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Monge matrices and their permuted versions known as pre-Monge matrices naturally appear in many do-
mains across science and engineering. While the rich structural properties of such matrices have long been
leveraged for algorithmic purposes, little is known about their impact on statistical estimation. In this work,
we propose to view this structure as a shape constraint and study the problem of estimating a Monge matrix
subject to additive random noise. More specifically, we establish the minimax rates of estimation of Monge
and pre-Monge matrices. In the case of pre-Monge matrices, the minimax-optimal least-squares estimator is
not efficiently computable, and we propose two efficient estimators and establish their rates of convergence.
Our theoretical findings are supported by numerical experiments.
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1. Introduction

A matrix θ ∈R
n1×n2 is called a Monge matrix [37] or a submodular matrix [61], if

θi,j + θk,� ≤ θi,� + θk,j for all 1 ≤ i ≤ k ≤ n1,1 ≤ j ≤ � ≤ n2. (1.1)

In addition, a matrix θ ∈R
n1×n2 is called an anti-Monge matrix or a supermodular matrix if −θ

is a Monge matrix. The Monge property dates back to Gaspard Monge’s work on optimal trans-
port [54]. Since then, it has been widely used and studied in optimization, discrete mathematics
and computer science [1,9,12,13,37,64] as it allows for simple and fast algorithms in a variety
of instances [10,12,37,59,60]. For example, if the cost matrix in the Hitchcock transportation
problem [36] is a Monge matrix, then the so called north-west corner rule produces an optimal
solution [12,37]. Other problems which become easier with a Monge cost matrix include, and
are far from being limited to, the balanced max-cut problem [60] and the traveling salesman
problem [10,59].

Additionally, many of these problems turn out to be invariant under relabeling of the rows
and columns of the Monge matrix. It is therefore natural to introduce the following definition.
A matrix θ ∈ R

n1×n2 is called pre-Monge if there exist permutations π1 : [n1] → [n1] and π2 :
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[n2]→ [n2] such that the matrix θ(π1,π2) defined by

θ(π1,π2)i,j = θ
(
π1(i),π2(j)

)
for all (i, j) ∈ [n1] × [n2],

is Monge. Note that the terminology permuted Monge has also been used to define the same
object [12]. A pre-anti-Monge matrix is defined analogously. Like Monge matrices, pre-Monge
matrices have also been studied in the context of optimization [11,14], where the latent permuta-
tion yields new computational challenges. For example, even checking whether an n1×n2 matrix
is pre-Monge is a nontrivial algorithmic task: Recognition of pre-Monge matrices can be done in
O(n1n2 + n1 logn1 + n2 logn2) time [12,23,63], while recognition of pre-Monge matrices with
missing entries is NP-complete [22].

1.1. Estimation of (pre-)Monge matrices

The aforementioned combinatorial optimization problems, such as the Hitchcock transportation
and the traveling salesman problem, find wide applications in areas such as planning and logistics
[12,58]. In these applications, the cost matrix typically consists of production or transportation
costs that are approximately estimated in practice. As a result, it is more realistic to assume that
the cost matrix is approximately, rather than exactly, (pre-)Monge. This motivates us to take a
statistical approach in this work – we model the cost matrix as a (pre-)Monge matrix perturbed
by random noise.

Furthermore, despite extensive study of (pre-)Monge matrices in various domains, previous
work has focused on the noiseless setting, and existing algorithms typically fail when the cost
matrix is not exactly (pre-)Monge. For example, it is known that the north-west corner rule pro-
duces an optimal solution to the Hitchcock transportation problem if and only if the cost matrix is
exactly Monge (see Theorem 3.1 of [12]). Moreover, for the traveling salesman problem, efficient
algorithms are based on pyramidal tours [59] or subtour patching [11], both of which crucially
rely on the cost matrix being (pre-)Monge. To alleviate this problem when the cost matrix is a
noisy version of a (pre-)Monge matrix θ , we may first use the cost matrix to estimate θ , and then
any existing algorithm can be applied on θ downstream. Therefore, it is of practical interest to
study estimation of a (pre-)Monge matrix in the presence of noise.

1.2. Geometric interpretation

In addition to the aforementioned applications in combinatorial optimization problems, the
Monge property has observed strong ties with geometries of certain datasets, starting with the
seminal work of Monge on optimal transport [54]. See also [12] for an example of an distance
matrix with the Monge property. We now demonstrate how the Monge property arises in the
context of seriation [3,29–31,45,46], where the goal is to recover the latent ordering of objects
based on pairwise distances or correlations.

Let X ∈R
n×d be a data matrix with rows x�

1 , . . . , x�
n ∈R

d . Suppose that

(xi+1 − xi)
�(xj+1 − xj ) ≥ 0 for all i, j ∈ [n − 1]. (1.2)
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In other words, the differences between consecutive points have a nonnegative correlation. It is
then easy to check that the Gram matrix θ = XX� is an anti-Monge matrix, and the distance
matrix D, defined by Di,j = ‖xi − xj‖2

2 for i, j ∈ [n], is a Monge matrix. Furthermore, in the
context of seriation, we do not know the labels of the points a priori, so the Gram matrix and the
distance matrix would be pre-anti-Monge and pre-Monge respectively.

Note that the Monge property (1.2) is a local condition in the sense that each inequality en-
forces one pair of consecutive differences to have a nonnegative correlation. Nevertheless, such
a local property guarantees a global geometric structure of the data. Namely, the n points in fact
approximately lie along a common direction, which can be found spectrally. Furthermore, ap-
plying principal component analysis on these points easily recovers the latent labeling, thereby
solving the (noiseless) seriation problem.1 This geometric structure, along with the spectral or-
dering method, is discussed in more detail in Appendix D.

1.3. Our contributions

In this work, we study the estimation of pre-(anti-)Monge matrices under additive sub-Gaussian
noise. Statistically, we establish the minimax rates of estimation (up to logarithmic factors) for
both Monge and pre-Monge matrices in Sections 2 and 3.1 respectively, where the upper bounds
are achieved by the least-squares estimators.

Algorithmically, for estimating pre-Monge matrices, we further introduce two efficient esti-
mators and study their rates of convergence. The Variance Sorting estimator introduced in Sec-
tion 3.2, as the name suggests, employs second-order information to estimate the latent permuta-
tion. In Section 3.3, we study the singular value thresholding estimator based on approximation
of pre-Monge matrices by low-rank ones (Proposition 7).

Furthermore, we provide various numerical experiments in Section 4 to corroborate the theo-
retically established rates of estimation. Using Dykstra’s projection algorithm, we give a detailed
implementation of the least-squares estimator for (anti-)Monge matrices, which is of practical
interest.

1.4. Related work

This work connects to several lines of research.

Total positivity. The Monge property is closely related to the notion of total positivity [43]. An
entrywise positive matrix θ ∈R

n1×n2 is called totally positive (of order 2), if

θi,j θk,� ≥ θi,�θk,j for all 1 ≤ i ≤ k ≤ n1,1 ≤ j ≤ � ≤ n2.

Therefore, an entrywise positive matrix θ is totally positive if and only if log(θ) is anti-Monge,
where log(·) is applied to each entry of θ individually. As a result, total positivity is also known

1For a noisy seriation problem, more realistically we have additive noise on the data matrix X, rather than on the Gram
matrix θ as assumed here. However, this is beyond the scope of the current work.
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as log-supermodularity. Total positivity plays an essential role in statistical physics via the FKG
inequality [32] and appears frequently in many other areas of probability and statistics [43,44].
More recently, there have been new developments in studying totally positive distributions and
related estimation problems [27,48,62]. In a companion paper [38], we study minimax estimation
of a totally positive distribution by employing mathematical tools that are closely related to those
in the current paper.

Latent permutation learning. Estimating a pre-Monge matrix from its noisy version falls into
the category of matrix learning with latent permutations, which has recently observed a surge
of interest. Models involving latent permutations include noisy sorting [8], the strong stochastic
transitivity model [17,66], feature matching [20], crowd labeling [67], statistical seriation [29]
and graph matching [25,49], to name a few. Many of the previous approaches for learning latent
permutations under such models are based on sorting row or column sums of the observed matrix
(or equivalently, degrees of vertices) [19,57,68] or certain refinements [51,52]. However, since
adding a constant to all entries in a row or column of a Monge matrix does not change its Monge
property, first-order information such as row sums is uninformative for the Monge structure, and
thus cannot be used to identify the latent permutation. Instead, we propose a new algorithm based
on variance sorting. We show in Section 3.2 that this novel use of second order information is
decisive when estimating pre-Monge matrices.

Graphon estimation. Another related, substantial body of literature is that on graphon esti-
mation [6,15,33,72], where the goal is to estimate a bivariate function f : [0,1]2 → R from
noisy observations of {f (Xi,Yj ) : 1 ≤ i ≤ n1,1 ≤ j ≤ n2}. Unlike regression, the design points
(Xi, Yj ) are not observed in graphon estimation, so the observations can be viewed as an n1 ×n2
matrix with latent permutations acting on its rows and columns.

There have been extensive studies on graphon estimation with various structures, including
block models [2], smoothness [47] and low-rank structure [65]. The current work can be viewed
as a study of denoising observations in graphon estimation with the Monge structure. More pre-
cisely, we say that f : [0,1]2 →R is a Monge graphon if

f (x1, y1)+ f (x2, y2) ≤ f (x1, y2)+ f (x2, y1) for all 0 ≤ x1 ≤ x2 ≤ 1,0 ≤ y1 ≤ y2 ≤ 1.

Therefore, denoising noisy observations of {f (Xi,Yj ) : 1 ≤ i ≤ n1,1 ≤ j ≤ n2} without the
knowledge of the design points (Xi, Yj ) is precisely the problem of estimating a pre-Monge
matrix studied in this work. If, for example, smoothness assumptions are imposed on the graphon
f in addition, then our results can potentially be used to produce algorithms with theoretical
guarantees for estimating f itself.

Shape-constrained estimation. Last but not least, estimation of a Monge matrix falls in the
scope of shape-constrained estimation. In a work [71] studying estimation of monotone functions
in Gaussian white noise, Wellner proposed the open problem of estimating a bivariate function
f : [−c, c]2 →R satisfying

f (t1, t2)− f (t1, s2)− f (s1, t2)+ f (s1, s2) ≥ 0 for all (s1, s2), (t1, t2) ∈ [−c, c]2,
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which is exactly the anti-Monge property in its continuous form. As the Gaussian white noise
model considered in the aforementioned work is asymptotically equivalent to the Gaussian se-
quence model we adopt in this paper (see [41]), the current work therefore yields rates of esti-
mation for Wellner’s open problem.

Shortly before completing the current work, we became aware of a concurrent work by Fang,
Guntuboyina and Sen [28] that studies multivariate extensions of isotonic regression. In the two-
dimensional case, the notion of entirely monotone functions considered there almost coincides
with the anti-Monge structure (without permutations) that we study, except that, additionally,
the rows and columns of the matrix are assumed to be nondecreasing. Consequently, the rate
achieved by the least-squares estimator specialized to dimension two, as expected, coincides with
the main term of the rate given by Theorem 1 of our current paper (see also the discussion after
Theorem 2). However, it is worth noting that the two proofs follow drastically different paths.
While the proof in [28] relies on metric entropy estimates from [5,34], our proof is based on
spectral decomposition of the difference operator D defined in (2.1), a technique which has been
used for example to study the performance of total variation regularization [40,70]. Moreover,
assuming n = n1 = n2, our upper bound given in Theorem 1 contains a log factor of order log(n),
while the one in Theorem 4.1 of [28] potentially scales like log(n)3, a minor improvement which
nonetheless shows the potential merits of our proof technique.

Another shape-constrained estimation problem related to the present work is the estimation
of a bivariate isotonic matrix in Gaussian noise [18]. In fact, every anti-Monge matrix can be
written as the sum of a rank-two matrix and a bivariate isotonic matrix (Lemma A.1). However,
our results suggest that the set of Monge matrices is in fact qualitatively different from the set of
bivariate isotonic matrices. Particularly, the minimax rate of estimation in Theorem 1 is different
from that given by Theorem 2.1 of [18], and the low-rank approximation rate in Proposition 7 is
different from that given by Lemma 4 of [66].

Notation. For a positive integer n, let [n] = {1,2, . . . , n}. For a finite set S, we use |S| to
denote its cardinality. For two sequences {an}∞n=1 and {bn}∞n=1 of real numbers, we write an � bn

if there is a universal constant C such that an ≤ Cbn for all n ≥ 1. The relation an � bn is defined
analogously. We use c and C (possibly with subscripts) to denote universal constants that may
change from line to line. Let ∧ and ∨ denote the min and the max operators between two real
numbers respectively. Given a matrix M ∈ R

n1×n2 , we denote its i-th row by Mi,· and its j -th
column by M·,j . We denote by ‖M‖F and ‖M‖ the Frobenius norm and the operator norm of
M , and by ‖M‖1 and ‖M‖∞ the �1 and �∞-norm of M when viewed as a vector in R

n1n2 ,
respectively. We write M† for the Moore–Penrose pseudoinverse of M . Finally, let Sn denote the
set of permutations π : [n]→ [n].

2. Anti-Monge matrix estimation

We start with estimation of a Monge matrix under sub-Gaussian noise, without latent permuta-
tions. It is mathematically equivalent to study estimation of an anti-Monge matrix θ∗ ∈ R

n1×n2 ,
which we find more convenient for the presentation. Throughout this work, we assume that
n1 ≥ n2 without loss of generality. In the case where n1 ≤ n2, our results and proofs remain
valid with the roles of n1 and n2 swapped.
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Consider the difference operator D ∈R
(n1−1)×n1 defined by

D =

⎡
⎢⎢⎢⎣
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . −1 1

⎤
⎥⎥⎥⎦ , (2.1)

and we define D̃ ∈ R
(n2−1)×n2 in the same way. Using a telescoping sum argument, it is easy to

check that the set of anti-Monge matrices θ such that −θ satisfies (1.1) can be expressed as

M=Mn1,n2 := {
θ ∈R

n1×n2 : DθD̃� ≥ 0
}
,

where the symbol ≥ denotes entrywise inequality. For each θ ∈M, we define the quantity

V (θ) := θ1,1 + θn1,n2 − θn1,1 − θ1,n2 = ∥∥DθD̃�∥∥
1, (2.2)

where the last equality follows again from a telescoping sum. We remark that V (θ) is a global
seminorm of θ , and turns out to play a role in the rate of estimation.

In this work, we consider additive sub-Gaussian noise. Namely, for a zero-mean random matrix
ε ∈R

n1×n2 , we say that ε is sub-Gaussian with variance proxy σ 2, or simply ε ∼ subGn1×n2(σ
2),

if for any matrix M ∈R
n1×n2 , it holds that

E
[
exp

(
Tr
(
M�ε

))]≤ exp
(
σ 2‖M‖2

F /2
)
.

Suppose that we observe

y = θ∗ + ε,

where ε ∼ subGn1×n2(σ
2). We study the performance of the least-squares estimator

θ̂ ls := argmin
θ∈M

‖θ − y‖2
F , (2.3)

in terms of the mean squared error

1

n1n2

∥∥θ̂ − θ∗∥∥2
F
.

Our upper bound is stated in the following theorem.

Theorem 1. Let θ∗ ∈Mn1,n2 be an anti-Monge matrix, and suppose that we observe y = θ∗ + ε

where ε ∼ subGn1×n2(σ
2). Let the quantity V (θ∗) be defined by (2.2). Then the least-squares

estimator θ̂ ls achieves the rate

1

n1n2

∥∥θ̂ ls − θ∗∥∥2
F

�
[
σ 2

n2
+

(
σ 2V (θ∗)

n1n2

)2/3

log(n1)
1/3 log(n2)

2/3
]
∧ σ 2

with probability at least 1 − exp(−n1). Moreover, the same bound holds in expectation.
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Assuming Gaussian noise, the following theorem provides a lower bound that matches the
above upper bound up to a logarithmic factor. For V0 ≥ 0, let us define

MV0 =Mn1,n2
V0

:= {
θ ∈Mn1,n2 : V (θ) ≤ V0

}
.

Theorem 2. Consider the model y = θ∗ + ε, where θ∗ ∈ Mn1,n2
V0

and ε has i.i.d. N (0, σ 2)

entries. For any V0 ≥ 0, it holds that

inf
θ̃

sup
θ∗∈MV0

E

[
1

n1n2

∥∥θ̃ − θ∗∥∥2
F

]
�

[
σ 2

n2
+

(
σ 2V0

n1n2

)2/3]
∧ σ 2,

where the infimum is taken over all estimators measurable with respect to the observation y.

We now discuss the minimax rate of estimation with σ = 1, n1 = n2 = n and the logarithmic
factor omitted for simplicity. The first term 1/n is a boundary term due to the fact that the set
of Monge matrices contains all matrices with constant rows or columns. If we further impose
boundary conditions on the matrix θ∗, for example, by specifying its row sums and column sums,
then this boundary term will vanish. The second term V (θ∗)2/3/n4/3 is attributed to the Monge
property and dominates when V (θ∗) ≥ √

n. This is also the rate achieved by the concurrent
work [28] for denoising an entirely monotone function up to a polylogarithmic factor. Moreover,
the lower bound of [28], Theorem 4.4, for a class of functions with bounded Hardy–Krause
variation consists of a log(n)2/3 factor, so it would be interesting if the logarithmic gap here
could also be tightened.

3. Pre-anti-Monge matrix estimation

In this section, we move on to study the estimation of a pre-anti-Monge matrix, that is, an anti-
Monge matrix whose rows and columns have been shuffled by latent permutations. Let Sn de-
note the set of permutations π : [n] → [n]. For any matrix θ ∈ R

n1×n2 and permutations π1 ∈
Sn1 ,π2 ∈ Sn2 , recall that θ(π1,π2) denotes the matrix defined by θ(π1,π2)i,j = θ(π1(i),π2(j)).
Define the sets

M(π1,π2) :=
{
θ(π1,π2) : θ ∈M

}
and MV0(π1,π2) :=

{
θ(π1,π2) : θ ∈MV0

}
of anti-Monge matrices shuffled by fixed permutations.

Suppose that we observe

y = θ∗(π∗
1 ,π∗

2

)+ ε, (3.1)

where (π∗
1 ,π∗

2 , θ∗) ∈ Sn1 × Sn2 ×M and ε ∼ subGn1×n2(σ
2). Our goal is to estimate the pre-

anti-Monge matrix θ∗(π∗
1 ,π∗

2 ).
If two rows (or columns) of θ∗ differ by a constant vector, then the matrix we obtain from

switching these two rows is still anti-Monge. Therefore, even if the noise ε is zero, neither the
pair of permutations (π∗

1 ,π∗
2 ) nor the matrix θ∗ can be inferred from y. As a result, measures
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of permutation and estimation errors such as ‖θ∗(π̂1, π̂2) − θ∗(π∗
1 ,π∗

2 )‖F and ‖θ̂ − θ∗‖F , may
be not be pertinent. This is why, instead of studying identifiability of the permutations and the
anti-Monge matrix, we focus on the denoising error∥∥θ̃ − θ∗(π∗

1 ,π∗
2

)∥∥
F

for any estimator θ̃ of the pre-anti-Monge matrix.
Depending on the application, it might be important to differentiate between proper and im-

proper estimators θ̃ . In this context, a proper estimator is an estimator

θ̃ ∈M :=
⋃

π1∈Sn1 ,π2∈Sn2

M(π1,π2),

that is, an estimator that needs to be a pre-anti-Monge matrix itself. By contrast, an improper
estimator can be any matrix θ̃ ∈R

n1×n2 .
The rest of this section is organized as follows. We first establish the minimax rate for esti-

mating a pre-anti-Monge matrix in Section 3.1. It is achieved by the global least-squares esti-
mator, which is proper by nature, but is likely to be computationally infeasible. Next, we give a
computationally feasible proper estimator in Section 3.2 under additional assumptions. Finally,
in Section 3.3, we present another computationally feasible estimator based on singular value
thresholding that yields a better rate than the one in Section 3.2, but may be improper. This
presents a shortcoming if one wants to leverage the Monge structure for downstream numerical
computations.

3.1. Minimax rates of estimation

We work under the technical assumption that θ∗ ∈MV0 where V0 is known. Define

MV0 :=
⋃

π1∈Sn1 ,π2∈Sn2

MV0(π1,π2).

Our upper bound is achieved (up to a logarithmic factor) by the global least-squares estimator
over the entire parameter space

θ̂gls ∈ argmin
θ∈MV0

‖θ − y‖2
F . (3.2)

If the minimizer is not unique, an arbitrary one is chosen.

Theorem 3. Suppose that we have y = θ∗(π∗
1 ,π∗

2 ) + ε, where θ∗ ∈Mn1,n2
V0

and ε ∼ subG(σ 2).
Then the global least-squares estimator (3.2) achieves

1

n1n2

∥∥θ̂gls − θ∗(π∗
1 ,π∗

2

)∥∥2
F

�
[
σ 2 log(n1)

n2
+

(
σ 2V0

n1n2

)2/3

log(n1)
1/3 log(n2)

2/3
]
∧ σ 2

with probability at least 1 − n
−n1
1 . The same bound holds in expectation.
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Note that this rate is the same (up to a logarithmic factor in the first term) as that for estimating
an anti-Monge matrix without latent permutations in view of Theorem 1. Therefore, the lower
bound of Theorem 2 for the smaller class implies minimax optimality of the above upper bound
(up to a logarithmic factor).

Adaptive methods such as selection or aggregation [42,53] may be used to achieve a near-
optimal upper bound without the knowledge of V0. In fact, we conjecture that a comparable
bound holds true for the version of the least-squares estimator where the projection onto MV0

is replaced by the unrestricted version M, but our current proof technique does not allow us to
conclude this. Nevertheless, if we could choose V0 such that V0 � V (θ∗) ≤ V0, then our upper
bound would be near-optimal at θ∗.

3.2. Efficient estimation via variance sorting

While the global least-squares estimator retains the minimax rate even in the presence of latent
permutations, solving the optimization problem (3.2) is unlikely to be computationally efficient.
Thus, we now discuss polynomial-time estimators. In this subsection, we assume that the noise
matrix ε is homoscedastic with independent sub-Gaussian entries, i.e.,

εi,j ∼ subG
(
Cσ 2) and Var[εi,j ] = σ 2.

As in the previous section, the estimator is based on projecting a permuted version of the
observations onto MV0 , but we use an efficient method to find estimators of the permutations
with respect to which we project on. Let us first focus on estimating the row permutation π1.
Since adding a constant to all entries in a row of the underlying matrix does not change its anti-
Monge property, there is no first-order information that helps distinguish between the rows of y.
Instead, we exploit second-order information, namely, the variance of row differences of y.

The intuition behind the Variance Sorting subroutine proposed below lies the following lemma,
whose proof is deferred to Appendix A.8.2.

Lemma 4. For an anti-Monge matrix θ∗ ∈Mn1,n2 , the variance between row 1 and row i of θ∗,
defined as

n2∑
k=1

[
θ∗
i,k − θ∗

1,k − 1

n2

n2∑
�=1

(
θ∗
i,� − θ∗

1,�

)]2

for i ∈ [n1],

is monotonically nondecreasing in i.

Therefore, if we knew the index π−1
1 (1) corresponding to the first row of θ∗, we could estimate

these variances by their empirical versions (defined in (3.3) below) and sort the rows accordingly.
The precise method is given in the following Variance Sorting Subroutine.

Note that in Algorithm 1, the pair (i0, j0) defined in (3.4) is an estimator for the extremal rows
π−1

1 (1) and π−1
1 (n1), but the choice of which index corresponds to π−1

1 (1) is broken arbitrarily
by the constraint i0 < j0. In turn, the resulting estimator π̂1 can only be reliable up to a global
flip of the coordinates. In order to obtain denoising rates, this indeterminacy can be overcome
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Algorithm 1 Variance sorting
1. For each pair of rows (i, j) of y, compute the variance of their difference

ξ(i, j) :=
n2∑

k=1

[
yi,k − yj,k − 1

n2

n2∑
�=1

(yi,� − yj,�)

]2

, (3.3)

and define

(i0, j0) := argmax
(i,j)∈[n1]2,i<j

ξ(i, j). (3.4)

2. Define π̂1 ∈ Sn1 so that {ξ(i0, π̂
−1
1 (i))}n1

i=1 is nondecreasing in i. In particular, we can pick
π̂1(1) = i0 and π̂1(n1) = j0.

by projecting y onto the set of anti-Monge matrices under both possible orientations and picking
the best fit.

To facilitate our presentation, we define the reversal permutation π r
1 ∈ Sn1 by π r

1(i) = n1 −
i + 1 for i ∈ [n1], and define similarly π r

2 ∈ Sn2 by π r
2(i) = n2 − i + 1 for i ∈ [n2]. In short, Al-

gorithm 2 below applies the Variance Sorting subroutine twice to estimate both row and column
permutations, and then estimates θ by the (computationally efficient) least-squares estimator in
the convex set of anti-Monge matrices along these estimated permutations.

Note that we only allowed a potential flip π r
1 for π̂1, although there is also such an ambiguity

for π̂2. This suffices because if θ ∈MV0 , then θ(π r
1,π

r
2) ∈MV0 , and as a result

MV0(π̂1, π̂2)∪MV0

(
π r

1 ◦ π̂1, π̂2
)

=MV0(π̂1, π̂2)∪MV0

(
π r

1 ◦ π̂1, π̂2
)∪MV0

(
π̂1,π

r
2 ◦ π̂2

)∪MV0

(
π r

1 ◦ π̂1,π
r
2 ◦ π̂2

)
.

Algorithm 2 Main algorithm

1. Find π̂1 using the Variance Sorting subroutine, Algorithm 1.
2. With y replaced by y� and the roles of indices 1 and 2 switched, find π̂2 using the Variance

Sorting subroutine, Algorithm 1.
3. Compute the least-squares estimator θ̂ as follows. If

min
θ∈MV0

∥∥θ(π̂1, π̂2)− y
∥∥2

F
≤ min

θ∈MV0

∥∥θ(π r
1 ◦ π̂1, π̂2

)− y
∥∥2

F
,

then we define π̂ ′
1 := π̂1. Otherwise, we define π̂ ′

1 := π r
1 ◦ π̂1. Finally, we set

θ̂ := argmin
θ∈MV0 (π̂ ′

1,π̂2)

‖θ − y‖2
F .
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The estimator computed by the main algorithm achieves the following rate of estimation.

Theorem 5. Suppose that y = θ∗(π∗
1 ,π∗

2 ) + ε, where θ∗ ∈ Mn1,n2
V0

and ε has independent

subG(Cσ 2) entries with variance σ 2. Let the estimator θ̂ be given by the main algorithm. It
holds with probability at least 1 − n

−n1
1 that

1

n1n2

∥∥θ̂ − θ∗(π∗
1 ,π∗

2

)∥∥2
F

�
(
σ 2 + σV0

)( logn1

n2

)1/2

.

Moreover, the same bound holds in expectation.

This rate achieved by our efficient estimator is consistent, but it is suboptimal in view of the
minimax rate given by Theorem 3.

3.3. Denoising via singular value thresholding

While the Variance Sorting algorithm above yields efficient estimators of the latent permutations,
the rate of convergence it achieves is suboptimal. We now aim for the easier task of denoising
the pre-anti-Monge matrix without learning the latent permutations, in the hope of obtaining an
efficient estimator with a faster rate of convergence. More precisely, under model (3.1), we look
for a possibly improper estimator θ̃ ∈R

n1×n2 so that ‖θ̃ − θ∗(π∗
1 ,π∗

2 )‖2
F is small.

To this end, we consider the well-studied singular value thresholding (SVT) estimator [17,35].
Let the singular value decomposition of y be

y =
n2∑
i=1

λiuiv
�
i .

Then the SVT (hard-thresholding) estimator is defined as

θ̂svt :=
n2∑
i=1

1{λi > ρ}λiuiv
�
i ,

where we choose the threshold to be ρ := Cσ
√

n1 for a sufficiently large constant C > 0. The
rate of estimation achieved by the SVT estimator is given in the following theorem.

Theorem 6. Suppose that we have y = θ∗(π∗
1 ,π∗

2 ) + ε, where θ∗ ∈Mn1,n2 and ε ∼ subG(σ 2).
The singular value thresholding estimator θ̂svt achieves

1

n1n2

∥∥θ̂svt − θ∗(π∗
1 ,π∗

2

)∥∥2
F

�
[

σ 2

n2
+ σ 3/2V (θ∗)1/2

n
3/4
2

]
∧ σ 2

with probability at least 1 − exp(−n1). The same bound holds in expectation.
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This rate sits between the minimax rate given by Theorem 3, and the rate for the Variance
Sorting estimator given by Theorem 5. Note that for this result, the noise ε needs not be ho-
moscedastic, and moreover, no knowledge of V0 is required, that is, the SVT estimator adapts to
the quantity V (θ∗).

The proof technique leading to upper bounds for the SVT estimator is well developed [17,66].
Our contribution lies in the following low-rank approximation result for an anti-Monge matrix,
which is of independent interest.

Proposition 7. For any θ ∈ Mn1,n2 and positive integer r , there exists a rank-(3r + 3) matrix
θ̃ ∈R

n1×n2 such that

‖θ̃ − θ‖2
F ≤ 2

n1n2

r3
V (θ)2.

Note that using a similar proof, the same rate as in Theorem 6 can be obtained for a soft-
thresholding estimator as well, that is, for

θ̂soft :=
n2∑
i=1

(
(λi − ρ) ∨ 0

)
uiv

�
i ,

with a similar scaling for ρ.
As the rate given in Theorem 6 does not match the minimax rate, it is natural to ask whether this

suboptimality is an artifact of the proof or a true weakness of the SVT estimator. In Appendix C,
we present a worst-case anti-Monge matrix which cannot be approximated by any low-rank
matrix at a rate better than that given by Proposition 7. This in turn gives evidence that the rate
of convergence for the SVT estimator in Theorem 6 might be the best achievable by this method.
However, we do not have a rigorous proof for this statement, nor do we know whether the gap
between the rates of Theorems 6 and 3 is truly a statistical-to-computational gap as those in other
average-case problems with hidden structures [4,50].

4. Numerical experiments

In order to compare our theoretical guarantees with the empirical performance of the proposed
estimators, we conducted experiments on synthetic data, using Dykstra’s algorithm to project
onto the cone of anti-Monge matrices.

We first present this projection algorithm in Section 4.1. We then show the experimental results
of the projection onto the cone of anti-Monge matrices in Section 4.2 and of the two efficient
strategies for denoising pre-anti-Monge matrices in Section 4.3.

4.1. Dykstra’s algorithm for projecting onto the set of anti-Monge matrices

Since the set M is a convex cone specified by O(n1n2) constraints, the least-squares estimator
(2.3) can be calculated by a general purpose convex optimization software such as SCS [55,56] or
ECOS [26]. The most computationally intensive subroutine of these methods is usually solving
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Algorithm 3 Dykstra’s algorithm

Input: y ∈R
d , the point to project; M1, . . . ,Mm a collection of cones

Output: θ , an approximation to the projection of y onto M1 ∩ · · · ∩Mm

function PROJECTDYKSTRA(y)
for i = 1, . . . ,m do

pi = 0d � Initialize residuals
end for
θm = y � Initialize iterates
while not converged do

for i = 1, . . . ,m do
θi ← 
Mi

(θ(i−2)%m+1 + pi) � Project shifted iterates
pi ← θ(i−2)%m+1 + pi − θi � Compute new residual

end for
end while
return θ

end function

linear systems associated with the constraints specifying M. Using direct methods to find these
solutions results in a runtime that scales like (n1n2)

3, rendering calculations relatively slow even
for moderate values of n1 and n2. Hence, we chose to implement a specialized algorithm to
calculate θ based on Dykstra’s projection algorithm [7,21].

In its general form (see Algorithm 3), this algorithm is designed to calculate the projection of
a vector y ∈ R

d onto the intersection of m convex sets M1, . . . ,Mm by iteratively projecting
carefully chosen points to each individual set. This is similar to alternate projections of a point
to each of the sets M1, . . . ,Mm, but when initialized with y ∈R

d , Dykstra’s algorithm not only
finds a point in the intersection

⋂
j∈[m]Mj , but its iterates actually converge to the projection of

y onto
⋂

j∈[m]Mj .
To apply Dysktra’s algorithm to the task of projecting onto the cone of anti-Monge matrices,

note that we can write M=⋂n1−1
i1=1

⋂n2−1
i2=1 Mi1,i2 with

Mi1,i2 :=
{
θ ∈R

n1,n2 :
∑

j1∈{0,1},j2∈{0,1}
(−1)j1+j2θi1+j1,i2+j2 ≥ 0

}
,

because a matrix is anti-Monge if and only if each contiguous 2 × 2 submatrix is anti-Monge.
The projection of y onto Mi1,i2 can be explicitly calculated to be the matrix with entries[


Mi1,i2
(y)

]
i1+j1,i2+j2

= yi1+j1,i2+j2 + (−1)j1+j2

4
max

{
−

∑
k1∈{0,1},k2∈{0,1}

(−1)k1+k2yi1+k1,i2+k2 ,0

}

for j1, j2 ∈ {0,1}, and [

Mi1,i2

(y)
]
�1,�2

= y�1,�2 ,
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Algorithm 4 Fast projection onto M
Input: y ∈R

n1×n2

Output: θ ≈ 
M(y)

function PROJETANTIMONGE(y)
η ← 0 ∈R

(n1−1)×(n2−1) � Initialize residuals
θ ← y, � Initialize iterates
while not converged do

for i1 = 1, . . . , n1 − 1, i2 = 1, . . . , n2 − 1 do
η̃ ← max{−∑

j1∈{0,1},j2∈{0,1}(−1)j1+j2θi1+j1,i2+j2/4 + ηi1,i2,0}
� Compute new residuals

for j1 ∈ {0,1}, j2 ∈ {0,1} do
θi1+j1,i2+j2 ← θi1+j1,i2+j2 + (−1)j1+j2(η̃ − ηi1,i2) � Project shifted iterates

end for
ηi1,i2 ← η̃ � Store residuals

end for
end while
return θ

end function

if (�1, �2) /∈ (i1 + {0,1})× (i2 + {0,1}).
This leads to Algorithm 4 for projecting a matrix y ∈R

n1×n2 onto M.
The rate of convergence of Dykstra’s method can be shown to be linearly exponential in the

iterations [24], that is, if we denote by θ(k) the kth iterate of θ in Algorithm 4 and by θ∗ =

M(y), then ‖θ(k) − θ∗‖2 � ck for a constant c < 1. However, note that the constant c may
get closer to one with increasing n1 and n2, which is the case for isotonic regression as shown
in [24] and matches our experience: simulations for larger values of n1 and n2 require more
iterates before convergence. On the other hand, if the noise level is low, Algorithm 3 allows us
to run simulations with up to n1 = n2 = 700 below, highlighting its practical applicability on
large-scale data.

In practice, convergence in Algorithm 4 can be checked by evaluating a measure of feasibility
such as 0 ∧ mini,j (DθD̃)i,j , or by checking when the distance between two successive iterates
is small.

4.2. Experiments for anti-Monge matrices

In the following two sections, we assume n = n1 = n2 for simplicity.
For the estimation of anti-Monge matrices, we consider the following family of ground truth

signals, motivated by the construction of the lower bounds in the proof of Theorem 2. First, for
n ∈N and V,σ > 0, define θ1,(n) ∈R

n×n as

(θ1,(n))i,j = V

�k�2

⌊
(i − 1)k

n − 1

⌋⌊
(j − 1)k

n − 1

⌋
, i ∈ [n], j ∈ [n],
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Figure 1. Varying n for projection onto M. When an arrow is present, “slope” indicates the slope between
two consecutive points.

where k = (V n/σ)1/3. The ground truth θ∗
1,(n) is obtained by centering θ1,(n) to have zero col-

umn and row sums. Finally, we set y = θ∗
1,(n) + ε where εi,j

iid∼ N (0, σ ) and report the average

denoising error ‖θ ls − θ∗
1,(n)‖2

F /n2 over 20 repetitions. For all experiments, Algorithm 4 is used
to compute the projection onto M and we observe that convergence is fast provided the noise
level is low, allowing us to consider examples with up to n = 700 within a few minutes.

Our simulations recover the three regimes for n that appear in Theorem 1, although at different
signal-to-noise ratios governed by V/σ . Namely, on the one hand, for V = σ = 1, we see in
Figure 1(a) an error decay of n−1.02 ≈ n−1 for n between 10 and 160, obtained by linearly
regressing the logarithm of the errors onto the logarithm of the n values. On the other hand, for
V = 2 · 106, we can see both a plateau when the trivial σ 2 error bound in Theorem 1 is active, as
well as a decay of n−1.34 ≈ n−4/3 at the beginning of the decay becoming effective, where the
slope in the doubly logarithmic plot is read off between two consecutive points as indicated in
Figure 1(b).

Similarly, fixing n = 200, σ = 1, and varying V between 10−2 and 107, we can observe a
V 0.65 ≈ V 2/3 scaling in Figure 2(a). The overall curve is shallower, plateauing both at the far
low and high end of V , corresponding to the σ 2/n and σ 2 rates becoming active, respectively.

Finally, in Figure 2(b), when setting n = 300, V = 1, and varying σ between 10−7 and 1,
we obtain slopes of σ 2.01 and σ 1.84 on the low and high end, while the lowest slope between
consecutive points in the curve is σ 1.34, which matches the theoretical rates of σ 2, σ 2/n and
(V σ 2/n2)2/3, respectively.

4.3. Experiments for pre-anti-Monge matrices

To illustrate the practical performance of the efficient methods presented for denoising a pre-
anti-Monge matrix, Variance Sorting and singular value thresholding (see Sections 3.2 and 3.3,
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Figure 2. Varying σ , and V individually for projection onto M. When an arrow is present, “slope” indi-
cates the slope between two consecutive points.

respectively), we further perform experiments by using both methods on the following family of
ground truth matrices:

θ∗
2,(n) =

V

n− 1
D†(D†)�.

These were chosen because the singular value decay we proved in Proposition 7 is tight for these
matrices (see Lemma C.1). By contrast, each ground truth example in the previous subsection,
θ∗

1,(n), is a rank-one matrix, and hence should lead to an overall better performance of singular
value thresholding that is independent of n.

For the Variance Sorting algorithm, we set V = 1, σ = 0.5 and report the approximation error
induced by the estimated permutations, that is,

min
π1∈{id,π r

1}
π2∈{id,π r

2}

1

n2

∥∥θ∗(π1 ◦ π̂1,π2 ◦ π̂2)− θ∗∥∥2
F

for θ∗ = θ∗
2,(n), averaged over 256 repetitions. This measure of the approximation quality of the

estimated permutations corresponds to the upper bound used in the proof of Proposition A.4 (see
(A.8)) and is applicable since by construction, θ∗ has row and column sums equal to zero. It is
the dominating part in the error analysis, leading to the rate reported in Theorem 5, and it allows
us to study a larger range of n, avoiding the need for subsequent projection of the permuted y

matrix.
In Figure 3(a), we observe that while for smaller n, we see a slower decay than predicted, for

larger n, the decay scales like n−0.47 ≈ n−1/2, close to the predicted rate.
Finally, we perform singular value thresholding on the same set of ground truth matrices,

setting V = 1, σ = 0.1, and varying n between 20 and 500. For this experiment, in Figure 3(b),
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Figure 3. Algorithms for denoising pre-anti-Monge matrix. When an arrow is present, “slope” indicates
the slope between two consecutive points.

we plotted the full denoising error,

1

n2

∥∥θ̂ − θ∗∥∥2
F
,

averaged over 64 repetitions. As in the other experiments, we can see an error decay that is close
to our theoretical guarantees, that is, n−0.73 ≈ n−3/4.

5. Proofs

We prove Theorem 1 in this section, and defer the remaining proofs of our results to the supple-
ment [39]. Recall that D is defined in (2.1) and D̃ is defined analogously for dimension n2. In
the sequel, whenever we introduce notation in dimension n1, the analogous object in dimension
n2 is denoted by the same symbol with a tilde.

5.1. Proof of Theorem 1

To analyze the performance of a least-squares estimator, we employ Chatterjee’s variational for-
mula [16] that we recall below. See, for example, Lemma 6.1 of [29] for this deterministic form.

Lemma 8 (Chatterjee’s variational formula). Let M be a closed subset of Rd . Suppose that
y = θ∗ + ε where θ∗ ∈M and ε ∈ R

d . Let θ̂ ∈ argminθ∈M ‖y − θ‖2
2 be a projection of y onto

M. Define the function fθ∗ :R+ →R by

fθ∗(t) = sup
θ∈M,‖θ−θ∗‖2≤t

〈
ε, θ − θ∗〉− t2

2
.
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Then we have ∥∥θ̂ − θ∗∥∥
2 ∈ argmax

t≥0
fθ∗(t).

Moreover, if there exists t∗ > 0 such that fθ∗(t) < 0 for all t ≥ t∗, then ‖θ̂ − θ∗‖2 ≤ t∗.

To control the supremum in Lemma 8, note that it suffices to consider Gaussian noise here,
since the generalization to sub-Gaussian noise is taken care of by Theorem B.2.

Proposition 9. Fix an anti-Monge matrix θ∗ ∈ M, and suppose that Z ∈ R
n1×n2 has i.i.d.

N (0,1) entries. Then for any integer k ∈ [n1n2] and any t > 0, we have

E

[
sup

θ∈M‖θ−θ∗‖F≤t

〈
Z,θ − θ∗〉] � t

[√
n1 +√

k log(n2)+
√

log(n1) log(n2)

(
n1n2

k

)1/4]

+
√

n1n2

k

√
log(n1) log(n2)V

(
θ∗).

To show Theorem 1 taking Proposition 9 as given, let t > 0 and 1 ≤ k ≤ n1n2 to be chosen
later. Note that by Theorem B.1 and Proposition 9, we obtain

γ2
({

θ − θ∗ : θ ∈M,
∥∥θ − θ∗∥∥

F
≤ t

})
� E

Zi,j
iid∼N (0,1)

[
sup

θ∈M‖θ−θ∗‖F ≤t

〈
Z,θ − θ∗〉]

� t

[√
n1 +√

k log(n2) +
√

log(n1) log(n2)

(
n1n2

k

)1/4]
+

√
n1n2

k

√
log(n1) log(n2)V

(
θ∗),

where γ2 denotes Talagrand’s γ2 functional. Therefore, Theorem B.2 yields that with probability
1 − 4 exp(−s2),

sup
θ∈M‖θ−θ∗‖F≤t

〈
ε, θ − θ∗〉 � tσ

[√
n1 +√

k log(n2)+
√

log(n1) log(n2)

(
n1n2

k

)1/4]

+ σ

√
n1n2

k

√
log(n1) log(n2)V

(
θ∗)+ σst.

Let us define

g(t) := sup
θ∈M‖θ−θ∗‖F≤t

〈
ε, θ − θ∗〉 and fθ∗(t) := g(t) − t2

2
.
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Then we obtain that for any fixed

t > t∗s := Cσ

[√
n1 +√

k log(n2)+
√

log(n1) log(n2)

(
n1n2

k

)1/4]

+C

[
σ

√
n1n2

k

√
log(n1) log(n2)V

(
θ∗)]1/2

+Cσs,

where C is a sufficiently large constant, it holds with probability at least 1 − 4 exp(−s2) that
g(t) < t2/8.

Note that this implies fθ∗(t) < 0 for any fixed t > t∗s , but to apply Lemma 8, we would need
negativity of fθ∗(t) simultaneously for all t > t∗s . Towards this end, let us define the event E1 :=
{‖ε‖2

F ≤ 5σ 2(n1n2 + s
√

n1n2)}. Since ε ∼ subGn1×n2(σ
2), Lemma B.4 implies that P{E1} ≥

1 − 2 exp[−c(s2 ∧ s
√

n1n2)]. We define t#
s := 5σ [√n1n2 +√

s(n1n2)
1/4]. It is then easily seen

that on the event E1,

fθ∗(t) ≤ t‖ε‖F − t2/2 < 0

for all t > t#
s . Furthermore, if t∗s < t#

s , we consider a discretization T = {t1, . . . , tk} of the interval
[t∗s , t#

s ] such that t∗s = t1 < · · · < tk = t#
s , 2ti ≥ ti+1 for i ∈ [k − 1], and

k ≤ log2
(
t#
s /t∗s

)+ 1 ≤ 5 log(n1 ∨ s).

A union bound over ti ∈ T then yields that on an event E2 of probability at least 1 − 20 log(n1 ∨
s) exp(−s2), we have g(ti) < t2

i /8 for all i ∈ [k]. Since the function g(t) is nondecreasing, we
have that for any t ∈ [ti , ti+1],

fθ∗(t) ≤ g(ti+1)− t2
i

2
≤ g(ti+1)−

t2
i+1

8
< 0.

Combining the above results, we see that fθ∗(t) < 0 for all t ≥ t∗s on the event E1 ∩ E2.
Therefore by Lemma 8, we obtain that on E1 ∩ E2,

1

n1n2

∥∥θ̂ ls − θ∗∥∥2
F

≤ (t∗s )2

n1n2

� σ 2
[

1

n2
+ k log(n2)

n1n2
+ log(n1) log(n2)√

n1n2k

]

+ σ

√
log(n1) log(n2)

n1n2k
V
(
θ∗)+ σ 2 s2

n1n2
. (5.1)

In addition, it holds that P{E1 ∩ E2} ≥ 1 − 2 exp[−c(s2 ∧ s
√

n1n2)] − 20 log(n1 ∨ s) exp(−s2).
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We now choose s = C
√

n1 for a sufficiently large constant C so that P{E1 ∩ E2} ≥ 1 −
exp(−n1). Balancing the terms in (5.1) that depend on k leads to the choice

k∗ := (n1n2)
1/3 log(n1)

1/3
[√

log(n1)+ V (θ∗)
σ
√

log(n2)

]2/3

,

in addition to possibly rounding k∗ to an integer which we omitted to simplify the presentation.
Therefore, we obtain that with probability 1 − exp(−n1), if 1 ≤ k∗ ≤ n1n2, then

1

n1n2

∥∥θ̂ ls − θ∗∥∥2
F

� σ 2

n2
+ σ 2 log(n2) log(n1)

1/3[√log(n1)+ V (θ∗)/(σ
√

log(n2))]2/3

(n1n2)2/3

� σ 2

n2
+

(
σ 2V (θ∗)

n1n2

)2/3

log(n1)
1/3 log(n2)

2/3. (5.2)

If k∗ < 1, we replace it by 1, increasing the k log(n2)/(n1n2) term while decreasing the ones with
1/

√
k in (5.1), hence leading to the same rate as in (5.2). If k∗ > n1n2, note that the k/(n1n2)

term is already of the order σ 2, so a basic bound of σ 2 on the empirical process term yields the
rate

1

n1n2

∥∥θ̂ ls − θ∗∥∥2
F
≤ σ 2.

Combined, this yields that with probability at least 1 − exp(−n1),

1

n1n2

∥∥θ̂ ls − θ∗∥∥2
F

�
[
σ 2

n2
+

(
σ 2V (θ∗)

n1n2

)2/3

log(n1)
1/3 log(n2)

2/3
]
∧ σ 2.

To obtain the bound in expectation, we can first integrate the exponentially decaying tale
of (5.1), and then choose the optimal k in the same way.

5.2. Proof of Proposition 9

Our main strategy consists in decomposing the noise matrix Z into three terms according to the
spectral decomposition of the linear map D, defined by D(A) = DAD̃� for A ∈R

n1×n2 .

Spectral decomposition of the difference operator. Denote the (reduced) singular value decom-
position of D by D = U
W�, where we order the singular values in 
 in ascending magnitude.
In addition, we write W = [w1 · · · wn1].

First, let 
1 denote the projection onto kerD. Moreover, let J = {(l, r) ∈ [n1] × [n2] : lr ≤ k}
and J c = [n1] × [n2] \ J . Define the projection 
2 by


2(A) =
∑

(l,r)∈J

wlw
�
l Aw̃r w̃

�
r and so

(I −
2)(A) =
∑

(l,r)∈J c

wlw
�
l Aw̃r w̃

�
r .
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With these two projections, we decompose

E

[
sup

θ∈M‖θ−θ∗‖F≤t

〈
Z,θ − θ∗〉]

≤ E

[
sup

θ∈M‖θ−θ∗‖F ≤t

〈

1(Z), θ − θ∗〉]+E

[
sup

θ∈M‖θ−θ∗‖F≤t

〈
(I − 
1)
2(Z), θ − θ∗〉]

+E

[
sup

θ∈M‖θ−θ∗‖F≤t

〈
(I − 
1)(I −
2)(Z), θ − θ∗〉]. (5.3)

We now bound the three terms in (5.3) separately.

Bounding the first term in (5.3). Recall that 
1 be the projection onto kerD. We claim that
dim(kerD) = n1 + n2 − 1. Given a matrix θ ∈ kerD, that is, DθD̃� = 0, we apply Lemma A.1
to obtain the unique decomposition θ = R + S + B , where RD̃� = 0 and DS = 0. It follows
that DBD̃� = 0. Since the first column and the first row of B are both identically zero, it is easy
to see from an inductive argument that B = 0 so that kerD contains only matrices of the form
θ = R + S. The set of constant-row matrices R has dimension n1; the set of constant-column
matrices S with Si,1 = 0 for i ∈ [n1] has dimension n2 − 1. Thus, dim(kerD) = n1 + n2 − 1.
Consequently, we have

E

[
sup

θ∈M‖θ−θ∗‖F≤t

〈

1(Z), θ − θ∗〉]≤ tE

[∥∥
1(Z)
∥∥

F

]≤ t
√

n1 + n2 − 1 � t
√

n1.

Bounding the second term in (5.3). Similarly, it suffices to compute the rank of 
2, which is
bounded as follows

|J | =
∑

(l,r)∈J

1 ≤
n2∑

r=1

k/r ≤ k log(n2). (5.4)

Therefore, we obtain

E

[
sup

θ∈M‖θ−θ∗‖F ≤t

〈
(I −
1)
2(Z), θ − θ∗〉]≤ tE

[∥∥(I −
1)
2(Z)
∥∥

F

]
� t

√
k log(n2).

Bounding the third term in (5.3). Note that I −
1 is the projection onto the image of the linear
map D�, defined by D�(A) = D�AD̃. Hence, we have

〈
(I − 
1)(I −
2)(Z), θ − θ∗〉= 〈

D�(D�)†
(I −
2)(Z)D̃†D̃, θ − θ∗〉

= 〈(
D†)�(I −
2)(Z)D̃†,D

(
θ − θ∗)D̃�〉.
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Since Z has mean zero, it is sufficient to control

E

[
sup

θ∈M‖θ−θ∗‖F ≤t

〈(
D†)�(I −
2)(Z)D̃†,DθD̃�〉]. (5.5)

To bound this quantity, we need the following lemma, whose proof is deferred to Section 5.3.

Lemma 10. For any i ∈ [n1], j ∈ [n2], the quantity [(D†)�(I −
2)(Z)(D̃†)]i,j is sub-Gaussian
with variance proxy

O

(
log(n2)

[(
i ∧ (n1 − i)

)(
j ∧ (n2 − j)

)∧ n1n2

k

])
.

Let us define � ∈R
(n1−1)×(n2−1) by

�i,j =√
log(n1) log(n2)

[
(
√

i ∧√
n1 − i)(

√
j ∧√

n2 − j)∧
√

n1n2

k

]
,

and let � denote element-wise division. Lemma 10, together with a union bound readily yields

E
[∥∥(D†)�(I −
2)(Z)D̃† ��

∥∥∞]
� 1.

In addition, it holds for every θ that〈(
D†)�(I −
2)(Z)D̃†,DθD̃�〉= 〈(

D†)�(I − 
2)(Z)D̃† � �,�� DθD̃�〉
≤ ∥∥(D†)�(I − 
2)(Z)D̃† � �

∥∥∞∥∥�� DθD̃�∥∥
1

by Hölder’s inequality. We therefore obtain

E

[
sup

θ∈M‖θ−θ∗‖F≤t

〈(
D†)�(I −
2)(Z)D̃†,D

(
θ − θ∗)D̃�〉]

≤ E
[∥∥(D†)�(I −
2)(Z)D̃† ��

∥∥∞]
sup

θ∈M‖θ−θ∗‖F ≤t

∥∥��DθD̃�∥∥
1

� sup
θ∈M‖θ−θ∗‖F≤t

∥∥�� (
DθD̃�)∥∥

1.

It remains to bound this supremum. For θ ∈M, because DθD̃� ≥ 0 we can write∥∥�� (
DθD̃�)∥∥

1 = 〈
�,DθD̃�〉= 〈

�,D
(
θ − θ∗)D̃�〉+ 〈

�,Dθ∗D̃�〉. (5.6)

The second term in (5.6) can be bounded by

〈
�,Dθ∗D̃�〉≤ ‖�‖∞

∥∥Dθ∗D̃�∥∥
1 �

√
n1n2

k

√
log(n1) log(n2)V

(
θ∗).
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For the first term in (5.6), we need the following lemma, whose proof is deferred to Ap-
pendix A.2.

Lemma 11. We have the estimate

∥∥D��D̃
∥∥2

F
� log(n1) log(n2)

√
n1n2

k
+ log2(n1) log2(n2).

If ‖θ − θ∗‖F ≤ t , then the above lemma together with the Cauchy–Schwarz inequality yields

〈
�,D

(
θ − θ∗)D̃�〉

= 〈
D��D̃, θ − θ∗〉≤ ∥∥D��D̃

∥∥
F

∥∥θ − θ∗∥∥
F

� t

[√
log(n1) log(n2)

(
n1n2

k

)1/4

+ log(n1) log(n2)

]
. (5.7)

Combining (5.5)–(5.7), we conclude that

E

[
sup

θ∈M‖θ−θ∗‖F ≤t

〈
(I −
1)(I − 
2)(Z), θ − θ∗〉]

�
√

n1n2

k

√
log(n1) log(n2)V

(
θ∗)+ t

[√
log(n1) log(n2)

(
n1n2

k

)1/4

+ log(n1) log(n2)

]
.

The bounds on the three terms of (5.3) together yield the desired result.

5.3. Proof of Lemma 10

By definition of 
2, it holds that

(
D†)�(I −
2)(Z)D̃† =

∑
(�,r)∈J c

U
†W�w�w
�
� Zw̃rw̃

�
r W̃ 
̃†Ũ�

=
∑

(�,r)∈J c

(
w�

� Zw̃r

)
U
†e�ẽ

�
r 
̃†Ũ�

=
∑

(�,r)∈J c

(
w�

� Zw̃r

)

−1

�,� 
̃
−1
r,r Ue�ẽ

�
r Ũ�

=
∑

(�,r)∈J c

(
w�

� Zw̃r

)

−1

�,� 
̃
−1
r,r U·,�Ũ�·,r . (5.8)
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We now study the sub-Gaussianity of the (i, j)-th entry of this quantity. Since Z has i.i.d. N (0,1)

entries, it holds for each λ > 0 that

E exp

(
λ

∑
(�,r)∈J c

(
w�

� Zw̃r

)

−1

�,� 
̃
−1
r,r Ui,�Ũj,r

)

= E exp

(
λ

∑
(�,r)∈J c

Tr
(
Zw̃rw

�
�

)

−1

�,� 
̃
−1
r,r Ui,�Ũj,r

)

= E exp

{
Tr

[
Z

(
λ

∑
(�,r)∈J c


−1
�,� 
̃

−1
r,r Ui,�Ũj,r w̃rw

�
�

)]}

≤ exp

{
λ2

2

∥∥∥∥ ∑
(�,r)∈J c


−1
�,� 
̃

−1
r,r Ui,�Ũj,r w̃rw

�
�

∥∥∥∥
2

F

}
. (5.9)

Note that ‖w̃rw
�
� ‖F = 1, and 〈w̃rw

�
� , w̃r ′w�

�′ 〉 = 0 for any pairs (r, �) �= (r ′, �′), so we have

∥∥∥∥ ∑
(�,r)∈J c


−1
�,� 
̃

−1
r,r Ui,�Ũj,r w̃rw

�
�

∥∥∥∥
2

F

=
∑

(�,r)∈J c


−2
�,� 
̃

−2
r,r U2

i,�Ũ
2
j,r . (5.10)

It remains to bound this quantity. Without loss of generality, assume that n1 is odd, so n1 − 1
is even. The matrix D has the same left-singular vectors as

DD� =

⎡
⎢⎢⎢⎢⎢⎣

2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
...

. . .
...

0 0 . . . −1 2 −1
0 0 . . . 0 −1 2

⎤
⎥⎥⎥⎥⎥⎦ ,

which are known [69] to be

Ui,j =
√

2

n1
sin

(
πij

n1

)
, i, j = 1, . . . , n1 − 1.

Moreover, the matrix D has (non-zero) singular values


i,i = 2

∣∣∣∣sin

(
πi

2n1

)∣∣∣∣, i = 1, . . . , n1 − 1.

Note that because of the symmetry

sin

(
πij

n1

)
= sin

(
πj (n1 − i)

n1

)
, i = 1, . . . , n1 − 1,
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it is enough to consider i = 1, . . . , n1−1
2 . We make use of the following inequalities to control the

sin terms involved:

∣∣sin(x)
∣∣≤ 1 for all x ∈R; (5.11)

sin(x) ≤ x for x ∈ [0,∞); (5.12)

sin(x) ≥ 2

π
x ≥ 1

2
x for x ∈

[
0,

π

2

]
. (5.13)

Plugging in the entries of U and 
 yields

∑
(�,r)∈J c


−2
�,� 
̃

−2
r,r U2

i,�Ũ
2
j,r

=
∑

(�,r)∈J c

4 sin(πi�
n1

)2 sin(
πjr
n2

)2

16n1n2 sin( π�
2n1

)2 sin( πr
2n2

)2

(i)

� 1

n1n2

∑
(�,r)∈J c

n2
1n

2
2

�2r2

� n1n2

n2∑
r=1

(
1

r2

n1∑
�=�k/r 

1

�2

)

� n1n2

n2∑
r=1

(
1

r2

n1∑
�=�k/r +1

1

�2

)
+ n1n2

n2∑
r=1

1

r2

1

�k/r 2

(ii)

� n1n2

n2∑
r=1

1

r2

r

k
+ n1n2

k∑
r=1

1

k2
+ n1n2

n2∑
r=k+1

1

r2

(iii)

� n1n2

k
log(n2)+ n1n2

k
+ n1n2

k
� n1n2

k
log(n2), (5.14)

where we used (5.11) on the numerator and (5.13) on the denominator in (i) and the bound∑∞
r=k+1

1
r2 ≤ 1

k
for any k ≥ 1 in (ii) and (iii).

On the other hand, even without using the constraint (�, r) ∈ J c, we have

∑
(�,r)∈J c


−2
�,� 
̃

−2
r,r U2

i,�Ũ
2
j,r �

∑
�r≤ n1n2

ij

sin(πi�
n1

)2 sin(
πjr
n2

)2

n1n2 sin( π�
2n1

)2 sin( πr
2n2

)2
+

∑
�r>

n1n2
ij

sin(πi�
n1

)2 sin(
πjr
n2

)2

n1n2 sin( π�
2n1

)2 sin( πr
2n2

)2

�
∑

�r≤ n1n2
ij

(i�jr)2

n1n2(�r)2
+ n1n2ij

n1n2
log(n2),
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where we used (5.12) for the numerator and (5.13) for the denominator as well as (5.14) with k

replaced by n1n2
ij

. Therefore,

∑
(�,r)∈J c


−2
�,� 
̃

−2
r,r U2

i,�Ũ
2
j,r �

∑
�r≤ n1n2

ij

(ij)2

n1n2
+ ij log(n2)

� (ij)2

n1n2

n1n2

ij
log(n2)+ ij log(n2) � ij log(n2), (5.15)

by counting integer points in the set {(�, r) : �r ≤ n1n2
ij

} as in (5.4).
A similar argument yields bounds with i replaced by n1 − i, or j replaced by n2 − j . Com-

bining this observation with (5.8), (5.9), (5.10), (5.14) and (5.15) completes the proof.
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