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Random coefficient regression models are a popular tool for analyzing unobserved heterogeneity, and have
seen renewed interest in the recent econometric literature. In this paper, we obtain the optimal pointwise
convergence rate for estimating the density in the linear random coefficient model over Hölder smoothness
classes, and in particular show how the tail behavior of the design density impacts this rate. In contrast to
previous suggestions, the estimator that we propose and that achieves the optimal convergence rate does
not require dividing by a nonparametric density estimate. The optimal choice of the tuning parameters in
the estimator depends on the tail parameter of the design density and on the smoothness level of the Hölder
class, and we also study adaptive estimation with respect to both parameters.
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1. Introduction

In this paper, we consider the linear random coefficient regression model, in which i.i.d. (inde-
pendent and identically distributed) data (Xj ,Yj ), j = 1, . . . , n are observed according to

Yj = A0,j + A1,jXj . (1.1)

Therein Aj := (A0,j ,A1,j ) are unobserved i.i.d. random variables with the bivariate Lebesgue
density fA; while Aj and Xj are independent. Note that (1.1) represents a randomized exten-
sion of the standard linear regression model. We shall derive the optimal convergence rates for
estimating fA over Hölder smoothness classes in case when the Xj have a Lebesgue density fX

with polynomial tail behaviour, as specified in Assumption 1 below.
From a parametric point of view with focus on means and variances of the random coeffi-

cients, a multivariate version of model (1.1) is studied by [11]. They assume the coefficients Aj

to be mutually independent. The nonparametric analysis of model (1.1) has been initiated by [3]
and [4]. [2] use Fourier methods to construct an estimator of fA. They do not derive the optimal
convergence rate, though. Furthermore, their estimator is rather involved as it requires a nonpara-
metric estimator of a conditional characteristic function, which is then plugged into a regularized
Fourier inversion.
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Extensions of model (1.1) have seen renewed interest in the econometrics literature in recent
years. [13] suggest a nonparametric estimator in a multivariate version of model (1.1). They only
obtain its convergence rate for very heavy tailed regressors. Moreover, their estimator requires
dividing by a nonparametric density estimator for a transformed version of the regressors. This
involves an additional smoothing step, and potentially renders the estimator unstable. [5] propose
a specification test for model (1.1) against a general nonseparable model as the alternative, while
[6] suggest multiscale tests for qualitative hypotheses on fA. Extensions and modifications of
model (1.1) are studied in [1,8–10,17–19] and [12]. Methods of analytic continuation of the
coefficients density outside the support of the covariates are considered under more restrictive
conditions in [12] and in the recent work of [7].

In this paper, we consider the basic model (1.1) under the following condition.

Assumption 1 (Design density). For some constants β > 0 and CX > cX > 0, the density fX

satisfies

CX

(
1 + |x|)−β−2 ≥ fX(x) ≥ cX · (1 + |x|)−β−2

, ∀x ∈R, (1.2)

We analyze precisely how the tail parameter β of fX influences the optimal rate of convergence
of fA at a given point a ∈R

2 in a minimax sense in case β > 1. Note that the heavy tailed setting
which is studied in [13] corresponds to β = 0 in Assumption 1. To our best knowledge a rigorous
study of the minimax convergence rate in the more realistic case of β > 1 has been missing so
far. Indeed we fill this gap and derive optimal rates, which are fundamentally new and not known
from any other nonparametric estimation problem.

The estimator which we propose is inspired by [12]. It achieves the optimal convergence rate
and does not require dividing by a nonparametric density estimator. Instead we exploit the order
statistic of the transformed design variables in a Priestley-Chao manner. The optimal choice of
the tuning parameters depends both on the two parameters β and on the smoothness parameter of
the Hölder class, which is reminiscent of the estimation problem in [14] and in contrast to usual
adaptation problems in nonparametric curve estimation, in which the smoothing parameters shall
adapt only to an unknown smoothness level. Here we show how to make the estimator adaptive
with respect to both of these parameters.

The paper is organized as follows. In Section 2, we introduce our estimation procedure. Sec-
tion 3 is devoted to upper and lower risk bounds, which yield minimax rate optimality for the
pointwise risk. We also derive an upper risk bound for the uniform risk, here, an additional loga-
rithmic factor occurs. In Section 4, we deal with adaptivity. The proofs and technical lemmas are
deferred to Section 5.

Let us fix some notation: ψA denotes the characteristic function of the Aj , while ψU |Z is
the conditional characteristic function of the random variable U given the random variable Z.
Throughout | · | stands for the Euclidean norm of a real or complex vector, and 1(A) denotes
the indicator function of the event A. For positive sequences (an) and (bn) we write an � bn if
can ≤ bn ≤ Can, n ∈ N for constants 0 < c < C.
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2. The estimator

In order to construct an estimator for fA in model (1.1), we transform the data (Xj ,Yj ) into
(Zj ,Uj ) via

Uj = Yj/

√
1 + X2

j , (cosZj , sinZj ) = (1,Xj )/

√
1 + X2

j ,

so that Zj ∈ (−π/2,π/2) almost surely (a.s.), Zj and Aj are independent, and

Uj = A0,j cosZj + A1,j sinZj . (2.1)

Then the conditional characteristic function ψU |Z(·|z) of Uj given Zj = z equals

ψU |Z(t |z) = ψA(t cos z, t sin z). (2.2)

By Fourier inversion, integral substitution into polar coordinates (with signed radius) and (2.2)
we deduce that

fA(a) = 1

(2π)2

∫∫
exp

(−ia′b
)
ψA(b)db

= 1

(2π)2

∫
R

∫ π/2

−π/2
|t | exp

(−it (a0 cos z + a1 sin z)
)
ψU |Z(t |z)dz dt. (2.3)

The equation (2.3) motivates us to estimate fA by an empirical version of the conditional char-
acteristic function ψU |Z which is directly accessible from the data (Zj ,Uj ). For that purpose
choose a function w which satisfies the following assumption.

Assumption 2 (Kernel). For a number � ∈ N0 the function w : R → R is even, supported on
[−1,1], (� + 1)-fold continuously differentiable on the whole real line, satisfies w(0) = 1 as
well as w(k)(0) = 0 for all k = 1, . . . , �, and |w| is bounded by 1.

Assumption 2 could be relaxed somewhat. In particular, we may assume compact support
instead of imposing the support of w to be a subset of [−1,1] and we may remove the condi-
tion that |w| is bounded by 1. Simple boundedness is sufficient, which follows from the other
conditions.

Now we consider the regularized version of fA by kernel smoothing as follows

f̃A(a;h)

= 1

(2π)2

∫
R

∫ π/2

−π/2
w(th)|t | exp

(−it (a0 cos z + a1 sin z)
)
ψU |Z(t |z)dz dt

=
∫ π/2

−π/2

∫
R

K(u − a0 cos z − a1 sin z;h)fU |Z(u|z)dudz, (2.4)
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where

K(x;h) := 1

(2π)2

∫
R

w(th)|t | exp(itx)dt = 2

(2π)2

∫ ∞

0
w(th)t cos(tx)dt. (2.5)

Inspired by (2.4) we introduce a Priestley-Chao type estimator of the density fA,

f̂A(a;h, δ) =
n−1∑
j=1

K(U[j ] − a0 cosZ(j) − a1 sinZ(j);h)(Z(j+1) − Z(j))

· 1(−π/2 + δ ≤ Z(j) ≤ Z(j+1) ≤ π/2 − δ)

= 1

(2π)2

∫
R

w(th)|t |
n−1∑
j=1

exp
(
it (U[j ] − a0 cosZ(j) − a1 sinZ(j))

)

· (Z(j+1) − Z(j))1(−π/2 + δ ≤ Z(j) ≤ Z(j+1) ≤ π/2 − δ)dt, (2.6)

where (U[j ],Z(j)), j = 1, . . . , n, denotes the sample (Uj ,Zj ), j = 1, . . . , n, sorted such that
Z(1) ≤ · · · ≤ Z(n), and where h = hn > 0 is a classical bandwidth parameter and δ = δn ≥ 0 is
a threshold parameter both of which remain to be selected. By the parameter δ we cut off that
subset of the interval [−π/2,π/2] in which the Zj are sparse.

In the following, we shall use the symbol∑
j,n,δ

:=
∑

j∈{1,...,n},−π/2+δ≤Z(j)≤Z(j+1)≤π/2−δ

(2.7)

to denote the sum over the random set of indices 1 ≤ j ≤ n − 1 for which −π/2 + δ ≤ Z(j) ≤
Z(j+1) ≤ π/2 − δ. Thus, we may write the estimator in (2.6) as

f̂A(a;h, δ) =
∑
j,n,δ

K(U[j ] − a0 cosZ(j) − a1 sinZ(j);h)(Z(j+1) − Z(j)).

In this paper, we consider one-dimensional covariates Z1, . . . ,Zn only. From a methodological
point of view, the estimator (2.6) could be extended to the multivariate setting by using Voronoi
cells instead of the order statistics. A similar technique is proposed in eq. (36) in [12]. On the
other hand, the asymptotic properties of such an estimator might be completely different from
the univariate case.

3. Upper and lower risk bounds

We consider the following Hölder smoothness class of densities.

Definition. For a point a = (a0, a1) ∈ R
2, a smoothness index α > 0 and constants cA, cB, rA,

cM > 0 define the class F =F(a,α, cA, cB, rA, cM) of densities as follows: fA ∈F(a,α, cA, cB,
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rA, cM) is Hölder-smooth of the degree α in the neighborhood UrA(a) = {b ∈R
2 | |a − b| < rA},

that is, fA is s = 
α� = max{k ∈ N0 | k < α}-times continuously differentiable in UrA(a) and its
partial derivatives satisfy∣∣∣∣ ∂sfA

∂xk∂ys−k
(x, y) − ∂sfA

∂xk∂ys−k
(a0, a1)

∣∣∣∣ ≤ cA · ∣∣(x, y) − a
∣∣α−s

, (3.1)

for all k = 0, . . . , s and (x, y) ∈ UrA(a). Furthermore, assume that the Fourier transform ψA of
fA is weakly differentiable and its weak derivative ∇ψA satisfies∫

essup
y∈R

∣∣∇ψA(x, y)
∣∣dx ≤ cB, (3.2)

and that fA(a) ≤ cM for all a ∈R
2.

For the proof of the first theorem, the global partial tail and smoothness condition (3.2) of
the order 1 is required in addition to the local smoothness assumption (3.1) of the order α. The
theorem provides an upper bound on the convergence rate for the estimator in (2.6).

Theorem 3.1. Consider model (1.1) and assume that fX satisfies (1.2) for some β > 1. If w

satisfies Assumption 2 for l ≥ 2
α�, and if δ = δn and h = hn are chosen such that

δ � n
− 1

β+1 and h � n
− 1

(α+2)(β+1) ,

then the estimator (2.6) attains the following asymptotic risk upper bound over the function class
F =F(a,α, cA, cB, rA, cM),

sup
fA∈F

EfA

[∣∣f̂A(a;h, δ) − fA(a)
∣∣2] =O

(
n

− 2α
(α+2)(β+1)

)
.

The following theorem yields that the convergence rates which our estimator (2.6) achieves
according to Theorem 3.1 are optimal for the pointwise risk in the minimax sense.

Theorem 3.2. Fix a = 0 and the constants cA, cB sufficiently large for any α > 0 and β > 1.
Let (f̂n)n be an arbitrary sequence of estimators of fA, where f̂n is based on the data (Xj ,Yj ),
j = 1, . . . , n, for each n. Assume that fX satisfies (1.2). Then

lim inf
n→∞ n

2α
(α+2)(β+1) sup

fA∈F
EfA

[∣∣f̂n(0) − fA(0)
∣∣2]

> 0.

The convergence rates from Theorems 3.1 and 3.2 differ significantly from standard rates in
nonparametric estimation. While they become faster as α increases, they become slower as β

gets larger. It is remarkable that they do not approach the (squared) parametric rate n−1 but the
slower rate n−2/(β+1) for large α.
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The case β ≤ 1. An analysis of the proof of Theorem 3.1 shows that in case β < 1, choosing

δ � n
− 1

β+1 and h � n− 1
2α+4 gives the rate

sup
fA∈F

EfA

[∣∣f̂A(a;h, δ) − fA(a)
∣∣2] =O

(
n− 2α

2α+4
);

in case β = 1, an additional logarithmic factor occurs. The upper bound no longer depends on β

in this regime. For β = 0, [13] obtain the faster rate O(n− 2α
2α+3 ); their rate is in L2 but could be

transferred to a pointwise rate. However, they additionally impose the assumption that the den-
sity fA is uniformly bounded with a bounded support. This implies that fU |Z is also uniformly
bounded. Under this additional assumption, instead of (5.4) in our analysis, we have the sharper
bound

VarfA

(
f̂A(a;h, δ)|σZ

) ≤ const. · h−3 ·
∑
j,n,δ

(Z(j+1) − Z(j))
2

since
∫
R

K2(u;h)du ≤ const. · h−3. Then one can show that our estimator also achieves the rate

O(n− 2α
2α+3 ) for β = 0, even with the choice δ = 0.

Finally, we consider the uniform rate of convergence, again in the case β > 1.

Theorem 3.3. Consider model (1.1) and assume that fX satisfies (1.2) for some β > 1. Suppose
that w satisfies Assumption 2 for l ≥ 2
α�, and that δ = δn and h = hn are chosen such that

δ �
(

logn

n

) 1
β+1

and h �
(

logn

n

) 1
(α+2)(β+1)

.

For a compact rectangle K ⊆R
2 let F(K,α, cA, cB, rA, cM) denote the class of densities on R

2

such that f ∈F(a,α, cA, cB, rA, cM) for each a ∈ K . Then the estimator (2.6) attains the follow-
ing uniform asymptotic risk upper bound over the function class F =F(K,α, cA, cB, rA, cM),

sup
fA∈F

EfA

[
sup
a∈K

∣∣f̂A(a;h, δ) − fA(a)
∣∣2

]
=O

((
logn

n

) 2α
(α+2)(β+1)

)
.

4. Adaptation

4.1. Adaptation with respect to β for given smoothness

Assume that (1.2) holds with unknown β > 1. If there are at least two observations Zj in the
interval [−π/2 + δ,π/2 − δ] so that

∑
j,n,δ is not the sum over the empty set, we set

Ln(δ) = min{Zj | Zj ≥ −π/2 + δ}, Rn(δ) = max{Zj | Zj ≤ π/2 − δ}, (4.1)
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otherwise we put Ln(δ) = −π/2 and Rn(δ) = π/2. To define a selection rule for δ, define the
function

Cn(δ) :=
∑
j,n,δ

(Z(j+1) − Z(j))
2 + δ−1

∑
j,n,δ

(Z(j+1) − Z(j))
3

+ (
Ln(δ) + π/2

)2 + (
π/2 − Rn(δ)

)2 + δ2,

which is continuous except at the sites π/2, Zj + π/2 and π/2 − Zj for j = 1, . . . , n. Now
choose δ = δ̂n in the interval [n−1/2,π/4] such that

Cn(δ̂n) ≤ exp(−n) + inf
δ∈[n−1/2,π/4]

Cn(δ). (4.2)

The next proposition shows that the convergence rate from Theorem 3.1 does not deteriorate
if only β is unknown but α is known.

Proposition 4.1. Consider model (1.1) and assume that fX satisfies (1.2) for some unknown
β > 1. Choose w satisfying the Assumption 2 for 2
α� ≤ l for given α > 0. If δ̂n is chosen in
(4.2) and

ĥn = (
Cn(δ̂n)

) 1
2(α+2) ,

then for the estimator f̂A(a; ĥn, δ̂n) we have that

sup
fA∈F

EfA

[∣∣f̂A(a; ĥn, δ̂n) − fA(a)
∣∣2] =O

(
n

− 2α
(α+2)(β+1)

)
,

where F =F(a,α, cA, cB, rA, cM).

4.2. Adaptation by the Lepski method

Finally we consider adaptivity with respect to both parameters β and α based on a combination
of Lepski’s method, see [16] and [15], and the choice (4.2). Consider the grid of bandwidths

hk = δ̂
1/2
n qk, k ∈Kn = {0, . . . ,K},

where q > 1, K = Kn = 
logq n� and δ̂n is defined in (4.2). Fix a ∈R
2 and denote

f̂k = f̂A(a;hk, δ̂n).

For CLep > 0 sufficiently large to be chosen we let

k̂ = max
{
k ∈Kn | |f̂k − f̂l |2 ≤ CLepσ(l, n) ∀l ≤ k, l ∈Kn

}
,

where

σ(k,n) = h−4
k Cn(δ̂n) logn, k ∈ Kn.
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Theorem 4.1. Consider model (1.1) and assume that fX satisfies (1.2) for some unknown β > 1.
Choose w according to Assumption 2 for some l ∈ N0. Then for sufficiently large CLep > 0 (e.g.
CLep = 202 suffices), we have, for every α > 0 with 2
α� ≤ l, that

sup
fA∈F

EfA

[∣∣f̂A(a;h
k̂
, δ̂n) − fA(a)

∣∣2] =O
(
n

− 2α
(α+2)(β+1) (logn)

α
α+2

)
,

where F := F(a,α, cA, cB, rA, cM).

Thus for adaptivity an additional logarithmic factor occurs in the pointwise rate under Hölder
smoothness constraints.

5. Proofs

In the proofs we drop fA ∈ F in E = EfA
and in P = PfA

from the notation.

5.1. Proofs for Section 3

Proof of Theorem 3.1. By passing to Cartesian coordinates in (2.4), we can write

f̃A(a;h) = 1

(2π)2

∫
R2

exp
(−ia′b

)
ψA(b)w

(
h‖b‖)db = (

fA ∗ w̃(·/h)/h2)(a),

w̃(a) = 1

(2π)2

∫
R2

exp
(−ia′b

)
w

(‖b‖)db.

(5.1)

Assumption 2 guarantees that w̃ is a kernel of order �. Then, using Taylor approximation as
usual in kernel regularization, see pages 37–38 in [20] for the argument in case of non-compactly
supported kernels, the following asymptotic rate of the regularization bias term occurs

∣∣fA(a) − f̃A(a;h)
∣∣ =

∣∣∣∣fA(a) −
∫

w̃(z)fA(a − hz)dz

∣∣∣∣
≤ CBias(α,w, cA, cM) · hα, (5.2)

where the constant factor CBias(α,w, cA, cM) only depends on cA, cM , w and α.
Now let σZ denote the σ -field generated by Z1, . . . ,Zn, and consider the conditional bias-

variance decomposition

E
[∣∣f̂A(a;h, δ) − f̃A(a;h)

∣∣2] = E
[
Var

(
f̂A(a;h, δ)|σZ

)]
+E

[∣∣E[
f̂A(a;h, δ)|σZ

] − f̃A(a;h)
∣∣2]

. (5.3)
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Since U[1], . . . ,U[n] are independent given σZ , observing from (2.5) that ‖K(·;h)‖∞ =O(h−2),
we may bound

Var
(
f̂A(a;h, δ)|σZ

) ≤
∑
j,n,δ

(Z(j+1) − Z(j))
2

·
∫
R

K2(u − a0 cosZ(j) − a1 sinZ(j);h)fU |Z(u|Z(j))du

≤ const. · h−4 ·
∑
j,n,δ

(Z(j+1) − Z(j))
2, (5.4)

where the constant factor only depends on w. Therein we use the notation (2.7). For the condi-
tional expectation, we obtain that

E
[
f̂A(a;h, δ)|σZ

] = 1

(2π)2

∫
R

w(th)|t |
∫ π/2

−π/2
ψ̃(t, z)dz dt,

where we set

ψ̃(t, z) =
∑
j,n,δ

ψU |Z(t |Z(j)) exp(−ita0 cosZ(j) − ita1 sinZ(j))1(Z(j) ≤ z ≤ Z(j+1)).

We deduce that ∣∣E[
f̂A(a;h, δ)|σZ

] − f̃A(a;h)
∣∣2 ≤ I1 + I2 + I3, (5.5)

where

I1 := 3

(2π)4

∣∣∣∣
∫ Rn(δ)

Ln(δ)

∫
R

w(th)

∣∣∣∣t∣∣(ψ̃(t, z) − exp
(−it (a0 cos z + a1 sin z)

)
· ψU |Z(t |z))dt dz

∣∣2

I2 := 3

(2π)4

∣∣∣∣
∫ Ln(δ)

−π/2

∫
R

w(th)

∣∣∣∣t∣∣exp
(−it (a0 cos z + a1 sin z)

)
· ψU |Z(t |z)dz dt

∣∣2

I3 := 3

(2π)4

∣∣∣∣
∫ π/2

Rn(δ)

∫
R

w(th)

∣∣∣∣t∣∣exp
(−it (a0 cos z + a1 sin z)

)
· ψU |Z(t |z)dz dt

∣∣2
,

where Ln(δ) and Rn(δ) are defined in (4.1). If there are no two consecutive Zj in the interval
[−π/2 + δ,π/2 − δ], then ψ̃(t, z) = 0 (indeed f̂A(a;h, δ) = 0). In this case, by our convention
we have Ln(δ) = −π/2 and Rn(δ) = π/2 so that I2 = I3 = and I1 is the integral from −π/2 to
π/2, as required for the estimate (5.5) to remain true in this case.
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First, consider the term I3. Using the Cauchy–Schwarz inequality, it holds that

I3 ≤ 3

(2π)4

∫ 1/h

−1/h

t2 dt

∫ 1/h

−1/h

∣∣∣∣
∫ π/2

Rn(δ)

exp
(−it (a0 cos z + a1 sin z)

)

· ψU |Z(t |z)dz

∣∣∣∣
2

dt

≤ 4

(2π)4
· h−4 · (π/2 − Rn(δ)

)2
. (5.6)

Analogously we establish that

I2 ≤ 4

(2π)4
· h−4 · (Ln(δ) − π/2

)2
.

Finally, consider the term I1. In case when there are two consecutive Zj in the interval [−π/2 +
δ,π/2 − δ] so that the sum in (2.7) is not empty, it holds that

I1 ≤ 3

(2π)4
h−2 ·

{∑
j,n,δ

∫ Z(j+1)

Z(j)

∫
|t |≤1/h

∣∣ψ̃(t, z) − exp
(−it (a0 cos z + a1 sin z)

)

· ψU |Z(t |z)∣∣dt dz

}2

.

Now, for z ∈ [Z(j),Z(j+1)), we get that

∣∣ψ̃(t, z) − exp
(−it (a0 cos z + a1 sin z)

)
ψU |Z(t |z)∣∣

= ∣∣ψU |Z(t |Z(j)) exp(−ita0 cosZ(j) − ita1 sinZ(j)) − ψU |Z(t |z)
· exp

(−it (a0 cos z + a1 sin z)
)∣∣

≤ ∣∣ψU |Z(t |Z(j)) − ψU |Z(t |z)∣∣ + |t | · |a| · (Z(j+1) − Z(j))

= ∣∣ψA(t cosZ(j), t sinZ(j)) − ψA(t cos z, t sin z)
∣∣ + |t | · |a| · (Z(j+1) − Z(j)),

according to (2.2). Hence, we may bound

I1 ≤ const. · h−2
({∫ π/2

−π/2

∫
|t |≤h−1

∑
j,n,δ

1
(
z ∈ [Z(j),Z(j+1)]

)∣∣ψA(t cosZ(j), t sinZ(j))

− ψA(t cos z, t sin z)
∣∣dt dz

}2
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+
{∫ π/2

−π/2

∫
|t |≤h−1

∑
j,n,δ

1
(
z ∈ [Z(j),Z(j+1)]

)|t | · |a| · (Z(j+1) − Z(j))dt dz

}2)

= const. · h−2(I1,1 + I1,2).

Applying the Cauchy–Schwarz inequality gives for I1,2

I1,2 ≤ const. · h−4|a|4
∑
j,n,δ

(Z(j+1) − Z(j))
3.

For I1,1 interchanging sum and integrals we obtain

∫ π/2

−π/2

∫
|t |≤1/h

1
(
z ∈ [Z(j),Z(j+1)]

)∣∣ψA(t cosZ(j), t sinZ(j)) − ψA(t cos z, t sin z)
∣∣dt dz

=
∫ Z(j+1)

Z(j)

∫
|t |≤1/h

∣∣ψA(t cosZ(j), t sinZ(j)) − ψA(t cos z, t sin z)
∣∣dt dz

≤
∫ Z(j+1)

Z(j)

∫
|t |≤1/h

|t |
∣∣∣∣
∫ z

Z(j)

〈∇ψA(t cosu, t sinu), (− sinu, cosu)
〉
du

∣∣∣∣dt dz

≤
∫ Z(j+1)

Z(j)

∫
|t |≤1/h

|t |
∫ z

Z(j)

sup
y∈R

∣∣∇ψA(t cosu,y)
∣∣dudt dz

≤ 2h−1
∫ Z(j+1)

Z(j)

∫ z

Z(j)

∫
t∈R

sup
y∈R

∣∣∇ψA(t cosu,y)
∣∣dt dudz

≤ 2cBh−1
∫ Z(j+1)

Z(j)

∫ z

Z(j)

1

cosu
dudz

= 2cBh−1(Z(j+1) − Z(j))

∫ Z(j+1)

Z(j)

1

cosu
du.

Using the Cauchy–Schwarz inequality twice yields

I1,1 ≤ const. · h−2
∑
j,n,δ

(Z(j+1) − Z(j))

∫ Z(j+1)

Z(j)

1

cosu
du

≤ const. · h−2
(∫ π/2−δ

−π/2+δ

∑
j,n,δ

1
(
z ∈ [Z(j),Z(j+1)]

)
(Z(j+1) − Z(j))

1

cos z
dz

)2

≤ const. · h−2
∫ π/2−δ

−π/2+δ

1

cos2 z
dz

∫ π/2−δ

−π/2+δ

∑
j,n,δ

1
(
z ∈ [Z(j),Z(j+1)]

)
(Z(j+1) − Z(j))

2 dz
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≤ const. · h−2
∫ π/2−δ

−π/2+δ

1

cos2 z
dz

∑
j,n,δ

(Z(j+1) − Z(j))
3

≤ const. · δ−1h−2
∑
j,n,δ

(Z(j+1) − Z(j))
3.

Hence, the term I1 obeys the upper bound

I1 ≤ const. · (|a|2 · h−6 + δ−1h−2) ·
∑
j,n,δ

(Z(j+1) − Z(j))
3.

Finally, if there are no two consecutive Zj in the interval [−π/2 + δ,π/2 − δ], we simply have
I1 ≤ |f̃A(a;h)|2 ≤ fA(a)2 + const. ·h2α ≤ const. Collecting the terms that bound (5.5) and using
(5.4), from (5.3) we obtain that

E
[∣∣f̂A(a;h, δ) − f̃A(a;h)

∣∣2|σZ

]
≤ const. · h−4

{(
π/2 − Rn(δ)

)2 + (
Ln(δ) + π/2

)2

+
∑
j,n,δ

(Z(j+1) − Z(j))
2 + δ−1 ·

∑
j,n,δ

(Z(j+1) − Z(j))
3
}

+ const. ·
{
|a|2h−6 ·

∑
j,n,δ

(Z(j+1) − Z(j))
3

+ 1(Z(j) < −π/2 + δ or Z(j+1) > π/2 − δ ∀j = 1, . . . , n − 1)

}
. (5.7)

Here, the last term takes care of the event in which the sum
∑

j,n,δ is empty and the estimator
actually is zero. In order to bound the terms in (5.7) involving the order statistics, we note that
since β > 1, ∫ π/2

δ

u−β du � δ1−β,

∫ π/2

δ

u−2β du � δ1−2β.

From (5.2) and (5.7) and Lemma 5.1, we obtain for δ ≤ π/4 that

E
[∣∣f̂A(a;h, δ) − fA(a)

∣∣2]
≤ const. ·

{
h2α + h−4

(
δ + 1

cZnδβ

)2

+ h−4n−1δ1−β + h−4δ−1n−2δ1−2β

+ h−6n−2δ1−2β + n exp
(−cZ(n − 1)(π/4)β

)}
.

Upon inserting the rates for δ and h we obtain the result. �
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Proof of Theorem 3.2. We introduce the functions

fA,θ (a0, a1) := αnβnf0(αna0, βna1) + cL · θ · cos(2βna1) · αnβnφ(αna0, βna1),

for θ ∈ {0,1}, some constant cL > 0 and some sequences (αn)n ↓ 0 and (βn)n ↑ ∞ which remain
to be selected; moreover we specify

f0(a0, a1) := 1

π2(1 + a2
0)(1 + a2

1)
,

and

φ(a0, a1) := ϕ(a0)ϕ(a1),

where

ϕ(x) := 1 − cos(x)

πx2
.

We verify that fA,0 is a probability density as f0 and ϕ are probability densities. The Fourier
transform of fA,θ equals

f
f t
A,θ (x, y) = f

f t

0 (x/αn, y/βn) + 1

2
cL · θ · φf t

(
x/αn, (y + 2βn)/βn

)
+ 1

2
cL · θ · φf t

(
x/αn, (y − 2βn)/βn

)
,

so that ∫∫
fA,θ (a0, a1)da0 da1 = f

f t
A,θ (0) = f

f t

A,0(0) = 1,

since ϕf t is supported on the interval [−1,1]. Choosing the constant cL > 0 sufficiently small
we can guarantee that fA,1 is a non-negative function and satisfies the inequality

fA,1(a0, a1) ≥ c∗
Lαnβnf0(αna0, βna1) ≥ 0, ∀a0, a1 ∈ R, (5.8)

for some constant c∗
L ∈ (0,1). Thus, fA,1 is a probability density as well. Furthermore, we verify

that fA,θ ∈F for both θ ∈ {0,1} under the constraint

αn � β−α−1
n , (5.9)

as cA and cB may be viewed as sufficiently large. Therein note that (3.2) is satisfied as ψA,θ

can be written as the sum of two functions (x, y) �→ ψ0(x/αn) · ψ1(y/βn) where ψj , j = 0,1
are bounded, weakly differentiable, integrable functions whose weak derivatives are essentially
bounded and integrable as well.

The squared pointwise distance between fA,0 and fA,1 at 0 equals

∣∣fA,0(0) − fA,1(0)
∣∣2 = c2

Lα2
nβ

2
n/

(
4π2) � β−2α

n . (5.10)
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Using (5.8), the conditional density of Yj given Xj under the parameter θ equals

fYj |Xj ,θ (y) =
∫

fA,θ (y − a1Xj ,a1)da1 ≥ c∗
Lαnβn

∫
f0

(
αn(y − a1Xj),βna1

)
da1

≥ c∗
Lαnβn

π2

∫
1

1 + 2α2
ny

2 + 2α2
na

2
1X2

j

· 1

1 + β2
na2

1

da1

≥ c∗
Lαnβn

2π2

∫ 1/βn

0

1

1 + 2α2
ny

2 + 2α2
na

2
1X2

j

da1

≥ c∗
L

2π2
· αn

1 + 2α2
ny

2 + 2X2
jα

2
n/β

2
n

,

for all y ∈ R. Moreover, we have that

fYj |Xj ,1(y) − fYj |Xj ,0(y) = cLαnβn

∫
cos(2βna1) · φ(

αn(y − a1Xj),βna1
)

da1

= cLαn

∫
cos(2a1βn/βn) · φ(

αn(y − a1Xj/βn), a1
)

da1,

where the Fourier transform equals

f
f t

Yj |Xj ,1(t) − f
f t

Yj |Xj ,0(t) = 1

2
cLφf t

(
t/αn, (tXj + 2βn)/βn

)
+ 1

2
cLφf t

(
t/αn, (tXj − 2βn)/βn

)
.

Therefore the χ2-distance between the competing observation densities is bounded from above
as follows,

c∗
L · χ2(fYj |Xj ,θ=0, fYj |Xj ,θ=1)

≤ (
1/αn + 2X2

jαn/β
2
n

)
c2
L

∫ ∣∣φf t
(
t/αn, (tXj + 2βn)/βn

)∣∣2 dt

+ (
1/αn + 2X2

jαn/β
2
n

)
c2
L

∫ ∣∣φf t
(
t/αn, (tXj − 2βn)/βn

)∣∣2 dt

+ 2c2
Lαn

∫ ∣∣∣∣ d

dt
φf t

(
t/αn, (tXj + 2βn)/βn

)∣∣∣∣
2

dt

+ 2c2
Lαn

∫ ∣∣∣∣ d

dt
φf t

(
t/αn, (tXj − 2βn)/βn

)∣∣∣∣
2

dt, (5.11)
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where

d

dt
φf t

(
t/αn, (tXj ± 2βn)/βn

) = α−1
n

{
ϕf t

}′
(t/αn) · {ϕf t

}(
(tXj ± 2βn)/βn

)
+ Xj

βn

· {ϕf t
}
(t/αn) · {ϕf t

}′(
(tXj ± 2βn)/βn

)
.

Moreover, this choice also guarantees that fC,θ integrates to 1 and, hence, is a probability density.
Then the integrals in (5.11) range over a subset of

[−αn,αn] \ (−βn/|Xj |, βn/|Xj |
)

as H
f t

0 and its (weak) derivative are supported on [−1,1]. Also these functions are uniformly
bounded by 1. Thus the integrals vanish whenever |Xj | < βn/αn. It follows that

χ2(fYj |Xj ,θ=0, fYj |Xj ,θ=1) ≤ (
6 + 8X2

jα
2
n/β

2
n

)
c2
L/c∗

L,

if |Xj | ≥ βn/αn; and χ2(fYj |Xj ,θ=0, fYj |Xj ,θ=1) = 0 otherwise. According to standard argu-
ments from decision theory, (5.10) represents a lower bound on the attainable rate if the Hellinger
distance between the competing data distributions f

(n)
X,Y ;θ (for θ = 0 and θ1, respectively) obeys

an upper bound which is smaller than 1 – uniformly with respect to n, see, for example, [21].
Writing H for the Hellinger distance, it holds that

H2(f (n)
X,Y ;θ=0, f

(n)
X,Y ;θ=1

) ≤
n∑

j=1

H2(fXj
fYj |Xj ,0, fXj

fYj |Xj ,1)

=
n∑

j=1

∫
fXj

(x)

∫ (
f

1/2
Yj |Xj ,0(y|x) − f

1/2
Yj |Xj ,1(y|x)

)2 dy dx

≤ E

[
n∑

j=1

χ2(fYj |Xj ,0, fYj |Xj ,1)

]
(5.12)

as the distribution of the Xj is identical for θ = 0 and θ = 1. Then, the term (5.12) is bounded
from above by

E

[
n∑

j=1

1[βn/αn,∞)

(|Xj |
) · (6 + 8X2

jα
2
n/β

2
n

)
c2
L

]

= 6nc2
L

∫
|x|≥βn/αn

fX(x)dx + 8nc2
Lα2

nβ
−2
n

∫
|x|≥βn/αn

x2fX(x)dx

=O
(
n(βn/αn)

−β−1) =O
(
n · β−(α+2)(β+1)

n

)
, (5.13)
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as β > 1. We choose βn � n1/[(2+α)(1+β)] so that the χ2-distance between the joint densities of
the observations under θ = 0 and θ = 1 in (5.13) is bounded from above as n tends to infin-
ity. By elementary decision theoretic arguments and by (5.10), a lower bound on the attainable
convergence rate is given by

β−2α
n � n

− 2α
(α+2)(β+1) ,

which completes the proof of the theorem. �

Proof of Theorem 3.3. We estimate

E

[
sup
a∈K

∣∣f̂A(a;h, δ) − fA(a)
∣∣2

]
≤2E

[
sup
a∈K

∣∣f̂A(a;h, δ) − f̃A(a;h)
∣∣2

]

+ 2 sup
a∈K

∣∣f̃A(a;h) − fA(a)
∣∣2

,

where f̃A(a;h) is defined in (5.1). The second term – the regularization bias – is bounded
in (5.2), and that bound is uniform in a ∈ K from the assumptions on the function class
F(K,α, cA, cB, rA, cM). For the first term we have, similarly to (5.3), that

E

[
sup
a∈K

∣∣f̂A(a;h, δ) − f̃A(a;h, δ)
∣∣2

]
≤ 2E

[
sup
a∈K

∣∣f̂A(a;h, δ) −E
[
f̂A(a;h, δ)|σZ

]∣∣2
]

+ 2E
[

sup
a∈K

∣∣E[
f̂A(a;h, δ)|σZ

] − f̃A(a;h)
∣∣2

]
. (5.14)

The second term in (5.14) is bounded by

sup
a∈K

I1(a) + sup
a∈K

I2(a) + sup
a∈K

I3(a),

where Ij (a) are defined as in (5.5), and the dependence on a is stressed in the notation. The
bounds on the Ij (a) derived after (5.5) are uniform in a over a bounded set K . Thus, it remains
to bound the first term in (5.14).

Given ε > 0 let Iε be a subset of K for which the ε-balls with centers at points in Iε cover K .
It is possible to choose such a set with a cardinality of order card(Iε) ≤ CKε−2, where cK > 0
depends on K but not on ε. Then

sup
a∈K

∣∣f̂A(a;h, δ) −E
[
f̂A(a;h, δ)|σZ

]∣∣2

≤ 2 sup
a∈Iε

∣∣f̂A(a;h, δ) −E
[
f̂A(a;h, δ)|σZ

]∣∣2

+ 2 sup
a∈K

inf
a′∈Iε

∣∣f̂A(a;h, δ) − E
[
f̂A(a;h, δ)|σZ

]
− (

f̂A

(
a′;h, δ

) − E
[
f̂A

(
a′;h, δ

)|σZ

])∣∣2
.
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Since ‖∂xK(x;h)‖∞ ≤ h−3, see the formula (2.5) for K(·;h) and the Assumption 2 in w,
by Lipschitz-continuity the second term is ≤ 8ε2h−6. From the Hoeffding inequality, since
‖K(·;h)‖∞ ≤ h−2 we obtain for t > 0 that

P
(∣∣f̂A(a;h, δ) −E

[
f̂A(a;h, δ)|σZ

]∣∣
≥ t |σZ

) ≤ 2 exp

(
− t2

2h−4
∑

j,n,δ(Z(j+1) − Z(j))2

)
. (5.15)

Set

rn = (logn) · h−4
∑
j,n,δ

(Z(j+1) − Z(j))
2.

Then, for κ > 0 we estimate

E

[
r−1
n sup

a∈Iε

∣∣f̂A(a;h, δ) −E
[
f̂A(a;h, δ)|σZ

]∣∣2|σZ

]

≤ κ2 + 2
∫ ∞

κ

tP
(

sup
a∈Iε

∣∣f̂A(a;h, δ) −E
[
f̂A(a;h, δ)|σZ

]∣∣ ≥ r
1/2
n t |σZ

)
dt

≤ κ2 + 4 card(Iε)

∫ ∞

κ

t exp

(
− t2 logn

2

)
dt (from (5.15) and union bound)

≤ κ2 + 4CKε−2 exp

(
−κ2 logn

2

)
(logn)−1.

Choose ε = n−2 and κ = 101/2. Then if h−1 =O(n1/2) we obtain from Lemma 5.1 that

E

[
sup
a∈Iε

∣∣f̂A(a;h, δ) −E
[
f̂A(a;h, δ)|σZ

]∣∣2
]

=O
(
E[rn]

) = h−4δ1−β log(n/n),

and overall

E

[
sup
a∈K

∣∣f̂A(a;h, δ) − fA(a)
∣∣2

]

≤ const. ·
{
h2α + h−4δ1−β log(n/n) + n−1 + h−4

(
δ + 1

cZnδβ

)2

+ h−4δ−1n−2δ1−2β

+ h−6n−2δ1−2β + n exp
(−cZ(n − 1)(π/4)β

)}
.

Plugging in the choices of δ and h gives the result. �
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5.2. Proofs for Section 4

Proof of Proposition 4.1. From (5.7) and (5.2), we estimate

E
[∣∣f̂A(a; ĥn, δ̂n) − fA(a)

∣∣2|σZ

]
≤ const. · {ĥ2α

n + ĥ−4
n Cn(δ̂n)

} + const. ·
{
|a|2ĥ−6

n ·
∑

j,n,δ̂n

(Z(j+1) − Z(j))
3

+ 1(Z(j) < −π/2 + δ̂n or Z(j+1) > π/2 − δ̂n ∀j = 1, . . . , n − 1)

}
. (5.16)

Observe that from the term δ2 in the definition of Cn(δ),

ĥ2
n = (

Cn(δ̂n)
) 1

α+2 ≥ δ̂
2

α+2
n ≥ δ̂n.

Since δ̂n ≤ π/4 ≤ 1, and since Cn(δ) contains the term δ−1 ∑
j,n,δ(Z(j+1) − Z(j))

3, from (5.16)

and the choice of ĥn we obtain the bound

E
[∣∣f̂A(a; ĥn, δ̂n) − fA(a)

∣∣2|σZ

]
≤ const. · {[Cn(δ̂n)

] α
α+2 + 1(Z(j) < −π/4 or Z(j+1) > π/4 ∀j = 1, . . . , n − 1)

}
. (5.17)

By definition of δ̂n,

Cn(δ̂n) ≤ exp(−n) + inf
δ∈[n−1/2,π/4]

Cn(δ) ≤ exp(−n) + Cn(δn)

for the deterministic choice δn = n−1/(β+1), which is contained in [n−1/2,π/4] for sufficiently
large n since β > 1. Further, by Jensen’s inequality, Lemma 5.1 and the choice of δn,

E
[(
Cn(δn)

) α
α+2

] ≤ (
E

[
Cn(δn)

]) α
α+2 =O

(
n

− 2α
(α+2)(β+1)

)
.

Substituting these estimates into (5.17), and using (5.28) finally gives

E
[∣∣f̂A(a; ĥn, δ̂n) − fA(a)

∣∣2] ≤O
(
n

− 2α
(α+2)(β+1)

) + const.
{[

exp(−n)
] α

α+2

+ P(Z(j) < −π/4 or Z(j+1) > π/4 ∀j = 1, . . . , n − 1)
}

=O
(
n

− 2α
(α+2)(β+1)

)
. �

Proof of Theorem 4.1. Fix 0 < α with 2
α� ≤ l and fA ∈F(a, cA, cB, rA,α, cM), and set

b(k,α) = C2
Bias(α,w, cA, cM)h2α

k , k ∈Kn,

see the bound for the regularization bias in (5.2). We shall abbreviate fA(a) = f .
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On the event

{Z(j) < −π/2 + δ̂n or Z(j+1) > π/2 − δ̂n ∀j = 1, . . . , n − 1},

where f̂
k̂
= 0, we may estimate

E
[|f̂

k̂
− f |2|σZ

] ≤ const. · 1(Z(j) < −π/4 or Z(j+1) > π/4 ∀j = 1, . . . , n − 1)

since δ̂n ≤ π/4. In the following, suppose that there are two design points Zj in the interval

[−π/2 + δ̂n, π/2 − δ̂n]. Since hk ≥ δ̂
1/2
n for each k ∈ Kn, as in the proof of Proposition 4.1 the

term involving h−6
k in (5.16) is negligible as compared to that with the factor δ̂−1

n h−4
k . Hence

using (5.7) and (5.2), we estimate

E
[|f̂k − f |2|σZ

] ≤ const. · {b(k,α) + σ(k,n)
}
. (5.18)

Define the ‘oracle index’ k∗ by

k∗ = k∗
n(α) = max

{
k ∈Kn | b(k,α) ≤ CLepσ(k,n)/16

}
.

Note that b(0, α) = C2
Bias(α,w, cA, cM)δ̂α

n ≤ const. since δ̂α
n ≤ 1, while σ(0, n) = δ−2

n Cn(δ̂n) ×
logn ≥ logn since Cn(δ̂n)δ̂

−2
n ≥ 1 from the definition of Cn(δ). Further, since by the choice of K

we have that qK ≥ n/q we estimate

b(K,α) ≥ C2
Bias(α,w, cA, cM)δ̂α

n (n/q)2α ≥ const.n3α/2

since δ̂α
n ≥ n−α/2 by the choice of δ̂n. Finally,

σ(K,n) ≤ δ−2
n (q/n)4Cn(δ̂n)(logn) ≤ const.n−3/2 log(n),

since Cn(δ̂n)δ̂
−2
n ≤ const. · n5/2 since from the definition of Cn(δ) and since δ̂n ≥ n−1/2.

Since b(k,α) increase by factors q2α in k, and σ(k,n) decrease by factors q−4 in k, it follows
from the above estimates that k∗ → ∞ and K −k∗ → ∞, and that there are constants 0 < c̃1 < c̃2
such that c̃1 ≤ σ(k∗, n)/b(k∗, α) ≤ c̃2. Rearranging yields

c1
(
Cn(δ̂n) logn

) 1
2(α+2) ≤ hk∗ ≤ c2

(
Cn(δ̂n) logn

) 1
2(α+2) (5.19)

for constants c2 > c1 > 0. We obtain from (5.18) that

E
[|f̂k∗ − f |2|σZ

] ≤ const. · [Cn(δ̂n) logn
] α

α+2 . (5.20)

Now, for f̂
k̂

we estimate

E
[|f̂

k̂
− f |2|σZ

] ≤ 2E
[|f̂

k̂
− f |21(

k̂ ≤ k∗ − 1
)|σZ

]
+ 2E

[|f̂
k̂
− f |21(

k̂ ≥ k∗)|σZ

]
. (5.21)
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For the second term, we have that

E
[|f̂

k̂
− f |21

(
k̂ ≥ k∗)|σZ

] ≤ 2E
[|f̂

k̂
− f̂k∗ |21(

k̂ ≥ k∗)|σZ

]
+ 2E

[|f̂k∗ − f |21(
k̂ ≥ k∗)|σZ

]
. (5.22)

The second term in (5.22) is bounded by (5.20) after a trivial estimate of the indicator. Further,
from the definition of k̂ and (5.19) we have the bound

|f̂
k̂
− f̂k∗ |21

k̂≥k∗ ≤ CLepσ
(
k∗, n

) ≤ const. · [Cn(δ̂n) logn
] α

α+2 ,

which also holds in conditional expectation given σZ .
For the first term in (5.21), we estimate

E
[|f̂

k̂
− f |21(

k̂ ≤ k∗ − 1
)|σZ

] =
k∗−1∑
k=0

E
[|f̂k − f |21(k̂ = k)|σZ

]

≤
k∗−1∑
k=0

(
E

[|f̂k − f |4|σZ

])1/2[
P(k̂ = k|σZ)

]1/2
. (5.23)

Then

{k̂ = k} ⊆
k⋃

l=0

{|f̂k+1 − f̂l |2 > CLepσ(l, n)
}
, k = 0, . . . ,K − 1.

Now let

pl,k = P
(|f̂k − f̂l | > C

1/2
Lep

(
σ(l, n)

)1/2|σZ

)
, 0 ≤ l < k ≤ k∗.

By choice of k∗, for 0 ≤ l < k ≤ k∗ we have that

b(l, α) ≤ b(k,α) ≤ CLepσ(k,n)/16 ≤ CLepσ(l, n)/16.

Hence, setting f̃k = f̃A(a;hk) we may estimate

|f̂k − f̂l | ≤ |f̂k − f̃k| + |f̂l − f̃l | + |f̃k − f | + |f̃l − f |
≤ |f̂k − f̃k| + |f̂l − f̃l | + b(k,α)1/2 + b(l, α)1/2

≤ |f̂k − f̃k| + |f̂l − f̃l | + C
1/2
Lepσ(l, n)1/2/2.

Therefore, for 0 ≤ l < k ≤ k∗,

pl,k ≤ P
(|f̂k − f̃k| > C

1/2
Lepσ(l, n)1/2/4|σZ

)
+ PfA

(|f̂l − f̃l | > C
1/2
Lepσ(l, n)1/2/4|σZ

)
.



2810 H. Holzmann and A. Meister

Since σ(l, n) > σ(k,n), l < k, it suffices to bound

P
(|f̂l − f̃l | > C

1/2
Lepσ(l, n)1/2/4|σZ

)
, 0 ≤ l ≤ k∗.

By choice of the grid Kn, h2
l ≥ h2

0 = δ̂n, therefore∣∣E[f̂l |σZ] − f̃l

∣∣ ≤ const. · [h−4
l Cn(δ̂n)

]1/2 ≤ σ(l, n)1/2

for n sufficiently large. Hence„

P
(|f̂l − f̃l | > C

1/2
Lepσ(l, n)1/2/4|σZ

) ≤ P
(∣∣f̂l −E[f̂l |σZ]∣∣ > C̃σ(l, n)1/2|σZ

)
,

where C̃ = (C
1/2
Lep/4 − 1). Using the bound ‖K(·;h)‖∞ ≤ h−2, see the formula (2.5) for K(·;h)

and the Assumption 2 in w, we use the conditional Hoeffding inequality in order to estimate

P
(∣∣f̂l −E[f̂l |σZ]∣∣ > C̃σ(l, n)1/2|σZ

)
≤ 2 exp

(
− C̃2σ(l, n)

2h−4
l

∑
j,n,δ̂n

(Z(j+1) − Z(j))2

)

≤ 2 exp(−C̄ logn),

see (5.4), where

C̄ = C̃2/2 = (
C

1/2
Lep/4 − 1

)2
/2 = 8

for the choice CLep = 202. Note that in this step, the logarithmic factor is essential.
Hence

P(k̂ = k|σZ) ≤ 2Kn−8, k = 0, . . . , k∗,

and in (5.23) we obtain the bound

E
[|f̂

k̂
− f |21(

k̂ ≤ k∗ − 1
)|σZ

] ≤ 2K1/2n−8/2
k∗−1∑
k=0

(
E

[|f̂k − f |4|σZ

])1/2
. (5.24)

The crude bound

E
[|f̂k − f |4|σZ

] ≤ E
[|f̂k|4|σZ

] + const. ≤ const. · h−8
k

≤ const. · δ̂−4
n ≤ const. · n2, k ∈ Kn,

now suffices to conclude that for sufficiently large choice of the constant CLep,

E
[|f̂

k̂
− f |2|σZ

] ≤ O
([
Cn(δ̂n) logn

] α
α+2

) +O
(
n−1)

+ const. · 1(Z(j) < −π/4 or Z(j+1) > π/4, j = 1, . . . , n − 1).

The remainder of the proof is as that of Proposition 4.1. �
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5.3. Spacings

As Zj = arctanXj the density of Zj equals

fZ(z) = fX

(
tan(z)

)
/ cos2 z, ∀z ∈ (−π/2,π/2),

so that (1.2) implies

CZ

∣∣|z| − π/2
∣∣β ≥ fZ(z) ≥ cZ

∣∣|z| − π/2
∣∣β, ∀z ∈ (−π/2,π/2), (5.25)

for some constants CZ, cZ > 0.

Lemma 5.1. If fX satisfies (1.2) and hence fZ fulfills (5.25), then for κ > 1 we have that

E

[
n−1∑
j=1

(Z(j+1) − Z(j))
κ · 1(δ − π/2 ≤ Z(j),Z(j+1) ≤ π/2 − δ)

]

≤ 2κCZc−κ
Z �(κ)n(n − 1)−κ

∫ π/2

δ

u−β(κ−1) du. (5.26)

Furthermore,

max
(
E

[(
Ln(δ) + π/2

)2]
,E

[(
Rn(δ) − π/2

)2])
≤ 2

(
δ + 1

cZnδβ

)2

+ π2 · exp
(−cZn(π/2 − δ)δβ

)

≤ 32

(
δ + 1

cZnδβ

)2

, δ ≤ π/4, (5.27)

and for δ ≤ π/4 that

P(Z(j) < −π/2 + δ or Z(j+1) > π/2 − δ, j = 1, . . . , n − 1)

≤ n exp
(−cZ(n − 1)(π/4)β

)
. (5.28)

Proof of Lemma 5.1. Setting

Z∗
j :=

{
Zj , if Zj ≥ Zk,∀k = 1, . . . , n,

min{Zk : Zk > Zj }, otherwise,
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we deduce under (5.25) that

E

[∑
j,n,δ

(Z(j+1) − Z(j))
κ

]

= E

[
n∑

j=1

(
Z∗

j − Zj

)κ1
(
δ − π/2 ≤ Zj ,Z

∗
j ≤ π/2 − δ

)]

≤ nE
[
E

[(
Z∗

1 − Z1
)κ | Z1

]
1(δ − π/2 ≤ Z1 ≤ π/2 − δ)

]
= nE

[∫ (π/2−Z1)
κ

0
P
(
Z∗

1 > Z1 + t1/κ | Z1
)

dt1(δ − π/2 ≤ Z1 ≤ π/2 − δ)

]

≤ nE

[∫ (π/2−Z1)
κ

0
P
(
Zk /∈ (

Z1,Z1 + t1/κ
)
,∀k �= 1 | Z1

)
dt1(δ − π/2 ≤ Z1 ≤ π/2 − δ)

]

= n

∫ π/2−δ

δ−π/2

∫ (π/2−z)κ

0

(
1 −

∫ z+t1/κ

z

fZ(x)dx

)n−1

dtfZ(z)dz

= n

∫ π/2−δ

δ−π/2

∫ π/2−z

0

(
1 −

∫ z+s

z

fZ(x)dx

)n−1

κsκ−1 dsfZ(z)dz

≤ CZn

∫ π/2−δ

δ−π/2

∫ ∞

0
exp

(−(n − 1)cZ

∣∣|z| − π/2
∣∣βs

)
κsκ−1 ds

∣∣|z| − π/2
∣∣β dz

= κCZc−κ
z n(n − 1)−κ

∫ π/2−δ

δ−π/2

∣∣|z| − π/2
∣∣−β(κ−1) dz

∫ ∞

0
exp(−s)sκ−1 ds

= 2κCZc−κ
Z �(κ)n(n − 1)−κ

∫ π/2

δ

u−β(κ−1) du,

that is, (5.26). Moreover, we write Z∗
j := Zj + π/2 and L∗

n(δ) := Ln(δ) + π/2 so that

E
[
L∗

n(δ)
2] = 2

∫ π

0
zP

(
L∗

n(δ) > z
)

dz

≤ 2
∫ δ

0
z dz + 2

∫ π

δ

zP
(
min

{
Z∗

j : Z∗
j ≥ δ

} ≥ z
)

dz

= δ2 + 2
∫ π

δ

z

(
1 −

∫ z

δ

fZ(x − π/2)dx

)n

dz

≤ δ2 + 2
∫ π

δ

z exp

(
−n

∫ z

δ

fZ(x − π/2)dx

)
dz

≤ δ2 + 2
∫ π/2

δ

z exp
(−ncZ(z − δ)δβ

)
dz + π2 · exp

(−ncZ(π/2 − δ)δβ
)
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= δ2 + 2
∫ π/2−δ

0
(z + δ) exp

(−nzδβ
)

dz + π2 · exp
(−ncZ(π/2 − δ)δβ

)

≤ δ2 + 2
δ

cZnδβ
+ 2

1

(cZnδβ)2
+ π2 · exp

(−ncZ(π/2 − δ)δβ
)

≤ 2

(
δ + 1

cZnδβ

)2

+ π2 · exp
(−ncZ(π/2 − δ)δβ

)
,

as δ ↓ 0. The term E[(Rn(δ) − π/2)2] can be bounded analogously.
Concerning (5.28), we bound the probability that there is at most one observation in [−π/2 +

δ,π/2 − δ] for δ ≤ π/4 by

P(Z(j) < −π/4 or Z(j+1) > π/4, j = 1, . . . , n − 1)

≤ nP
(
Zj ∈ [−π/2,−π/4) ∪ (π/4,π/2], j = 2, . . . , n

)
≤ n

(
1 −

∫ π/4

−π/4
fZ(z)dz

)n−1

≤ n exp
(−cZ(n − 1)(π/2)(π/4)β

)
,

which implies the result. �
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