
Bernoulli 26(4), 2020, 2670–2698
https://doi.org/10.3150/20-BEJ1203

Learning the distribution of latent variables in
paired comparison models with round-robin
scheduling
ROLAND DIEL1, SYLVAIN LE CORFF2 and MATTHIEU LERASLE3

1Laboratoire J.A.Dieudonné, UMR CNRS-UNS 6621, Université de Nice Sophia-Antipolis, Nice, France.
E-mail: roland.diel@univ-cotedazur.fr
2Samovar, Télécom SudParis, Département CITI, TIPIC, Institut Polytechnique de Paris, Palaiseau, France.
E-mail: sylvain.le_corff@telecom-sudparis.eu
3CNRS, ENSAE, CREST, Institut Polytechnique de Paris, Palaiseau, France.
E-mail: matthieu.lerasle@ensae.fr

Paired comparison data considered in this paper originate from the comparison of a large number N of
individuals in couples. The dataset is a collection of results of contests between two individuals when each
of them has faced n opponents, where n � N . Individuals are represented by independent and identically
distributed random parameters characterizing their abilities. The paper studies the maximum likelihood es-
timator of the parameters distribution. The analysis relies on the construction of a graphical model encoding
conditional dependencies of the observations which are the outcomes of the first n contests each individual
is involved in. This graphical model allows to prove geometric loss of memory properties and deduce the
asymptotic behavior of the likelihood function. This paper sets the focus on graphical models obtained from
round-robin scheduling of these contests. Following a classical construction in learning theory, the asymp-
totic likelihood is used to measure performance of the maximum likelihood estimator. Risk bounds for this
estimator are finally obtained by sub-Gaussian deviation results for Markov chains applied to the graphical
model.
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1. Introduction

Consider a paired comparison problem involving a large number N of individuals. For all
1 ≤ i ≤ N , the ith individual is characterized by a strength (or ability) represented by an unknown
parameter Vi . These parameters are indirectly observed through discrete valued scores Xi,j de-
scribing the results of contests between individuals i and j . Given the values V = (V1, . . . , VN),
the random variables Xi,j are assumed to be independent and for each i and j , the conditional
distribution of Xi,j given V depends only on Vi and Vj : there is a known function k such that,
for all 1 ≤ i < j ≤ N ,

P(Xi,j = x|V ) = k(x,Vi,Vj ).

The most classical example is the Bradley–Terry model [2,32] where x ∈ {0,1} and k(1,Vi,

Vj ) = Vi/(Vi + Vj ). In the seminal works [2,32], the problem was to recover the strengths
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(V1, . . . , VN) of a small number of players when the number of observed scores for each pair
grows to infinity, see [7] for a review of these results in the original Bradley–Terry model and
some of its extensions. More recently, [23] considered the problem of estimating each strength
based on one score per pair in a tournament where the number N of players grows to infinity. This
framework led to several developments in computational statistics for the Bradley–Terry model,
see [14] and [4] for various extensions of this original model. The related Chen–Lu model was
considered in [5] where the observations take values in {0,1} and where the function k is given
by k(1,Vi,Vj ) = ViVj /(1 + ViVj ). Using one observation per pair of nodes, it is proved in [5]
that, with probability asymptotically larger than 1 − 1/N2, there exists a unique maximum like-
lihood estimator of the nodes strengths which is such that the supremum norm of the estimation
error is upper bounded by

√
logN/N .

Consider the random oriented graph G = ({1, . . . ,N},E), where an edge is drawn from i

to j in E if Xi,j = 1 when i < j and if Xj,i = 0 when i > j . It is known since [32] that a
necessary and sufficient condition for the existence of the maximum likelihood estimator (MLE)
of (V1, . . . , VN) in the Bradley–Terry model is that G is connected, that is, there is a path between
every pair of nodes. This assumption implies some restrictions on the ratio between the strongest
and the weakest strength [23]. This prevents the use of maximum likelihood estimation in a
sparse setting where the objective is to predict the outcome of future comparisons based on
few observations. This problem was for instance considered in [31] which analyzes the MLE of
(V1, . . . , VN) under the condition of existence of [32], but in a graph where some edges may be
unobserved.

This paper sets the focus on the case where each individual is compared to n others, with
possibly n � N in such a way that the assumption of [32] may not hold. In other words, the
MLE of V1, . . . , VN may not exist in this setting. To the best of our knowledge, this kind of
dataset has not been analyzed previously and it is not clear what quantities can be recovered from
these observations. Our strategy is motivated by the Bradley–Terry model in random environment
[6,24]. In this model, strengths are supposed to be realizations of independent and identically
distributed random variables with common distribution π�. The paper [24] illustrated for example
that an elementary parametric model for the strength can be used to make predictions regarding
the teams scores at the end of baseball tournaments. The paper [6] recently proved that the player
with maximal strength ends the tournament with the highest degree in the graph G if the tail of
the nodes weights distribution is sufficiently convex.

The take-home message is that the strengths distribution π� is relevant to predict future out-
comes which motivates the estimation of π�. As every player is supposed to meet exactly n op-
ponents, the observed graph is naturally n regular (every node has the same degree n). It is also
assumed that players meet according to the round-robin scheduling (see Section 2 for a descrip-
tion of this algorithm), a famous method to build n-regular graphs recursively. The round-robin
algorithm is routinely used for example, to manage scheduling in chess, bridge, sport and online
gaming tournaments. The MLE of π� is analyzed based on the observation of the scores of every
contest of the first n rounds of the algorithm.

First, a graphical model encoding conditional dependencies between strengths and scores is
built. This representation allows to approximate the likelihood function using a stationary hidden
Markov model [3]. The asymptotic behavior of the normalized loglikelihood is analyzed using
loss of memory properties of the hidden Markov process, following essentially the approach
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of [11]. Then, following [27], the limit of the normalized loglikelihood is used to define a risk
function, see Section 4.1 for details on this construction. This risk is then bounded from above
for finite values of the number N of nodes using concentration inequalities for Markov Chains
[10]. The excess risk scales as Dudley’s entropy of the underlying statistical model normalized
by a term of order

√
N when n is fixed and N → ∞. From a learning perspective, Dudley’s

entropy bound is known to be suboptimal in general, it can be replaced by a majorizing measure
bound [25] since it derives from a sub-Gaussian concentration inequality for the increments of
the underlying process, see (28).

More generally, the methodology introduced in this paper leads the way to various research
perspectives in several fields. For example, identifiability of nonparametric hidden Markov mod-
els with finite state spaces was established recently along with the first convergence properties
of estimators of the unknown distributions, see [8] for a penalized least-squares estimator of the
emission densities, [9,29,30] for consistent estimation of the posterior distributions of the states
and posterior concentration rates for the parameters or [17] for order estimation. However, very
few theoretical results are available for the nonparametric estimation of general state spaces hid-
den Markov models. In computational statistics, Bayesian estimators of the strengths have been
studied in Bradley–Terry models [14] and other extensions, see for example [4]. In [16], the
unknown distribution of hidden variables is analyzed in a Bayesian framework and contraction
rates of the posterior distribution are obtained using the concentration inequality established in
this paper. Designing new algorithms to compute the MLE of the prior would then be of great
interest to derive empirical Bayes estimators [13,22].

The paper is organized as follows. Section 2 details the model, the maximum likelihood esti-
mator of the strengths distribution and the round-robin algorithm. Section 3 presents preliminary
results. The graphical model encoding conditional dependencies in round-robin graphs with la-
tent variables is displayed, and the Markov chain associated with this representation is shown to
be well approximated by a geometrically ergodic Markov chain. The main results are gathered
in Section 4: convergence of the likelihood is established when the number N of nodes grows to
+∞ and risk bounds for the MLE are provided. Finally, Appendices A to C are devoted to the
proofs of these results.

2. Setting

Graphs with latent variables

Let N be a positive integer, E a set of couples (i, j) with 1 ≤ i < j ≤ N and G = ({1, . . . ,N},E)

the corresponding oriented graph. Let V1, . . . , VN denote independent and identically distributed
(i.i.d.) random variables taking values in a measurable set V with common unknown distribution
π�. For all (i, j) ∈ E, let Xi,j denote a random variable taking values in a finite set X such
that, conditionally on V = (V1, . . . , VN), the random variables (Xi,j )(i,j)∈E are independent with
conditional distributions given by

P(Xi,j = x|V ) = k(x,Vi,Vj ),
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where k : X × V × V → [0,1] is a known function. In the following, the sets X , V and the
scores (Xi,j )(i,j)∈E are available while the vector V is unknown and the objective is to estimate
the distribution π�. The following examples of triplets (X ,V, k) have been considered in the
literature.

Example 1 (Bradley–Terry model [2]). In this example, V = (0,∞), X = {0,1} and for all
x ∈X ,

k(x,Vi,Vj ) =
(

Vi

Vi + Vj

)x( Vj

Vi + Vj

)1−x

.

Example 2 (Extensions of Bradley–Terry model [4]). In the following examples, V = (0,∞).

– Let θ > 0 and X = {0,1}. In the Bradley–Terry model with home advantage, if i is home,
for all x ∈X ,

k(x,Vi,Vj ) =
(

θVi

θVi + Vj

)x( Vj

θVi + Vj

)1−x

.

– In the Bradley–Terry model with ties [21], X = {−1,0,1} and

k(1,Vi,Vj ) = Vi

Vi + θVj

and k(0,Vi,Vj ) = (θ2 − 1)ViVj

(θVi + Vj )(Vi + θVj )
.

Example 3 (Graphon model). The probability that two nodes i and j are connected in the
graphon model (i.e., (i, j) ∈ E) is the random variable W(Vi,Vj ) with W : V × V → [0,1] and
V ⊂ R

+. In the context of this paper, this boils down to choosing X = {0,1} and setting by
convention Xi,j = 0 if and only if (i, j) /∈ E with

k(x,Vi,Vj ) = W(Vi,Vj )
x
(
1 − W(Vi,Vj )

)1−x
.

The problem in the graphon model is to estimate the matrix of connection probabilities
(W(Vi,Vj ))1≤i,j≤N using the observations of the adjacency matrix, and assuming that the distri-
bution of Vi is given.

In our setting, the aim is different, we try to estimate π�, the law of the latent variables, from
a partial observation E of the adjacency matrix and with a known function W.

Example 4 (Chen–Lu model). Consider a random graph where E is such that an edge is drawn
between node i and node j (i.e., (i, j) ∈ E) with probability ViVj /(1 + ViVj ), with for all
1 ≤ k ≤ N , Vk ∈ V = (0,∞). In the context of this paper, this boils down to choosing X = {0,1}
and setting by convention Xi,j = 0 if and only if (i, j) /∈ E with

k(x,Vi,Vj ) =
(

ViVj

1 + ViVj

)x( 1

1 + ViVj

)1−x

.
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Maximum likelihood estimator

The aim of this paper is to estimate the distribution π� of the hidden variables V = (V1, . . . , VN)

from the observations XE = (Xi,j )(i,j)∈E . Let A be a σ -field on V and � be a set of probability
measures on (V,A). The statistical model is not assumed to be well specified that is, � may not
contain π�. For all π ∈ �, the joint distribution of (XE,V ) is given, for any xE ∈ X |E| and all
A ∈A⊗N by

P
E
π

(
XE = xE,V ∈ A

)=
∫

1A(v)
∏

(i,j)∈E

k
(
xE
i,j , vi, vj

)
π⊗N(dv), (1)

where 1A is the indicator function of the set A. Using the convention log 0 = −∞, the log-
likelihood is given, for all π ∈ �, by

�E(π) = logPE
π

(
XE
)

where P
E
π

(
XE
)= P

E
π

(
XE,V ∈ VN

)
.

In this paper, π� is estimated by the maximum likelihood estimator π̂E defined as any maximizer
of the log-likelihood:

π̂E ∈ argmax
π∈�

{
�E(π)

}
.

Round-robin (RR) scheduling

Assume that N is an even integer. In the case of a round-robin scheduling, at t = 1, 2i − 1
is paired with 2i, for all i ∈ [N/2], as in Figure 1(a). At t = 2, the RR permutation PRR is
performed: node 1 is fixed PRR(1) = 1, PRR(2) = 3, each odd integer 2i − 1 < N − 1 satisfies
PRR(2i − 1) = 2i + 1, PRR(N − 1) = N and each even integer 2i > 2 satisfies PRR(2i) =
2(i − 1). This permutation is illustrated by the graphical representation given in Figure 1(b).
Then, the RR pairing is performed as in Figure 1(c). At each time t > 2, a RR permutation is
performed as in Figure 1(b) and followed by a RR pairing. Let n ≥ 1 denote an integer. The
RR graph denoted by E

n,N
RR studied in detail in this paper contains all pairs collected in the first

n pairings of the RR algorithm. Note that E
N−1,N
RR is the complete graph and that we focus on

situations where n � N .

3. Conditional dependencies of round-robin graphs

Let dE
0 denote the graph distance in ({1, . . . ,N},E), that is dE

0 (i, j) is the minimal length of a

path between nodes i and j . Write {V1, . . . , VN } =⋃N
q=0 V E

q , where V E
0 = {V1} and, for any

q ≥ 1, V E
q is the set of Vi such that dE

0 (1, i) = q . Let qE + 1 denote the maximal distance
between 1 and i ∈ {1, . . . ,N}:

qE + 1 = max
1≤i≤N

dE
0 (1, i).
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1 3 5 2i−1 N−3 N−1

2 4 6 2i N−2 N

. . . . . .

. . . . . .

(a) Round-robin pairing, step 1.

1 3 5 2i−1 N−3 N−1

2 4 6 2i N−2 N

. . . . . .

. . . . . .

(b) Round-robin permutation.

1 2 3 2i−1 N−5 N−3

4 6 8 2i N N−1

. . . . . .

. . . . . .

(c) Round-robin pairing, step 2.

Figure 1. Round-robin algorithm.

– For all 1 ≤ q ≤ qE + 1, let

XE
q↔q = {Xi,j : (i, j) or (j, i) ∈ E, i ∈ V E

q , j ∈ V E
q

}
.

The set XE
q↔q gathers all Xi,j such that i and j satisfy dE

0 (1, i) = dE
0 (1, j) = q .

– For all 0 ≤ q ≤ qE , let

XE
q↔q+1 = {Xi,j : (i, j) or (j, i) ∈ E, i ∈ V E

q , j ∈ V E
q+1

}
.

The set XE
q↔q+1 gathers all Xi,j such that dE

0 (1, i) = q and dE
0 (1, j) = q + 1.

Finally, for any 0 ≤ q ≤ qE , let

XE
q = XE

q↔q+1 ∪ XE
q+1↔q+1.

Following [15], the distribution P
E
π , given in (1), can be factorized with respect to an oriented

acyclic graph where graph separations represent conditional independence. The factorization
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V E
0

XE
0

V E
1

XE
1

V E
2

V E
qE

. . .

XE
qE

V E
qE+1

Figure 2. Graphical model of paired comparisons contests.

illustrates a global Markov property such that two sets of random variables U1 and U2 are inde-
pendent given a third set Z if U1 and U2 are d-separated by Z in the oriented acyclic graph. The
sets U1 and U2 are d-separated by Z if every path from U1 to U2 is blocked by Z:

– the path contains a node in Z, and the edges of the path do not meet head-to-head at this
node.

– the path contains a node not in Z, none of its descendants are in Z, and the edges of the
path do meet head-to-head at this node.

Conditional dependencies described by P
E
π can be represented in the graphical model of Figure 2.

For instance, V E
1 is independent of V E

2 (Z = ∅) as every path between them goes through
XE

1 , which is not in Z, with two edges meeting head-to-head at XE
1 . For all 0 ≤ q ≤ qE any path

between XE
q and other vertices except V E

q and V E
q+1 goes through V E

q or V E
q+1 which means that

XE
q is independent of all other nodes given V E

q and V E
q+1 (Z = {V E

q ,V E
q+1} and no head-to-head

edges). In particular, for all 0 ≤ q ≤ qE , and all π ∈ �,

P
E
π

(
XE

q |V,XE
0:q−1

)= P
E
π

(
XE

q |V E
q ,V E

q+1

)=
∏

(i,j):Xi,j ∈XE
q

k(Xi,j ,Vi,Vj ).

Lemma 1. Let N ≥ n ≥ 1 and let ({1, . . . ,N},En,N
RR ) denote the corresponding round-robin

graph defined in Section 2. Assume that 2 ≤ n < N/4. Then, q
E

n,N
RR

is the quotient of the Euclidean

division of N/2 − 1 by n − 1, that is

N/2 − 1 = q
E

n,N
RR

(n − 1) + rnN with 0 ≤ rnN < n − 1.

Moreover, (V
E

n,N
RR

q+1 ,X
E

n,N
RR

q )2≤q≤q
E

n,N
RR

−1 is a stationary Markov chain such that for all 2 ≤ q ≤
q
E

n,N
RR

− 1,

∣∣V E
n,N
RR

q

∣∣= 2(n − 1),
∣∣XE

n,N
RR

q

∣∣= n(n − 1).

Lemma 1 is proved in Section A. It shows that RR graphs can be approximated by stationary
hidden Markov models. When E = E

n,N
RR , by Lemma 1, the joint sequence (V E

q+1,X
E
q )2≤q≤qE−1
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is a stationary Markov chain which points toward the following decomposition of the likelihood.

logPE
π

(
XE
)= logPE

π

(
XE

2:qE−1

)+ logPE
π

(
XE

0 ,XE
1 ,XE

qE
|XE

2:qE−1

)
. (2)

It is shown in Section 4 that under a minoration condition on the kernel k, the last term in
(2) is o(qE) when N grows to infinity. This implies that the first term is the leading term in
the analysis of the likelihood’s asymptotic behavior. The uniform minoration condition of k

also ensures that the joint Markov chain (V E
q+1,X

E
q )q≥2 is uniformly ergodic and admits the

whole space V × X as small set with stationary distribution on V × X given by (A,x0) →∫
1A(v1)πV (dv1)πV (dv0)k(x0, v0, v1). The joint stationary Markov chain (V E

q+1,X
E
q )q≥2 may

then be extended to a stationary process (Xn,Vn) indexed by Z with the same transition kernel.
Hereafter, the distribution of this extended chain is denoted by Pn

π .

4. Risk bounds for the MLE

Section 4.1 computes the limit likelihood function and shows why this limit defines a natural
risk function to evaluate the MLE. Risk bounds for the MLE are obtained in Section 4.2 using
concentration inequalities for Markov chains.

4.1. Asymptotic analysis of the likelihood

The problem being reduced to the analysis of the graphical model represented in Figure 2, con-
vergence results follow from geometrically decaying mixing rates of the conditional laws of the
strengths V E

k given the observations. These rates are established under the following assumption.
For any probability distribution π , denote by supp(π) the support of π .

H1 There exists ε > 0 such that for all x ∈ X , π ∈ � ∪ {π�} and v1, v2 ∈ supp(π),
k(x, v1, v2) ≥ ε.

Define also the shift operator ϑ on (X n(n−1))Z by (ϑx)k = xk+1 for all k ∈ Z and all x ∈
(X n(n−1))Z. The following result establishes loss of memory properties of the extended hid-
den Markov chain (Xn,Vn) as well as the asymptotic behavior of the likelihood. This is the first
main result of the paper.

Theorem 2. Assume H1 holds. Then, for all n′ > n ≥ q and all p′ < p < q in Z,

sup
π∈�

∣∣log Pn
π

(
Xn

q |Xn
q+1:n

)− log Pn
π

(
Xn

q |Xn
q+1:n′

)∣∣≤ ε−n2(
1 − εn2)n−q−1

,

sup
π∈�

∣∣log Pn
π

(
Xn

q |Xn
p:q−1

)− log Pn
π

(
Xn

q |Xn
p′:q−1

)∣∣≤ ε−n2(
1 − εn2)q−p

.

As a consequence, there exists a function �n
π such that for all q in Z,

sup
π∈�

∣∣log Pn
π

(
Xn

q |Xn
q+1:n

)− �n
π

(
ϑqXn)∣∣ −→

n→∞ 0, Pn
π�

-a.s. (3)
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Finally, when E = E
n,N
RR , for all π ∈ �, Pn

π�
-a.s. and in L1(Pn

π�
),

1

qE

logPE
π

(
XE
) −→

N→∞ Ln
π�

(π) = E
n
π�

[
�n
π

(
Xn)]. (4)

Theorem 2 is proved in Section C.1. It establishes convergence of the likelihood to the limit
Ln
π�

(π) when the number of nodes N → ∞ while n remains fixed. The rate of almost sure con-
vergence qE is proportional to N in this case by Lemma 1. Equation (4) is the key to understand
the definition of the risk function used in Section 4.2.

Let Y,Y1, . . . , YN denote i.i.d. observations in Y , let F denote a set of parameters, and let
� : F ×Y → R denote a loss function. The empirical risk minimizer is defined in this context by

f̂ ERM
N = argmin

f ∈F

N∑
i=1

�(f,Yi).

If E[�(f,Y1)] < ∞ for all f ∈ F , the performance of any f ∈ F is measured by the excess risk
[20]

R(f ) = E
[
�(f,Y )

]−E
[
�
(
f ∗, Y

)]
,

where Y is a copy of Y1, independent of Y1, . . . , YN and f ∗ is the minimizer of E[�(f,Y )]
over F . Note that, when E[�(f,Y1)] < ∞ for all f ∈ F , the normalized empirical criterion
satisfies almost surely,

1

N

N∑
i=1

�(f,Yi) → E
[
�(f,Y1)

]
.

Therefore, following for instance [27,28], the excess risk R(f ) in learning theory is the differ-
ence between the asymptotic normalized empirical loss evaluated at f and the minimizer of this
quantity.

In this paper, the MLE minimizes over π ∈ � the loglikelihood − logPE
π (XE). Using the

identifications π ∼ f , � ∼ F and − logPE
π (XE) ∼∑N

i=1 �(f,Yi), Theorem 2 suggests to use
−Ln

π�
(π) as a surrogate for E[�(f,Y )]. Therefore, define, for all π ∈ �,

Rn
π�

(π) = Ln
π�

(π�) − Ln
π�

(π). (5)

By Proposition 13, π� is actually a minimizer of −Ln
π�

(π) over � ∪ {π�}. Therefore, Rn
π�

is
a natural extension of the excess risk associated with the likelihood function. Notice here that
the model is non identifiable. Clearly, the observed distribution is not changed if the distribu-
tion π of V is replaced by the distribution of ϕ(V ), for any mapping ϕ : V → V such that
k(x,ϕ(v1), ϕ(v2)) = k(x, v1, v2) for any x ∈ X , and v1, v2 in V . For example, in the Bradley–
Terry model, for any λ > 0, k(x,λv1, λv2) = k(x, v1, v2) for any x ∈ X , and v1, v2 in V . It is
not easy however to describe precisely the class of transformations that would leave the observed
distribution invariant in general, specially for a fixed n. This is why, in the following, we focus
on bounding the risk Rn

π�
(π̂) of the estimator π̂ rather than trying to bound a distance between

π∗ and π̂ .



Hidden distribution inference from paired comparisons data 2679

4.2. Non asymptotic deviation bounds for the MLE

The following theorem provides nonasymptotic deviation bounds for the excess risk of the MLE.
This is the main result of this paper. Let ‖ · ‖tv denote the total variation norm: for any signed
measure π on V ,

‖π‖tv = sup

{∫
π(dv)f (v) : f bounded and measurable on V,‖f ‖∞ = 1

}
.

Theorem 3. Assume H1 holds and ({1, . . . ,N},E) is the round-robin graph (that is E = E
n,N
RR ).

For any probability measures π and π ′, define

d
(
π,π ′)=

⎧⎨⎩
∥∥π − π ′∥∥

tv log

(
1

‖π − π ′‖tv

)
if
∥∥π − π ′∥∥

tv < e−1,∥∥π − π ′∥∥
tv if

∥∥π − π ′∥∥
tv ≥ e−1.

(6)

Let N(� ∪ {π�}, d, ε) be the minimal number of balls of d-radius ε necessary to cover � ∪ {π�}.
Then, there exists c > 0 such that, for any t > 0 and any n, N ≥ 1,

P
E
π�

(
Rn

π�

(
π̂E
)
>

cnε−6n2

√
N

[∫ +∞

0

√
log N

(
� ∪ {π�}, d, ε

)
dε + t

])
≤ e−t2

.

Theorem 3 is proved in Section C.3. It provides the first non asymptotic risk bounds for any es-
timator of π�. Besides, to the best of our knowledge, the “sparse” observation setting where each
player only faces a few opponent has never been considered previously, neither in the Bradley–
Terry model nor in any extensions. Theorem 3 demonstrates that the estimation of the distribution
π� of the parameters V is fundamentally different from the problem of estimating V that is usu-
ally considered, at least in Bradley–Terry models. While estimating nodes weights is possible
under Zermelo’s strong connectivity condition [23,31,32], the estimation of their distribution can
be performed without such condition.

The quasi-metric d defined in (6) used to measure the entropy of � is not intuitive. However, it
is easy to check that d(π,π ′)�α ‖π −π ′‖1−α

tv for any α > 0. It follows that, for any class � with
polynomial entropy for the total variation distance, that is such that N(� ∪ {π�},‖ · ‖tv, ε) � εD

for small ε, Dudley’s entropy integral for d satisfies∫ +∞

0

√
log N

(
� ∪ {π�}, d, ε

)
dε �α

√
D.

Therefore, “slow rates” of convergence are obtained for the MLE. The polynomial growth N(�∪
{π�},‖ · ‖tv, ε) � εD is extremely standard, see [26], pages 271–274, for various examples where
this assumption is satisfied and our result applies. On the other hand, “fast” rates of convergence
remain an open question. In particular, the margin condition [19] required to prove such rates
would hold if the total variation distance between strengths distributions was bounded from above
by the excess risk derived from the asymptotic of the likelihood.
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Appendices

The remaining of the paper is devoted to the proof of the main results. Section A proves Lemma 1,
describing precisely the structure of the graphical model given in Figure 2 in the case of a round-
robin scheduling. Then, Section B establishes central tools for the analysis of the likelihood
of stationary processes whose conditional dependences are described by the graphical model
in Figure 2. These results are stated as independent lemmas as they might be of independent
interest. Proofs of the main theorems are finally gathered in Section C.

Appendix A: Proof of Lemma 1

This section details the sets V E
q and XE

q for 0 ≤ q ≤ qE + 1 when E = E
n,N
RR (cf. Figures 1(a)–

1(c)). In the following, notations i are identified with Vi for all 1 ≤ i ≤ N , we also use E = E
n,N
RR

to shorten notations. Lemma 1 follows directly from Lemmas 4 and 5 below. To prove these
lemmas, consider the following notations.

E = {4x − 1,4x : x ∈ [�N/4�]} and O = [N ] \ E .

The notation E (resp O) comes from the fact that E (resp O) contains all indices of the form 4x

(resp. of the form (2(2x + 1))) which are paired with 1 after an even (resp odd) number n ≤ N/4
of permutations of the round-robin algorithm. For all 1 ≤ q ≤ qE , let

V E
q,e = V E

q ∩ E and V E
q,o = V E

q ∩O.

Lemma 4. Let n,N ≥ 1 and ({1, . . . ,N},E) be the round-robin graph (E = E
n,N
RR ). Assume that

2 ≤ n < N/4 and let N/2 − 1 = qE(n − 1) + rE where 0 ≤ rE < n − 1. Then,

V E
1 = {V2x : x = 1, . . . , n}, (7)

and, for any 2 ≤ q ≤ qE ,

V E
q = {V2x+1 : x ∈ [(q − 2)(n − 1) + 1, (q − 1)(n − 1)

]}
∪ {V2x : x ∈ [2 + (q − 1)(n − 1),1 + q(n − 1)

]}
. (8)

Furthermore,

V E
qE+1 = {V2x+1 : x ∈ [(qE − 1

)
(n − 1) + 1,qE(n − 1) + rE

]}
∪ {V2x : x ∈ [2 + qE(n − 1),1 + rE + qE(n − 1)

]}
. (9)

Therefore, |V E
0 | = 1, |V E

1 | = n and for all 2 ≤ q ≤ qE , |V E
q | = 2(n − 1).

Proof. To ease the reading of this proof, one can check its arguments on Figures 3 and 4 illus-
trating the case n = 3.
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1 3 5 7 9

2 4 6 8 10 12 14 N−6 N−4 N−2 N

N−7 N−5 N−3 N−1

. . .

. . .

V E
1 V E

2 V E
3 V E

qE−1 V E
qE

V E
qE+1

Figure 3. Elements of VE , case n = 3, rE = 0.

We proceed by induction on q . The definition of V E
1 given by (7) is straightforward. Then,

V E
2 contains:

– all Vi paired with some Vj ∈ V E
1 before the first RR permutation besides V1 that does not

belong to V E
2 . These are all {V2x+1 : x = 1, . . . , n − 1};

– all Vi paired with V2 and V4 that are not in V E
0 ∪ V E

1 . After n RR permutations, all Vi

paired with V2 are {V1,V4x+2 : x = 1, . . . , n − 1} and those with V4 are {V1,V3,V4x : x =
2, . . . , n − 2}.

Therefore,

V E
2 ⊃ {V2x+1 : x = 1, . . . , n − 1} ∪ {V2x : x = n + 1, . . . ,2n − 1}.

On the other hand, by induction, for all i /∈ {N − 2x + 1, x = 1, . . . ,2(n − 1)} ∪ {2x : x =
1, . . . ,2n − 1},

if i is odd, it is paired with {Vi+4x+1 : x = 0, . . . , n − 1},
if i is even, it is paired with {Vi−4x−1 : x = 0, . . . , n − 1}. (10)

1 3 5 7 9

2 4 6 8 10 12 14 N−8 N−6 N−4 N−2 N

N−9 N−7 N−5 N−3 N−1

. . .

. . .

V E
1 V E

2 V E
3

V E
qE−1 V E

qE

V E
qE+1

Figure 4. Elements of VE , case n = 3, rE = 1.
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This implies that there is no even number i ≥ 4n nor odd number i > 2n−1 such that Vi ∈ V
n,N
2 ,

which yields:

V E
2 = {V2x+1 : x = 1, . . . , n − 1} ∪ {V2x : x = n + 1, . . . ,2n − 1}.

Equation (8) is obtained by induction using the same arguments and (9) is a direct consequence
of the round-robin algorithm. The last claim follows by noting that for all q ∈ [2,qE],∣∣V E

q,e

∣∣= ∣∣V E
q,o

∣∣= n − 1.

Indeed, one of the following cases holds.

– n − 1 = 2p for some p ∈ N. In this case,∣∣{j : Vj ∈ V E
q,e, j ∈ 2Z

}∣∣= ∣∣{i : Vi ∈ V E
q,e, i ∈ 2Z+ 1

}∣∣= p.

– n − 1 = 2p + 1 for some p ∈ N. In this case, either∣∣{j : Vj ∈ V E
q,e, j ∈ 2Z

}∣∣= p and
∣∣{i : Vi ∈ V E

q,e, i ∈ 2Z+ 1
}∣∣= p + 1,

or ∣∣{j : Vj ∈ V E
q,e, j ∈ 2Z

}∣∣= p + 1 and
∣∣{i : Vi ∈ V E

q,e, i ∈ 2Z+ 1
}∣∣= p.

�

Lemma 5. Let n,N ≥ 1 and ({1, . . . ,N},E) be the round-robin graph (E = E
n,N
RR ). Then, for

all 2 ≤ q ≤ qE − 1, ∣∣XE
q

∣∣= n(n − 1).

Proof. The proof essentially consists in building the graphical model of Figure 5 from the one
displayed in Figure 2.

Edges involving the first node are decomposed as:

XE
0↔1,e = {X1,4x : x = 1, . . . , �n/2�}= {X1,i : Vi ∈ V E

1,e

}
and XE

0↔1,o = {X1,i : Vi ∈ V E
1,o

}
.

Edges involving nodes in V E
1 that are both different from 1 are described as follows.

– Edges between two nodes in V E
1 denoted by:

XE
1↔1,e = {X4x,4y : (x, y) ∈ [�n/2�], x < y

}= {Xi,j : Vi,Vj ∈ V E
1,e, i < j

}
,

XE
1↔1,o = {Xi,j : Vi,Vj ∈ V E

1,o, i < j
}
.

Note that there is no edge between any Vi ∈ V E
1,e and a node Vj ∈ V E

q,o for any q ≥ 1.

In particular, there is no edge between any Vi ∈ V E
1,e and Vj ∈ V E

1,o. Therefore, XE
1↔1,e ∪

XE
1↔1,o describes all edges between nodes in V E

1 .
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XE
0↔1,e

V E
0

XE
0↔1,o

V E
1,e

V E
1,o

XE
1↔1,e

XE
1↔1,o

XE
1↔2,e

XE
1↔2,o

V E
2,e

V E
2,o

XE
2↔2,e

XE
2↔2,o

V E
qE,e

V E
qE,o

. . .

. . .

XE
qE↔qE,e

XE
qE↔qE,o

XE
qE↔qE+1,e

XE
qE↔qE+1,o

V E
qE+1

XE
qE+1↔qE+1

Figure 5. Graphical model of the round-robin algorithm.

– Edges between Vi ∈ V E
1 and Vj ∈ V E

2 are described as follows:

XE
1↔2,e = {X4y−1−4k,4y : y ∈ [�n/2�], k < y

}
∪ {X4x,4y : x ∈ [�n/4�], y ∈ [�n/2� + 1, n − x

]}
= {Xi,j : Vi ∈ V E

1,e, Vj ∈ V E
2,e, j ∈ 2Z+ 1, j > i

}
∪ {Xi,j : Vi ∈ V E

1,e, Vj ∈ V E
2,e, j ∈ 2Z∩ [4n − i]},

XE
1↔2,o = {Xi,j : Vi ∈ V E

1,o,Vj ∈ V E
2,o, j ∈ 2Z+ 1, j > i

}
∪ {Xi,j : Vi ∈ V E

1,o,Vj ∈ V E
2,o, j ∈ 2Z∩ [4n − i]}.

By (10), for any q ∈ [2,qE], edges between Vi and Vj both in V E
q are:

XE
q↔q,e = {Xi,j : Vi ∈ V E

q,e, i ∈ 2Z+ 1,Vj ∈ V E
q,e, j ∈ 2Z

}
,

XE
q↔q,o = {Xi,j : Vi ∈ V E

q,o, i ∈ 2Z+ 1,Vj ∈ V E
q,o, j ∈ 2Z

}
.

Note that (10) shows also that there is no edge between Vi ∈ V E
q,e and Vj ∈ V E

q,o. For all 2 ≤ q ≤
qE and all Vi ∈ V E

q and Vj ∈ V E
q+1,

XE
q↔q+1,e = {Xi,j : Vi ∈ V E

q,e, i ∈ (2Z+ 1),Vj ∈ V E
q+1,e, j ∈ 2Z∩ [i + 4n − 3]}

∪ {Xi,j : Vi ∈ V E
q,e, i ∈ 2Z,Vj ∈ V E

q+1,e, j ∈ 2Z+ 1 ∩ [i]},
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XE
q↔q+1,o = {Xi,j : Vi ∈ V E

q,o, i ∈ (2Z+ 1),Vj ∈ V E
q+1,o, j ∈ 2Z∩ [i + 4n − 3]}

∪ {Xi,j : Vi ∈ V E
q,o, i ∈ 2Z,Vj ∈ V E

q+1,o, j ∈ (2Z+ 1) ∩ [i]}.
Therefore, for all 2 ≤ q ≤ qE ,∣∣XE

q↔q,e

∣∣= ∣∣{i : Vi ∈ V E
q,e, i ∈ 2Z+ 1

}∣∣∣∣{j : Vj ∈ V E
q,e, j ∈ 2Z

}∣∣
=
{

p2 if n − 1 = 2p,

p(p + 1) if n − 1 = 2p + 1.

The same holds for |XE
q↔q,o| so that |XE

q↔q | = 2p2 if n − 1 = 2p and |XE
q↔q | = 2p(p + 1) if

n − 1 = 2p + 1. On the other hand,∣∣XE
q↔q+1,e

∣∣= ∑
i:Vi∈V E

q,e,i∈(2Z+1)

∣∣{j : Vj ∈ V E
q+1,ej ∈ 2Z∩ [i + 4n − 3]}∣∣

+
∑

i:Vi∈V E
q,e,i∈2Z

∣∣{j : Vj ∈ V E
q+1,e, j ∈ 2Z+ 1 ∩ [i]}∣∣

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2

p∑
i=1

i = p(p + 1) if n − 1 = 2p,

p∑
i=1

i +
p+1∑
i=1

i = (p + 1)2 if n − 1 = 2p + 1.

As the same holds for |XE
q↔q+1,o|, |XE

q↔q+1| = 2p(p +1) if n−1 = 2p and |XE
q↔q+1| = 2(p +

1)2 if n − 1 = 2p + 1. The proof is completed by writing |XE
q | = |XE

q↔q+1| + |XE
q+1↔q+1|. �

Appendix B: Probabilistic study of the graphical model

This section analyses stochastic processes whose conditional dependences are encoded in the
graphical model of Figure 2. To ease applications of these general results to our problem, we
focus on a restricted class of such stochastic processes.

Let n ∈ N \ {0}, πV be a distribution on a measurable space V and X be a discrete space. Let
Ki denote non-negative functions defined on X × V

2 such that all Ki(., v,w) are probability
distributions on X. Let PπV

be the distribution on V
n+1 ×X

n defined by:

PπV
(V1:n+1 ∈ A1:n+1,X1:n) =

∫ n+1∏
i=1

1Ai
(vi)

n+1∏
i=1

πV (dvi)

n∏
i=1

Ki(Xi, vi, vi+1). (11)

The random variables (Vi)i∈{1,...,n+1} are i.i.d. taking values in V with common distribution πV

and (Xi)i∈{1,...n} is a stochastic process taking values in a discrete set X such that (Xi)i∈{1,...,n}
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are independent conditionally on V and

PπV
(Xi = x|V1:n+1) = PπV

(Xi = x|Vi,Vi+1) = Ki(x,Vi,Vi+1), ∀i ∈ {1,n},∀x ∈X.

Therefore, PπV
is a generic probability distribution with conditional dependences encoded by the

graphical model of Figure 2. Assume that there exist νi > 0 such that

νi ≤ Ki(x, v,w) ≤ 1, ∀x ∈ X,∀i ∈ Z,∀v,w ∈ V. (12)

For some results, the following assumption is required.

∀i ∈ {1, . . . ,n}, Ki = K. (13)

Whenever Assumption (13) holds, we shall denote by ν a real number such that

ν ≤ K(x, v,w) ≤ 1, ∀x ∈ X,∀v,w ∈V.

Note that by (11), the sequence (Vk+1,Xk)k≥0 is a Markov chain with transition kernel on V×X

such that:

PπV
(Vk+1 ∈ A,Xk|Vk,Xk−1) =

∫
1A(vk+1)πV (dvk+1)Kk(Xk,Vk, vk+1) ≥ νkπV (A).

This uniform minoration condition ensures that the joint Markov chain (Vk+1,Xk)k≥0 is geo-
metrically ergodic and admits the whole space V×X as small set. Note also that, as defined by
(11), PπV

is the law of this Markov chain started from stationarity, the stationary distribution on
V×X being (A,x0) → ∫

1A(v1)πV (dv1)πV (dv0)k(x0, v0, v1).
Lemma 6 first shows that, conditionally on the observations, V1, . . . , Vn is a backward Markov

chain admitting the all state space as small set.

Lemma 6. For any q ≥ 1, conditionally on Xq:n, (Vn, . . . , V1) is a Markov chain. Its transition

kernels (K
V |X
πV ,k,q)q≤k<n are such that, for all q ≤ k < n, there exists a measure μk,q satisfying

for all measurable set A:

K
V |X
πV ,k,q(Vk+1,A) = PπV

(Vk ∈ A|Vk+1:n,Xq:n) = PπV
(Vk ∈ A|Vk+1,Xq:n) ≥ νkμk,q(A).

On the other hand, for all 1 ≤ k < q ,

K
V |X
πV ,k,q(Vk+1,A) = PπV

(Vk ∈ A|Vk+1:n,Xq:n) = πV (A).

Proof. The Markov property is immediate. The case 1 ≤ k < q follows from the independence
of Vk and (Vk+1:n,Xq:n). Then, for any q ≤ k < n and all measurable set A,

PπV
(Vk ∈ A|Vk+1:n,Xq:n) = PπV

(Vk ∈ A|Vk+1,Xq:k)

=
∫

1A(vk)πV (dvk)Kk(Xk, vk,Vk+1)PπV
(Xq:k−1|vk)∫

πV (dvk)Kk(Xk, vk,Vk+1)PπV
(Xq:k−1|vk)

,
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with the conventions PπV
(Xq:q−1|Vq) = 1. By Assumption H1,

PπV
(Vk ∈ A|Vk+1,Xq:n) ≥ νk

∫
1A(vk)πV (dvk)PπV

(Xq:k−1|vk)∫
πV (dvk)PπV

(Xq:k−1|vk)
.

The proof is then completed by choosing:

μk,q(A) =
∫

1A(vk)πV (dvk)PπV
(Xq:k−1|vk)∫

πV (dvk)PπV
(Xq:k−1|vk)

. �

Lemma 7 shows the contraction properties of the Markov kernel of the chain V conditionally
on the observations. It is a direct consequence of the minoration condition given in Lemma 6,
see for instance [18], Sections III.9 to III.11 or [3], Corollary 4.3.9 and Lemma 4.3.13. Let ‖ · ‖tv

be the total variation norm defined, for any measurable set (Z,Z) and any finite signed measure
ξ on (Z,Z), by

‖ξ‖tv = sup

{∫
f (z)ξ(dz);f measurable real function on Z such that ‖f ‖∞ = 1

}
.

Lemma 7. For all measures μ1, μ2 and all 1 ≤ q ≤ k < n,∥∥∥∥∫ μ1(dx)K
V |X
πV ,k,q(x, ·) −

∫
μ2(dx)K

V |X
πV ,k,q(x, ·)

∥∥∥∥
tv

≤ (1 − νk)‖μ1 − μ2‖tv ≤ (1 − νk).

In particular, by induction,

∥∥∥∥∫ {μ1(dvn) − μ2(dvn)
}
K

V |X
πV ,n−1,q (vn,dvn−1) · · ·KV |X

πV ,k,q(vk+1, ·)
∥∥∥∥

tv
≤

n−1∏
i=k

(1 − νi). (14)

Lemma 8 proves a key loss of memory property of the backward chain Xq , with geometric
rate of convergence. Whenever it is necessary, we adopt the convention

∏m
k=� ak = 1 for any

(a�, . . . , am) and any � > m.

Lemma 8. For any 1 ≤ q ≤ n − 1,∣∣logPπV
(Xq |Xq+1:n)

∣∣≤ log
(
ν−1
q

)
. (15)

For all � ≥ 1, 1 ≤ q ≤ n − 1,

∣∣logPπV
(Xq |Xq+1:n) − logPπV

(Xq |Xq+1:n+�)
∣∣≤ ν−1

q

n−1∏
k=q+1

(1 − νk). (16)
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Proof. To prove (16), for 1 ≤ q < n, note that by Lemma 6,

PπV
(Xq |Xq+1:n)

=
∫

PπV
(dvn|Xq+1:n)

(
n−1∏

k=q+1

K
V |X
πV ,k,q+1(vk+1,dvk)

)
πV (dvq)Kq(Xq, vq, vq+1). (17)

Likewise,

PπV
(Xq |Xq+1:n+�)

=
∫

PπV
(dvn|Xq+1:n+�)

(
n−1∏

k=q+1

K
V |X
πV ,k,q+1(vk+1,dvk)

)
πV (dvq)Kq(Xq, vq, vq+1). (18)

Then, by Lemma 6 and (14), combining (17) and (18) yields:∣∣PπV
(Xq |Xq+1:n+�) − PπV

(Xq |Xq+1:n)
∣∣

≤
(

n−1∏
k=q+1

(1 − νk)

)
sup

vq+1∈V

∣∣∣∣∫ πV (dvq)Kq(Xq, vq, vq+1)

∣∣∣∣≤ n−1∏
k=q+1

(1 − νk).

Inequality (16) is then a direct consequence of (17), (18) and the fact that for all x, y > 0, | logx−
logy| ≤ |x − y|/x ∧ y. Inequality (15) follows from (17). �

Lemma 9 is the crucial result to bound the increments of the log-likelihood.

Lemma 9. For all distributions πV ,π ′
V ∈ � ∪ {π�} and any 1 ≤ q ≤ n,∣∣logPπV

(Xq |Xq+1:n) − logPπ ′
V
(Xq |Xq+1:n)

∣∣
≤ 2

n+1−q∑
�=0

(νqνq+�−1νq+�)
−1

(
q+�−1∏
k=q+1

(1 − νk)

)∥∥πV − π ′
V

∥∥
tv.

Proof. When q = n,

PπV
(Xn) − Pπ ′

V
(Xn) =

∫ {
π ′⊗2

V (dvn:n+1) − π⊗2
V (dvn:n+1)

}
Kn(Xn, vn, vn+1).

Thus |PπV
(Xn) − Pπ ′

V
(Xn)| ≤ 2‖πV − π ′

V ‖tv. When 1 ≤ q ≤ n − 1,

PπV
(Xq |Xq+1:n) − Pπ ′

V
(Xq |Xq+1:n) =

n+1−q∑
�=0

{
P�(Xq |Xq+1:n) − P�+1(Xq |Xq+1:n)

}
,
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where P� is the joint distribution of (Xq:n,Vq:n+1) when (Vq, . . . , Vq+�−1) are i.i.d. π ′
V and

(Vq+�, . . . , Vn+1) are i.i.d. πV . The first term in the telescopic sum is given by:

P0(Xq |Xq+1:n) − P1(Xq |Xq+1:n) =
∫

P0(dvq+1|Xq+1:n)
∫

π ′
V (dvq)Kq(Xq, vq, vq+1)

−
∫

P0(dvq+1|Xq+1:n)
∫

πV (dvq)Kq(Xq, vq, vq+1),

where P0(Vq+1|Xq+1:n) is the distribution of Vq+1 conditionally on Xq+1:n when (Vq, . . . , Vn+1)

are i.i.d. πV . As Vq is independent of (Vq+1,Xq+1:n), this distribution is the same as the distri-
bution of Vq+1 conditionally on Xq+1:n when Vq ∼ π ′

V and (Vq+1, . . . , Vn+1) are i.i.d. πV .∣∣P0(Xq |Xq+1:n) − P1(Xq |Xq+1:n)
∣∣≤ ∥∥πV − π ′

V

∥∥
tv.

Then, for all 1 ≤ � ≤ n + 2 − q ,

P�(Xq |Xq+1:n)

=
∫

P�(dvq+�|Xq+1:n)
(

q+�−1∏
k=q+1

K
V |X
π ′

V ,k,q+1(vk+1,dvk)

)∫
π ′

V (dvq)Kq(Xq, vq, vq+1).

Therefore, by (14),∣∣P�(Xq |Xq+1:n) − P�+1(Xq |Xq+1:n)
∣∣

≤
(

q+�−1∏
k=q+1

(1 − νk)

)∥∥P�(Vq+�|Xq+1:n) − P�+1(Vq+�|Xq+1:n)
∥∥

tv,

where P�(Vq+�|Xq+1:n) is the distribution of Vq+� conditionally on Xq+1:n when (Vq, . . . ,

Vq+�−1) are i.i.d. π ′
V and (Vq+�, . . . , Vn+1) are i.i.d. πV . It remains to show that∥∥P�(Vq+�|Xq+1:n) − P�+1(Vq+�|Xq+1:n)

∥∥
tv ≤ 2(νqνq+�−1νq+�)

−1
∥∥πV − π ′

V

∥∥
tv

which amounts to showing that for all f such that ‖f ‖∞ ≤ 1,∣∣∣∣∫ f (vq+�)
{
P�(dvq+�|Xq+1:n) − P�+1(dvq+�|Xq+1:n)

}∣∣∣∣≤ 2(νqνq+�−1νq+�)
−1
∥∥πV − π ′

V

∥∥
tv.

Write, for all 1 ≤ � ≤ n + 2 − q ,

L�(dv,X) =
q+�−1∏
m=q+1

π ′
V (dvm)

n+1∏
m=q+�

πV (dvm)

n∏
m=q+1

Km(Xm,vm, vm+1). (19)

We have ∫
f (vq+�)P�(dvq+�|Xq+1:n) =

∫
f (vq+�)L�(dv,X)∫

L�(dv,X)
.
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Therefore, ∫
f (vq+�)

{
P�(dvq+�|Xq+1:n) − P�+1(dvq+�|Xq+1:n)

}
=
∫

f (vq+�)

(
L�(dv,X)∫
L�(dv,X)

− L�+1(dv,X)∫
L�+1(dv,X)

)
,

=
∫

f (vq+�)
L�(dv,X) − L�+1(dv,X)∫

L�(dv,X)

+
∫

f (vq+�)
L�+1(dv,X)∫
L�+1(dv,X)

∫ [L�+1(dv,X) − L�(dv,X)]∫
L�(dv,X)

.

Thus, ∣∣∣∣∫ f (vq+�)
{
P�(dvq+�|Xq+1:n) − P�+1(dvq+�|Xq+1:n)

}∣∣∣∣
≤ 2

| ∫ {L�(dv,X) − L�+1(dv,X)}|∫
L�(dv,X)

. (20)

By (19), 1 ≤ � ≤ n + 1 − q ,∣∣∣∣∫ {L�(dv,X) − L�+1(dv,X)
}∣∣∣∣

=
∣∣∣∣∣
∫ q+�−1∏

m=q+1

π ′
V (dvm)

{
πV (dvq+�) − π ′

V (dvq+�)
}

×
n+1∏

m=q+�+1

πV (dvm)

n∏
m=q+1

Km(Xm,vm, vm+1)

∣∣∣∣∣.
As Kq+�−1 and Kq+� are upper bounded by 1,∣∣∣∣∫ {L�(dv,X) − L�+1(dv,X)

}∣∣∣∣
≤
(∫ q+�−1∏

m=q+1

π ′
V (dvm)

q+�−2∏
m=q+1

Km(Xm,vm, vm+1)

)

× ∥∥πV − π ′
V

∥∥
tv

(∫ n+1∏
m=q+�+1

πV (dvm)

n∏
m=q+�+1

Km(Xm,vm, vm+1)

)
.
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Similarly, since Kq+�−1 and Kq+� are respectively lower bounded by νq+�−1 and νq+�,

∫
L�(dv,X) ≥

(∫ q+�−1∏
m=q+1

π ′
V (dvm)

q+�−2∏
m=q+1

Km(Xm,vm, vm+1)

)

× νq+�−1νq+�

(∫ n+1∏
m=q+�+1

πV (dvm)

n∏
m=q+�+1

Km(Xm,vm, vm+1)

)
.

Plugging these bounds in (20) yields, for 1 ≤ � ≤ n + 1 − q ,∣∣∣∣∫ f (vq+�)
{
P�(dvq+�|Xq+1:n) − P�+1(dvq+�|Xq+1:n)

}∣∣∣∣≤ 2(νq+�−1νq+�)
−1
∥∥πV − π ′

V

∥∥
tv.

The proof is completed using the fact that for all x, y > 0, | logx − logy| ≤ |x − y|/x ∧ y. �

Lemma 10 is a key ingredient to prove bounded difference properties for log-likelihood based
processes.

Lemma 10. For all 1 ≤ q ≤ n and all q ≤ q̃ ≤ n, let X̃
q̃
q:n be such that X̃

q̃

q̃
∈X and X̃

q̃
k = Xk for

all q ≤ k ≤ n such that k �= q̃ . For any 1 ≤ q ≤ q̃ ≤ n,

∣∣logPπV
(Xq |Xq+1:n) − logPπV

(
X̃

q̃
q |X̃q̃

q+1:n
)∣∣≤ ν−1

q

q̃−1∏
k=q+1

(1 − νk).

Proof. If q = q̃ = n, then

∣∣PπV
(Xn) − PπV

(
X̃n

n

)∣∣= ∣∣∣∣∫ πV (dvn)πV (dvn+1)
{
Kn(Xn, vn, vn+1) − Kn

(
X̃n

n, vn, vn+1
)}∣∣∣∣

≤ 1 − νn ≤ 1.

Assume now that 1 ≤ q < n. When q̃ = q ,

PπV
(Xq |Xq+1:n) − PπV

(
X̃

q
q |X̃q

q+1:n
)

=
∫

PπV

(
dvq+1|X̃q

q+1:n
)
πV (dvq)

{
Kq(Xq, vq, vq+1) − Kq

(
X̃

q
q , vq, vq+1

)}
,

which ensures that |PπV
(Xq |Xq+1:n) − PπV

(X̃
q
q |X̃q

q+1:n)| ≤ 1 − νq ≤ 1. When q̃ ≥ q + 1, as

for all q + 1 ≤ k ≤ q̃ − 1 the Markov transition kernel K
V |X
πV ,k,q+1 depends only on πV , Kk and
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Xq+1:k ,

PπV

(
X̃

q̃
q |X̃q̃

q+1:n
)

=
∫

PπV

(
dvq̃ |X̃q̃

q+1:n
)( q̃−1∏

k=q+1

K
V |X
πV ,k,q+1(vk+1,dvk)

)
πV (dvq)Kq(Xq, vq, vq+1).

By Lemma 7, it follows that∣∣PπV
(Xq |Xq+1:n) − PπV

(
X̃

q̃
q |X̃q̃

q+1:n
)∣∣

≤
(

q̃−1∏
k=q+1

(1 − νk)

)
sup

vq+1∈V

∣∣∣∣∫ πV (dvq)Kq(Xq, vq, vq+1)

∣∣∣∣.
The proof is completed using the fact that for all x, y > 0, | logx − logy| ≤ |x − y|/x ∧ y. �

Let π∗
V denote a probability distribution on V and let

ZπV
(X1:n) = 1

n

n∑
q=1

[
logPπV

(Xq |Xq+1:n) −Eπ∗
V

[
logPπV

(Xq |Xq+1:n)
]]

.

Lemma 11 shows the concentration of ZπV
(X1:n) around its expectation.

Lemma 11. Assume that Ki = K for all i ∈ Z, let P denote a class of probability distributions
on V. There exists c > 0 such that for all t > 0,

Pπ∗
V

(∣∣∣ sup
πV ∈P

{
ZπV

(X1:n)
}−Eπ∗

V

[
sup

πV ∈P
{
ZπV

(X1:n)
}]∣∣∣≥ cν−2 t√

n

)
≤ 2e−t2

.

Proof. The proof relies on the bounded difference inequality for Markov chains [10], The-
orem 0.2. To apply this result, supπV ∈P {ZπV

(X1:n)} has to be separately bounded. For all

1 ≤ q ≤ n and all q ≤ q̃ ≤ n, let X̃
q̃

1:n such that X̃
q̃

q̃
∈ X and X̃

q̃
k = Xk for all 1 ≤ k ≤ n such

that k �= q̃ . Then,∣∣∣ sup
πV ∈P

{
ZπV

(X1:n)
}− sup

πV ∈P
{
ZπV

(
X̃

q̃

1:n
)}∣∣∣

≤ sup
πV ∈P

∣∣∣∣∣1n
n∑

q=1

[
logPπV

(Xq |Xq+1:n) − logPπV

(
X̃

q̃
q |X̃q̃

q+1:n
)]∣∣∣∣∣

≤ sup
πV ∈P

∣∣∣∣∣1n
q̃∑

q=1

[
logPπV

(Xq |Xq+1:n) − logPπV

(
X̃

q̃
q |X̃q̃

q+1:n
)]∣∣∣∣∣.
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By Lemma 10, for any distribution πV ∈ P and any 1 ≤ q ≤ n,∣∣∣∣∣1n
n∑

q=1

[
logPπV

(Xq |Xq+1:n) − logPπV

(
X̃

q̃
q |X̃q̃

q+1:n
)]∣∣∣∣∣≤ 1

n

q̃∑
q=1

ν−1(1 − ν)q̃−q−1.

Hence, there exists c > 0 such that,∣∣∣ sup
πV ∈P

{
ZπV

(X1:n)
}− sup

πV ∈P
{
ZπV

(
X̃

q̃

1:n
)}∣∣∣≤ c

ν2n
.

The proof is concluded by [10], Theorem 0.2. �

Lemma 12 shows the subgaussian concentration inequality of the increments of ZπV
(X1:n).

Lemma 12. Assume that Ki = K for all i ∈ Z, let πV , π ′
V denote two probability distributions

on V. Then, there exists c > 0 such that for all n ≥ 1, t > 0,

Pπ∗
V

(∣∣√n
{
ZπV

(X1:n) − Zπ ′
V
(X1:n)

}∣∣> t
)≤ exp

[
− t2

(cν−5d(π,π ′))2

]
. (21)

Proof. To prove that the increments ZπV
−Zπ ′

V
are separately bounded, consider, for all 1 ≤ q̃ ≤

n, X̃
q̃

1:n such that X̃
q̃

q̃
∈X and X̃

q̃
k = Xk for all 1 ≤ k ≤ n such that k �= q̃ . Then, by Lemma 10,

∣∣ZπV
(X1:n) − ZπV

(
X̃

q̃

1:n
)∣∣= ∣∣∣∣∣1n

n∑
q=1

[
logPπV

(Xq |Xq+1:n) − logPπV

(
X̃

q̃
q |X̃q̃

q+1:n
)]∣∣∣∣∣

≤ 1

n

q̃∑
q=1

∣∣logPπV
(Xq |Xq+1:n) − logPπV

(
X̃

q̃
q |X̃q̃

q+1:n
)∣∣.

On one hand, by Lemma 9,∣∣logPπV
(Xq |Xq+1:n) − logPπ ′

V
(Xq |Xq+1:n)

∣∣≤ 2ν−4
∥∥πV − π ′

V

∥∥
tv.

On the other hand, by Lemma 10, for any 1 ≤ q ≤ q̃ ≤ n,∣∣logPπV
(Xq |Xq+1:n) − logPπV

(
X̃

q̃
q |X̃q̃

q+1:n
)∣∣≤ ν−1(1 − ν)q̃−q−1.

Thus, ∣∣(ZπV
(X1:n) − Zπ ′

V
(X1:n)

)− (ZπV

(
X̃

q̃

1:n
)− Zπ ′

V

(
X̃

q̃

1:n
))∣∣

≤ 2ν−4

n

q̃∑
q=1

[∥∥πV − π ′
V

∥∥
tv ∧ (1 − ν)q̃−q

]≤ 2ν−5

n
d
(
π,π ′).

Equation (21) follows by plugging these bounded differences properties in [10], Theorem 0.2. �
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Appendix C: Proofs of the main results

When H1 holds and E = E
n,N
RR , (V E

2:qE
,XE

2:qE−1) satisfies the assumptions of Section B with

πV = π⊗n−1, Ki

(
XE

i ,V E
i ,V E

i+1

)=
∏

Xi,j ∈XE
i

k(Xi,j ,Vi,Vj ), νi = ε|XE
i |.

Moreover, it is proved in Section A that |XE
q | = n(n − 1) for 2 ≤ q ≤ qE − 1, which implies that

νi ≥ εn2
. (22)

Throughout the proofs, the following conventions are used. For all 0 ≤ k ≤ qE ,

vE
k ∈ V |V E

k |, π
(
dvE

k

)=
∏

i:Vi∈V E
k

π(dvi).

C.1. Proof of Theorem 2

The first inequality is a direct conclusion of Lemma 8. The proof of the second inequality follows
the same lines. Then, the log-likelihood is decomposed as follows

logPE
π

(
XE
)= logPE

π

(
XE

2:qE−1

)+ logPE
π

(
XE

0 ,XE
1 ,XE

qE
|XE

2:qE−1

)
=

qE−1∑
q=2

logPE
π

(
XE

q |XE
q+1:qE−1

)+ logPE
π

(
ZE |XE

2:qE−1

)
. (23)

Let us first bound from above the last term in (23).

P
E
π

(
ZE |XE

2:qE−1

)=
∫

P
E
π

(
ZE,dvE

0:2,dvE
qE :qE+1|XE

2:qE−1

)
=
∫

P
E
π

(
dvE

0:2,dvE
qE :qE+1|XE

2:qE−1

){ ∏
Xi,j ∈ZE

k(Xi,j , vi, vj )

}
.

By Assumption H1

ε3n2 ≤ P
E
π

(
ZE |XE

2:qE−1

)≤ 1. (24)

In particular, the last term in (23) is O(1) when N grows to infinity. On the other hand,taking the
limit as � → ∞ in Lemma 8 and recalling that νi ≥ εn2

, see (22), for any π ∈ �,

1

qE

qE−1∑
q=2

∣∣logPE
π

(
XE

q |XE
q+1:qE−1

)− �n
π

(
ϑqXn)∣∣≤ 1

qE

qE−1∑
q=2

(1 − εn2
)qE−q−2

εn2 ≤ ε−3n2

qE

. (25)
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By (15), |�n
π (Xn)| ≤ n2 log(ε−1), thus �n

π is integrable. Therefore, the ergodic theorem [1], The-

orem 24.1, can be applied to
∑qE−1

q=2 �n
π (ϑqXn)/qE and (4) follows.

C.2. Rπ� is the excess risk function

The following result shows that Rn
π�

is a non-negative function.

Proposition 13. For all π ∈ � and all n ≥ 1, Rn
π�

(π) ≥ 0.

Proof. Let π ∈ � and n ≥ 1. By (3),

Ln
π�

(π) = Eπ�

[
lim

N→∞ logPE
π

(
XE

2 |XE
3:qE−1

)]
.

By Lebesgue’s bounded convergence theorem

Ln
π�

(π) = lim
N→∞Eπ�

[
logPE

π

(
XE

2 |XE
3:qE−1

)]
= lim

N→∞Eπ�

[
Eπ�

[
logPE

π

(
XE

2 |XE
3:qE−1

)|XE
3:qE−1

]]
.

Therefore,

Rn
π�

(π) = lim
N→∞

{
Eπ�

[
Eπ�

[
logPE

π�

(
XE

2 |XE
3:qE−1

)− logPE
π

(
XE

2 |XE
3:qE−1

)|XE
3:qE−1

]]}
,

and the latter is non negative since the term in the expectation is a Kullback–Leibler diver-
gence. �

C.3. Proof of Theorem 3

As that for any π ∈ � ∪ {π�}, �E(π) = logPE
π (XE), the excess loss satisfies:

Rn
π�

(
π̂E
)= Ln

π�
(π�) −Eπ�

[
1

qE

�E(π�)

]
+Eπ�

[
1

qE

�E(π�)

]
− 1

qE

�E(π�)

+ 1

qE

�E(π�) − 1

qE

�E
(
π̂E
)+ 1

qE

�E
(
π̂E
)−Eπ�

[
1

qE

�E
(
π̂E
)]

+Eπ�

[
1

qE

�E
(
π̂E
)]− Ln

π�

(
π̂E
)
.

By definition �E(π�) − �E(π̂E) ≤ 0. Thus,

Rn
π�

(
π̂E
)≤ 2 sup

π∈�∪{π∗}

{∣∣∣∣Lπ�(π) − Eπ�[�E(π)]
qE

∣∣∣∣+ ∣∣∣∣ 1

qE

Eπ�

[
�E(π)

]− �E(π)

qE

∣∣∣∣}.
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For all π ∈ �, as, for any q ∈ Z, Eπ� [�n
π (Xn)] = Eπ�[�n

π (ϑqXn)],

Lπ�(π) = 1

qE

Eπ�

[qE−1∑
q=2

�n
π

(
ϑqXn)]+ 1

qE

Eπ�

[
2�n

π

(
Xn)].

Moreover, if ZE = XE
0 ∪ XE

1 ∪ XE
qE

,

�E(π) = logPE
π

(
XE
)=

qE−1∑
q=2

logPE
π

(
XE

q |XE
q+1:qE−1

)+ logPE
π

(
ZE |XE

2:qE−1

)
.

Therefore,

∣∣∣∣Lπ�(π) − Eπ�[�E(π)]
qE

∣∣∣∣≤ 1

qE

Eπ�

[qE−1∑
q=2

∣∣�n
π

(
ϑqXn)− logPE

π

(
XE

q |XE
q+1:qE−1

)∣∣]

+ 1

qE

Eπ�

[∣∣2�n
π

(
Xn)∣∣+ ∣∣logPE

π

(
ZE |XE

2:qE−1

)∣∣].
Then, by (25), (15) and (24) and the inequality x ≤ ex , there exists c such that:

sup
π∈�∪{π∗}

∣∣∣∣Lπ�(π) − Eπ�[�E(π)]
qE

∣∣∣∣≤ cε−3n2

qE

.

This yields:

Rn
π�

(
π̂E
)≤ cε−3n2

qE

+ 2 sup
π∈�∪{π∗}

∣∣∣∣ 1

qE

Eπ�

[
�E(π)

]− 1

qE

�E(π)

∣∣∣∣,
and therefore, by (24),

Rn
π�

(
π̂E
)≤ cε−3n2

qE

+ 2 sup
π∈�∪{π∗}

|ZπV
|, (26)

where

Zπ = 1

qE

qE−1∑
q=2

[
logPE

π

(
XE

q |XE
q+1:qE

)−Eπ�

[
logPE

π

(
XE

q |XE
q+1:qE

)]]
.

Lemma 11 applies by assumption H1 since E = E
n,N
RR , therefore, there exists c > 0 such that,

Pπ�

(∣∣∣ sup
π∈�∪{π∗}

Zπ −Eπ�

[
sup

π∈�∪{π∗}
Zπ

]∣∣∣> cε−2n2 t√
qE

)
≤ e−t2

, ∀t > 0. (27)
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Furthermore, by Lemma 12, the increments of Zπ have subgaussian tails.

Pπ�

(√
qE |Zπ − Zπ ′ | > t

)≤ exp

(
− t2

(cε−5n2
d(π⊗|V E

2 |, (π ′)⊗|V E
2 |))2

)
, ∀t > 0.

Now it is easy to check that∥∥π⊗|V E
2 | − (π ′)⊗|V E

2 |∥∥
tv ≤ ∣∣V E

2

∣∣∥∥π − π ′∥∥
tv.

Therefore, d(π⊗|V E
2 |, (π ′)⊗|V E

2 |) ≤ cn2d(π,π ′) ≤ cε−n2
d(π,π ′), thus

Pπ�

(√
qE |Zπ − Zπ ′ | > t

)≤ exp

(
− t2

(cε−6n2
d(π,π ′))2

)
, ∀t > 0. (28)

Then, by Dudley’s entropy bound, see [12] or [25], Proposition 2.1,

Eπ�

[
sup

π∈�∪{π�}
Zπ

(
XE
)]≤ ce−6n2

√
qE

∫ +∞

0

√
log N

(
� ∪ {π�}, d, ε

)
dε. (29)

Plugging (27) and (29) into (26) concludes the proof.
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