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In this article, we consider fractional stochastic wave equations on R driven by a multiplicative Gaussian
noise which is white/colored in time and has the covariance of a fractional Brownian motion with Hurst
parameter H € (%, %) in space. We prove the existence and uniqueness of the mild Skorohod solution,
establish lower and upper bounds for the pth moment of the solution for all p > 2, and obtain the Holder
continuity in time and space variables for the solution.
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1. Introduction

Consider the following fractional stochastic wave equation (SWE) on R

92 . )

C 6 x) = —(=A)Su(t, x) +uW(t.x), 10,
312 o (1.1)
u(O,x):l, E(O’X)ZO’

with « € (0, 2], where W(t, x) is a Gaussian noise with covariance
E[W (6, x)W (s, )] = folt =) f(x = y).

In this article, we assume that the noise is rough in space, i.e., f(x) = (|x|*H)" with H € (i, %),
where (Jx|>7)” means the second derivative of |x|>/ in the sense of distribution. Note that for
fractional Brownian motion B on R with Hurst parameter H € (0, 1), its derivative (in the
sense of distribution) B has the covariance E[BH(x)BH(y)] =HQCH —-1)f(x —y). We also
assume that the temporal covariance function fy(z) is either the Dirac delta function &(¢) or
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a nonnegative and nonnegative-definite function such that fy(t) ~ |£|2Ho=2 with Hy € (%, 1),
that is, c|¢|*f0—2 < fo(t) < C|t|*H0=2 for some constants 0 < ¢ < C < 00.

The Itd-type probabilistic approach for stochastic partial differential equations (SPDEs) was
established in [43], where Walsh introduced martingale measures and defined stochastic integrals
with respect to the martingale measures, and then SPDESs driven by space-time white noise were
investigated. Following Walsh’s approach, SWEs on R¢ with d < 2 were studied, for instance in
[19,36,37]. In [18], Dalang extended Walsh’s stochastic integral and applied it to solve SPDEs
whose Green’s function is not a function but a Schwartz distribution. In particular, Dalang’s
theory is applicable to SWEs in d-dimension with d > 3, and we refer to [15,22,26] and the
references therein for the study of SWEs in high dimensions.

For SPDEs driven by a multiplicative Gaussian noise which is colored in time (i.e., the tempo-
ral covariance fj is not the Dirac delta function), the probabilisitic approach based on martingale
properties cannot be applied directly since the noise does not have martingale structure in time.
An alternative approach is to apply Malliavin calculus to study the chaos expansion of the Sko-
rohod solution, see, for instance, [27,29,30,41] for stochastic heat equations (SHEs) and [1,6] for
SWE:s.

In this article, we shall prove the existence and uniqueness of the mild Skorohod solution to
(1.1) (Theorem 3.2), establish lower and upper bounds for the pth moment of the solution for
all p > 2 (Proposition 4.1), and obtain the Holder continuity for the solution in time and space
variables (Proposition 5.1). In the following, we briefly describe some related recent development
on SHEs and SWEs driven by multiplicative Gaussian noise.

Hu and Nualart [29] investigated SHEs driven by a multiplicative fractional Brownian sheet
that is colored in time and white in space. Hu et al. [30] obtained Feynman-Kac formulae for
solutions of SHEs driven by a fractional Brownian sheet, and used them to investigate the regu-
larity of the solutions. The result in [30] then was extended to SHEs driven by a general Gaussian
noise in Hu et al. [27] and to SHEs with the Laplacian operator being replaced by the infinites-
imal generator of a symmetric Lévy process in Song [41]. The noise considered in the papers
[27,29,30,41] is not “rough”, as its spatial covariance corresponds to that of fractional Brownian
motion with Hurst parameter H > % The SHEs and SWEs on R driven by a Gaussian noise
that is white in time and rough in space were investigated in Hu et al. [25] and in Balan et al.
[3], respectively. Recently, Chen conducted a systematic investigation on SHEs with noise that
is rough in space and/or in time in [11,12].

If the solution of a dynamic system with noise develops very high peaks, it is said that the
system possesses the intermittency property. The concept of intermittency arose in physics, and
in mathematics it is related to the long-term asymptotics of the moments of the solution. The
intermittency property was studied, for instance, in [2,8,9,17,23,27,40] for heat equations, and in
[2,16,20] for wave equations. In particular, precise long-term asymptotics for SHEs was obtained
in [10,13,14,31,32], and the second order Lyapunov exponent for SWEs was obtained in [7].

For the Holder continuity of SHEs driven by multiplicative Gaussian noise colored in time,
we refer to [5,27,28,41] and the references therein. For SWEs with noise white in time, Holder
continuity of the solutions was studied in [19] for the spatial dimension d = 2, in [22,26] for
d =3, and in [15] for general dimensions; for SWEs with noise correlated in time and space,
Holder continuity was established in [1,6] for general dimensions.

Finally, we would like to make some comments on our results.



Fractional SWE driven by a Gaussian noise 2701

(a) Note that we require H > zl; for SWEs in Theorem 3.2, which was also assumed in [31] for
SHESs with rough spatial noise. Nevertheless, the approach used in the proof of Theorem
3.2 can be also applied to SHEs and relax the condition H > i to Hy + H > % (see
Remark 3.3).

(b) The rate of the bounds for the pth moments obtained in Proposition 4.1 is consistent with
the known results in, for instance, [2,7]. The lower bound is relatively more difficult to
establish. One of the obstacles is that the Fourier transform of the Green’s function of
the fractional wave equation is not a nonnegative function, and this issue is resolved by
showing that the integral of the Fourier transform of the Green’s function is positive (see
Lemma A.5).

(c) The Holder continuity obtained in Proposition 5.1 is consistent with the known results
(e.g., [1], Theorem 5.1, [6], Proposition 8.3, and [15], Theorem 7.6) which dealt with
SWE:s driven by the noise that is not rough in space. The major difference/difficulty of ob-
taining the Holder continuity for SWEs with rough spatial noise is the following. Denoting
the spectral measure of the spatial covariance pu(d§) = f(é) d&, the condition

1
I =

plays a critical role in obtaining the Holder continuity of the solution when the spatial
covariance f is a nonnegative, nonnegative definite, and locally integrable function (see,
e.g., [1,6,15]). However, when H < % the spatial covariance (Ix1*H)" is a genuine distri-
bution (see, e.g., [33]), and condition (1.2) is indeed violated (see [3], Lemma A.1).

This article is organized as follows. In Section 2, some preliminary results on Malliavin calcu-
lus associated with the noise W are provided. In Section 3, the existence and uniqueness of the
solution to (1.1) is obtained under proper conditions. In Section 4, we derive the lower and upper
bounds for the pth moment of the solution for p > 2 and then deduce the weak intermittency.
In Section 5, the Holder continuity of the solution in time and space is obtained. Finally, some
lemmas used in the preceding sections are gathered in the Appendix.

2. Preliminaries

In this section, we recall some preliminaries on Malliavin calculus associated with the Gaussian
noise W. We refer to [38] for more details.
Let H be the completion of the Schwarz space S(R4+ x R) under the inner product

(9,93 =Cn /Rz /Rfo(r — $)P(r. £)p(s. £)u(d) dr ds, 2.1

where
_ I'2CH 4+ 1)sin(wr H)

o 2.2)

H
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and p(d€) = |€|' 21 dg with H € (0, %). Here, @ is the Fourier transform of ¢ in the space, i.e.,
forp e SRy x R),

$(s,$)=/ e (s, x) dx.
R

In particular, if ¢ is a measurable function such that ¢ is also a measurable function and
/Rz /R folr =)[90. &)|[9s, )| 1e(d&) dr ds < oo,
1

then ¢ € H. Note that H may contain distributions rather than just measurable functions if
fo(r —s) ~ |r — s[*0=2 for some Hy € (%, 1) (see [33,39]).

In a complete probability space (2, F, P), let W = {W (¢), ¢ € H} be an isnormal Gaussian
process with the covariance

E[W(@W ()] = (0. d)nu.

and we also denote
W<¢)=/ /g&(t,x)W(dt,dx).
R, JR

We also call W (¢) the Wiener integral of ¢ with respect to W. In light of [39], Theorem 3.1, and
[33], Proposition 4.1, the Gaussian family {W (¢), ¢ € H} coincides with the linear expansion of
the Gaussian family {W (¢, x), (t, x) € R4 x R)} with the covariance

1 t Ky
E[W(,x)W(s, »)] = 5(|x|2H + 1y —|x — y|2H)/0 /O fo(r1 — r2)dry dra,

and in particular W (¢, x) = W({[o,rx[0,x]) With the convention [0 s1x[x,0] = —Z[0.r]x[0,x] for
x < 0.

For the smooth and cylindrical random variables of the form F = h(W (¢1), ..., W(g,)) with
h being smooth and its partial derivatives having at most polynomial growth, the Malliavin
derivative DF of F is the H-valued random variable defined by

"\ 9h
DF = Z a—xk(W((pl), ey W(<Pn))</?k-
k=1

Noting that D is closable from L2(Q) to L*(2; H), we define the Sobolev space D2 as the
closure of the space of the smooth and cylindrical random variables under the norm

IDll12 = (E[F2] + E[IDFIZ])".

The divergence operator &, which is also known as the Skorohod integral, is the adjoint of the
Malliavin derivative operator D defined by the duality

E[F8(u)] = E[(DF,u)3] VF eD"? Yu € Doms.
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Here Dom§ is the domain of the divergence operator §, which is the space of the H-valued
random variables u € L2(Q; ) such that |E[(DF, u)y]l < cp||F|l2 with some constant cp
depending on F, for all F € D!2. Thus, for u € Dom$, 8(u) € L?(R2). In particular, E[§ (u)] = 0.
We also use the following notation

8(u)=[ /u(t,x)W(dt,dx), u € Doms.
R, JR

Now we recall the Wiener chaos expansion. Let Hy = R, and for any integer n > 1,
let H, be the closed linear subspace of LZ*($2) containing the set of random variables
{H,(W(p)),p eH, |lgllyr = 1}, where H, is the nth Hermite polynomial, that is, H,(x) =

(—1)"e*” & (¢=*"). Then H, is called the nth Wiener chaos of W. Assuming F is the o-field
generated by {W (¢), ¢ € H}, we have the following Wiener chaos decomposition

o
L*(Q.F.P)=PH,.
n=0

For n > 1, denote by ®" the nth tensor product of 7, and let #®" be the symmetrization of
HO", Theg the mapping I,,(h®") = H,, (W (h)) for any & € H can be extended to a linear isometry
between H®" and the nth Wiener chaos H,,. Thus, for any random variable F € LZ(Q, F,P),it
has the following unique Wiener chaos expansion in the sense of L?(£2),

F=E[F]+ Y Li(f) with f, e H®".

n=1

Throughout the paper, the generic constant C varies at different places.

3. Existence and uniqueness of the solution

In this section, we obtain the existence and uniqueness of the mild Skorohod solution to (1.1)
under some conditions in Theorem 3.2, and we show that in Proposition 3.4 these conditions are
also necessary if the noise is white in time.

Let G,(x) be the fundamental solution of the equation 5’72214 + (—A)%u =0 on RY, then its
Fourier transform in space G (&) solves the following equation

392G ~
m’f) +IE1°G(§) =0,

and it is given by (see [24], Section 2.2; [18], Example 6, and [42], Chapter 1, Section 7, for the
case k =2)

sin(z|&</%)

Gt(g): |$|K/2
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Recall that when « = 2, the Green’s function G, (x) is a measurable function for d < 2,

1 .
EI{|X‘<,} ifd=1,

Gi(x)=1 1 1

— ]
27 Ja g <

G:(-) = #0, for d = 3, where o; is the surface measure on the sphere {x € R3; |x| = ¢}, and

G,(-) is a genuine distribution with compact support in R? if d > 3. Note that when « € (1, 2)
sin(z[§[*/%)
|&1</2

ifd=2,

and d = 1, the Green’s function G, (x) € L%(R) for all > 0 as its Fourier transform

L*(R).
We consider the following filtration

Fr=c{Wpn9),0<s<t,p e SR} VN,
where A denotes the collection of null sets.

Definition 3.1. An adapted random field u = {u(¢, x), # > 0, x € R} is a mild Skorohod solution
to (1.1) if E[u?(z, x)] < oo for all (¢, x) € R4 x R and it satisfies the following integral equation

t
u(t,x) =1 +/ f Gi—s(x — yu(s, y)W(ds,dy), (3.1
0 JR
where the integral on the right-hand side is a Skorohod integral.

Note that if E[|u(z, x)|*] < 0o, the solution has a unique Wiener chaos expansion
o0
u(t, x) = Iy(gn(-1, %))
n=0

with g, (-, t,x) € H®" Now assume that u(t, x) is a mild Skorohod solution to (1.1). Let P, be
the set of permutations on {1, 2, ..., n}. Following the approach used in [29], Section 4.1, we get

1
8n(S1, .o Sn, X1, Xy, 8, X) = EGI—SP(,,)(X —Xpm) ** Os,0—s,0) Xp@) — Xp1)),  (3.2)

where p € P, is the permutation such that 0 < s,(1) < $,2) <+ < Sy < t. Thus, to prove the
existence and uniqueness of the solution to (1.1) is equivalent to prove

Eflut, 0= " 0l guC,t.3)| 500 < 0. (3.3)
n=0

Theorem 3.2. Assume that Hy € [%, 1), He (%, %) and k € (3 — 4H,2]. Then there exists a
unique square integrable mild Skorohod solution to (1.1).
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Proof. It suffices to prove (3.3). We use the notation & := (&1, ..., &) and similarly for s, r and
n(dé§).

We first consider the case Hy € (%, 1). Since we assume that fy(s) ~ |s|20=2 for Hy € (%, 1),
throughout the rest of the article, we will simply assume fy(s) = |s|2H0=2 jn this case. Note that

n'“gn(a tax)||’2}.t®n

=n [ [ Feus @ Fal 0@ []Is - P dsdruds) G
n [0’[]’1 .
j=l1
with

sin((s,(j+1) = Sp()IEp) -+ + Ep(p /%)
Ept) + -+ Ep(p /2

)

L it T
Fen(s, 1, 1) () = —e @ [1
j=1

where we use the convention s,(,+1) = t. Thus, by Lemma B.3 in [2] (see also [35]) and a change
of variables, we have

n‘”gn(v tix)”’?{@n

’ ﬁ 2Hy
sn!(/ (/ | Fen(s, - 1, x)(&)| u(d§)> ds)
[0,2]" R~
- 2Hy
1 S (1) = SpG)[Ep) + -+ () /) o
”!</[0,z]" (/n]l:[] 1Epcty + -+ Ep(pI¥ Hde) °
o Gn2 (st — s /2 mg o\ 2Ho
— (p1)2Ho—1 sin"((sj1 = spPIE + -+ &), J
" (f[o,m( (f}:[l CESRET MAB ) s

1 2Hy
n -2 . e k)2 2H,
- sin®((sj4+1 —8,)In;1"7) -
— (n!)2Ho 1(/0 (/ 1_[ J |n |K] J |n] _ le71|l 2H dﬂ dS ,
[ ,t]" n . /
< j—l

(3.5)

where [0,7]2 =[0=s50 <581 <--- < Sy < Sp41 =1].
Let A,, be a subset of the index set {(«q, ..., ay) € {0, 1, 2}"} such that

n n
.
alle+n0= ¥ [T
j=2 acA, j=1

Then #(A,) = 2", and for each « € A,, we have the following properties: o1 € {1, 2}, ot €
{0,1}, a0, ..., a,—1 € {0, 1,2},2;{:104]' =nand oj +ajy €{1,2,3}for j=1,2,...,n— 1.
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Hence, noting that |a + b|'72# < |a|'72H 4 |p|'—2H  we get

1"[|n,—n, ' =g 2H1‘[|n,—n, TR l—[ln |20 3.6)

acA, j=1

e 1
Using (3.6) and the fact that (3" x,,)?0 < anzflo for all x,, > 0, the estimation (3.5) now
becomes

n'”gl’l(ﬂ tvx)||§{®n

1

= 2Hy
noos2 . e L16/2 2Hy
_ sin”((sj4+1 —s;)[n; /") _
< (n)*Ho~! / f [ e gy ) as
0.1 \JRr ) n;]

L

sin ((S i+1 Si )|” |K/ ) ’ 2
<(l’l!)2H0 1</[0t ( E / | | J | j|K] J | |<¥](1 2H)d77) dS)

acA,

=)

L

o (0 =S o ) o
o[ ([ [t )
0.11% yea, n ;]
2Hy—1 2\ 5 - 2= 220, (1-2H)]
=) 2 g)  Tes—sp
lo’tl<a€./4n j=1
in2(n) N
sin .
X </H; nzn |n|%°‘-1(1_2m+%_1dn> ’ ds) ) (3.7)

It follows from Lemma A.4 and the condition ¥ > 3 — 4H that for all «; € {0, 1, 2}
s 02
/ sin 2('7) g 2020421 g oo
R 7

Lemma A.4 is applicable here, since the condition ¥ > 3 — 4 H implies %aj (1—-2H)+ % —3e
(=3, —1) forall o; € {0, 1, 2}.
Therefore, one can find a positive constant C depending only on («, Hy, H) such that

n!”gn("tsx)”it@n
" 1 2_2 2Ho
< Cn(n!)2H0—1</ Z l_l(sj+] _Sj)W[Z—;_;a_/(l—ZH)] dS) .
01 3, 1

For each fixed « € A,, denote f; = 512 — £ — Za;(1 = 2H)],j = 1,...,n, and B =
Y18 =10 - 2) + 28] Note that Ho € (3,1), H € (4, 1) and x > 3 — 4H implies that
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Bj > 0and B > 0. By Lemma A.2, we have

1_[?:1 ra+ ﬁi)t"+/5
— Jds = .
/[0 " ,H](S’“ s = T B

Therefore, from (A.1) in Lemma A.3 witha =1+ — [(1 — ) + ZTH] and b = 1, and the fact
#(A,) =2"1, it follows that there exists some posmve constant C such that,

n'”gn(’ ta x)H’il@n

B 2Hy
S Cn (n!)zHo—l < >
Fn+1+p)
cr (n,)zﬂo—ltn(2H0+2[(1—§)+27”]) Cn g @HoH21(1-2)+2H))
= : ~ 3.8
'(an + 1)*Ho ()20 =D+ 141 ;2 HoantHo y Ho(1—a) 3.8)

when n — 00. Notice that there exists A > 1 such that A™" < g2Hoan+Ho, Ho(1=a) < )1 for 4]l .
Hence, by (A.2) in Lemma A.3, there exists a positive constant C such that

CnCH+2(1= )+

]E[|u(t,x)|2] Zn!Hg,,( f, X)HH@"Z < Z TR

n=0 n=0

2k Hy+2(k—=2)+4H

<Cexp(Ct— 5—#aH ). (3.9)

Next, we consider the case Hy = %, i.e., fo(t) =48(t), and we have

n‘”gn(’ tv-x)“i[@n

Z”!// | Fgu(s. - 1.0) ()] dsp(dg)
n [0,[]7!

102
- lf / ﬁ sin®((5p(j+1) = SpG)IEp() + -+ + 5[/ ﬁ 112 g ds
n! [0,£] no |‘i:p(l) + .4 ‘i:p(j)|K P

osin (s — s+ E D) 1 ioom
N d&d
/[O,z]';/njl:[l &1+ + &€ H|§| &ds

j=1

n -2 . _ . ,K/2 n
sin”((s+1 — s;)1m,;1*/9) -
=f / [ Ty = nj—1' " dnas.
0.1 JRe 5y j=1

|77]|K
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The last term in the above equation equals the right-hand side of (3.5) with Hy = % Analogue to
the arguments in (3.6)—(3.9), we shall get the following estimation for the second moment

Eflut, 0[] =" nl]gnC. 1,2) |30 < Cexp(Cn). (3.10)
n=0

We complete the proof. (]

Remark 3.3. For SHEs on R driven by a multiplicative Gaussian noise that is rough in space,
the existence and uniqueness of the mild Skorohod solution was obtained in [25] for the noise
white in time and in [31] for the noise colored in time. The condition H > % was assumed in
both [25] and [31]. However, the method used in the proof of the above theorem suggests that the
condition can be reduced to Hy + H > 3 and this is consistent with the result in [11]. Indeed,

1
for the following SHE on R,

u” 1o, -
?(t,x)ziAu t,x)+u"'W(,x), t>0,

u0,x)=1,

Lo i .
the Green’s function is the heat kernel Gﬁ’ x) = ﬁe 2. Consequently, the Wiener chaos

expansion of the solution is

W' (t,x) =) " Li(gh(- 1, %)),

n=0
where
" t )—lGh (x — G" _
8n Sty Sn, X1y, X, 1, X = t—sp0m ¥ Xp(n)) -+ sp(z)—s,;u)(xﬂ(z) Xp(1))
and

1 e T 1
fgf’,(s«,t,x)(é)=;e e +$")Hexp[—§(%u+1>—Spu))lép(l)+"'+§p(j)|2}~
! B

Now, the second moment of each chaos is

n!“gi’(~,t,x)”§_l®,,

=t [ [ Fehts n 0@ F e 0@ [ P02 dsarucap)
n ’t n

j=1

, 5 ﬁ 2Hy
< n!< f ( |Fgli(s. - 1.5)®)| u(d5)> ds)
[0,]" Rn
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1 Ho

2
| 71,
o (/[0 : (/ l_[exp —IspGi+1) = Sp(p11Epy + -+ +§p(j)|2]“(d§)> ds)
. ’t n n

. ﬁ 2Hj
=(n!)2H°—1</[O] (/ [ Texp[—lsj+1 —sillg + - + & ]u(d§)> ds)
AL \IR"

ﬁ 2Hy
= (ut)?Ho-! (/[O] (/ [ Tespl—tsse1 = sty Pl = ny-1' 2”dn> ds) .
1L n

Then, using similar argument as in the proof of Theorem 3.2 and Lemma A.1, we have

l

n!“grl’:('vtvx)||§.[®n
o 2Hy
Z/ Hexp —(sj41 = spInj 2] 2”)“’6117) ds)

S(m)wo]( / (
[0.71% aeA, j=1

2Hy
“ (12 e
< Cn(n')zHo 1( Z H(Sj+l _sj) 4H0[1+(1 2H)Ot]]ds> .

[0,¢]% acA, j=1

For each fixed o € A,, denote B; = 4H [1+ (1 —2H)aj] € (0,1) noting that Hy € (%, 1),
H e (0, 2) and Hyp + H > 3/4, and then 8 = Z] Bi= n(l H) .By Lemma A.2, we have

[T, ra—pgpem=*
— ]d = .
o <jnl(s’“ VT )

Therefore, since #(A,) = 21=1 there exists some positive constant C such that,
h 2
n'Hgn ('7 t, X) ||’}-[®n

-8
56%mﬂ%”< a

Tn+1—p)

2Hy 1
— Cn (n!)zH()—l Z‘n(2[10_~_f]_1)'
> F((ZHO;-II;)—I)n + 1)21.10

It follows from Lemma A.3 and a similar argument in dealing with (3.8) that there exists a
positive constant C such that

o
Efu 1. 0)[] = 3t gh1.0)| 2o < Cexp(Ct™ 7
n=0
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Proposition 3.4. When Hy = % and d = 1, the condition k > 3 — 4H is also a necessary

condition for the existence of the square integrable solutions to (1.1). When Hy = % and
H; < % j=1,...,d, the equation (1.1) has a solution only if d = 1.

Proof. When d = 1, the L?-norm of the second chaos of the solution is

8202 1.0) |32

_ / / sin?((s2 — s1) 1 [/?) sin® (¢ — 52) 2 |/%)
[O,r]z< R2

PNE ol il 2" Iy —m ' dy ds

I 1'=2H gy + m "2 dy ds

- / / sin® ((s2 — 1) [ [¥/2) sin® ((t — 52) 2 |*/?)
~Ji002 JRZ Uil [n2]*

I 242D dy ds,

. / / sin? (s — 1)1 [/2) sin® ((¢ — 2) 2 */2)
o2 Jr2 | Imal*

where the last integral is infinity if «k <3 — 4H due to Lemma A.4.
For general dimension d, the above estimation becomes

||g2('s Z, x) ”3_[@2

2 _ /2N in2((r _ k/2y 4 i )
sin”((s2 — s1)[11*/<) sin”“((t — s2)[n2[*/“) 1-2H; 1-2H,
=2/ / . . [T [ = n{| " anas
(0,12 JR2 |1l 2l il
-2 _ /2N in2((s _ k/2y 4 i )
sin”((s2 — s1)[n1]*/<) sin”((£ — s2)[n2[*/*) 1-2H; 1-2H;
Zf / — Pl Tt + 0> amas
0,12 JR |1l 2l il
) . d
>f f sin?((s2 — s1) |11 1</2) sin®((¢ — 52) [2]</?) 1—[|nj|2(1—2Hj)d”dS
~Joe Jry i< |m21* i

Now, by the change of variables

nj =rcos(6),
n? = rsin(9;) cos(62),
n} = rsin(6;) sin(62) cos(63),

n{ ' =rsin@)---sin(@a—2) cos(@a-1),

n{ = rsin@)---sin(@z—2) sin(6a-1),



Fractional SWE driven by a Gaussian noise 2711

we have

02 k/2y 4 . 00
s — . d ) _
/ (Im1l )l_“??”z(l 2H) g, Cd/ Sin? (/) 2o 20-2H)) k=1 g,
RO Imlt 0

which by Lemma A.4 is infinite when d > 1 since Z?:l 21 -=2Hj) —«x +d — 1> —1 for
Hj €0, 3). 0

4. Moments of the solution and weak intermittency

In this section, we first obtain the lower bound and upper bound for the pth moment of the
solution to (1.1) for p > 2, and then deduce the weak intermittency.

Proposition 4.1. Under the conditions in Theorem 3.2, there exist 0 < C1, Ca < 00 such that for
all p>2

2 Hy+2(c—2)+4H 2 Hy+2(c—2)+4H

Crexp(Cit— wmm ) < |u(r, x)”p <, exp(Czpsk_Lm; S—ATaH ) 4.1
and
2 Hy+2(k=2)+4H
Ci <liminf¢~ =~ 3*—4+4H log”u(t, x)”
t—00 p
2 Hy+2(k =2)+4H «
<limsupt™ ~ *—4HH lognu(t, X) ||p < Cop3—4+4H “4.2)

t—>00

. 2k Ho+2(k—=2)+4H _ 1 . _1
In particular, =3 =77 — =1 if Ho= 3.

Proof. We shall prove (4.1) for Hy € (%, 1). The proof for Hy = % is similar and thus omitted.
By (3.4), we have

nlgnC. 1. ) [0,

=n! / f[o o TG D@ F 160 @) [11sj —rjlPH 2 dsdru(ag)
n ,t n

j=1

:ny/ / ﬁsin((sj+] _SJ)|EI+_|_§j|K/2)
" J([0,1]7)2 izl &1+ -+ §j|x/2

n

sin((rj1 — )€+ + &)
<11 CESEENIEE

n
[1sj =P~ dsdrp(dé)
j=1 j=1
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_ / / Hs1n((s,+1—s,)|n,|”2> sin((rj1 = r)In; /%)
\Jqo.m? i JI<? Inj1</?

X ]_[|s, ;|#Ho= 2dsdr)]_[|n,—n, 1121 dy

j=1

n . 2 . 2
> n!/ / 1—[ sin((s 41 — s ;%) sin((rj1 — rj)Inj1</?)
D, \J 10,1202 5 Inj|</2 I |</2

n n
< [ lsj —rl?2 dsdr) []in1' 2" an.

j=1 j=1

noting that in the last step we used the facts that the inner integral with respect to dsdr is non-
negative and that |n; — ,7]._1|1—2H > |,7j|1—2H on D, with D, = {(n1, ..., 7,) € R" : 51 > 0,
n2<0,13>0,n74<0,...}.

Now, we have

a2, 00

zn!/( (/ [ [sin(Gsj0 = s 172) sin(Gj0 =l 72) 1‘[|n,1 e "dn)
nj 1

j=1

n
X ]‘[ |sj — ;|72 dsdr
j=1

n

=n! / I f sin((sj41 = ) nl"?) sin((rj1 = rp) Il Inl == dy
([0,[]'2)2 ] 1 R+

n
X 1—[ |Sj — rj|2H0_2del'
j=1

> pl"2Ho=2 /

where the last step holds due to |s; — ;| <t and the fact that the integral with respect to 7 is
nonnegative by Lemma A.S5.

Let
Ay (1) —/

2
n
[T,_ = an, @3

ﬂfo [Tsin(Csj1 —spinyl*") ds

j=1 t]<j1

+

2
n
[T,_ = an. @4

/[ Hsm (sj+1 —si)In;l* /2 )ds

0.1
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Make the change of variables s =s;/t and n; = n;t*/¥, and we have the scaling

An(t) =1 4.5)

Now we estimate E[A, (t)] where t is an exponential random time with parameter 1. By Fubini’s
theorem and Jensen’s inequality, we obtain

E[An(1)]
= /oo e A, (1) dt
0

gax
-/,

Applying the change of variables r; =51 —s; for j =0, 1, ..., n with the convention so =0
and s,41 =t and using Lemma A.6, we have

/ / Hsm (Csj1 —s))Imjl /z)dsdt
0 0,11

<]1

n n
:/ le*(r‘)”l*'”“’l) | | sin(rj|nj|K/2) drodry---dr, = | | L 4.7
R i i nj
j=1 j=1

2
dtl_[ |nJ|1—2H—K dn

2
n
[T,_ it an. 6)

“f [sin(Gsy41 — s7)iny <72 ds
[0,7]%

<,]1

n
/ fo ) Hsin((Sj+1 —57)In;|/?) dsdr
t

<]1

Now, combining (4.6) and (4.7), we get

B[4y (0)] / 1—[ g n_(/ np|t=2H dn)”zcn
(] )2 R, (1+[n[<)? ’

where ¢ = fR+ <|1"+|1\W dn € (0, 00). Together with the scaling property (4.5), we have

" <E[A,(1)] =E[r Ax(D. 4.8)

Therefore, it implies from (4.3), (4.4), (4.5), (4.8) and the fact E[t*] =T"(x 4 1) that

T Y

— n!tn(ZHQ—

n(2Ho—2) 4n(1-151) 1

>C"nlt _
- E[T4n(lf%)]
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— " n(2Hy+2— =41 n!
F@n(l— =y 41y

C"t n(2Hy+2—4=21)

()3~ gant i gt

where the last step follows from (A.1) in Lemma A.3 with a = 4(1 — 1—711) and b = 1. Noting
that there exists A > 1 such that A7 < aa”+%nl_Ta < A", we obtain

5 Cntn(2Ho+27#)
n'”gn(,t,x)”H@n = ( | 3—4(1—].])
) K

Therefore, applying (A.2) in Lemma A.3, we have

Bl—

2 Hy+2(c—2)+4H
> Crexp (Cl t x—4tdH )

Cntn(2H0+27w) )

lute, )], = Ju. 0, = <Z R

n=0 n:

for some C; > 0.
For the upper bound, noting that || I,(g,) |l < (p — 1) 2||1,(gx) ||2 (see the last line on Page 62
in [38]), by Minkowski’s inequality and similar arguments in (3.8)—(3.9) we have

00 0
lullp, < Z” In(gn)”p = Z(p
n=0 n=0

(p _ 1) 2 C:2 tn(HO+(1**)+
<
Z ()la=H+3E1+5

n

2H)

P 2 Hy+2(c—2)+4H
< Cexp (C pIATA T x4+l

and hence, we get

p 2 Hy+2(c~2)+4H
lull, < C2 exp(Czp W—ATAH { — w—4TaH

for some C, > 0. O
Remark 4.2. Note that the lower and upper bounds (lower bounds, resp.) for the pth moment
were studied in [20] (in [2], resp.) based on the probabilistic representation for the second mo-

ment of the solution to wave equations obtained in [21].

Recall that the lower Lyapunov exponent L;(p) and the upper Lyapunov exponent L, (p) of
order p > 2 of the solution u(¢, x) are defined, respectively, by

it .
Li(p) —lltrggng(t) ;gﬂglogE[|u(I,x)| ]
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and
. 1 »
L,(p) = limsup —— suplog E[|u(z, x)|"]
r—00 R(t) xeR

for some positive function R(¢). If L;(2) > 0 and L, (p) < oo for all p > 0, we say that u(t, x)
possesses the weak intermittency. Heuristically speaking, if a process u(¢, x) is weakly inter-

mittent, it concentrates on a few of very high peaks (see, e.g., [34] and the references therein).
2k Hy+2(k—2)+4H
Taking R(¢) =t Sean , the proposition below follows directly from Proposition 4.1.

Proposition 4.3. Under the conditions in Theorem 3.2, the solution u(t, x) to (1.1) is weakly
intermittent.

5. Holder continuity

In this section, the Holder continuity in time and space for the solution u (¢, x) to the SWE (1.1)
is obtained in Proposition 5.1. The result is consistent with the Holder continuity for SWEs
with noise that is not rough in space obtained in [1,6], and [15]. Note that exponents of Holder
continuity in both time and space are independent of the temporal covariance function fy(t).
Similar phenomenon occurs also for SHEs (see [5], Theorem 3.2).

Proposition 5.1. Assume the same conditions as in Theorem 3.2. Then on any set [0, T] x M
where Ml C R is a compact set, u(t, x) has a modification which is 01-Hdlder continuous in time
forall 6, € (0,1 — % + %) and 0,-Hdlder continuous in space for all 6, € (0, H + % —1).

In particular, when k = 2, the solution has a version that is 6-Hoder continuous both in time
and in space for all 6 € (0, H).

Proof. First, we show the Holder continuity in space. Noting that [|1,(g.)|l, < (p — 1)% X
II11,,(gn)ll2, by Minkowski’s inequality, we have

Jutt, x +2) - u(t,x)”p

o0
<3 (= DEOD? gl t.x +2) = gu (1.0 10
=1

=) (p- 1)%<n!/ /[0 . Flen(s, - 1,x +2)(&) — gu(s, - 1,x)(&)]
— n ]2

1
n 2
X Flen(r, 1, x +2)(&) — ga(r, -, )E ][] Isj — 1) |2H°—2dsdru<ds))
j=1

00 no .2 . . ‘K/Z)
-1 n | Hy—1 / / sin ((s]+1 s])|g):1 + +§-]| o
Sr;(l? )2 (n!) 2( [0’t]1|: n]l:[] |§]+"'+Ej|l( |$/|



2716 J. Song, X. Song and F. Xu

Wy \ o
% |1 _ e—iZ(51+~~+§n)|2d§:| dS)

2osin®((sj41 — 5|0, 1</%) 1-2H
I1 ' nj —nj-1l
n j:1

=> - 1)’5<n!)”°%</
n=1 [

0,¢]%

NG
dn:| ds) .

Now, by changing of variables, we have

|77]|K

X |l P

1

1

2

" oin2((siey —s:)|nil</2 2,
sin“((s+1 — s;)[n;1/) B i
/ / 1_[ ! ,(j : Inj —nj-1l' 2H|1—e e |dy dsdt
0.2 | SR 54 n;l
200 1 o). |K/2
Sln ((sj41—5)In;1°%) (1
/ Z/ L 1 (12aga] A 2)dn " dsdt
0.0% | e a, njl

n—1
2H0 l_ 5 2_2,.(1_
/ ( ) H(Sj_y-l—sj)ZHO[z 2_24(1-2H))
0t]<(x€A j

j=1

) 1
sin“(n) . 2..1_ 2 2Hy
X </ 5 |T’|K(¥](l 2H)+K ldn>
R 7

S 2 e
x </R s —5n)7) ((tyz SY), ) Ben(1=2B0 21 (121 y13) /\2)dy)2 0}15. (5.1

Recall that &, € {0, 1}, and by Lemma A.7 with A = 2, B = 2(a,(1 —2H) + 1) — 1,y =0 for
1-2H
K

ap=1landy = for o, =0, we have

)\ 2HAk—2
)|Z| +x

2
sin“((t —$,)Y) . 2, (1_ 2_ 2
/ ——— =y [Een O (2| ) A2)dy < C(1 v (
R y
S C|Z|2H+K72'
Thus, there exists a positive constant C depending only on (p, Hy, H, T') such that
Juttx +2) —ute, 0],

n—1 Hy
E : L2 2, (-
<2 Cry </ > ||(S,/'+1—Sj)2H0[2 e 2H”ds) :
n=1

10, ]<aeA j=1
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When n = 1, the integral on the right-hand side of the above inequality equals .
When n > 2, for each fixed a € A,, denote ; = ﬁ[z —2_2q;(1-2M)],j=1,....n.
Noting that «, € {0, 1} and Z’;-:] «j =n, we have
(k—2+2H)n «—242H
n—1 I — I when o, = 1,
o 0K 0K
Zﬂj— k—24+2H)n k-1 (5.2)
j=1 — when «;, = 0.
Hyk Hyk
Using Lemma A.2, we obtain
n—1 t n—1
/ H(Sj+l_sj)ﬁjdszf / [[Gj1—spfias
(0,612 54 0 JOo<si<-<sn 5
J J
-1
— I—[l}zl F(l + '3]) tsﬂ1+"'+ﬂn—l+n_lds
LB+ +Ba-t+m) Jo " !
n—1 .
_ [oira+6) ettt

Bt But T T (Br+ -+ a1 +1)

_ ISra+sp
S TG+ Buor D)

Pt Bu1tn

Then applying (A.1) in Lemma A.3 witha = 1 + % €(1,2) and either b =1 — % €

0, Dorb=1-— % € [0, 1), we have

n—1

/ H(Sj+1 —sp)bids
0.1 )
-1 -1
< Cn tﬂl+"‘+,3nfl+n — Cn ta(n71)+%+b
"Bt B+t D) [(an + b)
Kk—2+42H
-1 . —17 e tham-1)
- cr tm-m#w < c"'T o it
(n!)aaa”+b_%nb_%_% (nh)*

Therefore, there exists a positive constant C depending only on (p, Ho, H, T') such that

(Hok+x—2+2H)(n—1)

. | . (p—Dict 3
Jutt.x+2) —ut. 0, < 121" (p=D2Cr+ Y oy
n=2 n: 2
00 Cl’lt (Hok+k—2+2H)n
<Clzf*27 Yy <Clzftz7"

3x—4+4H
n=0 (l’l' K

)

(5.3)
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Then the 6>-Hoélder continuity for 6, € (0, H + 5 — 1) follows from the Kolmogorov’s continuity

criterion.
Now we consider the Holder continuity in time.

Jut+hx) w0, <Y (0= DI gaCot +hx) = ga o 1,0 e

n=1
> 1
<D (P = DI VA B + VB, b)), (5.4)

n=1

where
2
At h) = | gn ot 4+ h, ) T0.0p — 8n (1, %) | 56n
and
Bu(t,h) = |gn (.t +h, X) 10, 4+hp\[0,17"

For A, (¢, h), we have

An(t, 1) = |gn (ot +h ) o, qn — n o 1.3 | 7g0n

:/ / ]:[gn(s,~,l+h,x)(£)_gn(sy_’t’x)(‘s)]
n [0’t]2n

Flen(r .t +h.x)&) — gn(r. .. x)E] [ ] Is; —rj 1072 dsdru(ag)
j=1

- K/2
n2Ho—2 sin ((Vj—i-l Y])I%'l +- +‘§]| ) 1—2H
=) </0 i [/ 1—[ BERRET H 5l

- 2
sin((t +h — sp)|& + - - + &, [/?) sin((r—sn>|sl+~-~+sn|K/2>‘2 }”’0 )H"
X — d ds

€1+t a2 |61+ -+ |/
n—1 .2 . . JK/2 n
B sin“((s 41 —S])|77]| ) 1-2H
:(n!)ZH() 2 / / J |
0.1 | Je El Il E[ o

— 2H
Isin((t 4 — 50) |72 [</2) = sin((t — sp) Ina /22 T’O ) ’
X dy ds

17 1¢
< (o= </
0

.
L CHRPY Il ) A (Pt }2 )ZH"
dn ds ,

n—l . 2ccc N K/2 n
sin“((sj4+1 —5;)n;l )> a;(1-2H)
/ I : [ ] 1
|: n(j_l

K
g weA, |771| j=1

[1m 1
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where the last step follows from Lemma A.8 with y € (0,1 — % + 27H). Note that when y €
0,12+ 28,

/ WAR1PY a7 A (R 0al€))
R

e 0|2 dn, < C(IRI + |RP) for a, €{0, 1}
n

and following the approach in the analysis of (5.1)—(5.3), we can show that
e 1
D (p=D2mN2Au . h) < C(lh| + |h)< Clh]Y (5.5)
n=1

fory € (0,1 — % + ZTH) with C depending on (p, k, Hy, H, T, M, y).
Now we consider the term B, (¢, h). Denote E; , = [0, t + h]" \ [0, ¢]", and then

Ein= U {1, osn) tsp() S Sp@) <+ SSpmyst < Spmy <t +h}.
PEPy

Therefore, we have

Bu(t,h) = | gnC.t + h. X) T, r4hp\ (0,07 Hrz,_[@n

- / / Flon(s. 1+ ho0)®)]Flgn o1 + 10 E)]
n J10,t+h)?n

n
x Iz, , )1, , (0 [ 1sj — rj 20~ dsdru(dg)

j=1

h noocin2 . 2
<mn2( > /H / / I ((sp+1) = 503 Ep + -+ + &) /)
- PEP, t 0<8p(1) <Sp@2) <" <Sp(n) R |Ep(l) +"'+Ep(j)‘K

j=1

n Hy 2Hy
<[] |gj|1—2”d§} ds)

Jj=1

()2 n,[“”/ [ 1—[ sin” (5,41 — 5161+ + &%)
t O<s)<sp<--<$p Y j=1 ‘sl +-+ é,-:jlk

n z%:o 2Hy
<[] |§j|l—2Hd§} ds)

j=1

t+h 2\ 7y | 2_2
2Ho—2 Z 0 l—[ sr2—2—2a;(1-2H)]
_(n!) 0 / / <,) (5j+l 7514) i} rE e
t O<sp<sp<--<$p acA, K

j=1

in” () o\
sim 2., 2 2Hy
X(/R )7277 ml;a,(l—2H)+;—ldn) ds)

where by convention s =1+ h.
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Note that in the case n = 1, we have

2 Sinz(T]) 2(1_2H)+ 21 hZ—%—%(l—ZH)-FZHO
Bty < 2 [ I a2 iy, 2H
K R n (/3 + 1) 0

with 8 = 2170[2 — % — %(1 — 2H)], and in the case n > 2, it is easy to see from (5.2) that

B1+ -+ Bu—1 +n—1>0and hence by Lemma A.2, we have

t+h n
[ [Tt =5 ds
t O<sp<sp<-<8y

j=1
~1
N VR L e A D A
_F(ﬁl+"'+,3n—1+n) i Sn (t+h—s)™dsy
n—1 .
< Thit+bum =l [[;= P +8) 1 bt

PB4+ Bu1+n) Bn+1

Bit 4P W GITA+E) 1,0,
FBi++ Pt +n+1)  Putl

_ BB a1

’

where ; = 2—1110[2 — ,% — ,%aj(l — 2H)]. Now similar to the calculus below the equation (5.2)

and recalling that o, € {0, 1}, we can show that

3 (p = DE@DZYB, (1) < C(Jh|' =¥+ 4 |1 = E+3E o) (5.6)

n>0

with C depending on (p, Hy, H, T).
Finally, combining inequalities (5.4), (5.5) and (5.6), for |h| < 1, we have

fute +h, x) — u(t,x)“p <Clh”
for any 61 € (0,1 — % + %) where C is a constant depending only on (p, x, Hy, H, T, M, 61),

and the Holder continuity in space follows from the Kolmogorov’s continuity criterion.
The proof is concluded. ]

Appendix

In this section, we collect the lemmas that were used in the preceding sections. Some of the
proofs are obvious and hence omitted.

Lemma A.1. Fora > 0and 9 > —1,

/ exp(—ax2)|x|0 dx = a‘%(H‘Q)/ exp(—x2)|x|0 dx.
R R



Fractional SWE driven by a Gaussian noise 2721

Lemma A.2. Suppose o; € (—1,00),i=1,...,nandletoa =1+ ---+ ;. Then

/ ﬁ(ri+l —r)%dry...dr, = [Tio) Tlai + Dt
[

O<ri<--<ra<ray1=t];_} Fl@a+n+1)

where T'(x) = fooo t*~Ye~! dt is the Gamma function.

Lemma A.3. Foranya > 0andb € [0, 1], we have

lim [(an +b) =1 (A1)
n— 00 (n!)aaan+b—%nb—%—% - ’
and
S n
C1 exp(czxtl_z) < Z (’:‘)a <(C; exp(sz%) Vx >0, (A.2)
n=0 :

where c1 > 0, ¢ > 0, C1 > 0 and Cy > 0 are some constants depending on a.

Proof. The proof of (A.1) follows from Stirling’s formula (see also (68) in [2] which is (A.1) in
the case of b = 1). See Lemma A. 1 in [2] for the upper bound in (A.2) and Lemma 5.2 in [4] for
the lower bound in (A.2). ([l
Lemma A 4.
o0
/ sin?(x)x "% dx < 00
0
ifand only if « € (1, 3).

Proof. The sufficiency is obvious. The necessity follows from the estimation

00 T in2(x (n+3/4)7
/ sin(x)x % dx > / #xz_“ dx + / sin?(x)x "% dx
0 0 X (n+1/4)7

o]

n=0

T sin?(x) 1 >
5/ 5 xz_"‘dx—f-zrrl_"‘ Z(n+3/4)_a-

0 X
n=0

The proof is completed. (]

Lemma A.5. For He (0,1) andr,s > 0,
) . - 1
CH/Rs1n(r|n|)sm(s|n|)|n| 1=2H gy = Z(Ir + 527 — | — 5?7

with Cy given by (2.2). In particular, this integral is positive.
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Proof. Let X/ be the Hilbert space associated with fractional Brownian motion {B¥ (x), x € R}
with Hurst parameter H € (0, 1), that is, it is the linear expansion of indicator functions under
the inner product

1
{T10.x1, To.y1)xn = E(IXIZH + [y — |x — y2H).

Using the convention I[g,x] = —I[x,0] for x < 0, the linear mapping BH . Io,x) — B (x) extends
to a linear isometry between X and the Gaussian space {B" (¢), ¢ € X!} spanned by B*.
Furthermore, for ¢, ¢ € X# | we have (see [33)])

@, )y =Ch fR Fmamin 2 dn.

Now, noting that (FIj_,.,1())(€) = (FI_. () E) = % we have

cHA;sin(nm)sin(s|n|)|n|‘1‘”’dn

_ 1 1—2H
—4CH R(}"I[mgr])(n)(]:1[|x|gs])(77)|77| dn

1
= Z< (=10, I[—s,s](')>XH

1
= JE[B" (10 () B" (Ii-s.00))]

1
= ZIE:[(B”(r) — B"(—r)(B" (s) — B (—9))]

= %(|r—|—s|2H —|r —s|2H).

We complete the proof. ]

Lemma A.6. For any a > 0, we have

* a
/ e 'sin(at)dt = 5
0 I+a

Proof. The result follows by integration by parts. |

Lemma A.7. Let a and b be two positive constants, and A € [1,00), B € [0, 1), y €0, 1] such
that 1 — A < B+ 2y < 1. Then we have

/ sin®(ax)|x| 7P ((blx*) A 2)dx < Ca? pi(1=F-2v)
R
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where

Lo Lo _
C = C)L,ﬂ,)/ :max{/ |y|)‘( 14+B+2y) dy’/ |y|)‘( 1+B+2y) ldy}
[y|=2 ly|>2

Proof. We write

/ sinz(ax)|x|_2+ﬂ((b|x|)‘) A 2) dx
R

=/ sinz(ax)|x|*2+ﬁb|x|*dx+2/ sin?(ax)|x| 2P dx.
blx|*<2 blx|*>2

Noting that |sin(x)| < |x|¥ for y € [0, 1], we have

/ sin?(ax)|x| "2 Ph|x|* dx 5/ lax)? x| "2 Ph|x|* dx
blx|*<2 blx|*<2
1
_ Xazyb%afﬁfzw/ Iy | L1820 gy,
lyl=2
and
/ sin(ax)|x| 2P dx < / lax|? x| 7P dx
blx|*>2 blx|*>2
1
_ xazyb%afﬁfzw/ |y |1+~ gy
[y|>2
Thus, the proof is concluded. U

Lemma A.8. Foranyt,h € R and y € (0, 1], there exists a constant C,, such that
|sin((t + h)x) —sin(tx)| < C, |hx]”.

In particular,

|sin((z + h)x) — sin(tx)| < Cy (|hx|” A |hx]).

Proof. By the mean value theorem and the fact of y < 217_ny for y € [0,2] and y € (0, 1], we
have

|sin((t + h)x) — sin(tx)| < |hx||cos(sx)| < |hx]
and

1_
|sin((z + h)x) — sin(rx)| < 2

|sin((z + h)x) —sin(tx)|” = Cy |hx]? |cos(sx)|” < C, |hx|”,

where s is a number between ¢ and ¢ + h. The desired results can be obtained. [l
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