max{εP , εQ}. Applying Proposition 1 together with the bound on dW(P, [P ]R) from Lemma 20, we
have

ε[P ]R ≥ εP − 2dW
(
P, [P ]R

)≥ εP − 2 · M
q
q

Rq−1
,

and the same bound holds for Q in place of P . If
2M

q
q

Rq−1 ≤ max{εP ,εQ}
2 , then

max{ε[P ]R , ε[Q]R } ≥ max{εP , εQ}
2

,
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and so we obtain

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤ C′′∗

√
2Mq

max{εP , εQ} · {�CDF(P,Q) log
(
e/�CDF(P,Q)

)}1−1/q
.

If instead
2M

q
q

Rq−1 >
max{εP ,εQ}

2 , then it trivially holds that

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤ 2 ≤ 2

√
4M

q
q

max{εP , εQ}Rq−1
.

Plugging in the definition of R, and combining the two cases, we obtain

d2
H

(
ψ∗(P ),ψ∗(Q)

)≤ C∗

√
Mq

max{εP , εQ} · {�CDF(P,Q) log
(
e/�CDF(P,Q)

)}1−1/q

for appropriately chosen universal constant C∗, which completes the proof of Lemma 12.

A.4.1. Supporting lemmas for Lemma 12

Lemma 18. Let P ∈ Pd and let φ = φ∗(P ). Let Mφ := supx∈Rd φ(x) and let xφ ∈ argmaxx∈Rd φ(x)

(which is guaranteed to exist by definition of �d � φ). Fix any R > 0 and t ≥ 8dR
rdεP

, where rd ∈ (0,1] is
taken from Lemma 9. Then

PP

{
φ(X) ≤ Mφ − t and ‖X − xφ‖ ≤ 2R

}≤ 32d

bdrdεP

· R

t2
,

where bd ∈ (0,1] is taken from Lemma 9.

Proof of Lemma 18. First, for any x with ‖x − xφ‖ ≤ 2R,

φt/4R(x) = sup
y∈Rd

{
φ(y) − t

4R
‖y − x‖

}
≥ φ(xφ) − t

4R
‖x − xφ‖ ≥ Mφ − t

2
.

Hence, if φ(x) ≤ Mφ − t and ‖x − xφ‖ ≤ 2R, then

φt/4R(x) − φ(x) ≥ t

2
.

Moreover, by definition of φ = φ∗(P ), since φt/4R ∈ �d , it holds that

EP

[
φ(X)

]= 
(φ,P ) ≥ 

(
φt/4R,P

)= EP

[
φt/4R(X)

]− ∫
Rd

eφt/4R(x) dx + 1

≥ EP

[
φt/4R(X)

]− 4d
t

4R
bdrdεP

,

where the last step holds by (11) as calculated in the proof of Lemma 10, noting that t
4R

≥ 2d
rdεP

. We
deduce that

PP

{
φ(X) ≤ Mφ − t and ‖X − xφ‖ ≤ 2R

}≤ PP

{
φt/4R(X) − φ(X) ≥ t

2

}
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≤ EP [φt/4R(X) − φ(X)]
t/2

≤
4d

t
4R

bdrdεP

t/2
= 32d

bdrdεP

· R

t2
,

as required. �

Lemma 19. Fix any P ∈ Pd and let φ = φ∗(P ). Then

EP

[
φ(X)

]≥ Mφ − hd,

where Mφ = supx∈Rd φ(x) and where hd ≥ 0 depends only on d .

Proof of Lemma 19. Write Eφ[·] to denote the expectation with respect to the distribution with log-
density φ. Let μφ := Eφ[X] be the mean and 	 := Eφ[(X − μφ)(X − μφ)�] the covariance of this
distribution. Let φ̄ denote the log-density of the isotropic, log-concave random vector 	−1/2(X −μφ),
where X has log-density φ. Let Mφ̄ := supx∈Rd φ̄(x).

Since x �→ φ(x) + 1
2 {Mφ − φ(x)} is concave and coercive, it holds by Dümbgen, Samworth and

Schuhmacher [15], Remark 2.3, that

EP

[
Mφ − φ(X)

]≤ Eφ

[
Mφ − φ(X)

]
.

Next, we can trivially verify that

Eφ

[
Mφ − φ(X)

]= Eφ̄

[
Mφ̄ − φ̄(X)

]
since the log-densities φ and φ̄ are related via the linear transformation on random variables above.
Furthermore,

Eφ̄

[
Mφ̄ − φ̄(X)

]= Mφ̄ −
∫
Rd

eφ̄(y) · φ̄(y)dy ≤ Mφ̄ + d

2
log(2πe),

where the last step holds since φ̄ is the log-density of an isotropic distribution on R
d , and so its en-

tropy is bounded by that of the standard d-dimensional Gaussian (e.g., Cover and Thomas [9], Theo-
rem 9.6.5). Finally, by Lovász and Vempala [35], Theorem 5.14(e), Mφ̄ ≤ md where md ∈ R depends
only on the dimension d . Therefore, combining everything,

EP

[
Mφ − φ(X)

]≤ md + d

2
log(2πe),

which proves the desired bound. �

Lemma 20. Let P ∈ P1 satisfy EP [|X|q ]1/q ≤ Mq , for some q > 1. Let [P ]R be the distribution of
[X]R when X ∼ P (where the truncation [X]R is defined as in (17)). Then

dW
(
P, [P ]R

)≤ M
q
q

Rq−1
.

Proof of Lemma 20. Drawing X ∼ P , note that (X, [X]R) is a coupling of the distributions P and
[P ]R . Hence,

dW
(
P, [P ]R

)≤ EP

[∣∣X − [X]R
∣∣]= EP

[(|X| − R
)
+
]≤ EP

[ |X|q
Rq−1

]
≤ M

q
q

Rq−1
,

as required. �
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A.5. Proof of Lemma 13

Write Ûn(t) = 1
n

∑n
i=1 1{Ui ≤ t}. First, we calculate

�CDF
(
Ûn,Unif[0,1])= max

{
sup

t∈[0,1]
∣∣√1 − Ûn(t) − √

1 − t
∣∣︸ ︷︷ ︸

=�0

, sup
t∈[0,1]

∣∣√Ûn(t) − √
t
∣∣︸ ︷︷ ︸

=:�1

}
,

by observing that

sup
t∈[0,1]

∣∣∣∣∣
√√√√1

n

n∑
i=1

1{Ui < t} − √
t

∣∣∣∣∣= sup
t∈[0,1]

∣∣∣∣∣
√√√√1

n

n∑
i=1

1{Ui ≤ t} − √
t

∣∣∣∣∣
(i.e., the supremum is unchanged by replacing < with ≤). We can further write

�1 = max
{

sup
t∈[0,

logn
n

]

∣∣√Ûn(t) − √
t
∣∣

︸ ︷︷ ︸
=:�1,0

, sup
t∈[ logn

n
,1− logn

n
]

∣∣√Ûn(t) − √
t
∣∣

︸ ︷︷ ︸
=:�1,1

, sup
t∈[1− logn

n
,1]

∣∣√Ûn(t) − √
t
∣∣

︸ ︷︷ ︸
=:�1,2

}
.

We have

�1,0 = sup
t∈[0,

logn
n

]

∣∣√Ûn(t) − √
t
∣∣≤√ logn

n
+
√

Ûn

(
logn

n

)
≤ 2

√
logn

n
+ �1,1,

and

�1,2 = sup
t∈[1− logn

n
,1]

∣∣√Ûn(t) − √
t
∣∣≤√ logn

n
+
(

1 −
√

Ûn

(
1 − logn

n

))
≤ 2

√
logn

n
+ �1,1.

Furthermore,

�1,1 = sup
t∈[ logn

n
,1− logn

n
]

∣∣√Ûn(t) − √
t
∣∣= sup

t∈[ logn
n

,1− logn
n

]

|Ûn(t) − t |√
Ûn(t) + √

t
≤ sup

t∈[ logn
n

,1− logn
n

]

|Ûn(t) − t |√
t

.

Combining these calculations, we have

�1 ≤ 2

√
logn

n
+ sup

t∈[ logn
n

,1− logn
n

]

|Ûn(t) − t |√
t

.

Similarly we can calculate

�0 ≤ 2

√
logn

n
+ sup

t∈[ logn
n

,1− logn
n

]

|Ûn(t) − t |√
1 − t

,
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and so we have

�CDF
(
Ûn,Unif[0,1])≤ 2

√
logn

n
+ sup

t∈[ logn
n

,1− logn
n

]

|Ûn(t) − t |√
min{t,1 − t}

= 2

√
logn

n
+ max

{
sup

t∈[ logn
n

, 1
2 ]

|Ûn(t) − t |√
t

, sup
t∈[ 1

2 ,1− logn
n

]

|Ûn(t) − t |√
1 − t

}
.

Next, Shorack and Wellner [47], Proposition 11.1.1 (part (10)) + Inequality 11.2.1, (applied with
q(t) = √

t , with a = logn
n

, and with b = δ = 1
2 ) establishes that, for any λ > 0,

P

{
sup

t∈[ logn
n

, 1
2 ]

|Ûn(t) − t |√
t

≥ λ√
n

}
≤ 12

∫ 1/2

logn
n

1

t
· exp

{
− λ2

8(1 + λ

3
√

logn
)

}
dt,

as long as n satisfies logn
n

≤ 1
4 (which holds for n > 8; for n ≤ 8, by taking c′ ≥ 2 we can ensure that

the lemma’s claim is trivial, since �CDF(Ûn,Unif[0,1]) ≤ 1 deterministically). Furthermore, clearly

we see that sup
t∈[ logn

n
, 1

2 ]
|Ûn(t)−t |√

t
and sup

t∈[ 1
2 ,1− logn

n
]

|Ûn(t)−t |√
1−t

are equal in distribution. Therefore, we

have

P

{
�CDF

(
Ûn,Unif[0,1])≥ 2

√
logn

n
+ λ√

n

}
≤ 24 log

(
n

2 logn

)
· exp

{
− λ2

8(1 + λ

3
√

logn
)

}

for any λ > 0. Taking λ = 5(c+2)
√

logn, we can calculate exp{− λ2

8(1+ λ
3
√

logn
)
} ≤ exp{−(c+2) logn} =

n−(c+2), and so we have

P

{
�CDF

(
Ûn,Unif[0,1])≥ 2

√
logn

n
+ 5(c + 2)

√
logn

n

}
≤ 24 log

(
n

2 logn

)
· n−(c+2) ≤ n−c

where the last step holds since we have assumed that n > 8. This proves the lemma with c′ = 5c + 12.

A.6. Proof of Lemma 14

We have

εP = EP

[|X − μP |]
= 2EP

[
(X − μP )+

]
≤ 2EP

[|X − μP | · 1{X > μP }]
≤ 2EP

[|X − μP |q]1/q
EP

[
1{X > μP } q

q−1
] q−1

q

≤ 2
(
EP

[|X|q]1/q + (|μP |q)1/q) · PP {X > μP } q−1
q

≤ 4Mq · PP {X > μP } q−1
q .
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Therefore,

PP {X > μP } ≥
(

εP

4Mq

) q
q−1

.

Similarly, the same bound holds for PP {X < μP }.

A.7. Proofs of lower bounds (Theorems 4 and 6)

We begin with some preliminary calculations that we will use for the constructions for both theorems.
Fix any 0 < ρ0 < ρ1 and any β ∈ (0, ρ0/ρ1]. Let P be the mixture distribution drawing

X ∼
{

Unif
(
Sd−1(ρ0)

)
, with probability 1 − β,

Unif
(
Sd−1(ρ1)

)
, with probability β.

(19)

Defining

sd = E
[|V1|

]
for V = (V1, . . . , Vd) ∼ Unif(Sd−1), (20)

we can calculate

εP = (1 − β)ρ0 · sd + βρ1 · sd ≥ sdρ0.

We will apply Lemma 18 to this distribution P and the log-density φ = φ∗(P ) of its log-concave
projection. Observe that φ is spherically symmetric around 0, and is constant over ‖x‖ ≤ ρ0 – in
particular, this means that φ(x) = Mφ for all ‖x‖ ≤ ρ0, where Mφ = supx∈Rd φ(x) as before. Next, let
t∗ ≥ 0 be the value of Mφ − φ(x) for points x with ‖x‖ = ρ1 (since φ is spherically symmetric, this is
well defined). We now split into cases. If t∗ ≥ 8dρ1

rd sdρ0
, then applying Lemma 18 with R = ρ1/2, xφ = 0,

and t = t∗, we obtain

β ≤ PP

{
φ(X) ≤ Mφ − t∗ and ‖X‖ ≤ ρ1

}≤ 16d

bdrdsdρ0
· ρ1

t2∗
,

which proves that

t∗ ≤
√

16d

bdrdsd
· ρ1

ρ0β
.

If this case does not hold, then we instead have t∗ <
8dρ1

rd sdρ0
, so combining the two cases,

t∗ ≤ max

{√
16d

bdrdsd
· ρ1

ρ0β
,

8d

rdsd
· ρ1

ρ0

}
≤ max

{√
16d

bdrdsd
,

8d

rdsd

}
·
√

ρ1

ρ0β
,

where the last step comes from our assumption on β . Therefore,

φ(x) ≥ φ(0) − max

{√
16d

bdrdsd
,

8d

rdsd

}
·
√

ρ1

ρ0β

for ‖x‖ = ρ1 while

φ(x) = φ(0)
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for ‖x‖ ≤ ρ0. By concavity of φ, then

φ(x) ≥ φ(0) − max

{√
16d

bdrdsd
,

8d

rdsd

}

for all x with ‖x‖ ≤ ρ0 + (ρ1 −ρ0) ·
√

ρ0β
ρ1

. Therefore, for any density f supported on Bd(ρ0), it holds
that

d2
H

(
f,ψ∗(P )

)≥ ∫
Rd

e
φ(0)−max{

√
16d

bd rd sd
, 8d
rd sd

} · 1
{
ρ0 < ‖x‖ < ρ0 + (ρ1 − ρ0) ·

√
ρ0β

ρ1

}
dx

= e
φ(0)−max{

√
16d

bd rd sd
, 8d
rd sd

} · Lebd

(
Bd

(
ρ0 + (ρ1 − ρ0) ·√ρ0β/ρ1

)\Bd(ρ0)
)

≥ e
φ(0)−max{

√
16d

bd rd sd
, 8d
rd sd

} · ρd−1
0 · (ρ1 − ρ0) ·

√
ρ0β

ρ1
· Sd−1,

where as before Sd−1 denotes the surface area of Sd−1. Finally, we need to place a lower bound on
φ(0). By Corollary 8, we know that the covariance matrix 	 of the distribution with log-density φ has
operator norm bounded as

‖	‖op ≤ 16
(
(1 − β)ρ0 + βρ1

)2
.

Furthermore, φ̃(x) = 1
2 log det(	) + φ(	1/2x) is an isotropic concave log-density, and so φ̃(0) ≥ c′

d

where c′
d > 0 depends only on d , by Lovász and Vempala [35], Theorem 5.14(d). Therefore,

φ(0) ≥ c′
d − d

2
log(16) − d log

(
(1 − β)ρ0 + βρ1

)
.

We conclude that

d2
H

(
f,ψ∗(P )

)≥ c′′
d · ρd−1

0 · (ρ1 − ρ0) ·
√

ρ0β

ρ1
· ((1 − β)ρ0 + βρ1

)−d
, (21)

where c′′
d depends only on d .

A.7.1. Completing the proof of Theorem 4

To prove Theorem 4, let P be the distribution constructed in (19) with

ρ0 = ε/sd, ρ1 = 2ε/sd,β = min

{
sdδ

ε
,

1

2

}
,

where sd is defined as in (20). Let

Q = Unif
(
Sd−1(ρ0)

)
.

Clearly εP ≥ εQ = sdρ0 = ε, and dW(P,Q) = β(ρ1 − ρ0) ≤ δ, thus satisfying the conditions of the
theorem. Since Q is supported on Bd(ρ0), ψ∗(Q) is also supported on this ball. Then applying our
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calculation (21), and plugging in our choices of ρ0, ρ1, β , after simplifying we have

d2
H

(
ψ∗(P ),ψ∗(Q)

)≥ c′′
d · 2d

3d
·
√

min

{
sdδ

2ε
,

1

4

}
.

This completes the proof of the theorem, when cd is chosen appropriately.

A.7.2. Completing the proof of Theorem 6

The first term in the lower bound, that is, supP∈Pd :EP [‖X‖q ]≤1,εP ≥ε∗
d
E[d2

H(ψ∗(P̂n),ψ
∗(P ))] ≥

cdn− 2
d+1 , holds by Kim and Samworth [31], Theorem 1, which establishes this as the minimax rate

(for d ≥ 2) over distributions P that are log-concave (we can verify that the distribution P constructed
in their proof satisfies the conditions EP [‖X‖q ] ≤ 1, εP ≥ ε∗

d , for appropriately chosen ε∗
d ). If instead

d = 1, then the first term cannot be the minimum.
Next, to prove the second term in the lower bound, we consider a mixture model. Let P be the

distribution constructed in (19) with

ρ0 = 1

2
, ρ1 = n1/q, β = 1

2n
.

Then clearly EP [‖X‖q ] ≤ 1, and εP ≥ 1
2 sd , so εP ≥ ε∗

d for an appropriately chosen ε∗
d . Now, with

probability at least 1/2, the observations X1, . . . ,Xn are all drawn from the first component of the
mixture model, that is, ψ∗(P̂n) is supported on Bd(1/2). On this event, applying (21) and plugging in
our choices of ρ0, ρ1, β , after simplifying we have

d2
H

(
ψ∗(P̂n),ψ

∗(P )
)≥ c′′′

d · n− 1
2 + 1

2q ,

where c′′′
d depends only on d . This establishes the second term in the lower bound claimed in Theo-

rem 6, and thus completes the proof of the theorem.
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